
Byzantine Broadcast in Point-to-Point Networks using
Local Linear Coding ∗

Guanfeng Liang
University of Illinois

Electrical and Computer Engineering
Urbana, Illinois

guanfeng.liang@gmail.com

Nitin H. Vaidya
University of Illinois

Electrical and Computer Engineering
Urbana, Illinois

nhv@illinois.edu

ABSTRACT
The goal of Byzantine Broadcast (BB) is to allow a set of
fault-free nodes to agree on information that a source node
wants to broadcast to them, in the presence of Byzantine
faulty nodes. We consider design of efficient algorithms for
BB in synchronous point-to-point networks, where the rate of
transmission over each communication link is limited by its
"link capacity". The throughput of a particular BB algorithm
is defined as the average number of bits that can be reliably
broadcast to all fault-free nodes per unit time using the al-
gorithm without violating the link capacity constraints. The
capacity of BB in a given network is then defined as the supre-
mum of all achievable BB throughputs in the given network,
over all possible BB algorithms.

We develop NAB – a Network-Aware BB algorithm – for
tolerating f faults in arbitrary point-to-point networks con-
sisting of n ≥ 3 f + 1 nodes and having ≥ 2 f + 1 directed
node disjoint paths from each node i to each node j. We also
prove an upper bound on the capacity of BB, and conclude
that NAB can achieve throughput at least 1/3 of the capacity.
When the network satisfies an additional condition, NAB can
achieve throughput at least 1/2 of the capacity. To the best of
our knowledge, NAB is the first algorithm that can achieve
a constant fraction of capacity of Byzantine Broadcast (BB) in
general point-to-point networks.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms, Theory

∗This research is supported in part by National Science Foun-
dation award 1059540 and Army Research Office grant W-
911-NF-0710287. Any opinions, findings, and conclusions or
recommendations expressed here are those of the authors and
do not necessarily reflect the views of the funding agencies
or the U.S. government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’12, July 16–18, 2012, Madeira, Portugal.
Copyright 2012 ACM 978-1-4503-1450-3/12/07 ...$10.00.

Keywords
Broadcast, Byzantine faults, capacity, directed graph

1. INTRODUCTION
The problem of Byzantine Broadcast (BB) – also known as

the Byzantine Generals problem [11] – was introduced by
Pease, Shostak and Lamport in their 1980 paper [19]. Since
the first paper on this topic, Byzantine Broadcast has been
the subject of intense research activity, due to its many poten-
tial practical applications, including replicated fault-tolerant
state machines [5], and fault-tolerant distributed file storage
[20]. Informally, Byzantine Broadcast (BB) can be described
as follows. There is a source node that needs to broadcast a
message (also called its input) to all the other nodes such that
even if some of the nodes are Byzantine faulty, all the fault-free
nodes will still be able to agree on an identical message; the
agreed message is identical to the source’s input if the source
is fault-free.

We consider the problem of maximizing the throughput of
Byzantine Broadcast (BB) in synchronous networks of point-to-
point links, wherein each directed communication link is sub-
ject to a "capacity" constraint. Informally speaking, through-
put of BB is the number of bits of Byzantine Broadcast that
can be achieved per unit time (on average), under the worst-
case behavior by the faulty nodes. Despite the large body of
work on BB [7, 6, 3, 10, 2, 18], performance of BB in arbitrary
point-to-point network has not been investigated previously.
When capacities of the different links are not identical, previ-
ously proposed algorithms can perform poorly. In fact, one
can easily construct example networks in which previously
proposed algorithms achieve throughput that is arbitrarily
worse than the optimal throughput. Our prior work [13] in-
troduces a BB algorithm that achieves the optimal throughput
in 4-node networks with arbitrary link capacity constraints.
But this does not apply to networks with > 4 nodes.

Problem Formulation
We consider a synchronous system consisting of n nodes,
named 1, 2, · · · , n, with one node designated as the sender
or source node. In particular, we will assume that node 1 is
the source node. Source node 1 is given an input value x
containing L bits, and the goal here is for the source to broad-
cast its input to all the other nodes. The following conditions
must be satisfied:

Termination: Every fault-free node i must eventually decide
on an output value of L bits; let us denote the output value of
fault-free node i as yi.

319

Agreement: All fault-free nodes must agree on an identical
output value, i.e., there exists y such that yi = y for each
fault-free node i.
Validity: If the source node is fault-free, then the agreed value
must be identical to the input value of the source, i.e., y = x.

Failure Model
The faulty nodes are controlled by an adversary that has a
complete knowledge of the network topology, the algorithm,
and the input value x. No secret is hidden from the adversary.
The adversary can take over up to f nodes at any point during
execution of the algorithm, where f < n/3. These nodes are
said to be faulty. The faulty nodes can engage in any kind of
deviations from the algorithm, including sending incorrect
or inconsistent messages to the neighbors. We assume that
the set of faulty nodes remains fixed across different instances
of execution of the BB algorithm. When a faulty node fails to
send a message to a neighbor as required by the algorithm, we
assume that the recipient node interprets the missing message
as being some default value. We also assume that f > 0, since
the case when f = 0 is trivial.

Network Model
We assume a synchronous point-to-point network modeled
as a directed simple graph G(V,E), where the set of vertices
V = {1, 2, · · · ,n} represents the nodes in the network, and the
set of edges E represents the links in the network. With a
slight abuse of terminology, we will use the terms edge and
link, and node and vertex, interchangeably. We assume that
n ≥ 3 f + 1 since it is necessary for the existence of a correct
BB algorithm [7]. We also require that there exist ≥ 2 f + 1
directed node disjoint paths from each node i to each node j
in the network.

In the given network, links may not exist between all node
pairs. For each directed link e = (i, j) ∈ E, its capacity, denoted
as ze specifies the maximum amount of information that can
be transmitted on that link per unit time. Specifically, we
assume that up to zeτ bits can be reliably sent from node i to
node j over time duration τ (for any non-negative τ). This
is a deterministic model of capacity that has been commonly
used in other work [12, 4, 8, 9]. All link capacities are assumed
to be positive integers.1 Propagation delays on the links are
assumed to be zero (relaxing this assumption does not impact
the correctness of results shown for large input sizes). We
also assume that each node correctly knows the identity of
the nodes at the other end of its links.

Throughput and Capacity of BB
When defining the throughput of a given BB algorithm in a
given network, we consider Q independent instances of BB.
The source node is given an L-bit input for each of these Q
instances, and the validity and agreement properties need to
be satisfied for each instance separately (i.e., independent of
the outcome for the other instances).

For any BB algorithm A, denote t(G,L,Q,A) as the du-
ration of time required, in the worst case, to complete Q
instances of L-bit Byzantine Broadcast, without violating the
capacity constraints of the links in G. Throughput of algo-

1Rational link capacities can be turned into integers by choos-
ing a suitable time unit. Irrational link capacities can be ap-
proximated by integers with arbitrary accuracy by choosing
a suitably long time unit.

rithmA in network G for L-bit inputs is then defined as

T(G,L,A) = lim
Q→∞

LQ
t(G,L,Q,A)

.

We then define capacity CBB as follows.

Capacity CBB of Byzantine Broadcast in network G is defined
as the supremum over the throughput of all algorithms A
that solve the BB problem and all values of L. That is,

CBB(G) = sup
A,L

T(G,L,A).

