
ByShard: Sharding in a Byzantine Environment

Jelle Hellings
Exploratory Systems Lab

Department of Computer Science
University of California, Davis

jhellings@ucdavis.edu

Mohammad Sadoghi
Exploratory Systems Lab

Department of Computer Science
University of California, Davis

msadoghi@ucdavis.edu

ABSTRACT

The emergence of blockchains has fueled the development of re-
silient systems that can deal with Byzantine failures due to crashes,
bugs, or even malicious behavior. Recently, we have also seen the
exploration of sharding in these resilient systems, this to provide the
scalability required by very large data-based applications. Unfor-
tunately, current sharded resilient systems all use system-speci�c
specialized approaches toward sharding that do not provide the
�exibility of traditional sharded data management systems.

To improve on this situation, we fundamentally look at the de-
sign of sharded resilient systems.We do so by introducing ByShard,
a unifying framework for the study of sharded resilient systems.
Within this framework, we show how two-phase commit and two-

phase locking—two techniques central to providing atomicity and
isolation in traditional sharded databases—can be implemented ef-
�ciently in a Byzantine environment, this with a minimal usage
of costly Byzantine resilient primitives. Based on these techniques,
we propose eighteen multi-shard transaction processing protocols.
Finally, we practically evaluate these protocols and show that each
protocol supports high transaction throughput and provides scal-
ability while each striking its own trade-o� between throughput,
isolation level, latency, and abort rate. As such, our work provides a
strong foundation for the development of ACID-compliant general-
purpose and �exible sharded resilient data management systems.

PVLDB Reference Format:

Jelle Hellings and Mohammad Sadoghi. ByShard: Sharding in a Byzantine

Environment. PVLDB, 14(11): 2230–2243, 2021.

doi:10.14778/3476249.3476275

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://www.jhellings.nl/projects/byshard/.

1 INTRODUCTION

The emergence of blockchains is fueling interest in new resilient sys-

tems that provide data and transaction processing in the presence
of Byzantine behavior, e.g., faulty behavior originating from soft-
ware, hardware, or network failures, or from coordinated malicious
attacks [2, 4, 20, 26, 28, 43]. These blockchain-inspired systems are
attractive, as they can provide resilience among many independent
participants [8, 10, 12, 13, 22, 23, 25, 26, 33, 36, 37, 41, 42, 44, 48,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476275

f1 f2

f3 f4

(African Data)

m1 m2

m3 m4

(American Data)

s1 s2

s3 s4

(Asian Data)

e1 e2

e3 e4

(European Data)

Requests
(African Data)

Requests
(American Data)

Requests
(Asian Data)

Requests
(European Data)

Requests
(Mixed Data)

Figure 1.1: A geo-scale aware sharded design inwhich four re-

silient clusters hold only a part of the data. Local decisions

within a cluster are made via consensus (), whereas

multi-shard coordination to process multi-shard transac-

tions requires cluster-sending ().

49, 56]. As such, blockchain-inspired systems can prevent service

disruption due to failures that compromise part of the system, and
can improve data quality of data that is managed by many indepen-
dent parties, potentially reducing the huge costs associated with
both [10, 19, 35, 45, 46, 50, 53].

Unfortunately, typical blockchain-inspired systems utilize a fully-
replicated design in which every participating replica holds all data
and processes all transactions, which is at odds with the scalability
requirements of modern very large data-based applications [48, 51].
Consequently, recent blockchain-inspired data processing systems
such as AHL [15], Caper [2], Cerberus [30], Chainspace [1], and
SharPer [3] propose to provide scalability by introducing sharding:
instead of operating a single fully-replicated system, one partitions
the data (e.g., based on location) among several independently-run
blockchain-based resilient clusters that each operate as a single
shard. We have sketched this design in Figure 1.1.

In such a sharded design, several resilient clusters together main-
tain all data, while each cluster only holds part of the data. Con-
sequently, sharded designs provide storage scalability as adding
shards increases overall storage capacity. Furthermore, sharded
designs promise processing scalability as transactions on data held
by di�erent shards can be processed in parallel. To deliver on the
promises of sharding, one needs an e�cient way to process multi-

shard transactions that a�ect data on multiple shards, however [47].

2230

https://doi.org/10.14778/3476249.3476275
https://www.jhellings.nl/projects/byshard/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476275

Unfortunately, existing sharded resilient systems use system-
speci�c solutions to provide multi-shard transaction processing:
they either are mainly optimized for single-shard transactions [15],
are mainly optimized for transactions that do not content for the
same resources [2, 3], or depend on the speci�cs of a UTXO-based
data model to deal with contention [1, 30]. This is in contrast with
traditional distributed databases, which can provide application-
agnostic ACID-compliant data and transaction processing that can
be tuned to a wide range of application-speci�c requirements. E.g.,
by o�ering �exible multi-shard transaction capabilities using two-
phase commit [24, 47, 52] and two-phase locking [47].

This raises the question whether such �exible multi-shard trans-
action capabilities can be provided in a Byzantine environment. In
this paper, we positively answer this question in three steps. First,
we take a structured look at providing resilience in a Byzantine
environment and how this a�ects sharded transaction processing.
Next, we introduce the ByShard framework, a formalization of
sharded resilient systems, and show how the design principles
of traditional distributed databases can be expressed within this
framework. Finally, we use the ByShard framework to evaluate
the resulting design space for multi-shard transaction processing
in a Byzantine environment.

To process multi-shard transactions, ByShard introduces the
orchestrate-execute model (OEM). This model can incorporate all
commit, locking, and execution operations required for processing a
multi-shard transaction in at-most two consensus steps per involved
shard. The �rst component of OEM is orchestration: the replication
of transactions among all involved shards while also reaching an

atomic decision on whether the transaction can be committed or not.
To provide orchestration, we show how to adapt two-phase commit

style orchestration to a Byzantine environment at a minimal cost
(in terms of consensus steps at the involved shards). In speci�c:

(1) We provide linear orchestration that minimizes the overall
number of consensus and cluster-sending steps necessary to
reach an agreement decision, this at the cost of latency.

(2) We provide centralized orchestration and distributed orches-

tration that both minimize the latency necessary to reach an
agreement decision by reaching such decisions in at-most
three or four consecutive consensus steps, respectively, this
at the cost of additional consensus and cluster-sending steps.

(3) To enable centralized and distributed orchestration, we intro-
duce Byzantine primitives to process all commit and abort
votes using only a single consensus step per involved shard.

The second component of OEM is execution of transactions. To
provide execution capabilities that maintain data consistency among
shards, we show how to adapt standard two-phase locking style

execution to a Byzantine environment at a minimal cost (in terms
of consensus steps at the involved shards). In speci�c:

(4) We introduce Byzantine primitives to provide blocking locks
that can be processed without any additional consensus steps
for the involved shards. Furthermore, we show how these
primitives also support non-blocking locks.

(5) Based on these primitives, we show how read uncommitted,
read committed, and serializable execution of transactions
can be provided.

(6) As a baseline, we also include isolation-free execution.

These orchestration and execution methods result in eighteen prac-
tical protocols for processing multi-shard transaction. To further
showcase the �exibility of ByShard, we show that both AHL [15]
and a generalization of Chainspace [1] can be expressed within
OEM. Finally, we combine the above techniques with a data and
transaction model representative for a Byzantine sharded environ-
ment and evaluate the behavior of the resulting designs:

(7) Our evaluation shows that all eighteen ByShard protocols
can e�ectively deal with multi-shard transaction workloads
and have excellent scalability: increasing the number of
shards will always decrease the work done per shard.

(8) Furthermore, all eighteen ByShard protocols have excel-
lent transaction throughput when contention is low. When
contention is high, each of the protocols makes their own
trade-o� between isolation level, latency, and abort rate while
maximizing throughput.

We believe our work provides a solid foundation for the develop-
ment of �exible general-purpose scalable Byzantine data manage-
ment systems.

2 BACKGROUND ON RESILIENT SYSTEMS

Before we look at the design of sharded resilient systems, we take a
look at the operations of traditional (non-sharded) resilient systems
that can deal with Byzantine behavior (e.g., replicas that crash,
behave faulty, or act malicious). Typical resilient systems process a
transaction g requested by client 2 by performing �ve steps:

(1) �rst, g needs to be received by the system;
(2) second, g must be reliably replicated among all replicas in

the system;
(3) third, the replicas need to agree on an execution order for g ;
(4) next, the replicas each need to execute g and update their

current state accordingly; and
(5) �nally, client 2 needs to be informed about the result.

At the core of resilient systems are consensus protocols [9, 11, 26,
39, 40] that coordinate the operations of individual replicas in the
system by replicating transactions among all non-faulty replicas in a
fault-tolerant manner, e.g., a Byzantine fault-tolerant system driven
by Pbft [11] or a crash fault-tolerant system driven by Paxos [39]:

De�nition 2.1. A consensus protocol coordinates decision making
among the replicas of a resilient cluster (of replicas) S by provid-
ing a reliable ordered replication of decisions. To do so, consensus
protocols provide the following guarantees:

(1) if non-faulty replica r ∈ S makes an 8-th decision, then
all non-faulty replicas r′ ∈ S will make an 8-th decision
(whenever communication becomes reliable);

(2) if non-faulty replicas r1, r2 ∈ S make 8-th decisions �1 and
�2, respectively, then �1 = �2 (they make the same 8-th
decisions); and

(3) whenever a non-faulty replica learns that a decision � needs
to be made, then it can force consensus on � .

Resilient systems operate in rounds, and in each round consen-
sus is used to decide on and replicate a single transaction (or a set
of transactions if batching is used [26]). The round in which a trans-
action is replicated also determines a linearizable execution order.
Hence, replication of a transaction and agreeing on an execution

2231

X = 10ms X = 10ms X = 10ms

r3

r2

r1

p

Accept gPrePrepare Prepare Commit

Figure 2.1: A schematic representation of the normal-case of

Pbft: the primary p proposes transaction g to all replicas via

a PrePrepare message. Next, replicas commit to g via a two-

phase all-to-all message exchange. In this example, replica

r3 is faulty and does not participate.

order (steps 2 and 3 above) are a single consensus step. In practical
deployments of resilient systems, reaching consensus on a decision
is costly and takes a rather long time. We illustrate this next.

