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A b s t r a c t .  The paper presents a novel approach to Java byte code ver- 

ification: The verification process is performed "offline" on a network 

server, instead of incorporating it in the client. Furthermore, the most 

critical part of the verification process is based upon a formal model and 

uses a model checker for checking the verification conditions. The result 

of the verification process can be securely communicated to the runtime 

platform with cryptographic means. 

The major advantages of our approach are twofold: on the one hand, it 

offers a higher degree of security, since the verification process is based 

on a formal framework. Secondly, it saves resources on the client's side, 

since the process of byte code verification can be replaced by a simple 

check of a digital signature. 
This paper concentrates on Java smart cards, where resource limitations 

inhibit fully-fiedged byte code verification within the client, but the de- 

mand for security is very high. However, our approach can also be applied 

to other variants of Java. 

1 I n t r o d u c t i o n  

Java  [GS96] is an ins tance  of  down-loadable  code tha t  m a n y  people see as a 

pa rad igm shift in compu te r  science. Java  is a network-or iented approach  with 

two major  advantages:  

Firstly, Java  is supposed  to  be plat]orm-independent. This  is achieved by 

compiling Java  applets or  Java  applicat ions into Java  by te  code [LY96], a stack- 

oriented machine language  tha t  is interpreted on the  specific pla t form where 

Java  programs are to  be executed (cf Figure  1). The  in terpreter  for this byte  

code is called the Java Virtual Machine. 

Secondly, Java  applets  offer the principle of downloading executable code over 

a network on demand; this is a significant gain in flexibility, since it allows one 

* The opinions expressed in this paper are solely those of the authors and do not 

necessarily reflect the views of Deutsche Telekom AG. 
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to configure the function of clients in a network as needed; the expensive process 

of installing software on clients becomes superfluous. 

The technical basis for both these specifics of Java have been known in com- 

puter science since decades. However, the overall design of the 

Java scenario is very promising, and the tech- 

nology became widely accepted and available on 

various platforms. This makes Java interesting. 

A potential  hindrance for the wide-spread use 

of Java are security concerns. The problem is, 

essentially, that  down-loading executable code 

from an open network can be dangerous, since 

it is hard to ensure that  such an executable ac- 

tually does not do any harm to the local system. 

Java's answer to this problem is, in essence, 

a type-safe language, a byte code verifier tha t  

checks certain safety properties of the trans- 

ferred executable code, and a sandbox model 

tha t  restricts the runtime environment of the 

down-loaded code. The Java byte code verifier Fig.  1. Java's Architecture 

plays a crucial role in this architecture (cf Fig- 

ure 1): implemented within the user's Java platform, it ensures that  the byte 

code to be executed meets certain properties like type-safety. The sandbox 

that  runs Java applets takes these properties for granted, mainly for reasons 

of efficiency. Without  this verification step, malicious byte code (e.g. code that  

has been hand-coded, or been manipulated during the transfer) can crash the 

sandbox and easily take over complete control of the underlying machine. 

In this paper we describe a novel security architec- 

ture for Java, where the process of byte code verifica- 

tion is carried out using a model checker; this process is 

assumed to be implemented "offiine", i.e. on a server in 

a network and not within the client. The result of such 

a verification step can be communicated to a client, 

e.g. by applying digital signatures to Java byte code 

programs (applets). 

Our approach has two major advantages: firstly, it 

offers a strong formal basis for an operation that is cru- 

cial to security. This helps avoiding bugs in the byte 

code verifier that  can cause security holes. Secondly, 

the principle of carrying out the byte code verification 

offiine offers much more flexibility than the current ap- 

Fig.  2. Byte  Code Ver- proach, since it does not suffer from resource restric- 

ification tions usually found within the clients, both for size and 

speed of the Java runtime platform. 

The major  motivation for our research were the specifics of Java smart cards 

[Sun97a,Sun97b,KP98], where byte code verification is particularly problematic 



Byte Code Verification for Java Smart Cards 177 

because of the extreme space and runtime limitations of smart  cards proces- 

sors. The concept of offiine verification fits perfectly into this scenario: it saves 

resources on the card, and formal approaches like model checking can increase 

security, which is highly desirable for smart  card applications. 

Whilst the advantages of our approach are most obvious in the case of smart  

cards, the approach itself can also be carried forward to the general framework 

of Java. 