2. ALGORITHM OVERVIEW
This section provides an overview of the structure of NAB

– a Network-Aware Byzantine broadcast algorithm – for ar-
bitrary point-to-point networks. Each instance of our NAB
algorithm performs Byzantine broadcast of an L-bit value.
We assume that the NAB algorithm is used repeatedly, and
during all these repeated executions, the cumulative number
of distinct faulty nodes is upper bounded by f . Due to this
assumption, the algorithm can perform well by amortizing
the cost of fault tolerance over a large number of executions.
Larger values of L also result in better performance for the al-
gorithm. The algorithm is intended to be used for sufficiently
large L and Q, to be elaborated later in Section 5.

The k-th instance of NAB executes on a network corre-
sponding to graph Gk(Vk,Ek), defined as follows:

• For the first instance, k = 1, and G1 = G. Thus,V1 =V
and E1 = E.

• The k-th instance of NAB occurs on graph Gk in the fol-
lowing sense: (i) all the fault-free nodes know the node
and edge setsVk andEk, (ii) only the nodes correspond-
ing to the vertices in Vk need to participate in the k-th
instance of BB, and (iii) only the links corresponding to
the edges in Ek are used for communication in the k-
th instance of NAB (communication received on other
links is ignored).

• During the k-th instance of NAB using graphGk, if mis-
behavior by some faulty node(s) is detected, then, as
described later, additional information is gleaned about
the potential identity of the faulty node(s). In this case,
Gk+1 is obtained by removing from Gk appropriately
chosen edges and possibly some vertices, based on dis-
pute control [1].
On the other hand, if during the k-th instance, no mis-
behavior is detected, then Gk+1 = Gk.

The k-th instance of NAB algorithm consists of three phases,
as described next. The main contributions of this paper are (i)
the algorithm used in Phase 2 below, and (ii) a performance
analysis of NAB.

If graphGk does not contain the source node 1, then (as will
be clearer later) by the start of the k-th instance of NAB, all the
fault-free nodes already know that the source node is surely
faulty; in this case, the fault-free nodes can agree on a default
value for the output, and terminate the algorithm. Hereafter,
we will assume that the source node 1 is in Gk.

Phase 1: Unreliable Broadcast
In Phase 1, source node 1 broadcasts L bits to all the other
nodes in Gk. This phase makes no effort to detect or tolerate

320

(a) (b)

(c) Undirected graph corre-
sponding to Figure 1(b)

(d) A spanning tree in the
undirected graph of Figure
1(c) shown in dotted edges

Figure 1: Example graphs. Numbers next to the edges indi-
cate link capacities.

misbehavior by faulty nodes. Now let us analyze the time
required to perform unreliable broadcast in Phase 1.

MINCUT(Gk, 1, j) denotes the minimum cut in the directed
graph Gk from source node 1 to node j. Let us define

γk = min
j∈Vk

MINCUT(Gk, 1, j).

MINCUT(Gk, 1, j) is equal to the maximum flow rate possible
from node 1 to node j ∈ Vk. It is well-known [17] that γk is the
maximum rate achievable for broadcast from node 1 to all the
other nodes inVk, under the capacity constraints on the links
in Ek (this can be achieved using γk unit-capacity spanning
trees embedded inGk [15]). Thus, the least amount of time in
which L bits can be broadcast by node 1 in graph Gk is given
by L/γk. To simplify the analysis, we ignore propagation
delays. Analogous results can be obtained in the presence of
propagation delays as well [12].

Clearly, γk depends on the capacities of the links in Gk. For
example, if Gk were the directed graph in Figure 1(a), then
MINCUT(Gk, 1, 2) = 2, MINCUT(Gk, 1, 3) = 3, and
MINCUT(Gk, 1, 4) = 2; hence γk = 2.

At the end of the broadcast operation in Phase 1 of the k-th
instance of NAB, each node should have received L bits. One
of the following four outcomes will occur:

(i) The source node 1 is fault-free, and all the fault-free
nodes correctly receive the source node’s L-bit input for
the k-th instance of NAB, or

(ii) The source node 1 is fault-free, but some of the fault-free
nodes receive incorrect L-bit values due to misbehavior
by some faulty node(s), or

(iii) The source node 1 is faulty, but all the fault-free nodes
still receive an identical L-bit value in Phase 1, or

(iv) The source node is faulty, and all the fault-free nodes
do not receive an identical L-bit value in Phase 1.

The values received by the fault-free nodes in cases (i) and
(iii) satisfy the agreement and validity conditions, whereas in
cases (ii) and (iv) at least one of the two conditions is violated.

Phase 2: Failure Detection
Phase 2 performs the following two operations. As stipulated
in the fault model, a faulty node may not follow the algorithm
specification correctly.
(Step 2.1) Equality check: Using an Equality Check algorithm,
the nodes inVk perform a comparison of the L-bit value they
received in Phase 1, to determine if all the nodes received
an identical value. The source node 1 also participates in
this comparison operation (treating its input as the value
“received from” itself).

Section 3 presents the Equality Check algorithm, which
is designed to guarantee that if the values received by the
fault-free nodes in Phase 1 are not identical, then at least one
fault-free node will detect the mismatch.
(Step 2.2) Agreeing on the outcome of equality check: Using
a previously proposed Byzantine broadcast algorithm, such
as [19], each node performs Byzantine broadcast of a 1-bit
flag to other nodes in Gk indicating whether it detected a
mismatch during equality check.

If any node broadcasts in step 2.2 that it has detected a
mismatch, then subsequently Phase 3 is performed. On the
other hand, if no node announces a mismatch in step 2.2
above, then Phase 3 is not performed; in this case, each fault-
free node agrees on the value it received in Phase 1, and the
k-th instance of NAB is completed.

We will later prove that, when Phase 3 is not performed,
the values agreed above by the fault-free nodes satisfy the
validity and agreement conditions for the k-th instance of NAB.
On the other hand, when Phase 3 is performed during the k-
th instance of NAB, as noted below, Phase 3 results in correct
outcome for the k-th instance. When Phase 3 is performed,
Phase 3 determines Gk+1; otherwise, Gk+1 = Gk.

Phase 3: Dispute Control
Phase 3 employs a dispute control mechanism that has also
been used in prior work [1, 14]. Appendix A provides the
details of the dispute control algorithm used in Phase 3. Here
we summarize the outcomes of this phase – this summary
should suffice for understanding the main contributions of
this paper.

The dispute control in Phase 3 has very high overhead,
due to the large amount of data that needs to be transmitted.
From the above discussion of Phase 2, it follows that Phase
3 is performed only if at least one faulty node misbehaves
during Phases 1 or 2. The outcomes from Phase 3 performed
during the k-th instance of NAB are as follows.

Outcome 1: Phase 3 results in correct Byzantine broadcast for
the k-th instance of NAB. This is obtained as a byproduct of
the dispute control mechanism.
Outcome 2: By the end of Phase 3, either one of the nodes in
Vk is correctly identified as faulty, or/and at least one pair of
nodes inVk, say nodes a, b, is identified as being “in dispute”
with each other. When a node pair a, b is found in dispute, it
is guaranteed that (i) at least one of these two nodes is faulty,
and (ii) at least one of the directed edges (a, b) and (b, a) is
in Ek. Note that the dispute control phase never finds two
fault-free nodes in dispute with each other.
Outcome 3: Phase 3 in the k-th instance computes graphGk+1.
In particular, any nodes that can be inferred as being faulty
based on their behavior so far are excluded fromVk+1; links
attached to such nodes are excluded from Ek+1. In Appendix
A we elaborate on how the faulty nodes are identified. Then,

321

for each node pair in Vk+1, if that node pair has been found
in dispute at least in one instance of NAB so far, the links
between the node pair are excluded from Ek+1. Phase 3 en-
sures that all the fault-free nodes compute an identical graph
Gk+1 = (Vk+1,Ek+1) to be used during the next instance of
NAB.

