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Abstract 

Byzantine fault tolerance is important because it can be 
used to implement highly-available systems that tolerate ar- 
bitrary behaviorfrom faulty components. This paper presents 
a detailed performance evaluation of BFT, a state-machine 
replication algorithm that tolerates Byzantine faults in asyn- 
chronous systems. Our results contradict the common belief 
that Byzantine fault tolerance is too slow to be used in prac- 
tice - BFT performs well so that it can be used to iniple- 
nient real systems. We implemented a replicated NFS file 
system using BFT that performs 2% faster to 24% slower 
than production implementations of the NFS protocol that 
are not fault-tolerant. 

1. Introduction 
We are increasingly dependent on services provided by 

computer systems. We would like these systems to be highly- 
available: they should provide correct service without in- 
terruptions. There is an extensive body of research on repli- 
cation techniques to achieve high availability but most as- 
sume that nodes fail by stopping or by omitting some steps. 
We believe that these assumptions are not likely to hold in 
the future. For example, malicious attacks are increasingly 
common and can cause faulty nodes to behave arbitrarily. 

Byzantine fault tolerance techniques can be used to im- 
plement highly-available systems that tolerate arbitrary be- 
havior from faulty replicas. The problem is that it is widely 
believed that these techniques are too slow to be used in 
practice. This paper presents experimental results showing 
that it is possible to implement highly-available systems that 
tolerate Byzantine faults and perform well. 

We developed astute machine replication [ 141 algorithm, 
BFT, that tolerates Byzantine faults. BFT has been imple- 
mented as a generic program library with a simple interface 
and we used the library to implement the first Byzantine- 
fault-tolerant NFS file system, BFS. The algorithm, the li- 
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brary, and BFS were described elsewhere [3, 4, 21. This 
paper presents a performance evaluation of BET and BFS. 

BFT performs well mostly because it uses symmetric 
cryptography to authenticate messages. Public-key cryp- 
tography, which was the major bottleneck in previous sys- 
tems [12, 91, is used only to exchange the symmetric keys. 
Additionally, BFT incorporates several important optimiza- 
tions that reduce the size and number of messages used by 
the protocol. 

We present results of several micro-benchmarks that char- 
acterize the performance of the BFT library in a service- 
independent way, and evaluate the impact of each of the 
performance optimizations. Additionally, we present per- 
formance results for BFS on the modified Andrew bench- 
mark [ 1 11 and PostMark [8]. These results show that BFS 
performs 2% faster to 24% slower than production imple- 
mentations of the NFS protocol that are not replicated. 

There is little published work on the performance of By- 
zantine fault tolerance. There is an evaluation of the Ram- 
part toolkit [ 121, and performance studies of three services 
R [13], e-Vault [7], and COCA [15]. It is hard to perform 
a direct comparison between these systems and the BFT li- 
brary but it  is clear that our library is significantly faster. 
Some performance numbers reported in this paper appeared 
in [4] but we expand on their analysis. 

The rest of the paper is organized as follows. We start 
by describing the properties provided by the algorithm and 
its assumptions. Section 3 presents a brief overview of the 
algorithm and the performance optimizations. The perfor- 
mance evaluation is in Sections 4 and 5: they present micro- 
benchmark and file system benchmark results, respectively. 
Section 6 summarizes our results. 

2. Properties and Assumptions 
BFT can replicate any service that can be modeled as a 

deterministic state machine, i.e., the different replicas are 
required to produce the same sequence of results when they 
execute the same sequence of operations. Note that replicas 
do not need to run the same code [5].  

We make no assumptions about the network that con- 
nects replicas and clients except that we assume eventual 
time bounds on message delays for liveness. We use a Byzan- 
tine failure model, i.e., faulty nodes may behave arbitrarily. 
But we assume that an attacker is computationally bound so 
that (with very high probability) it is unable to subvert the 
cryptographic techniques we use in the algorithm. 
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BFT offers strong safety and liveness properties if less 
than 1/3 of the replicas are faulty and regardless of the 
number of faulty clients. BFT provides linearizability [6] 
without relying on any synchrony assumption, and it  guar- 
antees that correct clients receive replies to their requests 
if delays are bounded eventually. In particular, BFT can 
guarantee safety in the presence of denial of service attacks 
whereas previous state-machine replication systems [ 12, 91 
could not. 