The paper is organised as follows. In the next Section (2) we discuss the role 

of byte code verification within Java's security architecture. Section 3 outlines 

the idea behind performing byte code verification offiine and compares it with 

the current architecture. In Section 4 we introduce the use of model checking for 

the semantic checks of Java's byte code verification, Section 5 gives a detailed 

example. Finally, we discuss related research in Section 6 and draw conclusions 

from our work in 7. 

We assume the reader to be familiar with the basics of model checking [EC82], 

some familiarity with Java's security architecture [Ye195,LY96] and Java byte 

code [LY96] is also helpful for the understanding of this paper. 

2 J a v a  B y t e  C o d e  V e r i f i c a t i o n  

The Java runtime system loads classes from class files, which are often fetched 

over a network on demand. For each newly loaded class, its class file is checked 

by the class file verifier, part  of which is the byte code verifier. 

The checks performed can be roughly divided into mainly syntactic and 

mainly semantic checks. Examples of syntactic checks are verifying the correct 

syntactic format of the class file, the length of attributes, the correct declara- 

tion of the class, its fields and methods, etc. Since these syntactic checks are 

comparably simple and not of particular interest for the sequel of this paper, we 

will not elaborate on them. We will concentrate on the semantic checks of the 

verifier, in particular, we will show in Section 4 how these can be implemented 

using a model checker. 

2.1 Semantic  Checks o f  the Java Byte  Code Verifier 

The byte code verifier ensures that  the byte code itself, which implements Java 

methods, is "legal", i.e. it follows certain rules. A detailed, though informal 

description of what this is supposed to mean can be found in [Ye195,LY96]. 1 

Essentially, the idea behind byte code verification is to ensure that  the byte code 

has been generated by a conformant compiler, thus observing several implicit 

rules. The Java interpreter within the client takes conformance of the byte code 

1 From a rigorous point of view one can argue that the byte code verifier does in fact 

not perform a verification step: verification as an isolated notion does not make sense, 

instead one can only verify something against a specification. If such a specification 
is not explicitly given, the notion of "verification" is at least from a formal point of 

view misleading. 
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to these rules for granted, mainly for reasons of efficiency. Therefore, byte code 

verification is essential for Java security since it is not obvious that the byte code 

always conforms to these rules: it could have been manipulated or an attacker 

could even have written malicious byte code by hand for crashing the Java 

interpreter. 

The semantic checks in the byte code verification process form the most 

complex part of the class file verification. In particular, a data flow analysis of 

each method is carried out, which is is closely related to the Java type system: 

Starting with the first instruction of a method, the effect of that instruction to 

the operand stack and to local variables is computed. This computation does 

not consider particular values of fields or variables but their type information, 

only. The state reached thereby is taken as a precondition for the following 

instructions. Subsequently, such a simulation is applied to all instructions of a 

method. 

For secure execution, several conditions must hold for each instruction, de- 

pending on the type of instruction: 

- For each instruction, an appropriate number of parameters must be on the 

operand stack, local variables must have appropriate types, and there must 

be enough room on the stack for storing the results of the instruction. 

- If an instruction can be reached by different execution paths, the values of 

the operand stack and the local variables must have compatible types in all 

these paths. 

- Each method of an object that is called must have been initialised by certain 

initialisation methods, and the type returned by a method must match its 

declaration. 

- Jumps to invalid instructions are forbidden, and execution must not go be- 

yond the last byte of the code. 

- Additionally, there are certain restrictions on how the instructions for sub- 

routines may be used. Subroutines are (among other things) used for imple- 

menting t r y / f i n a l l y  constructs in the Java language [LY96]. 

In summary, a byte code program that meets these criteria is supposed to 

be safe and not capable of "breaking" the virtual machine. A program which 

fails to meet one of these criteria is refused since its safe execution can not be 

guaranteed, and it might lead to gaining unauthorised access to resources on the 

client by crashing the Java interpreter. 

2.2 P r o b l e m s  o f  t h e  C u r r e n t  A p p r o a c h  

We see several disadvantages of the byte code verifier and the current security 

architecture of Java: 

Lack of  formal i ty .  Current implementations of byte code verification lack for- 

mality, in the sense that there is no formal model of what the byte code 

verifier exactly performs, and what exact properties a successfully verified 

applet actually has. 



Byte Code Verification for Java Smart Cards 179 

This lack of formality makes it difficult to avoid bugs in a verifier's imple- 

mentation, as the history of Java bugs clearly demonstrates [DFW96,Pos98]. 