Consider two special cases for the k-th instance of NAB:

Case 1: If graph Gk does not contain the source node 1, it
implies that all the fault-free nodes are aware that node 1 is
faulty. In this case, they can safely agree on a default value
as the outcome for the k-th instance of NAB.
Case 2: Similarly, if the source node is inGk but at least f other
nodes are excluded from Gk, that implies that the remaining
nodes in Gk are all fault-free; in this case, algorithm NAB can
be reduced to just Phase 1.

Observe that during each execution of Phase 3, either a
new pair of nodes in dispute is identified, or a new node is
identified as faulty. Once a node is found to be in dispute
with f + 1 distinct nodes, it can be identified as faulty, and
excluded from the algorithm’s execution. Therefore, dispute
control needs to be performed at most f (f + 1) times over
repeated executions of NAB. Thus, even though each dispute
control phase is expensive, the bounded number ensures that
the amortized cost over a large number of instances of NAB
is small, as reflected in the performance analysis of NAB (in
Section 5 and Appendix C).

3. EQUALITY CHECK ALGORITHM
WITH PARAMETER ρK

We now present the Equality Check algorithm (Algorithm
1 below) used in Phase 2, which has an integer parameter
ρk for the k-th instance of NAB. Later in this section, we will
elaborate on the choice ofρk , which is dependent on capacities
of the links in Gk.

Let us denote by xi the L-bit value received by fault-free
node i ∈ Vk in Phase 1 of the k-th instance. For simplic-
ity, we do not include index k in the notation xi. To sim-
plify the presentation, let us assume that L/ρk is an inte-
ger. Thus we can represent the L-bit value xi as ρk symbols
from Galois Field GF(2L/ρk). In particular, we represent xi
as a vector Xi = [Xi(1), Xi(2), · · · ,Xi(ρk)], where each symbol
Xi(j) ∈ GF(2L/ρk) can be represented using L/ρk bits. As dis-
cussed earlier, for convenience, we assume that all the link
capacities are integers.

In the Equality Check algorithm, ze symbols of size L/ρk
bits are transmitted on each link e of capacity ze. Therefore,
the Equality Check algorithm requires time duration L/ρk.

3.1 Salient Feature of the Algorithm
In the Equality Check algorithm, a single round of commu-

nication occurs between adjacent nodes. No node is required
to forward packets received from other nodes during the al-
gorithm. This implies that, while a faulty node may send
incorrect packets to its neighbors, it cannot tamper informa-
tion sent between fault-free nodes. This feature of Equality
Check is important in being able to prove its correctness de-
spite the presence of faulty nodes in Gk.

3.2 Choice of Parameter ρk

We define a set Ωk as follows using the disputes identified
through the first (k − 1) instances of NAB.

Algorithm 1 Equality Check in Gk with parameter ρk

Each node i ∈ Vk should performs these steps:

1. On each outgoing link e = (i, j) ∈ Ek whose capacity
is ze, node i transmits ze linear combinations of the ρk
symbols in vector Xi, with the weights for the linear
combinations being chosen from GF(2L/ρk).
More formally, for each outgoing edge e = (i, j) ∈ Ek of
capacity ze, a ρk × ze matrix Ce is specified as a part of
the algorithm. Entries in Ce are chosen from GF(2L/ρk).
Node i sends to node j a vector Ye of ze symbols obtained
as the matrix product Ye = XiCe. Each element of Ye is
said to be a “coded symbol”. The choice of the matrix
Ce affects the correctness of the algorithm, as elaborated
later.

2. On each incoming edge d = (j, i) ∈ Ek, node i receives a
vector Yd containing zd symbols from GF(2L/ρk). Node
i then checks, for each incoming edge d, whether Yd =
XiCd. The check is said to fail iff Yd � XiCd.

3. If checks of symbols received on any incoming edge fail
in the previous step, then node i sets a 1-bit flag equal
to MISMATCH; else the flag is set to NULL. This flag is
broadcast in Step 2.2 in Phase 2 above.

Ωk = { H | H is a subgraph of Gk containing (n − f) nodes
such that no two nodes in H have been found
in dispute through the first (k − 1) instances }

As noted in the discussion of Phase 3 (Dispute Control), fault-
free nodes are never found in dispute with each other (fault-free
nodes may be found in dispute with faulty nodes, however).
This implies that Gk includes all the fault-free nodes. There
are at least n− f fault-free nodes in the network. This implies
that set Ωk is non-empty.

Corresponding to a directed graph H(V,E), let us define an
undirected graph H(V,E) as follows: (i) both H and H contain
the same set of vertices, (ii) undirected edge (i, j) ∈ E if either
(i, j) ∈ E or (j, i) ∈ E, and (iii) capacity of undirected edge
(i, j) ∈ E is defined to be equal to the sum of the capacities
of directed links (i, j) and (j, i) in E (if a directed link does
not exist in E, here we treat its capacity as 0). For example,
Figure 1(c) shows the undirected graph corresponding to the
directed graph in Figure 1(b).

Define a set of undirected graphsΩk as follows. Ωk contains
undirected version of each directed graph in Ω: Ωk = {H|H ∈
Ωk}. Define

Uk = min
H∈Ωk

min
i, j∈H

MINCUT(H, i, j)

as the minimum value of the undirected MINCUTs between all
pairs of nodes in all the undirected graphs in the set Ωk. For
instance, suppose that n = 4, f = 1 and the graph shown in
Figure 1(a) isG, whereasGk is the graph shown in Figure 1(b).
Thus, nodes 2 and 3 have been found in dispute previously.
Then, Ωk and Ωk each contain two subgraphs, one subgraph
corresponding to the node set {1, 2, 4}, and the other subgraph
corresponding to the node set {1, 3, 4}. In this example, Uk = 2.

Parameter ρk is chosen such that

ρk ≤ Uk

2
.

322

Under such constraint on ρk, we will prove the correctness of
the Equality Check algorithm, with its execution time being
L/ρk.

3.3 Correctness of Equality Check
The correctness of Algorithm 1 depends on the choices

of the parameter ρk and the set of coding matrices {Ce|e ∈
Ek}. Let us say that a set of coding matrices is correct if the
resulting Equality Check (Algorithm 1) satisfies the following
requirement:

(EC) if there exists a pair of fault-free nodes i, j ∈ Gk such
that Xi � Xj (i.e., xi � xj),
then the 1-bit flag at at least one fault-free node is set to
MISMATCH.

Recall that Xi is a vector representation of the L-bit value xi
received by node i in Phase 1 of NAB. Two consequences of
the above correctness condition are:
Consequence 1: If some node (possibly the source node)
misbehaves during Phase 1 leading to outcomes (ii) or (iv)
for Phase 1, then at least one fault-free node will set its flag
to MISMATCH. In this case, the fault-free nodes (possibly
including the sender) do not share identical L-bit values Xi’s
as the outcome of Phase 1.
Consequence 2: If no misbehavior occurs in Phase 1 (thus
the values received by fault-free nodes in Phase 1 are correct),
but MISMATCH flag at some fault-free node is set in Equality
Check, then misbehavior must have occurred in Phase 2.

The following theorem shows that when ρk ≤ Uk/2, and
when L is sufficiently large, there exists a set of coding matri-
ces {Ce|e ∈ Ek} that are correct.