BFT can recover replicas proactively [4]. This allows 
BFT to offer safety and liveness even if all replicas fail pro- 
vided less than 1/3 of the replicas become faulty within a 
window of vulnerability. To simplify the presentation, we 
assume that there are 3f + 1 replicas to enable the system 
to tolerate up to .f faults. 

There is little benefit in any form of replication if the 
replicas are likely to fail at the same time. We discuss tech- 
niques to fight this problem in [5, 21. 

3. Algorithm 
The algorithm is described in detail in [2]. Here, we pro- 

vide only a brief overview to help understand the perfor- 
mance evaluation. The basic idea is simple. Clients send 
requests to execute operations and all non-faulty replicas 
execute the same operations in the same order. Since repli- 
cas are deterministic and start in the same state, all non- 
faulty replicas send replies with identical results for each 
operation. The client chooses the result that appears in at 
least f + 1 replies. 

The hard problem is ensuring non-faulty replicas exe- 
cute the same requests in the same order. BFT uses a com- 
bination of primary-backup and quorum replication tech- 
niques to order requests. Replicas move through a succes- 
sion of numbered configurations called views. In a view, 
one replica is the primary and the others are backups. The 
primary picks the execution order by assigning a sequence 
number to each request. Since the primary may be faulty, 
the backups check the sequence numbers and trigger view 
changes to select a new primary when it appears that the 
current one has failed. 

Figure 1 shows the operation of the algorithm in the nor- 
mal case of no pritnary faults. In the figure, < m > p 7 )  

denotes a message m from i to j with a message authen- 
tication code (MAC), and < m >a, is a message with a 
vector of MACS with an entry for each replica other than 
i. The algorithm also uses a cryptographic hash function 
D. Currently, we use UMAC32 [ 11 to compute MACS and 
MD5 to compute digests. 

The figure illustrates an example where a client c sends 
a request m to (execute an operation o with a timestamp t 
to the primary for the current view II (replica 0). The pri- 
mary assigns a sequence number n to m and sends a pre- 
prepare message with the assignment to the backups. Each 
backup i accepls the assignment if it is in view v, and it 
has not assigned n to a different request in v. If i accepts 
the pre-prepare, i t  multicasts a prepare message to all other 
replicas signalling that it accepted the sequence number as- 
signment. Then, each replica collects messages until it has 

a pre-prepare and 2f matching prepare messages for se- 
quence number n,  view U ,  and request m. When the replica 
has these messages, we say that it prepared the request. The 
protocol guarantees that it is not possible for correct repli- 
cas to prepare distinct requests with the same view and se- 
quence number. 

The algorithm uses an additional phase to ensure this or- 
dering information is stored in a quorum to survive view 
changes. Each replica multicasts a commit message saying 
that it has prepared the request. Then each replica collects 
messages until i t  has 2f + 1 commit messages for v and 
n from different replicas (including itself). We say that the 
request is committed when the replica has these messages. 

Each replica executes operation o when m is commit- 
ted and the replica has executed all requests with sequence 
numbers less than n. Then, the replicas send replies with 
the operation result T to the client. The reply message in- 
cludes the current view number so that clients can track the 
current primary. 

3.1. Optimizations 
This section describes several optimizations that improve 

the performance during normal case operation while pre- 
serving the safety and liveness properties. 

With the digest replies optimization, a client request des- 
ignaltes a replica to send the result. This replica may be cho- 
sen randomly or using some other load balancing scheme. 
After the designated replica executes the request, it sends 
back a reply containing the result. The other replicas send 
back replies containing only the digest of the result. The 
client uses the digests to check the correctness of the result. 
If thl: client does not receive a correct result from the desig- 
nated replica, i t  retransmits the request (as usual) requesting 
all replicas to send replies with the result. 