W a s t e  o f  space  on  t h e  c l i en t ' s  s ide .  The byte code verifier is a program of 

considerable size, which needs to be installed on the client. This might be 

acceptable on a PC, but  other Java-enhanced devices like PDAs, Java-based 

phones or Java smart cards have much tighter space constraints. 

W a s t e  o f  c l ienCs C P U  t i m e .  The process of byte code verification consumes 

a significant amount of CPU time, which is again a problem in PDAs, phones, 

or smart cards that  use comparatively slow processors. Furthermore, the 

verifier is called each time an applet is loaded, thus resulting in multiple 

checks of the same byte code. 

Altogether, we found that  the current security architecture of the Java plat- 

form has a number of deficiencies, in particular for application areas like Java 

smart cards. On such a card, only a few KBytes are available for the complete 

Java platform including applications, and it will take at least some years until 

progress in chip manufacturing will allow for implementing an explicit byte code 

verification on the chip itself. We therefore considered an alternative architec- 

ture, where the byte code verification proceeds offiine on a server in a network. 

This also allows to apply a more formal framework for byte code verification 

which can significantly strengthen Java security. 

3 O f t i i n e  B y t e  C o d e  V e r i f i c a t i o n  

Offiine byte code verification is carried out on a server in a network, rather than 

on the client itself. Successfully verified byte code programs are signed with the 

verifier's digital signature and passed to the client for execution. Figure 3 depicts 

this principle. A client loading 

byte code of an applet just has 

to check the digital signature 

of the code to make sure that  

the byte code has been checked 

by a verifier it trusts. 

Note that  the verification 

server in the network does not 

need to check an applet more 

than once: it can behave like a 

proxy server and store results 

for a while or even check ap- 

plets in advance. We will first 
discuss the general advantages Fig .  3. Offiine Byte Code Verification 

of offiine byte code verifica- 

tion, and turn to our particular approach using model checking in Section 4. 

Offiine byte code verification has a number of significant advantages: 
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- It  allows the use of (nearly) unlimited resources in the process of byte code 

verification, because the resource limitations on a client platform (both in 

t ime and space) are circumvented. 

Offiine verification is only limited by the amount  of t ime a user is willing to 

wait when loading applets. In many  application areas it is even acceptable 

that  applets are made known to the verifier before being used, so offiine byte 

code verification may indeed spend several minutes or even hours or days 

for analysing the byte code of an applet  and invest as many resources as are 

available on a (powerful) server. In particular,  this allows one to use a formal 

framework for byte code verification, like the one we propose in Section 4. 

- Offfine byte code verification can be customised to special needs without 

having access to the runtime platform. 

So far the byte code verification in the s tandard Java  environments has come 

as a fixed "bundle" of tests applied to the byte code. These tests might or 

might not suit the needs of users. For instance, one could think to include 

approaches like proof-carrying code [NL96] or even apply semi-automatic  

approaches, like a functional verification of the byte code. 

- It  saves resources at the client's platform since a client that  loads an applet  

just has to check the digital s ignature of the incoming code. 

- It  offers potentially more security than  the current architecture: The cur- 

rent architecture depends on verification engines tha t  are distributed and 

individually used. Several bugs in commercial  products have shown tha t  it 

is occasionally necessary to replace these components,  which is expensive in 

t ime and money for both  the manufacturer  and the customer. Further, it is 

unlikely tha t  all customers are aware of security issues and thus use the latest 

versions or bugfixes. In contrast  to  this, a central component  can easily be 

replaced as errors show up. Overall  security in the network is no longer de- 

fined by the weakest client, but  depends only on one single well-maintained, 

well-implemented, well-protected component.  

We see also some disadvantages of oifline byte code verification; in particular: 

- It  requires a t rusted service in the network since otherwise the result of the 

verification process would be arbitrary.  

- There might be problems with scaleability if such a verification service is 

implemented naively: If plenty of different applets and clients are involved, 

a verification server might run into performance problems and form a bot-  

tleneck for the clients. However, for application areas where only a small 

number  of different applets are used, this drawback is negligible, and it van- 

ishes completely if these applets  can be made known to the server in advance. 

Overall, we consider the advantages of offiine byte code verification to clearly 

outweigh its disadvantages for most  application areas. In particular,  such an 

approach allows the integration of formal methods into the process of byte code 

verification, as described in the sequel. 
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4 M o d e l  C h e c k i n g  o f  J a v a  B y t e  C o d e  

Given a description of a state transition system and a temporal  logic formula, 

a model checker [EC82] decides whether the formula holds in the system. This 

works by completely examining the system's state space, which therefore needs 

to be finite. 