Theorem 1. For ρk ≤ Uk/2, if the entries of the coding matrices
{Ce|e ∈ Ek} in step 1 of Algorithm 1 are chosen independently and
uniformly at random from GF(2L/ρk), then {Ce|e ∈ Ek} is correct
with probability≥ 1− 2−L/ρk

[(n
n− f

)
(n − f − 1)ρk

]
.Note that when

L is large enough, 1 − 2−L/ρk
[(n

n− f

)
(n − f − 1)ρk

]
> 0.

Proof sketch: The complete proof of Theorem 1 is presented
in Appendix B. Our goal is to prove that property (EC) above
holds with a non-zero probability. That is, regardless of which
(up to f) nodes in G are faulty and what values Xi’s equal to,
whenever Xi � Xj for some pair of fault-free nodes i and j in
Gk during the k-th instance, at least one fault-free node (which
may be different from nodes i and j) will set its 1-bit flag to
MISMATCH. To prove this, we consider every subgraph of
H ∈ Ωk (see definition of Ωk above). By definition of Ωk,
no two nodes in H have been found in dispute through the
first (k − 1) instances of NAB. Therefore, H represents one
potential set of n − f fault-free nodes in Gk. For each edge
e = (i, j) in H, steps 1-2 of Algorithm 1 together have the effect
of checking whether or not (Xi − Xj)Ce = 0. Without loss of
generality, for the purpose of this proof, rename the nodes in
H as 1, · · · ,n− f . Denote Di = Xi−Xn−f for i = 1, · · · , (n− f −1),
then

(Xi − Xj)Ce = 0⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(Di −Dj)Ce = 0 , if i, j < n − f ;
DiCe = 0 , if j = n − f ;
−DjCe = 0 , if i = n − f .

Define DH = [D1,D2, · · · ,Dn−f−1]. Let m be the sum of
the capacities of all the directed edges in H. As elaborated in
Appendix B, we define CH to be a (n− f−1)ρk×m matrix whose
entries are obtained using the elements of Ce for each edge

e in H in an appropriate manner. For the suitably defined
CH matrix, we can show that the comparisons in steps 1-2
of Algorithm 1 at all the nodes in H ∈ Ωk are equivalent to
checking whether or not DH CH = 0.

We show that for a particular subgraph H ∈ Ωk, when
ρk ≤ Uk/2, m ≥ (n − f − 1)ρk and L is large enough, with
non-zero probability CH contains a (n− f −1)ρk × (n− f −1)ρk
invertible submatrix if the set of coding matrices {Ce|e ∈ Ek}
are generated randomly as described in Theorem 1. In this
case DHCH = 0 if and only if DH = 0, i.e., X1 = X2 = · · · = Xn−f.
In other words, if all nodes in subgraph H are fault-free, and
Xi � Xj for two fault-free nodes i, j, then DHCH � 0 and hence
the check in step 2 of Algorithm 1 fails at some fault-free node
in H.

We then further show that, for large enough L, with a non-
zero probability, this is also simultaneously true for all sub-
graphs H ∈ Ωk. This implies that, for large enough L, correct
coding matrices (Ce for each e ∈ Ek) can be found. Notice that
for a given network, the correctness of a set of coding matri-
ces is independent of the values of xi’s. This set of matrices are
specified as a part of the algorithm specification.

4. CORRECTNESS OF NAB
For Phase 1 (Unreliable Broadcast) and Phase 3 (Dispute

Control), the proof that the outcomes claimed in Section 2 in-
deed follows directly from the prior literature cited in Section
2 (and elaborated in Appendix A). Now consider two cases:
Case 1 – The values received by the fault-free nodes in Phase
1 are not identical: Then the correctness of Equality Check
ensures that a fault-free node will detect the mismatch, and
consequently Phase 3 will be performed. As a byproduct
of Dispute Control in Phase 3, the fault-free nodes will cor-
rectly agree on a value that satisfies the validity and agreement
conditions.
Case 2 – The values received by the fault-free nodes in Phase
1 are identical: If no node announces a mismatch in step 2.2,
then the fault-free nodes will agree on the value received in
Phase 1. It is easy to see that this is a correct outcome. On
the other hand, if some node announces a mismatch in step 2,
then Dispute Control will be performed, which will result in
correct outcome for the broadcast of the k-th instance. Thus,
in all cases, NAB will lead to correct outcome in each instance.

5. THROUGHPUT AND CAPACITY

5.1 Throughput of NAB for Large L and Q
In this section, we present a lower bound on the achiev-

able throughput with NAB when the input size L for each
instance and the number of instances Q are both “large” (in
an order sense) compared to n. Complete proof can be found
in Appendix C. Two consequences of L and Q being large:
L being large (ω(nα) for some constant α > 0): the overhead
of 1-bit broadcasts performed in step 2.2 of Phase 2 becomes
negligible when amortized over the L bits being broadcast by
the source in each instance of NAB.
Q being large (ω(nβ+2) for some constant β > 0): the average
overhead of dispute control per instance of NAB becomes
negligible. Recall that dispute control needs to be performed
at most f (f + 1) times over Q executions of NAB.

It then suffices to consider only the time it takes to complete
the Unreliable Broadcast in Phase 1 and Equality Check in
Phase 2. For the k-th instance of NAB, as discussed previously,

323

the unreliable broadcast in Phase 1 can be done in L/γk time
units (see definition of γk in Section 2). We now define

Γ = { H | H is a subgraph of G containing source node 1
such that Gk may equal H in some execution of
NAB for some k }

Appendix D provides a systematic construction of the set Γ.
Define the minimum value of all possible γk:

γ∗ = min
Gk∈Γ
γk = min

Gk∈Γ
min
j∈Vk

MINCUT(Gk, 1, j).

Then an upper bound of the execution time of Phase 1 in all
instances of NAB is L/γ∗.

With parameter ρk = Uk/2, the execution time of the Equal-
ity Check in Phase 2 is L/ρk. Recall that Uk is defined as the
minimum value of the MINCUTs between all pairs of nodes
in all undirected graphs in the set Ωk. As discussed in Ap-
pendix B.2, Ωk ⊆ Ω1, where G1 = G. Hence Uk ≥ U1 in all
possible Gk. Define

ρ∗ =
U1

2
= min

H∈Ω1

min
nodes i, j in H

MINCUT(H, i, j).

Then ρk ≥ ρ∗ for all possible Gk and the execution time of the
Equality Check is upper-bounded by L/ρ∗. So the throughput
of NAB for large Q and L can be lower bounded by

lim
L→∞T(G,L,NAB) ≥ L

L/γ∗ + L/ρ∗
=
γ∗ρ∗

γ∗ + ρ∗
. (1)

To simplify the discussion above, we ignored propagation
delays. Appendix C also describes how to approach this
bound even when propagation delays are considered.

5.2 An Upper Bound on Capacity of BB
We prove (in Appendix E) the following upper bound of

the capacity of BB:

Theorem 2. In point-to-point network G(V,E), the capacity
of Byzantine broadcast (CBB) with node 1 as the source satisfies the
following upper bound: CBB(G) ≤ min(γ∗, 2ρ∗).

Given the throughput lower bound TNAB(G) in (Eq.1) and
the upper bound on CBB(G) from Theorem 2, the result be-
low can be obtained through simple calculation. Readers are
referred to Appendix G of our report [15] for the proof.

Theorem 3. In point-to-point network G(V,E):

lim
L→∞T(G,L,NAB) ≥ min(γ∗, 2ρ∗)/3 ≥ CBB(G)/3.

