
Byte Code Verification for

Java Smart Cards

Based on Model Checking*

Joach im Posegga and Harald Vogt

Deutsche Telekom AG

Technologiezentrum

IT Security

D-64307 Darmstadt

Tel. +49 6151 83-7881, Fax-4090

(poseggalvogth}@tzd. telekom, de

A b s t r a c t . The paper presents a novel approach to Java byte code ver-

ification: The verification process is performed "offline" on a network

server, instead of incorporating it in the client. Furthermore, the most

critical part of the verification process is based upon a formal model and

uses a model checker for checking the verification conditions. The result

of the verification process can be securely communicated to the runtime

platform with cryptographic means.

The major advantages of our approach are twofold: on the one hand, it

offers a higher degree of security, since the verification process is based

on a formal framework. Secondly, it saves resources on the client's side,

since the process of byte code verification can be replaced by a simple

check of a digital signature.
This paper concentrates on Java smart cards, where resource limitations

inhibit fully-fiedged byte code verification within the client, but the de-

mand for security is very high. However, our approach can also be applied

to other variants of Java.

1 I n t r o d u c t i o n

Java [GS96] is an ins tance of down-loadable code tha t m a n y people see as a

pa rad igm shift in compu te r science. Java is a network-or iented approach with

two major advantages:

Firstly, Java is supposed to be plat]orm-independent. This is achieved by

compiling Java applets or Java applicat ions into Java by te code [LY96], a stack-

oriented machine language tha t is interpreted on the specific pla t form where

Java programs are to be executed (cf Figure 1). The in terpreter for this byte

code is called the Java Virtual Machine.

Secondly, Java applets offer the principle of downloading executable code over

a network on demand; this is a significant gain in flexibility, since it allows one

* The opinions expressed in this paper are solely those of the authors and do not

necessarily reflect the views of Deutsche Telekom AG.

176 Joachim Posegga and Harald Vogt

to configure the function of clients in a network as needed; the expensive process

of installing software on clients becomes superfluous.

The technical basis for both these specifics of Java have been known in com-

puter science since decades. However, the overall design of the

Java scenario is very promising, and the tech-

nology became widely accepted and available on

various platforms. This makes Java interesting.

A potential hindrance for the wide-spread use

of Java are security concerns. The problem is,

essentially, that down-loading executable code

from an open network can be dangerous, since

it is hard to ensure that such an executable ac-

tually does not do any harm to the local system.

Java's answer to this problem is, in essence,

a type-safe language, a byte code verifier tha t

checks certain safety properties of the trans-

ferred executable code, and a sandbox model

tha t restricts the runtime environment of the

down-loaded code. The Java byte code verifier Fig. 1. Java's Architecture

plays a crucial role in this architecture (cf Fig-

ure 1): implemented within the user's Java platform, it ensures that the byte

code to be executed meets certain properties like type-safety. The sandbox

that runs Java applets takes these properties for granted, mainly for reasons

of efficiency. Without this verification step, malicious byte code (e.g. code that

has been hand-coded, or been manipulated during the transfer) can crash the

sandbox and easily take over complete control of the underlying machine.

In this paper we describe a novel security architec-

ture for Java, where the process of byte code verifica-

tion is carried out using a model checker; this process is

assumed to be implemented "offiine", i.e. on a server in

a network and not within the client. The result of such

a verification step can be communicated to a client,

e.g. by applying digital signatures to Java byte code

programs (applets).

Our approach has two major advantages: firstly, it

offers a strong formal basis for an operation that is cru-

cial to security. This helps avoiding bugs in the byte

code verifier that can cause security holes. Secondly,

the principle of carrying out the byte code verification

offiine offers much more flexibility than the current ap-

Fig. 2. Byte Code Ver- proach, since it does not suffer from resource restric-

ification tions usually found within the clients, both for size and

speed of the Java runtime platform.

The major motivation for our research were the specifics of Java smart cards

[Sun97a,Sun97b,KP98], where byte code verification is particularly problematic

Byte Code Verification for Java Smart Cards 177

because of the extreme space and runtime limitations of smart cards proces-

sors. The concept of offiine verification fits perfectly into this scenario: it saves

resources on the card, and formal approaches like model checking can increase

security, which is highly desirable for smart card applications.

Whilst the advantages of our approach are most obvious in the case of smart

cards, the approach itself can also be carried forward to the general framework

of Java.

The paper is organised as follows. In the next Section (2) we discuss the role

of byte code verification within Java's security architecture. Section 3 outlines

the idea behind performing byte code verification offiine and compares it with

the current architecture. In Section 4 we introduce the use of model checking for

the semantic checks of Java's byte code verification, Section 5 gives a detailed

example. Finally, we discuss related research in Section 6 and draw conclusions

from our work in 7.