A byte code program can be viewed as a description of a state transition 

system performing transitions on states of the JVM. The state space of the 

JVM is of course potentially infinite, therefore model checking is not directly 

applicable to such a system, and we need to derive a finite abstraction, first (cf. 

[CGL94]). 

On the abstract model, it is possible to check properties which are formulated 

in a temporal  logic like CTL. In such a logic, it is possible to express system 

properties involving information on states (e.g. typing of variables) and the sys- 

tem's dynamic behaviour. The properties which are to be checked by the process 

of byte code verification as defined in [LY96] can be expressed in CTL. Thus, 

by feeding a model checker with the model description and the respective CTL 

formulas, the model checker acts as a byte code verifier. 

4.1 B u i l d i n g  a n  A b s t r a c t  M o d e l  

Byte code verification is applied to each method separately, therefore only the 

information relevant to a single method has to be included in the abstract model. 

Thus, a state of the abstract model essentially consists of a program counter, an 

operand stack, and the local and instance variables. Additional state variables are 

added for the bookkeeping of subroutine information and exceptions. References 

to the constant pool, which contains data used class-wide, can be pre-evaluated 

as these data  items do not change. 

Certain instructions can throw exceptions. This means that  an exception ob- 

ject is placed on the operand stack and execution continues at a specific point 

which is the entry of an exception handler. If no handler is defined explicitly, 

a default handler in the JVM is invoked: it takes the exception object from 

the stack, terminates the current method, returns to the calling method and 

rethrows the exception there. This recursive procedure ends finally with termi- 

nating the program. In contrast, if there exists an explicitly defined exception 

handler, execution simply continues with its code. This behaviour is coded into 

the transition relation, where the default handler is modelled by a transition to 

the final state with the exception flag set to true. 
Since the properties of the byte code related to its security deal mainly with 

type safety, the abstract  model can be essentially restricted to type information. 

This allows the abstract  model to be finite because 

- a method compiled from a Java program uses only an operand stack of 

restricted size, 

- the number of local variables is finite, 

- there are only finitely many instructions in a method,  
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- the number of types used in a method is finite. 

As we want the properties checked on the abstracted system to hold also on 

the original JVM, a homomorphic mapping between the JVM and the abstract 

model is established. A formal t reatment  requires, of course, a formal model of 

the original JVM (a concrete model); there are several approaches to achieve 

this, e.g. [Coh96,Qia97]. The mapping ensures the following property: 

i f  ~ holds in the abstract model, then it holds also in the concrete one 

It can be shown that  this holds for CTL formulas ~ quantified over all execution 

paths (see e.g. [CGL94]), and we will see that  the relevant byte code properties 

can be expressed as formulas of that  class. 

To make the description of the transition system complete, the set of initial 

states is defined by setting the state variables to their initial values: the operand 

stack is empty and the program counter points to the first instruction; the values 

of the local variables are determined by the method's  signature, which specifies 

the types of the parameters,  the initialization of the remaining state variables is 

straighforward. 

This describes the idea behind constructing a finite state transition system 

from a byte code program. Since our research is motivated by Java smart cards, 

we will not  consider certain features of the Java Virtual Machine (JVM) which 

are not supported by Java for smart cards (see [Sun97b] for details). This includes 

multi-dimensional arrays, multi-threading, and dynamic class loading. 

4.2 Formal Security Properties 

The security properties described informally in Section 2.1 have to be formulated 

in an appropriate logic (such as CTL) if a model checker is supposed to reason 

about them. These formulae can then be easily validated against the informal 

description as they are high-level and understandable by human readers. 

Another way of obtaining the formulae is to extract  them from a formal 

description of a defensive JVM. A defensive JVM performs all checks at runtime 

needed for the secure execution of a program. Such a model of the JVM is 

partially described in [Coh96]. The conditions to be checked by the model checker 

could be formally derived from such a description. 

Most properties are local to a specific program point. Tha t  means: Before an 

instruction can be safely executed, the state of the JVM has to meet a certain 

condition. This is expressed by the CTL formula 

AG pc = n-+r 

where pc denotes the program counter, n a program point (the address of an 

instruction) and r is a propositional condition on the JVM state. In plain words: 

Whenever program point n is reached during execution, the condition r must 

hold. 
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To make sure that a local variable i contains a value of a specific type T, r 

is of the form loci  = T ( loc  is the array of local variables). The formulm for 

checking the size and typing of the operand stack are similar. 