Moreover, when γ∗ ≤ ρ∗:
lim
L→∞T(G,L,NAB) ≥ min(γ∗, 2ρ∗)/2 ≥ CBB(G)/2.

6. CONCLUSION
This paper presents NAB, a network-aware Byzantine broad-

cast algorithm for point-to-point networks. We derive an up-
per bound on the capacity of Byzantine broadcast, and show
that NAB can asymptotically achieve throughput at least 1/3
fraction of the capacity over a large number of execution in-
stances, when L is large. The fraction can be improved to at
least 1/2 when the network satisfies an additional condition.

7. REFERENCES
[1] Z. Beerliova-Trubiniova and M. Hirt. Efficient

multi-party computation with dispute control. In IACR
Theory of Cryptography Conference (TCC), 2006.

[2] Z. Beerliova-Trubiniova and M. Hirt. Perfectly-secure
mpc with linear communication complexity. In IACR
Theory of Cryptography Conference (TCC), 2008.

[3] P. Berman, J. A. Garay, and K. J. Perry. Bit optimal
distributed consensus. In Computer science. Plenum
Press, 1992.

[4] N. Cai and R. W. Yeung. Network error correction, part
II: Lower bounds. Communications in Information and
Systems, 2006.

[5] M. Castro and B. Liskov. Practical Byzantine fault
tolerance. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 1999.

[6] B. A. Coan and J. L. Welch. Modular construction of a
Byzantine agreement protocol with optimal message bit
complexity. Journal of Information and Computation, 1992.

[7] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy
impossibility proofs for distributed consensus
problems. In ACM symposium on Principles of Distributed
Computing (PODC), 1985.

[8] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and
D. Karger. Byzantine modification detection in
multicast networks using randomized network coding
(extended version). Technical report,
(http://www.its.caltech.edu/ tho/multicast.ps), 2004.

[9] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and
M. Medard. Resilient network coding in the presence of
Byzantine adversaries. In IEEE International Conference
on Computer Communications (INFOCOM), 2007.

[10] V. King and J. Saia. Breaking the O(n2) bit barrier:
Scalable Byzantine agreement with an adaptive
adversary. In ACM symposium on Principles of
Distributed Computing (PODC), 2010.

[11] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transaction on Programming
Languages and Systems, 1982.

[12] S.-Y. Li, R. Yeung, and N. Cai. Linear network coding.
IEEE Transactions on Information Theory, 2003.

[13] G. Liang and N. Vaidya. Capacity of Byzantine
agreement with finite link capacity. In IEEE
International Conference on Computer Communications
(INFOCOM), 2011.

[14] G. Liang and N. Vaidya. Error-free multi-valued
consensus with Byzantine failures. In ACM Symposium
on Principles of Distributed Computing (PODC), 2011.

[15] G. Liang and N. Vaidya. Byzantine broadcast in
point-to-point networks using local linear coding.
Technical report, arXiv (http://arxiv.org/abs/1106.1845),
June 2011 (revised May 2012).

[16] E. M. Palmer. On the spanning tree packing number of
a graph: a survey. Journal of Discrete Mathematics, 2001.

[17] C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization: Algorithms and Complexity. Courier Dover
Publications, 1998.

[18] A. Patra and C. P. Rangan. Communication optimal
multi-valued asynchronous Byzantine agreement with
optimal resilience. Cryptology ePrint Archive, 2009.

[19] M. Pease, R. Shostak, and L. Lamport. Reaching

324

agreement in the presence of faults. Journal of the ACM
(JACM), 1980.

[20] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating
System Concepts, chapter 17 Distributed File Systems.
Addison-Wesley, 1994.

APPENDIX
Some details are omitted for the sack of space. Please see [15]
for the complete proofs.

A. DISPUTE CONTROL
The dispute control algorithm motivated by the work in [1]

is performed in the k-th instance of NAB only if at least one
node misbehaves during Phases 1 or 2. The goal of dispute
control is to learn some information about the identity of
at least one faulty node. In particular, the dispute control
algorithm will identify a new node as being faulty, or/and
identify a new node pair in dispute (at least one of the nodes
in the pair is guaranteed to be faulty). The steps in dispute
control in the k-th instance of NAB are as follows:
(DC1) Each node i inVk uses a previously proposed Byzan-
tine broadcast algorithm, such as [6] (extended to use 2 f + 1
node disjoint paths; see Appendix C), to broadcast to all other
nodes in Vk all the messages that this node i claims to have
received from other nodes, and sent to the other nodes, dur-
ing Phases 1 and 2 of the k-th instance. Source node 1 also
uses an existing Byzantine broadcast algorithm [6] to broad-
cast its L-bit input for the k-th instance to all the other nodes.
Thus, at the end of this step, all the fault-free nodes will reach
correct agreement for the output for the k-th instance.
(DC2) If for some node pair a, b ∈ Vk, a message that node a
claims above to have sent to node b mismatches with the claim
of received messages made by node b, then node pair a, b is
found in dispute. In step DC1, since a Byzantine broadcast
algorithm is used to disseminate the claims, all the fault-free
nodes will identify identical node pairs in dispute.

It should be clear that a pair of fault-free nodes will never
be found in dispute with each other in this step.
(DC3) The NAB algorithm is deterministic in nature. There-
fore, the messages that should be sent by each node in Phases
1 and 2 can be completely determined by the messages that
the node receives, and, in case of node 1, its initial input.
Thus, if the claims of the messages sent by some node i are
inconsistent with the messages it claims to have received, and
its initial input (in case of node 1), then that node i must be
faulty. Again, all fault-free nodes identify these faulty nodes
identically. Any nodes thus identified as faulty until now (in-
cluding all previous instances of NAB) are deemed to be “in
dispute” with all their neighbors (to whom the faulty nodes
have incoming or outgoing links).

It should be clear that a fault-free node will never be found
to be faulty in this step.
(DC4) Consider the node pairs that have been identified as
being in dispute in DC2 and DC3 of at least one instances of
NAB so far. We will say that a set of nodes Fi, where |Fi| ≤ f ,
“explains” all the disputes so far, if for each pair a, b found in
dispute so far, at least one of a and b is in Fi.

It should be easy to see that for any set of disputes that
may be observed, there must be at least one such set that
explains the disputes. It is easy to argue that the nodes in the
set intersection

⋂Δ
δ=1 Fδ must be necessarily faulty (in fact, the

nodes in the set intersection are also guaranteed to include
nodes identified as faulty in step DC3).

Then, Vk+1 is obtained as Vk − ⋂Δ
δ=1 Fδ. Ek+1 is obtained

by removing from Ek edges incident on nodes in
⋂Δ
δ=1 Fδ, and

also excluding edges between all node pairs that have been
found in dispute so far.

As noted earlier, the above dispute control phase may be
executed in at most f (f + 1) instances of NAB.

B. PROOF OF THEOREM 1
To prove Theorem 1, we first prove that when the coding

matrices are generated at random as described, for a partic-
ular subgraph H ∈ Ωk, with non-zero probability, the coding
matrices {Ce|e ∈ Gk} define a matrix CH (as defined later) such
that DHCH = 0 if and only if DH = 0. Then we prove that this
is also simultaneously true for all subgraphs H ∈ Ωk.