Remark 2.2. Consider a deployment of the Pbft consensus proto-
col [11, 26, 28]. To maximize resilience and to deal with disruptions
at any location, individual replicas need to be spread out over a
wide-area network. E.g., spread-out in North America. Due to the
spread-out nature of the system, themessage delay between replicas
is high, and a message delay of X = 10ms is at the low end [15, 27].

Under normal conditions, Pbft operates via a primary-backup

design in which a designated replica (the primary) is responsible for
proposing decisions to all other replicas (the backups). The primary
does so via a PrePreparemessage. Next, all replicas exchange their
local state to determine whether the primary properly proposed a
decision. To do so, all replicas participate in two phases of all-to-all
communication (via Prepare and Commit messages). Hence, if the
message delay is X , then it will take at least 3X (�rst the PrePrepare
phase, then the Prepare phase, and, �nally, the Commit phase)
before a proposed decision is accepted by all replicas. E.g., with
X = 10ms, it will take at least 3X = 30ms for Pbft to decide on a
transaction after the primary received that transaction. In Figure 2.1,
we have illustrated this basic working of Pbft.

In a naive implementation of Pbft, the message delay ultimately
limits the transaction throughput: if the (d + 1)-th consensus deci-
sionwill bemade sequentially after the d-th decision, then the result-
ing throughput will be at-most 1/(3X) ≈ 33 txn/s in the sketched
environment. To increase performance, Pbft implementations can
use out-of-order processing in which the replicas can work on sev-
eral consensus rounds at the same time [11, 15, 26, 28]. E.g., if
individual replicas have su�cient network bandwidth and memory
bu�ers available, then a �ne-tuned out-of-order Pbft can easily
reach 1000 txn/s. Furthermore, batching can be used such that each
consensus decision itself represents many transactions, resulting
in systems that can reach even higher throughputs. The high cost
of consensus is not speci�c to Pbft and is shared by all other pop-
ular consensus protocols. E.g., in HotStuff [59], each consensus
decision will take at least 7X = 70ms in the sketched environment.

To assure that all non-faulty replicas have the same state, trans-
actions are executed in the linearizable order determined via con-
sensus and must be deterministic in the sense that execution must
always produce exactly the same results given identical inputs:

Example 2.3. Consider a banking system in which each trans-
action changes the balance of one or more accounts. The current

Ana $0
Bo $0
Elisa $0

g1
−−→

Ana $500
Bo $0
Elisa $0

g2
−−→

Ana $500
Bo $200
Elisa $300

g3
−−→

Ana $470
Bo $200
Elisa $330

g4
−−→

Ana $470
Bo $200
Elisa $260

Figure 2.2: Evolution of the current statewhile executing the

transactions of Example 2.3.

state is the balance of each account and can be obtained from the
initial state by executing each transaction in-order. Consider the
�rst four transactions

g1 = “add $500 to Ana”;

g2 = “add $200 to Bo and $300 to Elisa”;

g3 = “move $30 from Ana to Elisa”;

g4 = “remove $70 from Elisa”

(in which the balance of each account is referred to by the account
holder). After execution of these transactions, the current state
evolves as illustrated in Figure 2.2.

As all replicas maintain exactly the same (fully-replicated) state
and, using consensus, replicate exactly the same transactions and
determine exactly the same execution order, each replica can execute
each transaction and update their current state fully independent
(without any further need to exchange information). Hence, in a
resilient system, transaction processing can be reduced to the single
problem of ordered transaction replication, which is solved by o�-
the-shelf consensus protocols [11, 39, 59] (independent of the data
and transaction model supported by the system).

Here, we assume that transactions are always replicated and exe-
cuted as a whole. To deal with non-applicable transactions, e.g., that
violate constraints, we can include abort as a legitimate execution
outcome (that does not a�ect the current state). This assumption is
essential to reliably deal with Byzantine behavior: all decisions—
including the decision that a transaction is not-applicable—need to
be made by all non-faulty replicas (via consensus), this to ensure
that Byzantine replicas cannot force such a decision or interfere
with reliably making such a decision.

Example 2.4. Consider the banking system of Example 2.3. After
execution of g1, g2, g3, and g4, Ana has a balance of $470. Now con-
sider transaction g5 = “move $500 from Ana to Bo”. If the system
prevents negative account balances, then g5 cannot be successfully
executed after g4. Hence, if g5 is replicated and scheduled for ex-
ecution right after g4, then the transaction must be aborted at all
replicas, and the client needs to be informed of this abort.

3 TOWARDS SHARDED RESILIENT SYSTEMS

In the previous section, we detailed the operations of traditional
non-sharded resilient systems: we outlined �ve steps resilient sys-
tems perform to process transactions in a Byzantine environment

and showed that all necessary coordination and communication
between replicas in such a system is restricted to a single ordered
replication step, which is handled via consensus.

2232

The step from a non-sharded to a sharded resilient system com-
plicates the processing of transactions signi�cantly. To illustrate
this, we revisit the �ve steps for processing a transaction in a re-
silient system. Consider a multi-shard transaction g processed by a
resilient system and assume we know which shards are involved
in processing g . First, the transaction g needs to be replicated to
all replicas of all shards involved in executing g . After this, the
replicas need to agree an execution order for g . In fully-replicated
systems, both steps are solved at once using system-wide consen-
sus, as the replication order determines a linearizable execution
order. In a sharded system, per-shard replication of g only yields
a local linearizable replication order within that shard, however.
As distinct shards can replicate transactions locally in di�erent
orders, the local replication order does not necessary determine
a con�ict-free execution order for g across shards (e.g., serializ-
able execution [5, 6, 29]). Hence, determining an execution order
of g across shards—necessary to maintain data consistency across
shards—requires further coordination between the involved shards.

Besides determining the execution order, also execution and up-

dating the state of replicas poses a challenge in a sharded envi-
ronment. Within traditional systems, individual replicas can inde-
pendently execute transactions and update their state accordingly
as each replica holds a full copy of all data. This no longer holds
for multi-shard transaction: each replica only holds a copy of the
data in its shard. Hence, for the execution of g , replicas in the in-
volved shards need to exchange any necessary state. This exchange
is complicated by the presence of Byzantine replicas in each of
the involved shards and, hence, requires additional coordination to
assure that all necessary state is reliably exchanged.

Next, we will step-wise address these challenges towards multi-
shard transaction processing in sharded resilient systems. First,
we introduce the ByShard framework, a formalization of sharded
resilient systems. Next, we present the orchestrate-execute model

(OEM) used by ByShard to process multi-shard transaction. Then,
in Section 4, we propose orchestration methods inspired by two-
phase commit. Next, in Section 5, we propose execution methods
inspired by two-phase locking. Finally, in Section 6, we evaluate
the performance of transaction processing via OEM in ByShard.

3.1 ByShard: a resilient sharding framework

Let R be a set of replicas. We model a sharded system as a parti-
tioning of R into a set of z shardsS = {S1, . . . ,Sz}. Let S ∈ S be
a shard. We write nS = |S| to denote the number of replicas in
S and fS = |S| to denote the Byzantine faulty replicas in S. We
assume nS > 3fS , a minimal requirement to deal with Byzantine
behavior within a single shard in practical settings [17, 18]. Let
g be a transaction. We write shards(g) ⊆ S to denote the shards
that are a�ected by g (the shards that contain data that g reads or
writes). We say that g is a single-shard transaction if |shards(g) | = 1

and a multi-shard transaction otherwise.

Example 3.1. Consider a banking system similar to that of Exam-
ple 2.3. This time, however, the system is sharded into twenty-six
shardsS = {S0, . . . ,SI }, one for each letter of the alphabet, such
that the shard SU , U ∈ {0, . . . , I}, holds accounts whose name starts
with U . Now reconsider the transactions of Example 2.3. We have
shards(g1) = {S0}, shards(g2) = {S1 ,S4 }, shards(g3) = {S0,S4 },

and shards(g4) = {S4 }. Hence, transactions g1 and g4 are single-
shard transactions, whereas g2 and g3 are multi-shard transactions.

Within ByShard, we can employ any consensus protocol [9, 11,
39, 40] to make decisions within a shard, which allows us to op-
erate shards as if they are a single-replica shard. We assume that
consensus protocols in ByShard only make valid decisions: each
decision made by a shard S will re�ect a single processing step at
that shard of some transaction. We also need a Byzantine resilient
primitive that enables coordination between shards. For this role,
we can choose any cluster-sending protocol [27, 31] that provides
reliable communication between shards:

De�nition 3.2. A cluster-sending protocol provides reliable com-
munication between resilient clusters S1 and S2. To enable S1 to
send a value E toS2, cluster sending protocols provide the following
guarantees:

(1) S1 is able to send E toS2 only if there is agreement on sending
E among the non-faulty replicas in S1;

(2) all non-faulty replicas in S2 will receive the value E ; and
(3) all non-faulty replicas in S1 obtain con�rmation of receipt.

In ByShard, cluster-sending steps always follow consensus deci-
sion. Hence, agreement on any cluster-sending step will be reached
without further consensus overhead.

3.2 The orchestrate-execute model

Consider a multi-shard transaction g . To process this transaction,
we will require commit steps to replicate the transaction among all
replicas in all involved shards and to reach an atomic decision on
whether to commit or abort g . Furthermore, we will require locking
steps to provide isolated execution, guaranteeing a consistent exe-
cution order among all shards, and execution steps that update the
state of individual replicas.