We assume the reader to be familiar with the basics of model checking [EC82],

some familiarity with Java's security architecture [Ye195,LY96] and Java byte

code [LY96] is also helpful for the understanding of this paper.

2 J a v a B y t e C o d e V e r i f i c a t i o n

The Java runtime system loads classes from class files, which are often fetched

over a network on demand. For each newly loaded class, its class file is checked

by the class file verifier, part of which is the byte code verifier.

The checks performed can be roughly divided into mainly syntactic and

mainly semantic checks. Examples of syntactic checks are verifying the correct

syntactic format of the class file, the length of attributes, the correct declara-

tion of the class, its fields and methods, etc. Since these syntactic checks are

comparably simple and not of particular interest for the sequel of this paper, we

will not elaborate on them. We will concentrate on the semantic checks of the

verifier, in particular, we will show in Section 4 how these can be implemented

using a model checker.

2.1 Semantic Checks o f the Java Byte Code Verifier

The byte code verifier ensures that the byte code itself, which implements Java

methods, is "legal", i.e. it follows certain rules. A detailed, though informal

description of what this is supposed to mean can be found in [Ye195,LY96]. 1

Essentially, the idea behind byte code verification is to ensure that the byte code

has been generated by a conformant compiler, thus observing several implicit

rules. The Java interpreter within the client takes conformance of the byte code

1 From a rigorous point of view one can argue that the byte code verifier does in fact

not perform a verification step: verification as an isolated notion does not make sense,

instead one can only verify something against a specification. If such a specification
is not explicitly given, the notion of "verification" is at least from a formal point of

view misleading.

178 Joachim Posegga and Harald Vogt

to these rules for granted, mainly for reasons of efficiency. Therefore, byte code

verification is essential for Java security since it is not obvious that the byte code

always conforms to these rules: it could have been manipulated or an attacker

could even have written malicious byte code by hand for crashing the Java

interpreter.

The semantic checks in the byte code verification process form the most

complex part of the class file verification. In particular, a data flow analysis of

each method is carried out, which is is closely related to the Java type system:

Starting with the first instruction of a method, the effect of that instruction to

the operand stack and to local variables is computed. This computation does

not consider particular values of fields or variables but their type information,

only. The state reached thereby is taken as a precondition for the following

instructions. Subsequently, such a simulation is applied to all instructions of a

method.

For secure execution, several conditions must hold for each instruction, de-

pending on the type of instruction:

- For each instruction, an appropriate number of parameters must be on the

operand stack, local variables must have appropriate types, and there must

be enough room on the stack for storing the results of the instruction.

- If an instruction can be reached by different execution paths, the values of

the operand stack and the local variables must have compatible types in all

these paths.

- Each method of an object that is called must have been initialised by certain

initialisation methods, and the type returned by a method must match its

declaration.

- Jumps to invalid instructions are forbidden, and execution must not go be-

yond the last byte of the code.

- Additionally, there are certain restrictions on how the instructions for sub-

routines may be used. Subroutines are (among other things) used for imple-

menting t r y / f i n a l l y constructs in the Java language [LY96].

In summary, a byte code program that meets these criteria is supposed to

be safe and not capable of "breaking" the virtual machine. A program which

fails to meet one of these criteria is refused since its safe execution can not be

guaranteed, and it might lead to gaining unauthorised access to resources on the

client by crashing the Java interpreter.

2.2 P r o b l e m s o f t h e C u r r e n t A p p r o a c h

We see several disadvantages of the byte code verifier and the current security

architecture of Java:

Lack of formal i ty . Current implementations of byte code verification lack for-

mality, in the sense that there is no formal model of what the byte code

verifier exactly performs, and what exact properties a successfully verified

applet actually has.

Byte Code Verification for Java Smart Cards 179

This lack of formality makes it difficult to avoid bugs in a verifier's imple-

mentation, as the history of Java bugs clearly demonstrates [DFW96,Pos98].

W a s t e o f space on t h e c l i en t ' s s ide . The byte code verifier is a program of

considerable size, which needs to be installed on the client. This might be

acceptable on a PC, but other Java-enhanced devices like PDAs, Java-based

phones or Java smart cards have much tighter space constraints.

W a s t e o f c l ienCs C P U t i m e . The process of byte code verification consumes

a significant amount of CPU time, which is again a problem in PDAs, phones,

or smart cards that use comparatively slow processors. Furthermore, the

verifier is called each time an applet is loaded, thus resulting in multiple

checks of the same byte code.

Altogether, we found that the current security architecture of the Java plat-

form has a number of deficiencies, in particular for application areas like Java

smart cards. On such a card, only a few KBytes are available for the complete

Java platform including applications, and it will take at least some years until

progress in chip manufacturing will allow for implementing an explicit byte code

verification on the chip itself. We therefore considered an alternative architec-

ture, where the byte code verification proceeds offiine on a server in a network.