B.1 For a given subgraph H ∈ Ωk

Consider any subgraph H ∈ Ωk. For each edge e = (i, j) in
H, we “expand” the corresponding coding matrix Ce (of size
ρk × ze) to a (n− f − 1)ρk × ze matrix Be as follows: Be consists
n − f − 1 blocks, each block is a ρk × ze matrix:

• If i � n− f and j � n− f : the i-th and j-th block equal to
Ce and −Ce, respectively. The other blocks are all set to
0: Be

T =
(
0 · · · 0 Ce

T 0 · · · 0 −Ce
T 0 · · · 0

)
. Here ()T

denotes the transpose of a matrix or vector.
• If i = n − f : the j-th block equals to −Ce, and the other

blocks are all set to 0 matrix: Be
T =

(
0 · · · 0 −Ce

T 0 · · · 0
)
.

• If j = n − f : the i-th block equals to Ce, and the other
blocks are all set to 0 matrix: Be

T =
(
0 · · · 0 Ce

T 0 · · · 0
)
.

Let Di,β = Xi(β) − Xn− f (β) for i < n − f as the difference
between Xi and Xn−f in the β-th element. Recall that Di =

Xi−Xn−f =
(
Di,1 · · · Di,ρk

)
and DH =

(
D1 · · · Dn−f−1

)
. So

DH is a row vector of (n− f −1)ρk elements from GF(2L/ρk) that
captures the differences between Xi and Xn−f for all i < n − f .
It should be easy to see that (Xi − Xj)Ce = 0⇔ DHBe = 0. So
for edge e, steps 1-2 of Algorithm 1 have the effect of checking
whether or not DHBe = 0.

If we label the set of edges in H as e1, e2, · · · , and let m be
the sum of the capacities of all edges in H, then we construct
a (n − f − 1)ρk ×m matrix CH by concatenating all expanded
coding matrices: CH =

(
Be1 Be2 · · ·) , where each column

of CH represents one coded symbol sent in H over the corre-
sponding edge. Then steps 1-2 of Algorithm 1 for all edges in
H have the same effect as checking whether or not DHCH = 0.
So to prove Theorem 1, we need to show that there exists CH
such that DHCH = 0 ⇔ DH = 0.

It is obvious that if DH = 0, then DHCH = 0 for any CH. So
all left to show is that there exists CH such that DHCH = 0⇒
DH = 0. It is then sufficient to show that CH (probably with
columns permuted) contains a (n− f −1)ρk× (n− f −1)ρk sub-
matrix MH that is invertible, because when such an invertible
submatrix exist, DHCH = 0 ⇒ DHMH = 0 ⇒ DH = 0.

Now we describe how one such submatrix MH can be ob-
tained. Notice that each column of CH represents one coded
symbol sent on the corresponding edge. A (n− f −1)ρk × (n−
f − 1) submatrix S of CH is said to be a “spanning matrix”
of H if the edges corresponding to the columns of S form a
undirected spanning tree of H, the undirected representation

325

of H. In Figure 1(d), an undirected spanning tree of the undi-
rected graph in Figure 1(c) is shown in dotted edges. It is
worth pointing out that an undirected spanning tree in an
undirected graph H does not necessarily correspond to a di-
rected spanning tree in the corresponding directed graph H.
For example, the directed edges in Figure 1(b) corresponding
to the dotted undirected edges in Figure 1(d) do not form a
spanning tree in the directed graph in Figure 1(b).

It is known that in an undirected graph whose MINCUT
equals to U, at least U/2 undirected unit-capacity spanning
trees can be embedded [16]. This implies that CH contains a
set of Uk/2 spanning matrices such that no two spanning ma-
trices in the set covers the same column in CH . Let {S1, · · · ,Sρk }
be one set of ρk ≤ Uk/2 such spanning matrices of H. Then
union of these spanning matrices forms an (n − f − 1)ρk ×
(n − f − 1)ρk matrix MH =

(
S1 · · · Sρk

)
.MH is not neces-

sarily a submatrix of CH, but it is always a submatrix of a
column-permuted version CH.

Next, we will show that when the set of coding matrices
are generated as described in Theorem 1, with non-zero prob-
ability we obtain an invertible square matrix MH. When MH

is invertible, DHMH = 0 ⇔ DH = 0 ⇔ X1 = · · · = Xn−f .
For the following discussion, it is convenient to reorder the

elements of DH into D̃H =
(
D1,1 · · ·Dn− f−1,1 · · ·D1,ρk · · ·Dn− f−1,ρk

)
,

so that the (β−1)(n− f−1)+1-th through theβ(n− f−1) elements
of D̃H represent the difference between Xi (i = 1, · · · ,n− f −1)
and Xn−f in the β-th element.

We also reorder the rows of each spanning matrix Sq (q =
1, · · · , ρk) accordingly. It can be showed that after reordering,

Sq becomes S̃q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
AqSq,1
...

AqSq,ρk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Here Aq and Sq,p are all (n − f − 1) × (n − f − 1) square

matrices. Aq is called the adjacency matrix of the spanning
tree corresponding to Sq and is formed as follows. Suppose
that the r-th column of Sq corresponds to a coded symbol sent
over a directed edge (i, j) in H, then
1. If i � n − f and j � n − f , then the r-th column of Aq has
the i-th element as 1 and the j-th element as -1, the remaining
entries in that column are all 0;
2. If i = n − f , then the j-th element of the r-th column of Aq
is set to -1, the remaining elements of that column are all 0;
3. If j = n − f , then the i-th element of the r-th column of Aq
is set to 1, the remaining elements of that column are all 0.

For example, suppose H is the graph shown in Figure 1(c),
and Sq corresponds to a spanning tree of H consisting of
the dotted edges in Figure 1(d). Suppose that we index the
corresponding directed edges in the graph shown in Figure
1(b) in the following order: (1,2), (1,3), (4,3). The resulting

adjacency matrix Aq =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0
−1 0 0
0 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎠.

On the other hand, each square matrix Sq,p is a diagonal
matrix. The r-th diagonal element of Sq,p equals to the p-th
coefficient used to compute the coded symbol corresponding
to the r-th column of Sq . In the previous example, suppose the
second column of Sq corresponds to a coded packet aX1(1) +
bX1(2) being sent on link (1, 3). Then the second diagonal
elements of Sq,1 and Sq,2 are a and b, respectively.

After the reordering, MH can be written as M̃H that has the

following structure: M̃H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1S1,1 A2S2,1 · · · Aρk Cρk ,ρk
...

. . .
...

A1S1,ρk A2S2,ρk · · · Aρk Sρk ,ρk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Notice that M̃H is obtained by permuting the rows of MH. So
showing MH is invertible is equivalent to showing M̃H is
invertible.

Define Mq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1S1,1 · · · AqSq,1
...

. . .
...

A1S1,q · · · AqSq,q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ for 1 ≤ q ≤ ρk. Note

that Mq1 is a sub-matrix of Mq2 when q1 < q2, and Mρk = M̃H.
We prove the following lemma:

Lemma 1. For any ρk ≤ Uk/2, with probability at least(
1 − n− f−1

2L/ρk

)ρk , matrices M̃H and MH are invertible.
Proof. We now show that each Mq is invertible with prob-

ability at least
(
1 − n− f−1

2L/ρk

)q
for all q ≤ ρk. The proof is by

induction, with q = 1 being the base case.

Base Case: q = 1.
For q = 1, M1 = A1S1,1. As showed in Appendix C.3 of

[15], Aq is always invertible and det(Aq) = ±1. Since S1,1 is
a (n − f − 1)-by-(n − f − 1) diagonal matrix, it is invertible
provided that all its (n − f − 1) diagonal elements are non-
zero. Remember that the diagonal elements of S1,1 are chosen
uniformly and independently from GF(2L/ρk). The probability

that they are all non-zero is
(
1 − 1

2L/ρk

)n− f−1 ≥ 1 − n− f−1

2L/ρk
.