At the same time, we also want to minimize the number of
consensus decisions at each involved shard to implement these
commit, locking, and execution steps. To do so, we propose the
orchestrate-execute model (OEM) that is able to incorporate the nec-
essary commit, locking, and execution steps required for processing
a multi-shard transaction in at-most two consensus steps per in-
volved shard. In OEM, processing of a multi-shard transaction g

is modeled via individual shard-steps that are performed indepen-
dently by each shard in shards(g) via consensus. Each shard-step
of S ∈ shards(g) can inspect local data at S, modify local data at
S, and forward execution to other shards via cluster-sending:

Example 3.3. Consider the sharded banking example of Exam-
ple 3.1 and consider the transaction

g = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Elisa;move $100 from Bo to Elisa”,

requested by client 2 . We have shards(g) = {S0,S1 ,S4 }. Next, we
rewrite g to a processing plan with a minimal number of shard-steps
(on success). This plan has four shard-steps, namely:

f1 = “if Ana has $500, then remove $400 from Ana; =⇒S1
(f2)

else send failure to 2”

f2 = “if Bo has $200, then remove $100 from Bo; =⇒S4
(f3)

else =⇒S0
(f4)”

2233

f3 = “add $500 to Elisa and send success to 2”

f4 = “add $400 to Ana and send failure to 2”

In which =⇒S (f) represents a cluster-sending step that forwards
execution to shard S, which is then instructed to execute shard-
step f . For simplicity, we omitted any locking from this processing
plan. Hence, this plan results in a non-isolated execution that can
violate consistency constraints on the data. Notice that the shards
a�ected by processing g depend on the current state: depending on
the current state of S0 and S1 , either only S0 is a�ected, or S0 and
S1 are a�ected, or S0 , S1 , and S4 are a�ected.

OEM will overlap the operations necessary for providing atom-

icity, isolation, and consistency [5, 6, 29] to minimize the number
of consensus steps. For this overlapped design, OEM utilizes only
three types of shard-steps per shard:

Vote-step A vote-step Vote(S) for S veri�es the constraints
to determine whetherS votes for either commit or abort. Fur-
thermore, the vote-step can make local changes, e.g., modify
local data or acquire locks. To simplify presentation, we as-
sume that a vote-step yielding an abort vote does not have
any side-e�ects.

Commit-step A commit-step Commit(S) for S performs nec-
essary operations to �nalize g when g is committed. E.g.,
modify data and release locks obtained during a preceding
vote-step.

Abort-step An abort-step Abort(S) for S performs neces-
sary operations to roll back g when g is aborted. E.g., roll
back local changes of a preceding vote-step or release locks
obtained during a preceding vote-step.

Example 3.4. Consider the processing plan for g of Example 3.3.
The shard-steps f1 and f2 are vote-steps that decide whether g can
commit by checking the balance of Ana and Bo. The shard-step f3
is a commit-step that �nalizes execution. Finally, shard-step f4 is an
abort-step that cancels out the modi�cations made by vote-step f1.

In the following two sections, we will discuss how to process
multi-shard transactions using these three shard-steps with mini-
mal cost (in terms of consensus and cluster-sending steps).

4 PROVIDING ORCHESTRATION IN OEM

Let g be a multi-shard transaction. The �rst part of processing g is to
orchestrate the replication of g to the involved shards in shards(g),
assure that all these shards reach an atomic decision on whether to
commit (and execute g) or to abort (and cancel execution of g), and
trigger the corresponding commit-steps or abort-steps. As such,
orchestration mimics the role of commit protocols in traditional
sharded data management systems [24, 47, 52]. Next, we introduce
the three orchestration methods of ByShard.

4.1 Linear orchestration

First, we propose an orchestration method based on the traditional
linear two-phase commit protocol (Linear-2PC) [24, 47].

LetS1, . . . ,S= be an ordering of all shardsS1, . . . ,S= ∈ shards(g)

with vote-steps. The transaction is orchestrated towards a deci-
sion by starting execution of Vote(S1). If execution of Vote(S8),
1 ≤ 8 < =, results in a commit vote, then S8 forwards execution

of g to S8+1, after which S8+1 will start execution of Vote(S8+1).
If execution of Vote(S=) results in a commit vote, then g will
be committed. To do so, S= forwards execution of g to all shards
S ∈ shards(g) with a commit-step Commit(S), after which each
such shard will execute Commit(S) in parallel. Finally, if execu-
tion of Vote(S8), 1 ≤ 8 ≤ =, results in an abort vote, then g will
immediately be aborted without further vote-steps (fast-abort). To
do so, S8 forwards execution of g to all shards S ∈ {S1, . . . ,S8−1}

with an abort-step Abort(S), after which each such shard will
execute Abort(S) in parallel. We illustrated linear orchestration
in Figure 4.1, left.

Theorem 4.1. Let g be a transaction with=E vote-steps,=2 commit-

steps, and =0 abort-step. Using linear orchestration, g can be com-

mitted (aborted) in =E + 1 (in at-most =E + 1) consecutive consensus

steps using =E +=2 (using at-most =E +=0) consensus-steps and using

=E + =2 − 1 (using at-most =E + =0 − 1) cluster-sending steps.

Proof. Assume that g is committed. In this case, the =E vote-
steps are performed in sequence, after which all =2 commit-steps
are performed in parallel. Hence, we use =E +=2 consensus steps, of
which=E+1 need to be consecutive. To forward execution,=E+=2−1
cluster-sending steps are performed. The case in which g is aborted
is analogous. □

The main strengths of linear orchestration are its simplicity, the
�exibility in the order in which vote-steps are processed, and its
ability to abort-fast. As linear orchestration will only perform abort-
steps at previously-voted shards, one can minimize the number of
abort-steps by �rst processing vote-steps of shards with only vote-

steps, and only after that the shards with both vote- and abort-steps.
Furthermore, if heuristics are available, then linear orchestration
can prioritize vote-steps with high likelihood of constraint failure in
an attempt to quickly arrive at abort. Finally, we can eliminate the
commit-step or abort-step for S= , as these steps can be processed
at the same time as the vote-step of S= .

4.2 Centralized orchestration

As we have seen, linear orchestration is simple and, due to its ability
to abort-fast, can minimize the number of shard-steps performed to
process g . This approach comes at the cost of consecutively visiting
each shard that has applicable vote-steps. Hence, linear orchestra-
tion takes at worst |shards(g) | + 1 consecutive consensus steps for
the execution of a transaction g . As an alternative, we can consider
parallelized orchestration by processing all vote-steps at the same
time (in parallel). Next, we propose such orchestration based on
the traditional centralized two-phase commit protocol (Centralized-
2PC) [47]. First, we present the core idea of such centralized orches-
tration. Then, we detail on how to e�ciently collect and process
the votes resulting from all vote-steps in a Byzantine environment.

Let SA ,S1, . . . ,S= be an ordering of all shards SA ,S1, . . . ,S= ∈

shards(g) with vote-steps. We refer to SA as the root for g , which
will coordinate the orchestration of g . To assure that the role of the
root is distributed over all shards, centralized orchestration does not
depend on any particular choice of SA . Hence, any SA ∈ shards(g)

will do. The root of g starts by executing Vote(SA). If Vote(SA)
results in a commit vote, then SA forwards execution of g to all

shards S1, . . . ,S= , after which each shard S8 , 1 ≤ 8 ≤ =, executes

2234

Linear
S1

S2

S3

S4

S5

S6
Vote Vote Vote Vote Commit

Centralized
(root) S1

S2

S3

S4

S5

S6
Root Vote Vote Decide Commit

Distributed
(root) S1

S2

S3

S4

S5

S6
Root Vote Vote Commit

Figure 4.1: Two-phase commit-based orchestration of a transaction g with shards(g) = {S1, . . . ,S6}, in which S1, S2, S3, and

S4 have vote-steps, S2, S5, and S6 have commit steps, and S3 has an abort-step. Every dot represents a single consensus step,

every arrow a single cluster-sending step, and every dashed arrows a cluster-sending step used to set up distributed waiting.

Vote(S) in parallel. After forwarding, SA can proceed with shard-
steps of other transactions. LetS8 , 1 ≤ 8 ≤ =, be a shard. IfVote(S8)
results in a commit vote, then S8 sends a commit vote via cluster-
sending to SA . Otherwise, if Vote(S8) results in an abort vote, then
S8 sends an abort vote via cluster-sending to SA . After sending a
vote to SA , S8 can proceed with shard-steps of other transactions.

If SA receives commit votes from each shard S1, . . . ,S= , then
g will be committed. To do so, SA forwards a global commit vote

via cluster-sending to all shards S ∈ shards(g) with a commit-step
Commit(S), after which each such shard executes Commit(S) in
parallel. If SA receives a single abort vote, then g will be aborted.
To do so, SA forwards a global abort vote via cluster-sending to all
shards S ∈ {S1, . . . ,S=} with an abort-step Abort(S). All shards
S that receive a global abort vote and voted abort, can ignore this
vote. All shards S that receive a global abort vote and voted commit,
executeAbort(S) in parallel. Finally, we can eliminate the commit-
step or abort-step forSA , as these steps can be processed at the same
time as the global vote. We illustrated centralized orchestration in
Figure 4.1, middle.

We notice that, in the worst case, the root SA will receive = =

|shards(g) | − 1 votes. For e�ciency, we cannot use separate con-
secutive consensus steps at SA to process each of these incoming
votes: if we would use consecutive consensus steps, then receiv-
ing these = votes will take worst-case almost-as-long as the steps
taken by linear orchestration to perform vote-steps at = shards in
sequence. Next, we shall show that we can process these at-most
|shards(g) | − 1 votes using only a single consensus decision at SA :

Lemma 4.2. Let g be a transaction and let shard SA be the root

that receives commit and abort votes of = other shards. Shard SA will

receive votes via = cluster-sending steps and can reach a commit or

abort decision in at-most a single consensus step at SA .