The tentative execution optimization reduces the number 
of message delays for an operation invocation from five to 
four. Replicas execute requests tentatively as soon as: the 
request is prepared; their state reflects the execution of all 
requests with lower sequence number; and these requests 
have: committed. After executing the request, the replicas 
send tentative replies to the client. Since replies are tenta- 
tive, the client must wait for 2f + 1 replies with the same 
result. This ensures that the request is prepared by a quo- 
rum and, therefore, it is guaranteed to commit eventually at 
non-faulty replicas. 

11; is possible to take advantage of tentative execution 
to eliminate commit messages without increasing latency: 
they can be piggybacked in the next pre-prepare or prepare 
message sent by a replica. 

We also have a read-only optimization that reduces la- 
tency to a single round trip for operations that do not mod- 
ify the service state. A client multicasts a read-only request 
to all replicas. The replicas execute the request immediately 
after checking that it is properly authenticated, and that the 
request is in fact read-only. A replica sends back a reply 
only after all requests it executed before the read-only re- 
q u a t  have committed. The client waits for 2f + 1 replies 
with the same result. It may be unable to collect these if 
there are concurrent writes to data that affect the result. In 
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this case, it retransmits the request as a regular read-write 
request after its retransmission timer expires. The read-only 
optimization preserves linearizability provided clients ob- 
tain 2f + 1 matching replies for both read-only and read- 
write operations. 

Request batching reduces protocol overhead under load 
by starting a single instance of the protocol for a batch of re- 
quests. We use a sliding-window mechanism to bound the 
number of protocol instances that can run in parallel with- 
out increasing latency in an unloaded system. Let e be the 
sequence number of the last batch of requests executed by 
the primary and let p be the sequence number of the last pre- 
prepare sent by the primary. When the primary receives a 
request, it starts the protocol immediately unless p 2 e+ W ,  
where W is the window size. In the latter case, it queues 
the request. When requests execute, the window slides for- 
ward allowing queued requests to be processed. Then, the 
primary picks the first requests from the queue such that 
the sum of their sizes is below a constant bound; it assigns 
them a sequence number; and it  sends them in a single pre- 
prepare message. The protocol proceeds exactly as it did 
for a single request except that replicas execute the batch 
of requests (in the order in which they were added to the 
pre-prepare message) and they send back separate replies 
for each request. 

We modified the algorithm to use separate request trans- 
mission: requests whose size is greater than a threshold 
(currently 255 bytes) are not inlined in pre-prepare mes- 
sages. Instead, the clients multicast these requests to all 
replicas; replicas authenticate the requests in parallel; and 
they buffer those that are authentic. The primary selects a 
batch of requests to include in a pre-prepare message but it  
only includes their digests in the message. 

4. Micro-Benchmarks 
This section presents results of micro-benchmarks de- 

signed to characterize the performance of the BFT library 
in a service-independent way, and to evaluate the impact of 
each performance optimization. The experiments were per- 
formed using the setup in Section 4.1. Sections 4.2 and 4.3 
measure the latency and throughput of a simple replicated 
service using all the optimizations. The impact of the dif- 
ferent optimizations is studied in Section 4.4. See [2] for 
a more detailed performance evaluation and description of 
the experimental setup. 

4.1. Experimental Setup 
The experiments ran on Dell Precision 4 10 workstations 

with a single 600 MHz Pentium 111 processor, 5 12 MB of 
memory, and a Quantum Atlas 10K 18WLS disk. All ma- 
chines ran Linux 2.2.16-3 compiled without SMP support. 
The machines were connected by a 100 Mb/s switched Eth- 
ernet. The switch was an Extreme Networks Summit48 
V4.1. Replicas and clients ran on different machines and 
all experiments ran on an isolated network. 

The experiments compare the performance of two imple- 
mentations of a simple service: one implementation, BFT, 
is replicated using the BFT library and the other, NO-REP, 
is not replicated and uses UDP directly for communication 
between the clients and the server. The simple service is 
really the skeleton of a real service: i t  has no state and the 
service operations receive arguments from the clients and 
return (zero-filled) results but they perform no computation. 
We performed experiments with different argument and re- 
sult sizes for both read-only (RO) and read-write (RW) op- 
erations. It is important to note that this is a worst-case com- 
parison; in real services, computation or U0 at the clients 
and servers would reduce the slowdown introduced by the 
BFT library (as shown in Section 5). 