Induction Step: q < ρk to q + 1 ≤ ρk.

For this part, we rewrite Mq+1 =

(
Mq Pq
Fq Aq+1Sq+1,q+1

)
,where

Pq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Aq+1Sq+1,1

...
Aq+1Sq+1,q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ is an (n − f − 1)q-by-(n − f − 1) matrix, and

Fq =
(
A1S1,q+1 · · · AqSq,q+1

)
is an (n− f − 1)-by-(n− f − 1)q

matrix. Assuming that Mq is invertible, we transform Mq+1
into M′

q+1 as follows:

M′
q+1 =

(
I(n−f−1)q 0

0 A−1
q+1

) (
Mq Pq

Fq Aq+1Sq+1,q+1

) (
I(n−f−1)q −M−1

q Pq

0 I(n−f−1)

)

=

(
Mq 0

A−1
q+1Fq Sq+1,q+1 −A−1

q+1FqM−1
q Pq

)
.

Here I(n−f−1)q and I(n−f−1) each denote a (n− f −1)q× (n− f −1)q
and a (n − f − 1) × (n − f − 1) identity matrices. Note that
|det(M′

q+1)| = |det(Mq+1)|, since in the first equation above,
the matrix multiplied at the left has determinant ±1, and the
matrix multiplied at the right has determinant 1.

Observe that the diagonal elements of the (n − f − 1) ×
(n− f − 1) diagonal matrix Sq+1,q+1 are chosen independently
from Mq and A−1

q+1FqM−1
q Pq. It can be proved that Sq+1,q+1 −

A−1
q+1FqM−1

q Pq is invertible with probability at least 1 − n− f−1

2L/ρk

(see Appendix C.4 of [15]). According to the induction as-
sumption, Mq is invertible with probability at least

(
1 − n− f−1

2L/ρk

)q
.

So we have Pr{Mq+1 is invertible} ≥
(
1 − n− f−1

2L/ρk

)q+1
. This com-

pletes the induction. Now we can see that Mρk = M̃H is

invertible with probability ≥
(
1 − n− f−1

2L/ρk

)ρk ≥ 1 − (n− f−1)ρk

2L/ρk
→ 1,

as L→∞.

326

Now we have proved that there exists a set of coding ma-
trices {Ce|e ∈ Ek} such that the resulting CH satisfies the con-
dition that DHCH = 0 if and only if DH = 0.

B.2 For all subgraphs in Ωk

In this section, we are going to show that, for Gk, if the
coding matrices {Ce|e ∈ Ek} are generated as described in
Theorem 1, then with non-zero probability the set of square
matrices {MH|H ∈ Ωk} are all invertible simultaneously. When
this is true, there exists a set of coding matrices that is correct.
Note that the random coefficients are first chosen for all edges
in Gk, and then coefficients in graph H come from the corre-
sponding edges inGk. This implies that the coefficients in the
polynomials for different MH for different H are overlapping
sets.

According to Lemma 1, each MH (H ∈ Ωk) is not invert-
ible with probability at most (n− f−1)ρk

2L/ρk
. According to the union

bound, it follows that the probability that all matrices {MH |H ∈
Ωk} are simultaneously invertible with probability at least
1 − |Ωk| (n− f−1)ρk

2L/ρk
. According to the way Gk is constructed and

the definition of Ωk, it should not be hard to see that Gk is a
subgraph ofG1 = G, andΩk ⊆ Ω1. Notice that |Ω1| = (n

n− f

)
. So

|Ωk| ≤ (n
n− f

)
and all MH (H ∈ Ωk) are simultaneously invertible

with probability at least 1 − (n
n− f

) (n− f−1)ρk

2L/ρk
.

This result shown here implies that for sufficiently large
L, there exist a set of correct coding matrices {Ce|e ∈ Ek}. By
considering all subgraphs in Ωk, we essentially ensure that
equality check is performed between all pairs of fault-free
nodes in Gk: for any pair of fault-free nodes (i, j), there exists
an H ∈ Ωk consisting of only fault-free nodes that includes i
and j both; hence xi and xj will be checked for equality within
this H. Then Theorem 1 follows.

C. THROUGHPUT OF NAB
First consider the time cost of each operation in instance k

of NAB :
Phase 1: It takes L/γk ≤ L/γ∗ time units, since unreliable
broadcast from the source node 1 at rate γk is achievable and
γk ≥ γ∗, as discussed in Section 2.
Phase 2 – Equality check: As discussed previously, it takes
L/ρk ≤ L/ρ∗ time units.
Phase 2 – Broadcasting outcomes of equality check: To re-
liably broadcast the 1-bit flags from the equality check al-
gorithm, a previously proposed Byzantine broadcast algo-
rithm, such as [6], is used. The algorithm from [6], denoted
as Broadcast_Default hereafter, reliably broadcasts 1 bit by
communicating no more than P(n) bits in a complete graph,
where P(n) is a polynomial of n. In our setting, G might
not be complete. However, from each node i to each node j,
2 f +1 node-disjoint paths exists. In this case, since there are at
most f faulty nodes, reliable end-to-end communication from
node i to node j can be achieved by sending the same copy
of data along a set of 2 f + 1 node-disjoint paths and taking
the majority at node j. By doing this, we can emulate a com-
plete graph in an incomplete graphG. Then it can be showed
that, by running Broadcast_Default on top of the emulated
complete graph, reliably broadcasting the 1-bit flags can be
completed in O(nα) time units, for some constant α > 0.
Phase 3: If Phase 3 is performed in instance k, every node i
in Vk uses Broadcast_Default to reliably broadcast all the
messages that it claims to have received from other nodes,

Figure 2: Example of pipelining

and sent to the other nodes, during Phase 1 and 2 of the k-th
instance. Similar to the discussion above about broadcasting
the outcomes of equality check, it can be showed that the time
it takes to complete Phase 3 is O(Lnβ) for some constant β > 0.

Now consider a sequence of Q > 0 instances of NAB. As
discussed previously, Phase 3 will be performed at most f (f +
1) times throughout the execution of the algorithm. So we
have the following upper bound of the execution time of Q
instances of NAB: t(G, L,Q,NAB) ≤ Q

(
L
γ∗ +

L
ρ∗ +O(nα)

)
+ f (f+

1)O(Lnβ). Given that f < n, throughput of NAB can be lower
bounded by

T(G,L,NAB) = lim
Q→∞

LQ
t(G, L,Q,NAB)

≥ lim
Q→∞

LQ

Q
(

L
γ∗ +

L
ρ∗ +O(nα)

)
+ f (f + 1)O(Lnβ)

≥ lim
Q→∞

(
γ∗ + ρ∗

γ∗ρ∗
+

O(nα)
L
+

O(nβ+2)
Q

)−1

.

Note that for a given graphG, n, γ∗, ρ∗, α, β are all constants
independent of L and Q. So for sufficiently large values of
L and Q, the last two terms in the last inequality become
negligible compared to the first term, and the throughput of
NAB approaches to a value that is at least as large as γ∗ρ∗

γ∗+ρ∗ .