Proof. Consider SA receiving votes E1, . . . , E= and let r1, r2 ∈

SA . Both replicas receive votes via cluster-sending and register
them in some, possibly distinct, order. Independent of the order
in which r1 and r2 receive votes, they will both receive the set
of votes {E1, . . . , E=}, receive =0 abort votes, and =2 commit votes,
=0 + =2 = =. Hence, eventually, r1 and r2 can derive the same
global commit or abort decision for g : we do not need to enforce a
particular ordering in which votes are processed by replicas in SA
to agree on this decision. We still need to enforce that all replicas
in SA process this global abort or commit decision for g in the same
order, however. To do so, each replica in SA waits until it receives

all votes, after which it will use the mechanisms provided by the
consensus protocol to trigger a single consensus step (e.g., in Pbft by
forcing the primary to initiate such step) that reaches agreement on
a round in which SA continues processing g (resulting in the global
abort or commit decision being shared with other shards). □

In a similar way, shards can process global abort votes with
at-most one consensus step. Let S8 , 1 ≤ 8 ≤ =, be a shard. If S8
voted abort, then every replica in S8 is aware of this vote and
can ignore the incoming global abort vote. If S8 voted commit,
then every replica in S8 can use the mechanisms provided by the
consensus protocol to reach agreement on a round in which S8
can execute Abort(S8). Finally, if a shard S ∈ shards(g) receives a
global commit vote, then every replica inS can use the mechanisms
provided by the consensus protocol to reach agreement on a round
in which S8 can execute Commit(S8). We conclude the following:

Theorem 4.3. Let g be a transaction with=E vote-steps,=2 commit-

steps, and =0 abort-steps. Using centralized orchestration, g can be

committed (aborted) in exactly four consecutive consensus steps using

=E +=2 +1 (using =E +=0 +1) consensus-steps and using 2(=E −1) +=2
(using 2(=E − 1) + =0)) cluster-sending steps.

Proof. Assume that g is committed. In this case, the root SA
�rst performs its vote-step. Then, all =E − 1 other vote-steps are
performed in parallel, resulting in =E − 1 commit votes sent to
SA . Next, using Lemma 4.2, these commit-votes are processed by
SA using one consensus step. Finally, as the fourth consecutive
step, all =2 commit-steps are performed in parallel. Hence, we use
=E + =2 + 1 consensus steps, we use (=E − 1) + =2 cluster-sending
steps to forward execution, and =E − 1 cluster-sending steps to send
commit votes. The case in which g is aborted is analogous. □

4.3 Distributed orchestration

Centralized orchestration requires four consecutive consensus steps.
Next, we propose a method for parallelized orchestration based on
the traditional distributed two-phase commit protocol (Distributed-
2PC) [47] that only requires three consecutive consensus steps. We
do so by instructing every shard to not just send its vote for commit

or abort to the root, but instead broadcast this vote to all shards
with either commit-steps or abort-steps.

Let, ⊆ shards(g) be all shards with either a commit-step or
an abort-step. Let S8 , 1 ≤ 8 ≤ =, be a shard. Instead of sending the
commit or abort vote resulting from Vote(S8) to SA , S8 sends the

2235

resulting vote to all other shards in, . If S ∈ (, ∩ {S1, . . . ,S=})

voted abort, then it can ignore all votes. Let S′ ∈, be a shard that
did not vote abort. If S′ has a commit-step, then it proceeds with
executing Commit(S′) after it receives = commit votes. If S′ has
an abort-step, then it proceeds with executing Abort(S′) after it
receives a single abort vote. In all other cases, S′ can ignore the
votes. We illustrated distributed orchestration in Figure 4.1, right.

To assure that each shard in, knows what to do with the votes
it receives for g , the root of g will not only forward execution to
S1, . . . ,S= with the instruction to vote, but also to all shards in
, with the instruction to wait for votes of shards S1, . . . ,S= (the
wait instructions also implicitly represent the commit vote of the
root itself). As with the processing of votes, no consensus step is
necessary at the shards in, to process these wait instructions. We
conclude the following:

Theorem 4.4. Let g be a transaction with=E vote-steps,=2 commit-

steps, and =0 abort-steps. Using distributed orchestration, g can be

committed (aborted) in exactly three consecutive consensus steps using

=E+=2 (using=E+=0) consensus-steps and using=E (=0+=2)+ (=E−1)

(using =E (=0 + =2) + (=E − 1)) cluster-sending steps.

Proof. Assume that g is committed. In this case, the rootSA �rst
performs its vote-step and sends its commit vote to =0 + =2 shards.
Next, all =E − 1 other vote-steps are performed in parallel, resulting
in=E−1 commit votes sent to=0+=2 shards ((=E−1) (=0+=2) commit
votes in total). Finally, as the third consecutive step, each shard with
a commit-step can use the techniques of the proof of Lemma 4.2 to
process the incoming =E commit votes and the resulting commit-
step using one consensus step. Likewise, each shard with only an
abort-step can ignore the commit votes without any consensus steps.
Hence, we use=E+=2 consensus steps, we use=E−1 cluster-sending
steps to forward execution, and =E (=0 +=2) cluster-sending steps to
send commit votes. The case in which g is aborted is analogous. □

Remark 4.5. By relying on the client that requested transaction
g to send g to all shards in shards(g), we can eliminate the role of
the root and reduce distributed orchestration to two consecutive
consensus steps, this similar to the working of Chainspace [1]
and PCerberus [30]. For this to work, we need reliable clients or
recovery mechanisms to deal with faulty client behavior, however.
As these recovery mechanisms have similar complexity to the three-
step distributed orchestration we present here, we do not separately
investigate such a two-step design.

5 PROVIDING EXECUTION IN OEM

Let g be a multi-shard transaction. The second part of processing g
is to execute g by updating any data a�ected by g at the shards in
shards(g). As part of execution, one can incorporate steps to assure
an isolated execution of g , which makes it easier to maintain data

consistency. Notice that single-shard steps are ordered via consensus
and executed sequentially at the level of a shard. Hence, individual
reads and writes always happen in full isolation, guaranteeing
write uncommitted execution (degree 0 isolation) [5, 6]. As multi-
shard transactions can have several shard-steps, the processing of
several multi-shard transactions can result in interleaved execution
of these transactions. Hence, if further isolation is necessary for
the application, then the execution method needs to incorporate

some form of concurrency control. To provide concurrency control,
we will describe how two-phase locking can be expressed in OEM,
this without introducing additional consensus or cluster-sending
steps. Using two-phase locking, ByShard provides execution with
various degrees of isolation, e.g., serializable execution (degree 3),
read committed execution (degree 2), and read uncommitted execution

(degree 1) [5, 6, 29]. As a baseline, we also describe two basic lock-
free execution methods that only provide degree 0 isolation.

To illustrate execution, we formalize the account-transfer data
and transaction model of preceding examples. For this purpose, we
assume that each transaction g is a pair (�,") in which � is a set
of constraints of the form

Con(X, y) = “the balance of - is at least ~”

and" a set of modi�cations of the form

Mod(X, y) = “add ~ to the balance of - ”.

We write � (S) and" (S) to denote the constraints and modi�ca-
tions in � and" , respectively, that a�ect accounts maintained by
S. Semantically, a system commits to g only if all constraints in �
hold, in which case all modi�cations in " are applied to the sys-
tem. Notice that these minimalistic account-transfer transactions
are su�cient to represent all transactions in preceding examples.
In Section 7, we discuss why this minimalistic account-transfer
data and transaction model is representative for general-purpose
workloads for resilient data management systems.

5.1 Isolation-free direct execution

First, we propose a basic execution method with minimal isolation
by formalizing the isolation-free execution method employed in the
linearly orchestrated processing plan of Example 3.3.

Let g = (�,") be a transaction and let S ∈ shards(g). Shard
S needs a vote-step whenever constraints need to be checked at
S (� (S) ≠ ∅). This vote-step f checks whether all constraints in
� (S) hold. If these constraints hold, then f makes a commit vote.
Otherwise, f makes an abort vote. To avoid a separate commit-step
for g at S, we optimistically assume that g will not abort and let
the vote-step f perform all modi�cations in " (S) after it voted
commit.When the transaction gets aborted, we need to roll back any
modi�cations made by f . Hence, if" (S) ≠ ∅, we also construct an
abort-step Abort(S) that rolls back all modi�cations in" (S) by
performing the modi�cations {Mod(X, -y) | Mod(X, y) ∈ " (S)}.

If S only has modi�cations (� (S) = ∅), then S only needs a
commit-step that performs all modi�cations in" (S).

The main strength of isolation-free execution is the minimal
amount of shard-steps it produces: if a transaction is committed,
then each shard will only execute a single shard-step (a vote-step
if there are constraints, a commit-step otherwise). Unfortunately,
isolation-free execution provides only degree 0 isolation, which can
lead to violations of constraints on the data in many applications:

Example 5.1. Consider the sharded banking example of Exam-
ple 3.1. Assume that the system does not allow negative accounts
balances and consider transactions

g1 = Con(A, 100),Con(B, 700),Mod(A, 400),Mod(B, -400);

g2 = Con(A, 500),Mod(A, -300),Mod(E, 300),

2236

� $100
� $300
� $0

g1:S0

−−−−−−−−−−→
Con(A,100)
Mod(A,400)

� $500
� $300
� $0

g2:S0

−−−−−−−−−−−→
Con(A,500)
Mod(A,-300)

� $200
� $300
� $0

g1:S1

−−−−−−−−−−−→
Con(b,700)
(decide abort)

� $200
� $300
� $0

g1:S0

−−−−−−−−−−−→
Mod(A,-400)

(abort)

� -$200
� $300
� $0

g2:S4

−−−−−−−−−−→
Mod(E,300)

� -$200
� $300
� $300

Figure 5.1: Evolution of the current state while step-wise ex-

ecuting the transactions of Example 5.1.

and their isolation-free linearly orchestrated execution illustrated
in Figure 5.1. As one can see, the balance of� will become negative,
breaking the constraint put in place. This is caused by operation
Con(A, 500) of g2, which performs a so-called dirty read [6, 47].

As isolation-free execution only provides minimal isolation, it is
unable to prevent phenomena such as dirty reads that can lead to
data inconsistencies. Isolation-free execution does provide atomic-

ity, however: either all or none of the modi�cations of a transaction
are permanent. One way to deal with constraint violations such
as in Example 5.1 is by assuring that roll backs do not invalidate
constraints in a domain-speci�c manner. To illustrate this, assume
we want to assure that accounts never have negative balances.