Some conditions can be checked for all program states in general, like that  

there are not stack overflows. This is achieved by specifying the formula 

AG size(stack) ~_ max_stack 

which imposes on all states the condition that  the stack does not exceed its 

maximum size. 

public class Purse { 12 iconst_O 

int  cash; / /  money stored 13 istore_2 

/ /  in the purse 14 j s r  42 

int ta; // transaction 17 iload_2 

... // counter 18 ireturn 

void notifyBank() throws 19 aload_O 

Exception { 20 dup 

... 21 getfield #7 <Field int cash> 

} 24 iload_l 

boolean debit(int amount) { 25 isub 

try { 26 putfield #7 <Field int cash> 

if (this.cash < amount) { 29 iconst_l 

notifyBank(); 30 istore_2 

return false; 31 jsr 42 

} else { 34 iload_2 

this.cash -= amount; 35 ireturn 

return true; 36 astore_3 

} 37 jsr 42 

} 40 aload_3 

finally { 41 athrow 

this.ta++; 42 astore 4 

} 44 aload_O 

} 45 dup 

} 46 getfield #9 <Field int ta> 

49 iconst_l 

0 aload_O 50 iadd 

I getfield #7 <Field int cash> 51 putfield #9 <Field int ta> 

4 iload_l 

5 if_icmpge 19 

8 aload_O 

9 invokevirtual #8 <notifyBankO> 

54 re t  4 

Exception table : 

from to t a rge t  type 

0 36 36 any 

Fig. 4. Implementation of a Simple Electronic Purse: Source Code and Byte Code. 
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5 E x a m p l e :  A S i m p l e  E l e c t r o n i c  P u r s e  

As an example for performing byte code verification through a model checker, we 

consider the method d e b i t  of class Pu r se  (see figure 4), implementing a simple 

electronic purse running on a Java smart  card; this example was implemented 

for the Cyberflex Java Smart  Card [Sch97]. 

The method d e b i t  is invoked on a Pu r se  object whenever money is with- 

drawn, d e b i t  takes the amount of money as an argument and returns true if the 

transaction was successful and false in case the value stored in the purse would 

become negative. In the latter case, a method for notifying the bank is invoked. 

In any case, the transaction counter is incremented. The respective code is en- 

closed in a f i n a l l y  clause, so it is performed even if an exception is raised from 

calling notifyBank. 

We first take a look at the state transit ion system built from the compiled 

method d e b i t  and how it reflects the semantics of the byte code instructions. 

Then we consider the formulse describing the properties established during byte 

code verification. 

5 .1  A T r a n s i t i o n  S y s t e m  for  debit 

Figure 4 shows the compiled method d e b i t  (as created by javac from Javasoft). 

From this piece of byte code, a state transition system is built and given to a 

model checker, together with conditions to check. Figure 5 shows the correspond- 

ing input for the model checker SMV. This description was created manually, 

but it can be easily computed automatically with an appropriate tool. 

A state of the transition system consists of the following state variables: 

- a program counter pc ranging over the instruction addresses and an addi- 

tional final state; 

- an operand stack, implemented by a stack pointer sp and stack locations 

s t 0  through s t 2  (the maximum height of the stack is 3 as recorded in the 

class file); 

- local variables l oc0  through loc4;  

- a stack for active subroutines r s t a c k ;  

- an e x c e p t i o n  flag which indicates whether the method ends because of an 

exception; 

- object variables field7 and field9. 

Other state types are possible, and it is desirable to restrict the state space as 

much as possible. A candidate for a more efficient representation is the operand 

stack. Here, the currently unused stack locations unnecessarily expand the state 

space. 

Some simplifications were made for building the model: The only primitive 

data type is integer (booleans are t reated as integers, and no other primitive 

types are used in the program). Furthermore,  the access conditions for ob- 

ject variables (fields) and methods which could be violated by the g e t f i e l d ,  

p u t f  i e l d  and i n v o k e v i r t u a l  instructions are not handled. 
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The types for stack locations and local variables are similar: They range 

over a set of reference values (null, this, exception, and arbi t rary reference), a 

primitive type (integer) and return addresses (used by the r e t  instruction). The 

additional value UNDEF for local variables indicates that  a variable has not yet 

been initialised and therefore cannot be used. 

The object variables are of type integer. They are strictly typed and may not 

hold arbitrary values like local variables do. 