This also allows to apply a more formal framework for byte code verification

which can significantly strengthen Java security.

3 O f t i i n e B y t e C o d e V e r i f i c a t i o n

Offiine byte code verification is carried out on a server in a network, rather than

on the client itself. Successfully verified byte code programs are signed with the

verifier's digital signature and passed to the client for execution. Figure 3 depicts

this principle. A client loading

byte code of an applet just has

to check the digital signature

of the code to make sure that

the byte code has been checked

by a verifier it trusts.

Note that the verification

server in the network does not

need to check an applet more

than once: it can behave like a

proxy server and store results

for a while or even check ap-

plets in advance. We will first
discuss the general advantages Fig . 3. Offiine Byte Code Verification

of offiine byte code verifica-

tion, and turn to our particular approach using model checking in Section 4.

Offiine byte code verification has a number of significant advantages:

180 Joachim Posegga and Harald Vogt

- It allows the use of (nearly) unlimited resources in the process of byte code

verification, because the resource limitations on a client platform (both in

t ime and space) are circumvented.

Offiine verification is only limited by the amount of t ime a user is willing to

wait when loading applets. In many application areas it is even acceptable

that applets are made known to the verifier before being used, so offiine byte

code verification may indeed spend several minutes or even hours or days

for analysing the byte code of an applet and invest as many resources as are

available on a (powerful) server. In particular, this allows one to use a formal

framework for byte code verification, like the one we propose in Section 4.

- Offfine byte code verification can be customised to special needs without

having access to the runtime platform.

So far the byte code verification in the s tandard Java environments has come

as a fixed "bundle" of tests applied to the byte code. These tests might or

might not suit the needs of users. For instance, one could think to include

approaches like proof-carrying code [NL96] or even apply semi-automatic

approaches, like a functional verification of the byte code.

- It saves resources at the client's platform since a client that loads an applet

just has to check the digital s ignature of the incoming code.

- It offers potentially more security than the current architecture: The cur-

rent architecture depends on verification engines tha t are distributed and

individually used. Several bugs in commercial products have shown tha t it

is occasionally necessary to replace these components, which is expensive in

t ime and money for both the manufacturer and the customer. Further, it is

unlikely tha t all customers are aware of security issues and thus use the latest

versions or bugfixes. In contrast to this, a central component can easily be

replaced as errors show up. Overall security in the network is no longer de-

fined by the weakest client, but depends only on one single well-maintained,

well-implemented, well-protected component.

We see also some disadvantages of oifline byte code verification; in particular:

- It requires a t rusted service in the network since otherwise the result of the

verification process would be arbitrary.

- There might be problems with scaleability if such a verification service is

implemented naively: If plenty of different applets and clients are involved,

a verification server might run into performance problems and form a bot-

tleneck for the clients. However, for application areas where only a small

number of different applets are used, this drawback is negligible, and it van-

ishes completely if these applets can be made known to the server in advance.

Overall, we consider the advantages of offiine byte code verification to clearly

outweigh its disadvantages for most application areas. In particular, such an

approach allows the integration of formal methods into the process of byte code

verification, as described in the sequel.

Byte Code Verification for Java Smart Cards 181

4 M o d e l C h e c k i n g o f J a v a B y t e C o d e

Given a description of a state transition system and a temporal logic formula,

a model checker [EC82] decides whether the formula holds in the system. This

works by completely examining the system's state space, which therefore needs

to be finite.

A byte code program can be viewed as a description of a state transition

system performing transitions on states of the JVM. The state space of the

JVM is of course potentially infinite, therefore model checking is not directly

applicable to such a system, and we need to derive a finite abstraction, first (cf.

[CGL94]).

On the abstract model, it is possible to check properties which are formulated

in a temporal logic like CTL. In such a logic, it is possible to express system

properties involving information on states (e.g. typing of variables) and the sys-

tem's dynamic behaviour. The properties which are to be checked by the process

of byte code verification as defined in [LY96] can be expressed in CTL. Thus,

by feeding a model checker with the model description and the respective CTL

formulas, the model checker acts as a byte code verifier.

4.1 B u i l d i n g a n A b s t r a c t M o d e l

Byte code verification is applied to each method separately, therefore only the

information relevant to a single method has to be included in the abstract model.

Thus, a state of the abstract model essentially consists of a program counter, an

operand stack, and the local and instance variables. Additional state variables are

added for the bookkeeping of subroutine information and exceptions. References

to the constant pool, which contains data used class-wide, can be pre-evaluated

as these data items do not change.