On the one hand, rolling backMod(X, y) with ~ ≤ 0 (a removal)
will increase the balance of - and, hence, will never make the
balance of - negative. Consequently, these modi�cations are safe.
Furthermore, notice that if Con(X, -y) and Mod(X, y), ~ ≤ 0, are
part of a single vote-step, then they are executed in isolation as
a single unit and, hence, the modi�cation will never make the
balance negative (this pattern of constraint checking and removing
of balance can be seen as a lock on available resources, whereas
rolling back the removal is a release of unused resources).

On the other hand, rolling back Mod(X, y) with ~ ≥ 0 (an addi-
tion) will decrease the balance of- and, hence, canmake the balance
of - negative. Consequently, these modi�cations are unsafe. To
assure that unsafe modi�cation do not invalidate constraints, one
can perform these modi�cations during commit (via a commit-
step). This means that, in the worst case, every a�ected shard must
execute two shard-steps when committing: the vote-step checks
constraints and performs safe modi�cations (which, on abort, are
rolled back via the abort-step) and the commit-step performs unsafe
modi�cations. We refer to this execution method, in which safe
modi�cations are part of vote-steps and unsafe modi�cations are
part of commit-steps, as safe isolation-free execution.

5.2 Lock-based execution

Although safe isolation-free execution is able to maintain some data
consistency, it does so in an domain-speci�c manner that cannot be
applied to all situations. As amore general-purposemethod towards
maintaining data consistency, we can enforce higher isolation levels
for transaction processing, e.g., degree 3 (serializable execution).

The standard way to do so in a multi-shard environment is by
using two-phase locking [5, 47]. First, we describe the working of
two-phase locking. Then, we discuss how to implement two-phase
locking with minimal coordination in a Byzantine environment.

Consider a multi-shard transaction g . When executing g , g needs
to obtain a read lock on each data item� before it reads� and awrite
lock on each data item � before it writes � . Several transactions
can hold a read lock on � at the same time, while write locks on �

are exclusive: if g ′, g ′ ≠ g , holds a write lock on � , then g cannot
obtain any locks on � , and if g ′, g ′ ≠ g , holds a read lock on � , then
g cannot obtain a write lock on � , but can obtain a read lock on
� . When g cannot obtain a lock on � that it needs, it simply waits
until previous transactions �nish and release their locks on � . To
provide serializability, g is barred from obtaining new locks after
releasing any locks: this assures that there is a point in time where
g is the only transaction that holds all write locks on data items
a�ected by g , at which point g can make any changes to these data
items in an indivisible atomic manner.

To avoid deadlocks, we enforce that each transaction locks data
items in exactly the same order [47]. To minimize the number of
shard-steps, we assume a �xed order on shards and on data items
within shards, and obtain all locks in that order. Consequently,
two-phase locking will require linear orchestration.

Example 5.2. Consider the sharded banking example of Exam-
ple 3.1 and the transaction

g = “if Ana has $500 and Bo has $300 then

move $200 from Ana to Ben”.

Assume that shards are ordered as S0, . . . ,SI and that accounts are
ordered on account holder name. To execute this transaction, we
�rst obtain a write lock on the account of Ana in S0 , then a write
lock on the account of Ben in S1 , and, �nally, a read lock on the
account of Bo in S1 .

Let g = (�,") be a transaction, let S ∈ shards(g), and let

Accounts(S) = {- | Con(X, y) ∈ � (S) ∨Mod(X, y) ∈ " (S)}

be the set of accounts a�ected at S. During the vote-step Vote(S),
we acquire a lock Lock(-) for every account- ∈ Accounts(S) in
some predetermined order. If there is aMod(X, y) ∈ " (S), then we
acquire a write lock for - . Otherwise, we acquire a read lock. After
acquiring the lock on- , we check any constraintCon(X, y) ∈ � (S).
If a constraint does not hold, then Vote(S) votes abort and re-
leases all locks already acquired in S. We purposely check these
constraints as soon as possible to minimize the amount of time
locks are held. Otherwise, if all constraints hold, then Vote(S)

votes commit. Next, the commit-step Commit(S) performs all
modi�cations " (S), after which it performs Release(-), for all
accounts - ∈ Accounts(S), to release all locks in S. Finally,
the abort-step Abort(S) performs Release(-), for all accounts
- ∈ Accounts(S), to release all locks in S. We have the following:

Theorem 5.3. Let g be a transaction with = = |shards(g) |. To

process g using two-phase locking, we need = vote-steps to obtain all

locks, followed by =−1 commit-steps or abort-steps to release all locks.

Hence, g can be processed using 2= − 1 consensus steps and 2= − 2

cluster-sending steps.

2237

Proof. To prove the theorem, we only need to prove that the
vote-step Vote(S) of each shard S ∈ shards(g) can obtain all
its locks using only a single consensus step at S. Execution of
Vote(S) starts after S reached consensus on this step, and we will
prove that no further consensus steps for Vote(S) are required.
Let Vote(S) = {. . . , Lock(-), . . . }. During execution of Vote(S),
we distinguish two possible cases:

(1) The lock on - can be obtained, in which case execution of
Vote(S) continuous.

(2) The lock on - cannot be obtained. In this case, execution of
Vote(S) needs to wait until the lock on - can be obtained.
To do so, as part of the execution of Vote(S), every replica
r ∈ S puts (g,Vote(S)) on a wait-queue &r (-).

Let r1, r2 ∈ S. We assume that wait-queues &r1 (-) and &r2 (-)

operate deterministic: if the the same sequence of operations is
applied to &r1 (-) and &r2 (-), then the queues always yield the
same results. Now consider the case in which the lock - cannot
be obtained. Let g ′, g ≠ g ′, be the transaction that is holding the
lock on - and let f = {. . . , Release(-), . . . } be the commit-step
or abort-step of g ′ for shard S. During execution, shard-step f will
release the lock on - . When doing so, each replica r ∈ S wakes up
transactions in &r (-) for execution directly after shard-step f . We
distinguish two cases:

(1) The next transaction in &r (-) wants to obtain a read lock,
while g ′ held a write lock. In this case, wake up all trans-
actions in &r (-) that want to obtain a read lock (all these
transactions can hold the read lock at the same time).

(2) The next transaction in &r (-) wants to obtain a write lock.
If g ′ was the last transaction holding any lock on - , then we
wake up the next transaction (as it will be the only one that
can hold an exclusive write lock).

This wake up step is part of the deterministic execution of f and
wake-up queues operate deterministic. Hence, no consensus steps
are necessary to determine which transactions need to be executed
next and to initiate execution of these next transactions. □

We notice that we cannot always minimize the number of af-
fected shards while processing g via two-phase locking:

Example 5.4. Consider the sharded banking example of Exam-
ple 5.2 and the transaction g = “if Bo has $500, then move $200
from Bo to Ana”. Due to the ordering on shards and accounts used,
we always �rst need to obtain a write lock on the account of Ana
(in shard S0) before we can inspect the balance of Bo (in shard S1),
even if Bo does not have su�cient balance. This is in contrast with
the isolation-free execution methods, as these methods can �rst

inspect the balance of Bo and directly abort execution.

The strength of two-phase locking is that it provides serializabil-
ity. The downside is that it can cause large transaction processing
latencies whenever contention is high:

Example 5.5. Consider a system in which consensus steps take
C = 30ms each, while all other steps take negligible time (see Re-
mark 2.2). We consider transactions g1 and g2 such that g1 writes to
data items �1, . . . , �10 that are held in shards S1, . . . ,S10, respec-
tively, while g2 only writes to data item �1. Transaction g1 executes
�rst at S1 and obtains the write lock on �1. Next, g2 executes at S1,

cannot obtain the write lock on �1, and has to wait until g1 �nishes
execution and releases the lock on�1. To do so, g1 has to �rst obtain
locks in < − 1 shards, after which it can return to S1 to release
the lock on �1. Hence, g1 has to perform< consecutive consensus
steps. Even if g1 can obtain the locks on �2, . . . , �10 immediately,
it will take at least 10C = 300ms before g2 can resume execution,
even though the actual execution of g2 would only take C = 30ms.

One way to partially deal with Example 5.5 is by not imposing
degree 3 isolation (serializable execution). The lock primitives we
propose to provide degree 3 isolation can easily be used to provide
execution methods with other levels of isolation [5, 6, 29]. E.g.,

(1) in read uncommitted execution (degree 1 isolation), no read
locks are obtained on any data item (while write locks are
used in the usual way), thereby reducing lock contention
sharply for read-heavy workloads; and

(2) in read committed execution (degree 2 isolation), read locks on
each data item � are released directly after reading � (while
write locks are used in the usual way), thereby minimizing
the time read locks are held.

Using lower isolation levels only partially mitigates the issues
illustrated in Example 5.5. To further deal with this, one can opt to
replace waiting by failing: whenever a lock cannot be obtained by
a transaction g , g aborts. This approach guarantees that processing
latencies of transactions and resource utilization at the replicas
are kept in check in periods of high contention, this at the cost of
aborted transactions that could otherwise be successfully executed.
As these non-blocking locks will never cause deadlocks, these locks
can be obtained in any order, enabling their usage in combination
with all orchestration methods.

6 PERFORMANCE EVALUATION OF BYSHARD

In the previous sections, we introduced ByShard as a framework
for sharded resilient systems. We also presented several general-
purpose methods by which ByShard can e�ectively orchestrate and
execute multi-shard transactions. Combining these methods results
in eighteen multi-shard transaction processing protocols. See the
legend of Figure 6.1 for details on how these eighteen protocols are
obtained from the presented orchestration and execution methods.

Remark 6.1. In practical deployments of ByShard, end-users
only need to use one of these eighteen multi-shard transaction pro-
cessing protocols. In our experiments, we use such single-protocol
deployments, as we are interested in the di�erences between the
protocols. This does not rule out deployments of ByShard that use
several protocols simultaneously. Indeed, ByShard does support
the usage of several protocols at the same time such that users can
select the appropriate isolation level for individual transactions.