The results were obtained by timing a large number of 
invocations in at least three separate runs. We report the av- 
erage of the three runs. The standard deviation was always 
below 10% of the reported value. 

4.2. Latency 
We measured the latency to invoke an operation with 

four replicas when the service is accessed by a single client. 
Figure 2 shows the latency to invoke the replicated service 
as the size of the operation result increases while keeping 
the argument size fixed at 8 B. It has one graph with elapsed 
times and another with the slowdown of BFT relative to 
NO-REP. We also ran experiments with varying argument 
sizes (see Figure 3) and obtained very similar results. 

The library introduces a significant slowdown relative to 
NO-REP but the slowdown decreases quickly as the oper- 
ation argument or result sizes increase. In both cases, the 
slowdown decreases till an asymptote of 1.26 [2]. The two 
major sources of overhead are digest computation (of re- 
quests and replies) and the additional communication due 
to the replication protocol. The cost of MAC computation 
is negligible. 

The read-only optimization improves performance by eli- 
minating the time to prepare the requests, This time does 
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Figure 2. Latency with and without BFT. 

not change as the argument or result size increases. There- 
fore, the speed up afforded by the read-only optimization 
decreases to zero as the argument or result size increases, 

The experiments in Figure 2 ran in a configuration with 
four replicas, which can tolerate one fault. We believe this 
level of reliability will be sufficient for most applications 
but some may require more replicas. Figure 3 compares the 
latency to invoke the replicated service with four replicas 
(f = 1) and seven replicas (f = 2). In both configurations, 
all the replicas had a 600 MHz Pentium 111 processor and 
the client had a 700 MHz Pentium I11 processor. 

result size (bytes) 
o h d o O ' 6 0 0 0  Sdoo 

argument size (bytes) 

Figure 3. Latency with f = 2 and with f = 1. 

The results show that the slowdown caused by increasing 
the number of replicas to seven is low. The maximum slow- 
down is 30% for the read-write operation and 26% for the 
read-only operation. Furthermore, the slowdown decreases 
quickly as the argument or result size increases. 

4.3. Throughput 
This section reports the result of experiments to measure 

the throughput of BFT and NO-REP as a function of the 
number of clients accessing the simple service. The client 
processes were evenly distributed over 5 client machines'. 
There were four replicas. We measured throughput for op- 
erations with different argument and result sizes. Each op- 
eration type is denoted by d b ,  where a and b are the sizes 
of the argument and result in KB. 

Figure 4 shows throughput results for operations O/O, 0/4, 
and 4/0. The bottleneck in operation 010 is the server's CPU. 
BFT has lower throughput than NO-REP due to extra mes- 
sages and cryptographic operations that increase the CPU 
load. The read-only optimization improves throughput by 
eliminating the cost of preparing the batch of requests. The 

'Two client machines had 700 MHz Pllls but were otherwise identical 
to the other machines. 

throughput of the read-write operation improves as the num- 
ber of clients increases because the cost of preparing the 
batch of requests is amortized over the size of the batch. 
Throughput saturates because the batch size is limited by 
how many requests can be inlined in a pre-prepare message. 

BFT has better throughput than NO-REP for operation 
0/4. 'The bottleneck for NO-,REP is the link bandwidth that 
imposes an upper bound of 3000 operations per second. 
BFT achieves better throughput because of the digest-replies 
optimization: clients obtain the replies with the 4 KB result 
in parallel from different replicas. BFT achieves a maxi- 
mum throughput of 6625 operations per second (26MB/s) 
for the read-write operation and 8987 operations per second 
(35 MB/s) with the read-only optimization. The bottleneck 
for EIFT is the replicas' CPU. 