Note that  the stack pointer ranges over values from 0 to 4, where 4 stands for 

"invalid". The formube describing the transitions are partial in the sense that  

for invalid values, the value of sp in the next state is not determined. This leads 

to the existence of execution paths, where sp has a value of 4. However, by the 

specification SPEC AG !sp=4 we can assure that  these paths are not reachable 

and therefore the stack never exceeds its maximum (or minimum) size. 

Initial state In the initial state, the stack is empty and the program counter 

points to the first instruction of the program. The local variable 0 contains 

the reference to the object for which the method was called, l o c l  holds the 

method parameter which is an integer value. The other local variables are marked 

UNDEF and are therefore unusable for any reading instruction. There are no active 

subroutines, no exception has been raised, and the object variables are assumed 

to contain valid values (see the INIT lines in Figure 5). 

State transitions The transitions are described by formulm using the variable val- 

ues of the current and the following states. The description reflects the structure 

of the byte code program. Generally, the actual transition formula is guarded by 

a formula pc=Lnn, indicating that  this transition should be made when program 

point Lnn is reached (see the TRANS statements in Figure 5). 

A transition manipulates the stack, changes some variables or raises an ex- 

ception. This is expressed by describing which values the state variables will 

have in the next state, depending on their values in the current state. It must 

be stated explicitly if state variables do not change their values. Otherwise, the 

model checker chooses an arbi t rary value (as for unused stack locations). 

Exception handling The Java method considered here performs no explicit excep- 

tion handling, i.e.: all exceptions raised while executing the method are handed 

over to the caller of the method. However, the f i n a l l y  clause must be executed 

even if an exception occurs. Therefore the compiler added an exception handler 

(ranging from address 36 to 41 in Figure 4) which calls the f i n a l l y  clause and 

then re-throws the exception, i.e. hands it upwards. 

The instructions in our example which could possibly raise exceptions are 

invokevirtual, getfield and putfield. There are several getfield instruc- 

tions in the method which raise exceptions if their respective object reference 

is null. As an example, look at the instruction at address I which is covered 

by the exception handler, so in case of a null reference a jump to the code of 

the exception handler is performed. Thus, for address I the model description 

includes a transition to address 36 guarded by the appropriate condition. 
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In contrast,  if the instruction at  address 46 raises an exception, the method 

is immediately interrupted and control is returned to the caller of the method.  

This is reflected in the abstracted model description by a transit ion to the final 

s tate  with the exception flag set. We do not model the transfer of control here, 

as we consider only one method at  a time. 

Subroutine calls There is one subroutine in the method,  implementing the code 

enclosed in the f •  clause. This  code can be called from 3 different locations 

(the j s r  instructions at addresses 14, 31, 37). Although not obvious, the variable 

r s t a c k  holds a stack where labels for all active subroutines are pushed on. As 

we have only one here, there are two possible values for r s t a c k :  EMPTY if the 

subroutine is not active and JSR42 in the other case. (The label JSR42 indicates 

tha t  the subroutine starts  at address 42.) 

Whenever a j s r  instruction is executed, the subroutine must  not already be 

active, as the Java  byte code specification forbids recursive calls to subroutines. 

Therefore, the condition rstack=EMPTY has to be t rue for each program point 

with a j s r  instruction. 

5.2 B y t e  Code Properties 

The propert ies sketched below describe the type safety of the program. They 

ensure tha t  all operations have operands of suitable types, and that  there are 

no stack underflows or overflows. They also ensure tha t  subroutines are not 

recursively called. 

SPEC AG (pc=LO->(sp<3 ~(IocO=NULL I locO=THlS J locO=EXC I locO=hEF))) 

SPEC AG (pc=Ll ->(sp>O & 

(((sp=l -> NULL=stO) ~ (sp=2-> NULL=stl) ~ (sp=3-> NULL=st2)) [ 

((sp=l -> THIS=stO) ~ (sp=2-> THIS=stl) ~ (sp=3-> THIS=st2))))) 

[omitted] 

SPEC AG (pc=L54-> (Ioc4=L17 [ ioc4=L34 1 ioc4=L40)) 

SPEC AG (!sp=4) 

5.3 Results  

The model description shown can be fed into the model checker SMV [CGL95]. 

I t  reports  a total  s ta te  space of 8.5 �9 10 l~ states, of which 8531 are reachable. 

All properties are checked and reported to be valid in a total  amount  of t ime of 

0.86 seconds (on a Sun SparcStat ion 20). 

Several points that  could be verified by the model checker were already pre- 

evaluated while building the model. For example, the model checker could verify 

tha t  jumps go only to valid instructions. The model shown here incorporates this 

condition by having only valid instruction addresses in the range of the program 

counter. 