Furthermore, multi-shard transaction protocols used by sharded
resilient systems such asAHL [15] and Chainspace [1] can also eas-
ily be expressed within the orchestrate-execute model of ByShard.

To gain further insight in the performance attainable by sharded
resilient systems, we implemented the ByShard framework, the
orchestrate-execution model, and the eighteen multi-shard transac-
tion processing protocols obtained from the presented orchestration
an execution methods.

2238

For comparison, we also implemented the multi-shard transac-
tion protocol of AHL [15], which has a novel design that is most
similar to the design of our Centralized, Serializable, non-blocking
protocol CSnb: the main di�erence being that AHL uses a dedi-
cated reference committee to coordinate processing of all multi-shard
transactions, whereas in CSnb each transaction is coordinated by
a root-shard chosen from the set of shards a�ected by that trans-
action. Our implementation of AHL is granted a dedicated extra
shard for use as the reference committee. Finally, we note that the
design of our Distributed, Serializable, non-blocking protocol DSnb
is a generalization of the novel design of Chainspace [1]. We refer
to Remark 4.5 for further details on the relationship between the
three-step design of DSnb and the two-step design of Chainspace.

Next, we deployed our implementation on a simulated sharded
resilient system. In speci�c, we abstract the operations of consen-
sus and cluster-sending, while deploying full shards that execute
all replica-speci�c operations necessary for transaction orchestra-
tion and execution. This deployment provides detailed control over
consensus and cluster-sending costs, enables �ne-grained measure-
ments of performance metrics, and allows us to deploy on hundreds
of shards.1

6.1 Experimental Setup

In each experiment, we run a workload of 5000 transactions. Unless
speci�ed otherwise, each transaction a�ects 16 distinct accounts
by putting constraints on 8 accounts (read operations), removing
balance from 4 accounts (write operations), and adding balance to 4
accounts (write operations). The accounts a�ected by these opera-
tions are chosen uniformly at random from a set of active accounts.
Each account on each shard starts with an initial balance of 2000
and transactions add or remove 500 balance per modi�cation (on
average, these are chosen via a binomial distribution with = = 1000

and ? = 0.5). We run experiments with 64 shards and 8192 active
accounts (128 active accounts per shard). Finally, the experiments
are set up such that the message delay is 10ms, consensus deci-
sions take 30ms to make, and each shard canmake 1000 decisions/s.
In each experiment, we collected �ve core measurements on the
performance of the system:

▶ The total runtime represents the elapsed real time.
▶ The cumulative duration represents the sum of the transac-

tion duration (the elapsed real time to process that transac-
tion) of each transaction in the workload, which includes
waiting times.

▶ The average throughput represents the average number of
transactions processed per second.

▶ The average committed throughput represents the average
number of transactions committed (and executed) per sec-
ond.

▶ The median shard-steps represent the median number of
shard-steps performed per shard (each shard-step involves a
single consensus step).

We performed three experiments, the results of which can be
found in Figure 6.1.

1The full C++ implementation of these experiments and the raw measurements are
available at https://www.jhellings.nl/projects/byshard/.

The Scalability Experiment. In our �rst experiment, we inspect
the impact of sharding on the behavior of ByShard. To do so, we
measured the behavior of the system as a function of the number

of shards while keeping all other parameters the same (including
the workload and the initial dataset). By increasing the number
of shards, we increase the available parallel processing power. At
the same time, we decrease the number of accounts per shard and,
hence, we increase the number of multi-shard transactions and
the average number of shards a�ected by each transaction in our
workload.

The Contention Experiment. In our second experiment, we in-
spect the impact of contention on the behavior of ByShard. To do
so, we measured the behavior of the system as a function of the
number of active accounts per shard. For each case, we generate
appropriate workloads as a function of the the overall number of
active accounts in the system. Increasing the number of active ac-
counts will decrease the probability that two transactions a�ect the
same account and, hence, decrease contention.

The Factor-Scalability Experiment. In our third experiment, we
inspect the impact of scaling the system on the behavior of ByShard.
To do so, we measured the behavior of the system as a function of
the number of shards and, as we keep the number of active accounts
per shard constant, the number of active accounts. For each case,
we generate appropriate workloads as a function of the the overall
number of accounts in the system. As in the scalability experiment,
increasing the number of shards increases the available parallel
processing power. Furthermore, as in the contention experiment,
increasing the number of accounts decreases contention.

6.2 Experimental Results

From the presented measurements, we conclude that the eighteen
multi-shard transaction protocols we propose have excellent scala-
bility: when the number of shards is increased, the median amount
of work per shard (consensus steps and vote processing steps) de-
creases rapidly. A closer look at the protocols shows that the main
di�erence between them is, on the one hand, their runtime, per-
transaction duration, and throughput and, on the other hand, the
average committed throughput.

As expected, we see that the protocols that provide lower degrees
of isolation have the lowest runtime and lowest average durations,
and, consequently, the highest throughput. Furthermore, we see
that centralized and distributed orchestration have comparable
performance, while outperforming linear orchestration.

When focusing on lock-based execution, we see that using block-
ing locks result in systems with good runtimes, high commit rates,
and scalable performance whenever contention is low. As Exam-
ple 5.5 already illustrated, the performance of these protocols is
sharply a�ected by contention, however. At the same time, using
non-blocking locks results in systems with all-around low run-
times and low average durations. These systems are a�ected by
contention, however, as higher contention results in higher rates
of aborted transactions due to lock failures. Still, due to the much
lower runtimes, using non-blocking locks typically results in much
higher throughputs than using blocking locks.

2239

https://www.jhellings.nl/projects/byshard/

Isolation-Free execution Lock-based execution

(write uncommitted) Read Uncommitted Read Committed Serializable

unsafe safe blocking non-blocking blocking non-blocking blocking non-blocking

Linear LIFu LIFs LRUb LRUnb LRCb LRCnb LSb LSnb

Centralized CIFu CIFs CRUnb CRCnb CSnb AHL

(

reference
committee

)

Distributed DIFu DIFs DRUnb DRCnb DSnb

20 21 22 23 24 25 26 27 28 29
0.0

5.0

10.0

15.0

20.0

R
u
n
ti
m
e
(s
)

Total Runtime (Zoomed)

20 21 22 23 24 25 26 27 28 29 210 211 212
0.0

5.0

10.0

15.0

20.0

R
u
n
ti
m
e
(s
)

Total Runtime (Zoomed)

20 21 22 23 24 25 26 27 28 29
0.0

2.0

4.0

6.0

8.0

10.0

R
u
n
ti
m
e
(s
)

Total Runtime

20 21 22 23 24 25 26 27 28 29
0.0

1.0

2.0

3.0

4.0

·103

D
u
ra
ti
o
n
(s
)

Cumulative Duration (Zoomed)

20 21 22 23 24 25 26 27 28 29 210 211 212
0.0

1.0

2.0

3.0

4.0

·103

D
u
ra
ti
o
n
(s
)

Cumulative Duration (Zoomed)

20 21 22 23 24 25 26 27 28 29
0.0

2.0

4.0

6.0

·103

D
u
ra
ti
o
n
(s
)

Cumulative Duration

20 21 22 23 24 25 26 27 28 29
0.0

0.5

1.0

1.5

·104

T
h
ro
u
g
h
p
u
t
(t
x
n
/
s)

Average Throughput

20 21 22 23 24 25 26 27 28 29 210 211 212
0.0

1.0

2.0

3.0

4.0

5.0

·103

T
h
ro
u
g
h
p
u
t
(t
x
n
/
s)

Average Throughput

20 21 22 23 24 25 26 27 28 29
0.0

0.5

1.0

1.5

2.0
·104

T
h
ro
u
g
h
p
u
t
(t
x
n
/
s)

Average Throughput

20 21 22 23 24 25 26 27 28 29
0.0

2.0

4.0

6.0

8.0

·103

T
h
ro
u
g
h
p
u
t
(t
x
n
/
s)

Average Committed Throughput

20 21 22 23 24 25 26 27 28 29 210 211 212
0.0

1.0

2.0

3.0

4.0

·103

T
h
ro
u
g
h
p
u
t
(t
x
n
/
s)

Average Committed Throughput

20 21 22 23 24 25 26 27 28 29
0.0

0.5

1.0

1.5

2.0
·104

T
h
ro
u
g
h
p
u
t
(t
x
n
/
s)

Average Committed Throughput

20 21 22 23 24 25 26 27 28 29
0.0

2.0

4.0

6.0

8.0

·103

St
ep
s
p
er

Sh
ar
d

Median Consensus Steps

20 21 22 23 24 25 26 27 28 29 210 211 212
0.0

0.5

1.0

1.5

2.0

·103

St
ep
s
p
er

Sh
ar
d

Median Consensus Steps

20 21 22 23 24 25 26 27 28 29
0.0

0.2

0.4

0.6

0.8

1.0
·104

St
ep
s
p
er

Sh
ar
d

Median Consensus Steps

Figure 6.1: Performance characteristics of processing a workload of 5000 transactions. Le�, the results for the scalability ex-

periment in which we measured the behavior of the system when processing a �xed workload as a function of the number of

shards . Middle, the results for the contention experiment in which we measured the behavior of a system with 64 shards as a

function of the number of accounts per shard.Right, the results for the factor-scalability experiment in whichwemeasured the

behavior of the system as a function of the scalability-factor bywhich the number of accounts and shards grow. See Section 6.1

for a detailed description of each experiment and each measurement type.

2240

Finally, we see that protocols that use either centralized or dis-
tributed orchestration have much lower runtimes than their linear
orchestrated counterparts. At the same time, the parallel processing
of shard-steps increases the negative impact of contention on the
committed throughput (e.g., due to higher rates of constraint fail-
ures). Still, the rate at which transactions are committed is highest
using distributed orchestration, as the high throughput achieved by
distributed orchestration o�sets the negative impact of contention.