The bottleneck in operation 4/0 for both NO-REP and 
BFT is the time to get the requests through the network, 
which imposes a bound of 3000 operations per second. NO- 
REP achieves a maximum throughput of 2921 operations 
per second while BFT achieves I 1% less for read-write ope- 
rations and 2% less with the read-only optimization. There 
are no points with more than 15 clients for NO-REP because 
of lost request messages; NO-REP uses UDP directly and 
does not retransmit requests. 

4.4. Impact of Optimizations 
The experiments in the previous sections show perfor- 

mance with all the optimizations for both read-write and 
read-only operations. This section analyses the performance 
impaqt of the other optimizations. 

&..& .A .- A...& .... ..b. . ... RW NDR 
-*. RO NDR ,,.$;*"" 

. .  - RW 
-A- RO 

.*;,, 
:'.$ k 2000 . .I 

O i  20 i o  . 60 $0 IO0 
result size (bytes) number of clients 

Figure 5. Digest Replies Optimization 
Figure 5 compares the performance of BFT with and 

without the digest replies optimization. We called the ver- 
sion of BFT without the optimization BFT-NDR. The first 
graiph measures latency as the size of the operation result in- 
creases with the argument size fixed at 8 B, and the second 
shows the throughput results for operation 0/4. We chose 
these experiments because the impact of the digest replies 
optimization increases with the result size. 

The digest replies optimization reduces the latency to 
invoke operations with large results significantly. Further- 
more, this speedup increases linearly with the number of 
replicas. Additionally, BFT achieves a throughput up to 3 
times better than BFT-NDR. The bottleneck for BFT-NDR 
is the link bandwidth: it is limited to a maximum of at 
most 3000 operations per-second regardless of the number 
of replicas. The digest replies optimization enables band- 
width for sending replies to scale linearly with the number 
of replicas and it also reduces load on replicas' CPUs. 
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Figure 4. Throughput for operations O/O, 0/4 and 4/0. 
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Figure 6. Request Batching Optimization. 

Figure 6 compares throughput with and without request 
batching for read-write operation 0/0. The throughput with- 
out hatching grows with the number of clients because the 
algorithm can process many requests in parallel. But the 
replicas' CPUs saturate for a small number of clients be- 
cause processing each of these requests requires a full in- 
stance of the protocol. Our hatching mechanism reduces 
both CPU and network overhead under load without in- 
creasing the latency to process requests in an unloaded sys- 
tem. Previous state machine replication systems that tole- 
rate Byzantine faults [ IO, 91 have used batching techniques 
that impact latency significantly. 

h ; a 2000 ~ 0 0 0 1 - -  ~~~~ .d - 
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-+ SRT j 1000 ?' g1oOo ; 
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Figure 7. Separate Request Transmission. 
Figure 7 compares performance with and without the 

separate request transmission optimization. The first graph 
shows latency for varying argument sizes, and the second 
shows throughput for read-write operation 4/0. We labeled 
the version of BFT without the optimization BFT-NO-SRT. 
Separating request transmission reduces latency by up to 
40% because the request is sent only once and the primary 
and the backups compute the request's digest in parallel. 
The other benefit of separate request transmission is im- 
proved throughput for large requests because it  enables more 
requests per batch. 

The impact of the tentative execution optimization on 

throughput is insignificant. The optimization reduces la- 
tency by up to 27% with small argument and result sizes 
but its benefit decreases quickly when sizes increase. 

Piggybacking commits has a negligible impact on la- 
tency because the commit phase of the protocol is performed 
in the background (thanks to tentative execution of requests). 
It also has a small impact on throughput except when the 
number of concurrent clients accessing the service is small. 
For example, i t  improves the throughput of operation 0/0 
by 33% with 5 clients but only by 3% with 200 clients. 
The benefit decreases because hatching amortizes the cost 
of processing the commit messages over the batch size. This 
optimization is the only one that is not currently part of the 
BFT library; we only wrote code for the normal case. 