Certain instructions can throw exceptions. This means that an exception ob-

ject is placed on the operand stack and execution continues at a specific point

which is the entry of an exception handler. If no handler is defined explicitly,

a default handler in the JVM is invoked: it takes the exception object from

the stack, terminates the current method, returns to the calling method and

rethrows the exception there. This recursive procedure ends finally with termi-

nating the program. In contrast, if there exists an explicitly defined exception

handler, execution simply continues with its code. This behaviour is coded into

the transition relation, where the default handler is modelled by a transition to

the final state with the exception flag set to true.
Since the properties of the byte code related to its security deal mainly with

type safety, the abstract model can be essentially restricted to type information.

This allows the abstract model to be finite because

- a method compiled from a Java program uses only an operand stack of

restricted size,

- the number of local variables is finite,

- there are only finitely many instructions in a method,

182 Joachim Posegga and Harald Vogt

- the number of types used in a method is finite.

As we want the properties checked on the abstracted system to hold also on

the original JVM, a homomorphic mapping between the JVM and the abstract

model is established. A formal t reatment requires, of course, a formal model of

the original JVM (a concrete model); there are several approaches to achieve

this, e.g. [Coh96,Qia97]. The mapping ensures the following property:

i f ~ holds in the abstract model, then it holds also in the concrete one

It can be shown that this holds for CTL formulas ~ quantified over all execution

paths (see e.g. [CGL94]), and we will see that the relevant byte code properties

can be expressed as formulas of that class.

To make the description of the transition system complete, the set of initial

states is defined by setting the state variables to their initial values: the operand

stack is empty and the program counter points to the first instruction; the values

of the local variables are determined by the method's signature, which specifies

the types of the parameters, the initialization of the remaining state variables is

straighforward.

This describes the idea behind constructing a finite state transition system

from a byte code program. Since our research is motivated by Java smart cards,

we will not consider certain features of the Java Virtual Machine (JVM) which

are not supported by Java for smart cards (see [Sun97b] for details). This includes

multi-dimensional arrays, multi-threading, and dynamic class loading.

4.2 Formal Security Properties

The security properties described informally in Section 2.1 have to be formulated

in an appropriate logic (such as CTL) if a model checker is supposed to reason

about them. These formulae can then be easily validated against the informal

description as they are high-level and understandable by human readers.

Another way of obtaining the formulae is to extract them from a formal

description of a defensive JVM. A defensive JVM performs all checks at runtime

needed for the secure execution of a program. Such a model of the JVM is

partially described in [Coh96]. The conditions to be checked by the model checker

could be formally derived from such a description.

Most properties are local to a specific program point. Tha t means: Before an

instruction can be safely executed, the state of the JVM has to meet a certain

condition. This is expressed by the CTL formula

AG pc = n-+r

where pc denotes the program counter, n a program point (the address of an

instruction) and r is a propositional condition on the JVM state. In plain words:

Whenever program point n is reached during execution, the condition r must

hold.

Byte Code Verification for Java Smart Cards 183

To make sure that a local variable i contains a value of a specific type T, r

is of the form loci = T (loc is the array of local variables). The formulm for

checking the size and typing of the operand stack are similar.

Some conditions can be checked for all program states in general, like that

there are not stack overflows. This is achieved by specifying the formula

AG size(stack) ~_ max_stack

which imposes on all states the condition that the stack does not exceed its

maximum size.

public class Purse { 12 iconst_O

int cash; / / money stored 13 istore_2

/ / in the purse 14 j s r 42

int ta; // transaction 17 iload_2

... // counter 18 ireturn

void notifyBank() throws 19 aload_O

Exception { 20 dup

... 21 getfield #7 <Field int cash>

} 24 iload_l

boolean debit(int amount) { 25 isub

try { 26 putfield #7 <Field int cash>

if (this.cash < amount) { 29 iconst_l

notifyBank(); 30 istore_2

return false; 31 jsr 42

} else { 34 iload_2

this.cash -= amount; 35 ireturn

return true; 36 astore_3

} 37 jsr 42

} 40 aload_3

finally { 41 athrow

this.ta++; 42 astore 4

} 44 aload_O

} 45 dup

} 46 getfield #9 <Field int ta>

49 iconst_l

0 aload_O 50 iadd

I getfield #7 <Field int cash> 51 putfield #9 <Field int ta>

4 iload_l

5 if_icmpge 19

8 aload_O

9 invokevirtual #8 <notifyBankO>

54 re t 4

Exception table :

from to t a rge t type

0 36 36 any

Fig. 4. Implementation of a Simple Electronic Purse: Source Code and Byte Code.

184 Joachim Posegga and Haxald Vogt

5 E x a m p l e : A S i m p l e E l e c t r o n i c P u r s e

As an example for performing byte code verification through a model checker, we

consider the method d e b i t of class Pu r se (see figure 4), implementing a simple

electronic purse running on a Java smart card; this example was implemented

for the Cyberflex Java Smart Card [Sch97].