When looking at AHL, we see that the novel design of AHL pro-
vides excellent scalability for workloads with high ratios of single-
shard transactions. When comparing AHL with similar protocols
in ByShard, we see that the reliance on a reference committee in
AHL to orchestrate all multi-shard transactions reduces contention.
Unfortunately, this comes at the cost of overall performance: in
line with the original evaluation of AHL [15, Section 7.3], we see
that the reference committee is a bottleneck when dealing with
workloads with high ratios of multi-shard transactions.

7 DISCUSSION AND RELATED WORK

There is abundant literature on the design and implementation of
distributed systems, distributed databases, and sharding (e.g., [47,
54, 55]). Furthermore, there is also abundant literature on resilient
systems and consensus (e.g., [7, 9, 14, 16, 40, 58]). Next, we shall
focus on the design decisions made by ByShard and compare them
to the few works that deal with sharding in resilient systems.

Workloads in resilient systems. The account-transfer data and
transaction model we used throughout this paper is simple. Still,
all principles outlined in this paper can be applied to any data and
transaction model in which transactions are one-shot transactions.
We have not considered interactive transactions that require back-
and-forth steps by clients and the system. Although such interactive
transactions are supported by some traditional data management
systems, we believe that they are ill-suited for resilient systems, as
interactive transaction processing would be a costly and unrespon-
sive process due to the high cost of the individual consensus steps
required to process each back-and-forth step.

The general-purpose data and transaction model of ByShard
is in contrast with Chainspace and Cerberus, which both opt to
utilize an UTXO-based data model to their advantage to provide
consistent transaction execution when dealing with contention and
Byzantine behavior.

ByShard and decentralized sharding. The designs of the eighteen
multi-transaction protocols of ByShard are decentralized in the
sense that there is no central coordinator that is assigned the task
to coordinate execution of all multi-shard transactions. This is
in contrast with systems such as AHL [15] that use a reference
committee to coordinate execution of all multi-shard transactions.
This di�erence between ByShard and AHL is not fundamental,
however, as the multi-shard transaction protocol of AHL can easily
be expressed within the orchestrate-execute model of ByShard.

As shown in Section 6.2, the usage of a central coordinator (e.g.,
reference committees) can signi�cantly reduce contention while
providing excellent scalability for single-shard workloads. At the
same time, the usage of a central coordinator introduces bottlenecks
when processing workloads with many multi-shard transactions.

ByShard and the usage of Byzantine primitives. To maximize
the throughput of a sharded resilient system, we have to assure
that standard performance-enhancing techniques can be applied
at the single-shard level. This is especially true for out-of-order
processing [11, 15, 26], which can increase consensus throughput
in consensus-based systems by several orders of magnitudes (see
Remark 2.2). In ByShard, we have assured that such performance-
enhancing techniques are easily applicable by utilizing standard
Byzantine primitives as basic building blocks.

This is in contrast with recent systems such as Caper [2] and
SharPer [3] that try to minimize the duration of multi-shard trans-
action processing. To do so, these systems process each multi-shard
transactions via a single transaction-speci�c multi-shard-aware
consensus step (thereby reducing the number of consecutive con-
sensus steps to an absolute minimum). Unfortunately, such designs
have di�culties dealing with contention, while making it nontriv-
ial to apply standard performance-enhancing techniques such as
out-of-order processing.

As ByShard relies on standard Byzantine primitives, the design
of ByShard is highly �exible and can easily be tuned towards
speci�c applications. E.g., by providing only crash-fault tolerance by
using the Paxos consensus protocol, by minimizing communication
costs by using the HotStuff consensus protocol, and so on.

Sharding in permissionless blockchains. In parallel to the develop-
ment of traditional resilient systems and permissioned blockchains,
there has been promising work on sharding in permissionless
blockchains such as Bitcoin [41] and Ethereum [56]. Examples
include techniques for enabling reliable cross-chain coordination
via sidechains, blockchain relays, atomic swaps, atomic commit-
ment, and cross-chain deals [20, 21, 32, 34, 38, 57, 60]. Unfortunately,
these permissionless techniques are several orders of magnitudes
slower than comparable techniques for traditional resilient systems,
making them unsuitable for systems that aim at high-performance
data management.

8 CONCLUSION

In this paper, we introduced ByShard, a general-purpose frame-
work for sharded resilient data management systems. Additionally,
we introduced the orchestrate-execute model (OEM) for process-
ing multi-shard transactions in ByShard. Next, we showed that
OEM can incorporate the necessary commit, locking, and execution
steps required for processing a multi-shard transaction in at-most
two consensus steps per involved shard. Furthermore, we showed
that common multi-shard transaction processing based on two-
phase commit protocols and two-phase locking can be expressed
e�ciently in OEM.

Our �exible design allows for many distinct approaches towards
multi-shard transaction processing, each striking its own trade-
o� between throughput, isolation level, latency, and abort rate. To
illustrate this, we performed an in-depth comparison of the eigh-
teen multi-shard transaction processing protocols of ByShard. Our
results show that each protocol supports high transaction through-
put and provides scalability. Hence, we believe that the ByShard
framework is a promising step towards �exible general-purpose
ACID-compliant scalable resilient multi-shard data and transaction
processing capabilities.

2241

REFERENCES
[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George

Danezis. 2017. Chainspace: A Sharded Smart Contracts Platform. http://arxiv.
org/abs/1708.03778

[2] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CAPER:
A Cross-application Permissioned Blockchain. Proc. VLDB Endow. 12, 11 (2019),
1385–1398. https://doi.org/10.14778/3342263.3342275

[3] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2020. SharPer:
Sharding Permissioned Blockchains Over Network Clusters. https://arxiv.org/
abs/1910.00765v2

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference. ACM, 30:1–30:15. https:
//doi.org/10.1145/3190508.3190538

[5] Vijayalakshmi Atluri, Elisa Bertino, and Sushil Jajodia. 1997. A theoretical for-
mulation for degrees of isolation in databases. Inform. Software Tech. 39, 1 (1997),
47–53. https://doi.org/10.1016/0950-5849(96)01109-3

[6] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. SIGMOD Rec. 24, 2 (1995),
1–10. https://doi.org/10.1145/568271.223785

[7] Christian Berger and Hans P. Reiser. 2018. Scaling Byzantine Consensus: A
Broad Analysis. In Proceedings of the 2nd Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers. ACM, 13–18. https://doi.org/10.1145/
3284764.3284767

[8] Burkhard Blechschmidt. 2018. Blockchain in Europe: Closing the Strategy
Gap. Technical Report. Cognizant Consulting. https://www.cognizant.com/
whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf

[9] Christian Cachin and Marko Vukolic. 2017. Blockchain Consensus Protocols in
the Wild (Keynote Talk). In 31st International Symposium on Distributed Comput-
ing, Vol. 91. Schloss Dagstuhl, 1:1–1:16. https://doi.org/10.4230/LIPIcs.DISC.2017.
1

[10] Michael Casey, Jonah Crane, Gary Gensler, Simon Johnson, and Neha Narula.
2018. The Impact of Blockchain Technology on Finance: A Catalyst for Change.
Technical Report. International Center for Monetary and Banking Studies. https:
//www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf

[11] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4 (2002), 398–461. https:
//doi.org/10.1145/571637.571640

[12] Christie’s. 2018. Major Collection of the Fall Auction Season to be Recorded
with Blockchain Technology. https://www.christies.com/presscenter/pdf/9160/
RELEASE_ChristiesxArtoryxEbsworth_9160_1.pdf

[13] Cindy Compert, Maurizio Luinetti, and Bertrand Portier. 2018.
Blockchain and GDPR: How blockchain could address �ve areas as-
sociated with GDPR compliance. Technical Report. IBM Security.
https://public.dhe.ibm.com/common/ssi/ecm/61/en/61014461usen/security-
ibm-security-solutions-wg-white-paper-external-61014461usen-20180319.pdf

[14] Miguel Correia, Giuliana Santos Veronese, Nuno Ferreira Neves, and Paulo Veris-
simo. 2011. Byzantine Consensus in Asynchronous Message-Passing Systems: A
Survey. Int. J. Crit. Comput.-Based Syst. 2, 2 (2011), 141–161.

[15] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In
Proceedings of the 2019 International Conference on Management of Data. ACM,
123–140. https://doi.org/10.1145/3299869.3319889

[16] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and
Ji Wang. 2018. Untangling Blockchain: A Data Processing View of Blockchain
Systems. IEEE Trans. Knowl. Data Eng. 30, 7 (2018), 1366–1385. https://doi.org/
10.1109/TKDE.2017.2781227

[17] D. Dolev. 1981. Unanimity in an unknown and unreliable environment. In
22nd Annual Symposium on Foundations of Computer Science. IEEE, 159–168.
https://doi.org/10.1109/SFCS.1981.53

[18] Danny Dolev. 1982. The Byzantine generals strike again. J. Algorithms 3, 1 (1982),
14–30. https://doi.org/10.1016/0196-6774(82)90004-9

[19] Wayne W. Eckerson. 2002. Data quality and the bottom line: Achieving Business
Success through a Commitment to High Quality Data. Technical Report. The Data
Warehousing Institute, 101communications LLC.