5. File System Benchmarks 
We compared the performance of BFS with two other 

implementations of NFS: NO-REP, which is identical to 
BFS except that it is not replicated, and NFS-STD, which 
is the NFS V2 implementation in Linux with Ext2fs at the 
server. The first comparison allows us to evaluate the over- 
head of the BFT library accurately within an implementa- 
tion of a real service. The second comparison shows that 
BFS is practical: it performs similarly to NFS-STD, which 
is used daily by many users but is not fault-tolerant. 

5.1. Experimental Setup 
The experiments to evaluate BFS used the setup descri- 

bed in Section 4.1. They ran two well-known file system 
benchmarks: Andrew [ 1 13 and PostMark [8]. There were no 
view changes or proactive recoveries in these experiments. 

The Andrew benchmark emulates a software develop- 
ment workload. We scaled up the benchmark by creating 
n copies of the source tree in the first two phases and ope- 
rating on all copies in the remaining phases [4]. We ran 
a version of Andrew with n equal to 100, Andrewl00, and 
another with n equal to 500, Andrew500. They generate ap- 
proximately 200 MB and 1 GB of data; Andrew100 fits in 
memory at both the client and the replicas but Andrew500 
does not. 

PostMark [8] models the load on Internet Service Provi- 
ders. We configured PostMark with an initial pool of 10000 
files with sizes between 5 12 bytes and 16 Kbytes. The 
benchmark ran 100000 transactions. 

For all benchmarks and NFS implementations, the actual 
benchmark code ran at the client workstation using the stan- 
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dard NFS client implementation in the Linux kernel with the 
same mount options. The most relevant of these options: 
UDP transport, 3 KB buffers, write-back client caching, and 
attribute caching. BFS and NO-REP do not to maintain the 
time-last-accessed attribute. We report the mean of at least 
three runs, of each benchmark and the standard deviation 
was always below 2% of the reported value. 

BFS's throughput is only 13% lower than NFS-STD's. The 
higher overhead is offset by an increase in the number of 
disk. accesses performed by NFS-STD in this workload. 

6. Conclusions 
Elyzantine-fault-tolerant replication can be used to build 

highly-available systems that can tolerate even malicious 
5.2. Experiments 

Figure 8 presents results for Andrew 100 and Andrew500 
in a configuration with four replicas and one client machine. 
The comparison between BFS and NO-REP shows that the 
overhead of Byzantine fault tolerance is low for this ser- 
vice - BFS takes only 14% more time to run Andrew100 
and 22% more time to run Andrew500. This slowdown is 
smaller than the one measured with the micro-benchmarks 
because the client spends a significant fraction of the elapsed 
time computing between operations, and operations at the 
server perform some computation. Additionally, there are a 
significant number of disk writes at the server in Andrew500. 

h h 2000 
8 300 U 
aJ 1500 

E - loo0 z z 
n 

v 

.g 200 .- 

p 100 
0)  

4 500 - 
n 0 

BFS NO-REP NFS-STD " BFS NO-REP NFS-STD 
Andrew100 Andrew500 

Figure 8. Modified Andrew. 

The comparison with NFS-STD shows that BFS can be 
used in practice - it takes only 15% longer to complete 
Andrew100 and 24% longer to complete AndrewSOO. The 
performance difference would be smaller if Linux imple- 
mented NFS correctly. For example, the results in [2 ]  show 
that BFS is 2% faster than the NFS implementation in Di- 
gital Unix, which implements the correct semantics. The 
implementation of NFS on Linux does not ensure stability 
of modified data and meta-data before replying to the client 
(as required by the NFS protocol), whereas BFS ensures 
stability through replication. 

" BFS NO-REP NFS-STD 

Figure 9. PostMark. 

The overhead of Byzantine fault tolerance is higher in 
PostMark: BFS's throughput is 47% lower than NO-REP'S. 
This is explained by a reduction on the computation time 
at the client relative to Andrew. What is interesting is that 

behavior from fauity replicas. But previous work on Byzan- 
tine fault tolerance has failed to produce solutions that per- 
form well. This paper presented a detailed performance 
evaluation of the BFT library, a replication toolkit to build 
syst,ems that tolerate Byzantine faults. Our results show that 
services implemented with the library perform well even 
when compared with unreplicated implementations that are 
not fault-tolerant. 
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