The method d e b i t is invoked on a Pu r se object whenever money is with-

drawn, d e b i t takes the amount of money as an argument and returns true if the

transaction was successful and false in case the value stored in the purse would

become negative. In the latter case, a method for notifying the bank is invoked.

In any case, the transaction counter is incremented. The respective code is en-

closed in a f i n a l l y clause, so it is performed even if an exception is raised from

calling notifyBank.

We first take a look at the state transit ion system built from the compiled

method d e b i t and how it reflects the semantics of the byte code instructions.

Then we consider the formulse describing the properties established during byte

code verification.

5 .1 A T r a n s i t i o n S y s t e m for debit

Figure 4 shows the compiled method d e b i t (as created by javac from Javasoft).

From this piece of byte code, a state transition system is built and given to a

model checker, together with conditions to check. Figure 5 shows the correspond-

ing input for the model checker SMV. This description was created manually,

but it can be easily computed automatically with an appropriate tool.

A state of the transition system consists of the following state variables:

- a program counter pc ranging over the instruction addresses and an addi-

tional final state;

- an operand stack, implemented by a stack pointer sp and stack locations

s t 0 through s t 2 (the maximum height of the stack is 3 as recorded in the

class file);

- local variables l oc0 through loc4;

- a stack for active subroutines r s t a c k ;

- an e x c e p t i o n flag which indicates whether the method ends because of an

exception;

- object variables field7 and field9.

Other state types are possible, and it is desirable to restrict the state space as

much as possible. A candidate for a more efficient representation is the operand

stack. Here, the currently unused stack locations unnecessarily expand the state

space.

Some simplifications were made for building the model: The only primitive

data type is integer (booleans are t reated as integers, and no other primitive

types are used in the program). Furthermore, the access conditions for ob-

ject variables (fields) and methods which could be violated by the g e t f i e l d ,

p u t f i e l d and i n v o k e v i r t u a l instructions are not handled.

Byte Code Verification for Java Smart Cards 185

The types for stack locations and local variables are similar: They range

over a set of reference values (null, this, exception, and arbi t rary reference), a

primitive type (integer) and return addresses (used by the r e t instruction). The

additional value UNDEF for local variables indicates that a variable has not yet

been initialised and therefore cannot be used.

The object variables are of type integer. They are strictly typed and may not

hold arbitrary values like local variables do.

Note that the stack pointer ranges over values from 0 to 4, where 4 stands for

"invalid". The formube describing the transitions are partial in the sense that

for invalid values, the value of sp in the next state is not determined. This leads

to the existence of execution paths, where sp has a value of 4. However, by the

specification SPEC AG !sp=4 we can assure that these paths are not reachable

and therefore the stack never exceeds its maximum (or minimum) size.

Initial state In the initial state, the stack is empty and the program counter

points to the first instruction of the program. The local variable 0 contains

the reference to the object for which the method was called, l o c l holds the

method parameter which is an integer value. The other local variables are marked

UNDEF and are therefore unusable for any reading instruction. There are no active

subroutines, no exception has been raised, and the object variables are assumed

to contain valid values (see the INIT lines in Figure 5).

State transitions The transitions are described by formulm using the variable val-

ues of the current and the following states. The description reflects the structure

of the byte code program. Generally, the actual transition formula is guarded by

a formula pc=Lnn, indicating that this transition should be made when program

point Lnn is reached (see the TRANS statements in Figure 5).

A transition manipulates the stack, changes some variables or raises an ex-

ception. This is expressed by describing which values the state variables will

have in the next state, depending on their values in the current state. It must

be stated explicitly if state variables do not change their values. Otherwise, the

model checker chooses an arbi t rary value (as for unused stack locations).

Exception handling The Java method considered here performs no explicit excep-

tion handling, i.e.: all exceptions raised while executing the method are handed

over to the caller of the method. However, the f i n a l l y clause must be executed

even if an exception occurs. Therefore the compiler added an exception handler

(ranging from address 36 to 41 in Figure 4) which calls the f i n a l l y clause and

then re-throws the exception, i.e. hands it upwards.

The instructions in our example which could possibly raise exceptions are

invokevirtual, getfield and putfield. There are several getfield instruc-

tions in the method which raise exceptions if their respective object reference

is null. As an example, look at the instruction at address I which is covered

by the exception handler, so in case of a null reference a jump to the code of

the exception handler is performed. Thus, for address I the model description

includes a transition to address 36 guarded by the appropriate condition.

186 Joachim Posegga and Harald Vogt

In contrast, if the instruction at address 46 raises an exception, the method

is immediately interrupted and control is returned to the caller of the method.

This is reflected in the abstracted model description by a transit ion to the final

s tate with the exception flag set. We do not model the transfer of control here,

as we consider only one method at a time.