[20] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and
Ravi Ramamurthy. 2019. BlockchainDB: A Shared Database on Blockchains. Proc.
VLDB Endow. 12, 11 (2019), 1597–1609. https://doi.org/10.14778/3342263.3342636

[21] Ethereum Foundation. 2017. BTC Relay: A bridge between the Bitcoin blockchain
& Ethereum smart contracts. http://btcrelay.org

[22] Lan Ge, Christopher Brewster, Jacco Spek, Anton Smeenk, and Jan Top. 2017.
Blockchain for agriculture and food: Findings from the pilot study. Technical
Report. Wageningen University. https://www.wur.nl/nl/Publicatie-details.htm?

publicationId=publication-way-353330323634
[23] William J. Gordon and Christian Catalini. 2018. Blockchain Technology for

Healthcare: Facilitating the Transition to Patient-Driven Interoperability. Comput.
Struct. Biotechnol. J. 16 (2018), 224–230. https://doi.org/10.1016/j.csbj.2018.06.003

[24] Jim Gray. 1978. Notes on Data Base Operating Systems. In Operating Systems,
An Advanced Course. Springer-Verlag, 393–481. https://doi.org/10.1007/3-540-
08755-9_9

[25] GSM Association. 2017. Blockchain for Development: Emerging Opportunities
for Mobile, Identity and Aid. https://www.gsma.com/mobilefordevelopment/wp-
content/uploads/2017/12/Blockchain-for-Development.pdf

[26] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. Fault-Tolerant
Distributed Transactions on Blockchain. Morgan & Claypool. https://doi.org/10.
2200/S01068ED1V01Y202012DTM065

[27] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow. 13, 6
(2020), 868–883. https://doi.org/10.14778/3380750.3380757

[28] Suyash Gupta, Sajjad Rahnama, and Mohammad Sadoghi. 2020. Permissioned
Blockchain Through the Looking Glass: Architectural and Implementation
Lessons Learned. In 2020 IEEE 40th International Conference on Distributed Com-
puting Systems (ICDCS). IEEE, 754–764. https://doi.org/10.1109/ICDCS47774.
2020.00012

[29] Theo Haerder and Andreas Reuter. 1983. Principles of Transaction-Oriented
Database Recovery. ACM Comput. Surv. 15, 4 (1983), 287–317. https://doi.org/10.
1145/289.291

[30] Jelle Hellings, Daniel P. Hughes, Joshua Primero, and Mohammad Sadoghi. 2020.
Cerberus: Minimalistic Multi-shard Byzantine-resilient Transaction Processing.
https://arxiv.org/abs/2008.04450

[31] Jelle Hellings and Mohammad Sadoghi. 2019. Brief Announcement: The Fault-
Tolerant Cluster-Sending Problem. In 33rd International Symposium on Distributed
Computing (DISC 2019). Schloss Dagstuhl, 45:1–45:3. https://doi.org/10.4230/
LIPIcs.DISC.2019.45

[32] Maurice Herlihy. 2018. Atomic Cross-Chain Swaps. In Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing. ACM, 245–254. https:
//doi.org/10.1145/3212734.3212736

[33] Maurice Herlihy. 2019. Blockchains from a Distributed Computing Perspective.
Commun. ACM 62, 2 (2019), 78–85. https://doi.org/10.1145/3209623

[34] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2019. Cross-Chain Deals
and Adversarial Commerce. Proc. VLDB Endow. 13, 2 (2019), 100–113. https:
//doi.org/10.14778/3364324.3364326

[35] Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. 2007. Data Quality
and Record Linkage Techniques. Springer. https://doi.org/10.1007/0-387-69505-2

[36] Matt Higginson, Johannes-Tobias Lorenz, Björn Münstermann, and Peter Braad
Olesen. 2017. The promise of blockchain. Technical Report. McKin-
sey&Company. https://www.mckinsey.com/industries/�nancial-services/our-
insights/the-promise-of-blockchain

[37] Maged N. Kamel Boulos, James T. Wilson, and Kevin A. Clauson. 2018. Geospatial
blockchain: promises, challenges, and scenarios in health and healthcare. Int. J.
Health. Geogr 17, 1 (2018), 1211–1220. https://doi.org/10.1186/s12942-018-0144-x

[38] Jae Kwon and Ethan Buchman. 2019. Cosmos Whitepaper: A Network of Dis-
tributed Ledgers. https://cosmos.network/cosmos-whitepaper.pdf

[39] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32, 4 (2001), 51–58.
https://doi.org/10.1145/568425.568433 Distributed Computing Column 5.

[40] Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Songtao Guo, and Yuanyuan
Yang. 2020. A Survey of IoT Applications in Blockchain Systems: Architecture,
Consensus, and Tra�c Modeling. ACM Comput. Surv. 53, 1, Article 18 (2020),
32 pages. https://doi.org/10.1145/3372136

[41] Satoshi Nakamoto. [n.d.]. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/en/bitcoin-paper

[42] Arvind Narayanan and Jeremy Clark. 2017. Bitcoin’s Academic Pedigree. Com-
mun. ACM 60, 12 (2017), 36–45. https://doi.org/10.1145/3132259

[43] Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish Sethi, and Praveen
Jayachandran. 2019. Blockchain Meets Database: Design and Implementation of
a Blockchain Relational Database. Proc. VLDB Endow. 12, 11 (2019), 1539–1552.
https://doi.org/10.14778/3342263.3342632

[44] Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A Global-Scale Byzan-
tizing Middleware. In 35th International Conference on Data Engineering (ICDE).
IEEE, 124–135. https://doi.org/10.1109/ICDE.2019.00020

[45] Dick O’Brie. 2017. Internet Security Threat Report: Ransomware
2017, An ISTR Special Report. Technical Report. Symantec. https:
//www.symantec.com/content/dam/symantec/docs/security-center/white-
papers/istr-ransomware-2017-en.pdf

[46] The Council of Economic Advisers. 2018. The Cost of Malicious Cyber Activity
to the U.S. Economy. Technical Report. Executive O�ce of the President of the
United States. https://www.whitehouse.gov/wp-content/uploads/2018/03/The-
Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf

[47] M. Tamer Özsu and Patrick Valduriez. 2020. Principles of Distributed Database
Systems. Springer. https://doi.org/10.1007/978-3-030-26253-2

2242

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
https://doi.org/10.14778/3342263.3342275
https://arxiv.org/abs/1910.00765v2
https://arxiv.org/abs/1910.00765v2
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1016/0950-5849(96)01109-3
https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://www.cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf
https://www.cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://www.christies.com/presscenter/pdf/9160/RELEASE_ChristiesxArtoryxEbsworth_9160_1.pdf
https://www.christies.com/presscenter/pdf/9160/RELEASE_ChristiesxArtoryxEbsworth_9160_1.pdf
https://public.dhe.ibm.com/common/ssi/ecm/61/en/61014461usen/security-ibm-security-solutions-wg-white-paper-external-61014461usen-20180319.pdf
https://public.dhe.ibm.com/common/ssi/ecm/61/en/61014461usen/security-ibm-security-solutions-wg-white-paper-external-61014461usen-20180319.pdf
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.14778/3342263.3342636
http://btcrelay.org
https://www.wur.nl/nl/Publicatie-details.htm?publicationId=publication-way-353330323634
https://www.wur.nl/nl/Publicatie-details.htm?publicationId=publication-way-353330323634
https://doi.org/10.1016/j.csbj.2018.06.003
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-540-08755-9_9
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2017/12/Blockchain-for-Development.pdf
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2017/12/Blockchain-for-Development.pdf
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.1109/ICDCS47774.2020.00012
https://doi.org/10.1109/ICDCS47774.2020.00012
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://arxiv.org/abs/2008.04450
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3209623
https://doi.org/10.14778/3364324.3364326
https://doi.org/10.14778/3364324.3364326
https://doi.org/10.1007/0-387-69505-2
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://doi.org/10.1186/s12942-018-0144-x
https://cosmos.network/cosmos-whitepaper.pdf
https://doi.org/10.1145/568425.568433
https://doi.org/10.1145/3372136
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1145/3132259
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1109/ICDE.2019.00020
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/03/The-Cost-of-Malicious-Cyber-Activity-to-the-U.S.-Economy.pdf
https://doi.org/10.1007/978-3-030-26253-2

[48] Michael Pisa and Matt Juden. 2017. Blockchain and Economic Development: Hype
vs. Reality. Technical Report. Center for Global Development. https://www.cgdev.
org/publication/blockchain-and-economic-development-hype-vs-reality

[49] PwC. 2016. Blockchain – an opportunity for energy producers and con-
sumers? https://www.pwc.com/gx/en/industries/energy-utilities-resources/
publications/opportunity-for-energy-producers.html

[50] Thomas C. Redman. 1998. The Impact of Poor Data Quality on the Typical
Enterprise. Commun. ACM 41, 2 (1998), 79–82. https://doi.org/10.1145/269012.
269025

[51] David Reinsel, John Gantz, and John Rydning. 2018. Data Age 2025:
The Digitization of the World, From Edge to Core. Technical Report.
IDC. https://www.seagate.com/�les/www-content/our-story/trends/�les/idc-
seagate-dataage-whitepaper.pdf

[52] Dale Skeen. 1982. A Quorum-Based Commit Protocol. Technical Report. Cornell
University.

[53] Symantec. 2018. Internet Security Threat Report, Volume 32. https://www.
symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf

[54] Gerard Tel. 2001. Introduction to Distributed Algorithms (2nd ed.). Cambridge
University Press.

[55] Maarten van Steen and Andrew S. Tanenbaum. 2017. Distributed Systems (3th
ed.). Maarten van Steen. https://www.distributed-systems.net/

[56] Gavin Wood. [n.d.]. Ethereum: a secure decentralised generalised transaction
ledger. https://gavwood.com/paper.pdf EIP-150 revision.

[57] Gavin Wood. 2016. Polkadot: vision for a heterogeneous multi-chain framework.
https://polkadot.network/PolkaDotPaper.pdf

[58] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. 2020. A Survey of
Distributed Consensus Protocols for Blockchain Networks. IEEE Commun. Surv.
Tutor 22, 2 (2020), 1432–1465. https://doi.org/10.1109/COMST.2020.2969706

[59] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStu�: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the ACM Symposium on Principles of Distributed Computing. ACM,
347–356. https://doi.org/10.1145/3293611.3331591

[60] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2020. Atomic Com-
mitment across Blockchains. Proc. VLDB Endow. 13, 9 (2020), 1319–1331. https:
//doi.org/10.14778/3397230.3397231

2243

https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.pwc.com/gx/en/industries/energy-utilities-resources/publications/opportunity-for-energy-producers.html
https://www.pwc.com/gx/en/industries/energy-utilities-resources/publications/opportunity-for-energy-producers.html
https://doi.org/10.1145/269012.269025
https://doi.org/10.1145/269012.269025
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf
https://www.distributed-systems.net/
https://gavwood.com/paper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.14778/3397230.3397231