6 R e l a t e d  W o r k  

Byte Code Verification for Java Smart Cards 187 

The principle of offiine byte code verification has, to our knowlege, first been 

described within the context of the Kimera project [SGB98]; the separation was 

proposed mainly for reasons of efficiency. The project also addresses the security 

of Java runtime environments, by providing a more carefully tested and "cleaner" 

implementation of the byte code verifier. Kimera does not attempt to put the 

verification step on rigorous approaches like formal methods. 

Closely related work towards a formal treatment of Java is currently being 

undertaken at several places: Attempts to define a formal semantics for subsets 

of the Java language are pursued by [NvO98,DE97,Sym97]; this work chiefly 

aims at proving that the Java type system is sound and uses type-theoretic 

approaches. These approaches do not consider Java byte code and are therefore 

not directly applicable to our approach. 

An approach to formally define the semantics of the complete Java language 

using Abstract State Machines is described in [BS98]. Their formulation defines 

the mapping from the Java language to Java byte code in several layers of ab- 

straction. This work is related to our approach since ASM can be seen as state 

transition systems. Although [BS98] do not consider proving properties of con- 

crete byte code programs, the results could eventually contribute to mapping 

byte code programs into the finite abstractions used in our approach. 

A definition of the semantics of the Java Virtual Machine is described in 

[Qia97]. The approach considers a subset of the JVM instructions and aims at 

proving the run-time type correctness of byte code programs from their static 

typing. It yields an operational semantics of Java byte code and a static type 

inference system. 

A similar approach is taken in [SA98]; the paper concentrates on the t r y /  

f i n a l l y  construct in the Java language and the Java byte code instructions 

relevant to this. The difference to our approach is that [SA98] uses a language 

more expressive than the finite state systems we consider; therefore, a more 

detailed description of the semantics of byte code verification is possible, at 

the price of a more complex modelling. The approach goes into a very similar 

direction to our work, but it concentrates on describing the byte code verification, 

whilst we focus on carrying it out with declarative means. 

Our approach differs -on the meta level- from proof carrying [NL96,FL97] 

code in that we replace the process of checking the proof by verifying a digital 

signature. Rather than requiring a proof checker on the client side, we assume 

safe distribution of keys, trust in a network node and signature verification on 

the client side. However, it is foreseeable that a public key infrastructure will 

be widely available in the future, so very little additional overhead is brought 

into the client by our procedure. Technically, we use a less expressive (because 

decidable) language for expressing properties than proof carrying code. This 

allows us to perform proofs fully automatically, while with proof carrying code, 

the question of where the proofs actually come from, still needs to be sorted out 

in detail. 
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7 Conclus ion 

We described an approach to Java byte code verification, where the verifier is 

not integrated into the Java run t ime environment, but proceeds offiine. The 

process is implemented by using a model checker on an explicit, finite model of 

a byte code program. The checker verifies that  the required security conditions, 

which are also given explicitly, hold for that  model and are therefore fulfilled by 

the original byte code program. 

The proposed method of formal byte code verification helps achieving the 

highest level of security in execution of Java applets. This is done by replacing 

a crucial part  of the Java security architecture, the byte code verifier, by a tool 

based on formal methods that  avoids the pitfalls of conventional implementa- 

tions. 

To summarise, the advantages of our approach are: 

M o r e  f l ex ib i l i ty  a n d  ex t ens ib i l i t y .  In the sketched framework, we deal with 

high-level descriptions of system models and safety properties. The described 

abstract  model of the JVM is not the only one possible, and the model and 

the properties to be checked can be adapted to individual needs. 

A c h i e v i n g  f o r m a l  c o r r e c t n e s s .  The highest achievable level of correctness 

is a formal proof. The correctness of an implementation of the byte code 

verifier is almost impossible to prove, and the benefit is questionable, as a 

little change invalidates the whole proof. 

In our approach, we shift the proof condition from the implementation level 

to the level of validation, of both the model description and the formulm. 

But as these descriptions are high-level, the task becomes relatively easy. 

Furthermore, as errors show up, they can be corrected quickly and safely. 

Of course, there is still no guarantee that  an actual implementation of a JVM 

will execute a verified byte code program correctly. To achieve this, we need 

a formally verified implementation of the JVM and the whole environment. 

For smart cards, even this task seems tractable. 