Subroutine calls There is one subroutine in the method, implementing the code

enclosed in the f • clause. This code can be called from 3 different locations

(the j s r instructions at addresses 14, 31, 37). Although not obvious, the variable

r s t a c k holds a stack where labels for all active subroutines are pushed on. As

we have only one here, there are two possible values for r s t a c k : EMPTY if the

subroutine is not active and JSR42 in the other case. (The label JSR42 indicates

tha t the subroutine starts at address 42.)

Whenever a j s r instruction is executed, the subroutine must not already be

active, as the Java byte code specification forbids recursive calls to subroutines.

Therefore, the condition rstack=EMPTY has to be t rue for each program point

with a j s r instruction.

5.2 B y t e Code Properties

The propert ies sketched below describe the type safety of the program. They

ensure tha t all operations have operands of suitable types, and that there are

no stack underflows or overflows. They also ensure tha t subroutines are not

recursively called.

SPEC AG (pc=LO->(sp<3 ~(IocO=NULL I locO=THlS J locO=EXC I locO=hEF)))

SPEC AG (pc=Ll ->(sp>O &

(((sp=l -> NULL=stO) ~ (sp=2-> NULL=stl) ~ (sp=3-> NULL=st2)) [

((sp=l -> THIS=stO) ~ (sp=2-> THIS=stl) ~ (sp=3-> THIS=st2)))))

[omitted]

SPEC AG (pc=L54-> (Ioc4=L17 [ioc4=L34 1 ioc4=L40))

SPEC AG (!sp=4)

5.3 Results

The model description shown can be fed into the model checker SMV [CGL95].

I t reports a total s ta te space of 8.5 �9 10 l~ states, of which 8531 are reachable.

All properties are checked and reported to be valid in a total amount of t ime of

0.86 seconds (on a Sun SparcStat ion 20).

Several points that could be verified by the model checker were already pre-

evaluated while building the model. For example, the model checker could verify

tha t jumps go only to valid instructions. The model shown here incorporates this

condition by having only valid instruction addresses in the range of the program

counter.

6 R e l a t e d W o r k

Byte Code Verification for Java Smart Cards 187

The principle of offiine byte code verification has, to our knowlege, first been

described within the context of the Kimera project [SGB98]; the separation was

proposed mainly for reasons of efficiency. The project also addresses the security

of Java runtime environments, by providing a more carefully tested and "cleaner"

implementation of the byte code verifier. Kimera does not attempt to put the

verification step on rigorous approaches like formal methods.

Closely related work towards a formal treatment of Java is currently being

undertaken at several places: Attempts to define a formal semantics for subsets

of the Java language are pursued by [NvO98,DE97,Sym97]; this work chiefly

aims at proving that the Java type system is sound and uses type-theoretic

approaches. These approaches do not consider Java byte code and are therefore

not directly applicable to our approach.

An approach to formally define the semantics of the complete Java language

using Abstract State Machines is described in [BS98]. Their formulation defines

the mapping from the Java language to Java byte code in several layers of ab-

straction. This work is related to our approach since ASM can be seen as state

transition systems. Although [BS98] do not consider proving properties of con-

crete byte code programs, the results could eventually contribute to mapping

byte code programs into the finite abstractions used in our approach.

A definition of the semantics of the Java Virtual Machine is described in

[Qia97]. The approach considers a subset of the JVM instructions and aims at

proving the run-time type correctness of byte code programs from their static

typing. It yields an operational semantics of Java byte code and a static type

inference system.

A similar approach is taken in [SA98]; the paper concentrates on the t r y /

f i n a l l y construct in the Java language and the Java byte code instructions

relevant to this. The difference to our approach is that [SA98] uses a language

more expressive than the finite state systems we consider; therefore, a more

detailed description of the semantics of byte code verification is possible, at

the price of a more complex modelling. The approach goes into a very similar

direction to our work, but it concentrates on describing the byte code verification,

whilst we focus on carrying it out with declarative means.

Our approach differs -on the meta level- from proof carrying [NL96,FL97]

code in that we replace the process of checking the proof by verifying a digital

signature. Rather than requiring a proof checker on the client side, we assume

safe distribution of keys, trust in a network node and signature verification on

the client side. However, it is foreseeable that a public key infrastructure will

be widely available in the future, so very little additional overhead is brought

into the client by our procedure. Technically, we use a less expressive (because

decidable) language for expressing properties than proof carrying code. This

allows us to perform proofs fully automatically, while with proof carrying code,

the question of where the proofs actually come from, still needs to be sorted out

in detail.

188 Joachim Posegga and Harald Vogt

7 Conclus ion

We described an approach to Java byte code verification, where the verifier is

not integrated into the Java run t ime environment, but proceeds offiine. The

process is implemented by using a model checker on an explicit, finite model of

a byte code program. The checker verifies that the required security conditions,

which are also given explicitly, hold for that model and are therefore fulfilled by

the original byte code program.