In the above discussion, we implicitly assumed that trans-
missions during the unreliable broadcast in Phase 1 are per-
formed all at the same time, by assuming no propagation
delay. However, when propagation delay is considered, a
node cannot forward a message/symbol until it finishes re-
ceiving it. So for the k-th instance of NAB, the information
broadcast by the source propagates only one hop every L/γk
time units. So for a large network, the “time span” of Phase
1 can be much larger than L/γk. This problem can be solved
by pipelining: We divide the time horizon into rounds of(

L
γ∗ +

L
ρ∗ +O(nα)

)
time units. For each instance of NAB, the

L-bit input from the source node 1 propagates one hop per
round, using the first L/γ∗ time units, until Phase 1 completes.
Then the remaining

(
L
ρ∗ +O(nα)

)
time units of the last round

is used to perform Phase 2, using all the links. An example
in which the broadcast in Phase 1 takes 3 hops is shown in
Figure 2. By pipelining, we achieve the lower bound from
Eq.1.

D. CONSTRUCTION OF Γ
A subgraph of G belonging to Γ is obtained as follows: We

will say that edges in W ⊂ E are “explainable” if there exists
a set F ⊂ V such that (i) F contains at most f nodes, and (ii)
each edge in W is incident on at least one node in F. Set F is
then said to “explain set W”.

Consider each explainable set of edges W ⊂ E. Suppose that

327

F1, · · · ,FΔ are all the subsets ofV that explain edge set W. A
subgraphΨW of G is obtained by removing edges in W from
E, and nodes in

⋂Δ
δ=1 Fδ fromV. 2 In general,ΨW above may

or may not contain the source node 1. Only those ΨW’s that
do contain node 1 belongs to Γ.

E. PROOF OF THEOREM 2
In arbitrary point-to-point network G(V,E), the capacity

of the BB problem with node 1 being the source and up to
f < n/3 faults satisfies the following upper bounds

E.1 CBB(G) ≤ γ∗

Proof. Consider any ΨW ∈ Γ and let W is the set of edges
in G but not inΨW . By the construction of Γ, there must be at
least one set F ⊂ V that explains W and does not contain
the source node 1. We are going to show that CBB(G) ≤
MINCUT(ΨW, 1, i) for every node i � 1 that is inΨW .

Notice that there must exist a set of nodes that explains
W and does not contain node 1; otherwise node 1 is not in
ΨW . Without loss of generality, assume that F1 is one such set
nodes.

First consider any node i � 1 in ΨW such that i � F1. For
f > 0, such a node i must exist since |F1| ≤ f andΨW contains
n − f nodes where n > 3 f . Let all the nodes in F1 be faulty
such that they refuse to communicate over edges in W, but
otherwise behave correctly. In this case, since the source is
fault-free, node i must be able to receive the L-bit input that
node 1 is trying to broadcast. So CBB(G) ≤MINCUT(ΨW, 1, i).

Next we consider a node i � 1 inΨW and i ∈ F1. Since F1 is
non-empty, such a node i exists. Notice that node i cannot be
contained in all sets of nodes that explain W, otherwise node
i cannot be inΨW . Then there are only two possibilities:
Case 1: There exist a set F explaining W that contains neither
node 1 nor node i. In this case, CBB(G) ≤ MINCUT(ΨW, 1, i)
according to the above argument by replacing F1 with F.
Case 2: any set F that explains W and does not contain node i
contains node 1. Let F2 be one such set containing node 1 but
not node i.

Define V− = V − F1 − F2. V− is not empty since F1 and F2
both contain at most f nodes and there are n ≥ 3 f +1 nodes in
V. Consider two scenarios with the same input value x: (1)
Nodes in F1 (which does not contain node 1) are faulty and
they behave as if links in W are broken, but otherwise behave
correctly; and (2) Nodes in F2 (contains node 1) are faulty and
they behave as if links in W are broken, but otherwise behave
correctly. In both cases, nodes in V− are fault-free.

Observe that among edges between nodes in V− and F1∪F2,
only edges between V− and F1∩F2 could have been removed,
because otherwise W cannot be explained by both F1 and F2.
So nodes in V− cannot distinguish between the two scenarios
above. In scenario (1), the source node 1 is not faulty. Hence
nodes in V− must agree with the value x that node 1 is trying
to broadcast, according to the validity condition. Since nodes
in V− cannot distinguish between the two scenarios, they
must also set their outputs to x in scenario (2), even though
in this case the source node 1 is faulty. Then according to the
agreement condition, node i must agree with nodes in V− in
scenario (2), which means that node i also have to learn x.
So CBB(G) ≤ MINCUT(ΨW, 1, i). Recall that γ∗ equals to the

2It is possible that ΨW for different W may be identical. This
does not affect the correctness of our algorithm.

minimum of MINCUT(ΨW, 1, i) over all ΨW ∈ Γ and i. This
completes the proof.

E.2 CBB(G) ≤ 2ρ∗

Proof. For a subgraph H ∈ Ω1 and the corresponding
H ∈ Ω1, denote UH = minnodes i, j in H MINCUT(H, i, j).We will
prove the upper bound by showing that CBB(G) ≤ UH for
every H ∈ Ω1.

Suppose on the contrary that Byzantine broadcast can be
done at a rate R > UH + ε for some constant ε > 0. So there
exists a BB algorithm, namedA, that can broadcast t(UH + ε)
bits in using t time units, for some t > 0.

Let E be a set of edges in H that corresponds to one of the
minimum-cuts in H. In other words,

∑
e∈E ze = UH , and the

nodes in H can be partitioned into two non-empty setsL and
R such thatL andR are disconnected from each other if edges
in E are removed. Also denote F as the set of nodes that are
in G but not in H. Notice that since H contains (n − f) nodes,
F contains f nodes.

Notice that in t time units, at most tUH < t(UH + ε) bits
of information can be sent over edges in E. According to
the pigeonhole principle, there must exist two different input
values of t(UH + ε) bits, denoted as u and v, such that in the
absence of misbehavior, broadcasting u and v with algorithm
A results in the same communication pattern over edges in
E.

First consider the case when F contains the source node 1.
Consider the three scenarios using algorithmA:

1. Node 1 broadcasts u, and none of the nodes misbehave.
So all nodes should set their outputs to u.

2. Node 1 broadcasts v, and none of the nodes misbehave.
So all nodes should set their outputs to v.

3. Nodes in F are faulty (includes the source node 1). The
faulty nodes in F behave to nodes in L as in scenario 1,
and behave to nodes in R as in scenario 2.

We show in [15] that nodes inL cannot distinguish scenario 1
from scenario 3, and nodes inR cannot distinguish scenario 2
from scenario 3. So in scenario 3, nodes inL set their outputs
to u and nodes in R set their outputs to v. This violates the
agreement condition and contradicts with the assumption
thatA solves BB at rate UH + ε. Hence CBB(G) ≤ UH.

Next consider the case when F does not contain the source
node 1. Without loss of generality, suppose that node 1 is in
L. Consider the following three scenarios:

1. Node 1 broadcasts u, and none of the nodes misbehave.
So all nodes should set their outputs to u.

2. Node 1 broadcasts v, and none of the nodes misbehave.
So all nodes should set their outputs to v.

3. Node 1 broadcasts u, and nodes in F are faulty. The
faulty nodes in F behave to nodes in L as in scenario 1,
and behave to nodes in R as in scenario 2.

In this case, we show in [15] that nodes in L cannot dis-
tinguish scenario 1 from scenario 3, and nodes in R can-
not distinguish scenario 2 from scenario 3. So in scenario 3,
nodes in L set their outputs to u and nodes in R set their
outputs to v. This violates the agreement condition and con-
tradicts with the assumption thatA solves BB at rate UH + ε.
Hence CBB(G) ≤ UH. Recall that ρ∗ equals to the minimum of
MINCUT(H, i, j) over all H ∈ Ω1 and (i, j). This completes the
proof.

328