We believe that  through model checking, a formal treatment of byte code can 

be achieved in a simple and effective way. Understanding the formalisms needed 

for this kind of byte code verification is not more complicated than implementing 

a byte code verifier, and the gain is a formal, highly trustable verifier. 
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MODULE main 

VAR pc : {LO,LI,L4 ..... L51,L54,FINI}; 

sp : { 0 , 1 , 2 , 3 , 4 } ;  

s t O , s t l , s t 2  : {NULL,THIS,EXC,REF,INT,LI7,L34,L40}; 

Ioc0..4 : {UNDEF,NULL,THIS,EXC,REF,INT,L17,L34,L40}; 

rstack : {EMPTY, JSR42}; exception : {0,i}; 

field7 : {UNDEF,INT}; field9 : {~DEF,I~Tr}; 

INIT pc=LO ~ sp=O ~ locO=THIS & locl=INT ~ loc2=UNDEF ~ loc3=UNDEF 

INIT Ioc4=UNDEF ~ rstack=EMPTu & excep~ion=O ~ fieldT=INT ~ fieldg=INT 

-- aload_O 

TRANS pc=LO ->((sp=O ->(next(stO)=locO & next(sp)=l)) 

(sp=l ->(next(stO)=stO ~ next(stl)=locO ~ next(sp)=2)) & 

(sp=2 ->(next(stO)=stO ~ next(stl)=stl $ next(st2)=locO ~ next(sp)=3))) & 

(next(locO)=locO & next(locl)=locl & next(loc2)=loc2 & next(loc3)=loc3 

next(loc4)=loc4 & next(rstack)=rstack ~ next(fieldT)=field7 

next(field9)=field9 & next(exception)=exception) ~ next(pc)=L1 

-- getfield #7 

TRANS (pc=L1 ~ I((sp=l ->NULL=stO) & (sp=2 ->NULL=st1) & (sp=3 ->NULL=st2))) 

->((sp=l ->nex~(sp)=l & next(stO)=fieldT) 

(sp=2 ->next(sp)=2 & next(stO)=stO ~ next(stl)=field7) & 

(sp=3 ->next(sp)=3 & next(stO)=stO ~ next(stl)=stl & next(st2)=fieldT)) 

(next(locO)=locO ~ nex~(locl)=1ocl & next(loc2)=loc2 & next(loc3)=loc3 

next(loc4)=loc4 & next(rstack)=rstack & next(fieldT)=field7 

next(fieldg)=field9 R next(exception)=exception) & next(pc)=L4 

TRANS (pc=L1 & ((sp=l ->NULL=s~O) & (sp=2 ->NULL=stl) ~ (sp=3 ->NULL=st2))) 

->next(pc)=L36 

(next(locO)=locO ~ next(locl)=1ocl & next(loc2)=loc2 ~ next(loc3)=loc3 & 

next(loc4)=ioc4 & next(rstack)=rs~ack & next(fieldT)=field7 & 

next(fieldg)=field9 & next(exception)=exception) ~ next(sp)=l ~ next(stO)=EXC 

[omitted] 
-- ret 4 .-- 

TRANS pc=L54 ->((sp=O ->(next(sp)=sp)) R (sp=l ->(next(sp)=sp ~ next(stO)=stO)) 

(sp=2 ->(next(sp)=sp ~ next(stO)=stO ~ next(stl)=stl)) & 

(sp=3 ->(next(sp)=sp & next(stO)=stO & nexr ~ next(st2)=st2))) 

(next(locO)=lor R next(1ocl)=locl & next(1oc2)=loc2 & next(loc3)=1oc3 & 

next(loc4)=U~DEF & next(re~ack)=EMPTY ~ next(field7)=field7 & 

next(fieldg)=field9 & next(exception)=exception) & next(pc)=loc4 

-- final state 

TITANS pc=FINI ->((sp=O ->(next(sp)=sp)) ~ (sp=l ->(nex~(sp)=sp ~ nex~(stO)=stO)) 

(sp=2 ->(nex~(sp)=sp ~ nex~(stO)=s~O & next(stl)=stl)) & 

(sp=3 ->(next(sp)=sp ~ next(stO)=stO ~ nex~(stl)=stl ~ next(st2)=st2))) & 

(next(1ocO)=locO = next(locl)=locl & next(loc2)=loc2 ~ next(loc3)=loc3 & 

nex~(Ioc4)=lor ~ next(rs~ack)=rstack & next(fieldT)=field7 

next(field9)=field9 ~ next(exception)=exception) & nex~(pc)=FINI 

Fig .  5. Sketch of the d e b i t  Method as a State Transition System. 