The proposed method of formal byte code verification helps achieving the

highest level of security in execution of Java applets. This is done by replacing

a crucial part of the Java security architecture, the byte code verifier, by a tool

based on formal methods that avoids the pitfalls of conventional implementa-

tions.

To summarise, the advantages of our approach are:

M o r e f l ex ib i l i ty a n d ex t ens ib i l i t y . In the sketched framework, we deal with

high-level descriptions of system models and safety properties. The described

abstract model of the JVM is not the only one possible, and the model and

the properties to be checked can be adapted to individual needs.

A c h i e v i n g f o r m a l c o r r e c t n e s s . The highest achievable level of correctness

is a formal proof. The correctness of an implementation of the byte code

verifier is almost impossible to prove, and the benefit is questionable, as a

little change invalidates the whole proof.

In our approach, we shift the proof condition from the implementation level

to the level of validation, of both the model description and the formulm.

But as these descriptions are high-level, the task becomes relatively easy.

Furthermore, as errors show up, they can be corrected quickly and safely.

Of course, there is still no guarantee that an actual implementation of a JVM

will execute a verified byte code program correctly. To achieve this, we need

a formally verified implementation of the JVM and the whole environment.

For smart cards, even this task seems tractable.

We believe that through model checking, a formal treatment of byte code can

be achieved in a simple and effective way. Understanding the formalisms needed

for this kind of byte code verification is not more complicated than implementing

a byte code verifier, and the gain is a formal, highly trustable verifier.

References

[BS98]

[CGL94]

[CGL95]

E. BSrger and W. Schulte. Programmer Friendly Modular Definition of the

Semantics of Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of

Java, LNCS. Springer, 1998.
E. Clarke, D. Grumberg, and D. Long. Model Checking and Abstraction.
ACM Trans. on Prog. Languages and Systems, 16(5):1512-1542, 1994.
E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state con-

current systems. In A Decade of Concurrency - Reflections and Perspectives,

volume 803 of Lecture Notes in Computer Science. Springer Verlag, 1995.

Byte Code Verification for Java Smart Cards 189

[Coh96] Richard M. Cohen. The Defensive Java Virtual Machine Specification

Version, Alpha 1 Release. Technical report, Computational Logic, Inc;
http: / /www.cli.com /software / djvm /html-O.5 / djvm-report.html, 1996.

[DE97] Sophia Drossopoulou and Susan Eisenbach. Proving the Soundness of the

Java Type System. Working Paper, Imperial College, Dept. of Computing,

London, UK, Feb. 1997.
[DFW96] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security: From

Hot Java to Netscape. In IEEE Symposium on Security and Privacy, Oakland,
CA, May 1996. IEEE. http://www.cs.princeton.edu/sip/pub/secure96.html.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using Branching Time Temporal

Logic to Synthesize Synchronization Skeletons. Science of Computer Pro-
gramming, 2(3):241-266, December 1982.

[FL97] J. Feigenbaum and P. Lee. Trust Management and Proof-Carrying Code for

Mobile Code Security. In DARPA Workshop on Foundations of Mobile Code
Security, Monterey, CA, 26-28 March 1997.

[GS96] J. Gosling and G. Steele. The Java Language Specification. Addison-Wesley,

1996.
[KP98] Matthias Kaiserswerth and Joachim Posegga. Java Chipkarten. Informatik-

Spektrum, 21(1):27-28, 1998.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 1996.
[NL96] G. Necula and P. Lee. Proof-Carrying Code. Technical Report CMU-CS-96-

165, Carnegie Mellon University, School of Computer Science, Pittsburg, PA,

September 1996.
[NvO98] Tobias Nipkow and David von Oheimb. Javaeigh~ is Type-Safe - - Definitely.

In Proc. 25th A CM Syrup. Principles of Programming Languages. ACM Press,

1998.
[Pos98] Joachim Posegga. Die Sicherheitsaspekte von Java. Informatik-Spektrum,

21(1):16-22, 1998.
[Qia97] Z. Qian. A Formal Specification of Java Virtual Machine Instructions. (un-

published manuscript), 1997.
[SA98] Raymie Stata and Martin Abadi. A Type System for Java Bytecode Sub-

routines. In Proc. 25th ACM Syrup. Principles of Programming Languages.
ACM Press, 1998.

[Sch97] Schlumberger, Inc. Cyberflex 2.0 Multi 8K Programmer's Guide.

http://www.cyberflex.austin.et.slb.com/cyberflex/docs/docs-page3.htm, 1997.

[SGB98] Emin Grin Sirer, Arthur J. Gregory, and Brian N. Bershad. Kimera: A Java

System Architecture. http://kimera.cs.washington.edu/, 1998.

[Sun97a] Sun Microsystems, Inc. Java Card 2.0 Application Programming Interfaces,
Revision 1.0 Final. http://java.sun.com:80/products/javacard/, October 13

1997.

[Sun97b] Sun Microsystems, Inc. Java Card 2.0 Language Subset and Virtual Machine
Specification, Revision 1.0 Final. http://java.sun.com:80/products/javacard/,

October 13 1997.

[Sym97] Don Syme. Proving Java Type Soundness. Technical report, University of

Cambridge Computer Laboratory, 1997.
[Yel95] Frank Yellin. Low Level Security in Java. In WWW$, 1995.

http : / / www.w3.org/ pub / Conferences /WWW 4 / Papers /19 7 / 40.html.

190 Joachim Posegga and Harald Vogt

MODULE main

VAR pc : {LO,LI,L4 L51,L54,FINI};

sp : { 0 , 1 , 2 , 3 , 4 } ;

s t O , s t l , s t 2 : {NULL,THIS,EXC,REF,INT,LI7,L34,L40};

Ioc0..4 : {UNDEF,NULL,THIS,EXC,REF,INT,L17,L34,L40};

rstack : {EMPTY, JSR42}; exception : {0,i};

field7 : {UNDEF,INT}; field9 : {~DEF,I~Tr};

INIT pc=LO ~ sp=O ~ locO=THIS & locl=INT ~ loc2=UNDEF ~ loc3=UNDEF

INIT Ioc4=UNDEF ~ rstack=EMPTu & excep~ion=O ~ fieldT=INT ~ fieldg=INT

-- aload_O

TRANS pc=LO ->((sp=O ->(next(stO)=locO & next(sp)=l))

(sp=l ->(next(stO)=stO ~ next(stl)=locO ~ next(sp)=2)) &

(sp=2 ->(next(stO)=stO ~ next(stl)=stl $ next(st2)=locO ~ next(sp)=3))) &

(next(locO)=locO & next(locl)=locl & next(loc2)=loc2 & next(loc3)=loc3

next(loc4)=loc4 & next(rstack)=rstack ~ next(fieldT)=field7

next(field9)=field9 & next(exception)=exception) ~ next(pc)=L1

-- getfield #7

TRANS (pc=L1 ~ I((sp=l ->NULL=stO) & (sp=2 ->NULL=st1) & (sp=3 ->NULL=st2)))

->((sp=l ->nex~(sp)=l & next(stO)=fieldT)

(sp=2 ->next(sp)=2 & next(stO)=stO ~ next(stl)=field7) &

(sp=3 ->next(sp)=3 & next(stO)=stO ~ next(stl)=stl & next(st2)=fieldT))

(next(locO)=locO ~ nex~(locl)=1ocl & next(loc2)=loc2 & next(loc3)=loc3

next(loc4)=loc4 & next(rstack)=rstack & next(fieldT)=field7

next(fieldg)=field9 R next(exception)=exception) & next(pc)=L4

TRANS (pc=L1 & ((sp=l ->NULL=s~O) & (sp=2 ->NULL=stl) ~ (sp=3 ->NULL=st2)))

->next(pc)=L36

(next(locO)=locO ~ next(locl)=1ocl & next(loc2)=loc2 ~ next(loc3)=loc3 &

next(loc4)=ioc4 & next(rstack)=rs~ack & next(fieldT)=field7 &

next(fieldg)=field9 & next(exception)=exception) ~ next(sp)=l ~ next(stO)=EXC

[omitted]
-- ret 4 .--

TRANS pc=L54 ->((sp=O ->(next(sp)=sp)) R (sp=l ->(next(sp)=sp ~ next(stO)=stO))

(sp=2 ->(next(sp)=sp ~ next(stO)=stO ~ next(stl)=stl)) &

(sp=3 ->(next(sp)=sp & next(stO)=stO & nexr ~ next(st2)=st2)))

(next(locO)=lor R next(1ocl)=locl & next(1oc2)=loc2 & next(loc3)=1oc3 &

next(loc4)=U~DEF & next(re~ack)=EMPTY ~ next(field7)=field7 &

next(fieldg)=field9 & next(exception)=exception) & next(pc)=loc4

-- final state

TITANS pc=FINI ->((sp=O ->(next(sp)=sp)) ~ (sp=l ->(nex~(sp)=sp ~ nex~(stO)=stO))

(sp=2 ->(nex~(sp)=sp ~ nex~(stO)=s~O & next(stl)=stl)) &

(sp=3 ->(next(sp)=sp ~ next(stO)=stO ~ nex~(stl)=stl ~ next(st2)=st2))) &

(next(1ocO)=locO = next(locl)=locl & next(loc2)=loc2 ~ next(loc3)=loc3 &

nex~(Ioc4)=lor ~ next(rs~ack)=rstack & next(fieldT)=field7

next(field9)=field9 ~ next(exception)=exception) & nex~(pc)=FINI

Fig . 5. Sketch of the d e b i t Method as a State Transition System.

