
Byzantine Fault Tolerance Can Be Fast

Miguel Castro Barbara Liskov
Microsoft Research Ltd.

1 Guildhall St., Cambridge CB2 3NH, UK
MIT Laboratory for Computer Science

545 Technology Sq., Cambridge, MA 02139, USA
mcastro@microsoft.com

Abstract

Byzantine fault tolerance is important because it can be
used to implement highly-available systems that tolerate ar-
bitrary behaviorfrom faulty components. This paper presents
a detailed performance evaluation of BFT, a state-machine
replication algorithm that tolerates Byzantine faults in asyn-
chronous systems. Our results contradict the common belief
that Byzantine fault tolerance is too slow to be used in prac-
tice - BFT performs well so that it can be used to iniple-
nient real systems. We implemented a replicated NFS file
system using BFT that performs 2% faster to 24% slower
than production implementations of the NFS protocol that
are not fault-tolerant.

1. Introduction
We are increasingly dependent on services provided by

computer systems. We would like these systems to be highly-
available: they should provide correct service without in-
terruptions. There is an extensive body of research on repli-
cation techniques to achieve high availability but most as-
sume that nodes fail by stopping or by omitting some steps.
We believe that these assumptions are not likely to hold in
the future. For example, malicious attacks are increasingly
common and can cause faulty nodes to behave arbitrarily.

Byzantine fault tolerance techniques can be used to im-
plement highly-available systems that tolerate arbitrary be-
havior from faulty replicas. The problem is that it is widely
believed that these techniques are too slow to be used in
practice. This paper presents experimental results showing
that it is possible to implement highly-available systems that
tolerate Byzantine faults and perform well.

We developed astute machine replication [141 algorithm,
BFT, that tolerates Byzantine faults. BFT has been imple-
mented as a generic program library with a simple interface
and we used the library to implement the first Byzantine-
fault-tolerant NFS file system, BFS. The algorithm, the li-

This research was supported by DARPA under contract F30602-98- 1-0237
monitored by the Air Force Research Laboratory. This paper describes
work done while the first author was at the MIT Laboratory for Computer
Science.

0-7695-1101-5/01 $10.00 0 2001 IEEE
513

liskov @Ics.mit.edu

brary, and BFS were described elsewhere [3, 4, 21. This
paper presents a performance evaluation of BET and BFS.

BFT performs well mostly because it uses symmetric
cryptography to authenticate messages. Public-key cryp-
tography, which was the major bottleneck in previous sys-
tems [12, 91, is used only to exchange the symmetric keys.
Additionally, BFT incorporates several important optimiza-
tions that reduce the size and number of messages used by
the protocol.

We present results of several micro-benchmarks that char-
acterize the performance of the BFT library in a service-
independent way, and evaluate the impact of each of the
performance optimizations. Additionally, we present per-
formance results for BFS on the modified Andrew bench-
mark [1 11 and PostMark [8]. These results show that BFS
performs 2% faster to 24% slower than production imple-
mentations of the NFS protocol that are not replicated.

There is little published work on the performance of By-
zantine fault tolerance. There is an evaluation of the Ram-
part toolkit [121, and performance studies of three services
R [13], e-Vault [7], and COCA [15]. It is hard to perform
a direct comparison between these systems and the BFT li-
brary but it is clear that our library is significantly faster.
Some performance numbers reported in this paper appeared
in [4] but we expand on their analysis.

The rest of the paper is organized as follows. We start
by describing the properties provided by the algorithm and
its assumptions. Section 3 presents a brief overview of the
algorithm and the performance optimizations. The perfor-
mance evaluation is in Sections 4 and 5: they present micro-
benchmark and file system benchmark results, respectively.
Section 6 summarizes our results.

2. Properties and Assumptions
BFT can replicate any service that can be modeled as a

deterministic state machine, i.e., the different replicas are
required to produce the same sequence of results when they
execute the same sequence of operations. Note that replicas
do not need to run the same code [5].

We make no assumptions about the network that con-
nects replicas and clients except that we assume eventual
time bounds on message delays for liveness. We use a Byzan-
tine failure model, i.e., faulty nodes may behave arbitrarily.
But we assume that an attacker is computationally bound so
that (with very high probability) it is unable to subvert the
cryptographic techniques we use in the algorithm.

mailto:mcastro@microsoft.com
mailto:Ics.mit.edu

BFT offers strong safety and liveness properties if less
than 1/3 of the replicas are faulty and regardless of the
number of faulty clients. BFT provides linearizability [6]
without relying on any synchrony assumption, and it guar-
antees that correct clients receive replies to their requests
if delays are bounded eventually. In particular, BFT can
guarantee safety in the presence of denial of service attacks
whereas previous state-machine replication systems [12, 91
could not.

BFT can recover replicas proactively [4]. This allows
BFT to offer safety and liveness even if all replicas fail pro-
vided less than 1/3 of the replicas become faulty within a
window of vulnerability. To simplify the presentation, we
assume that there are 3f + 1 replicas to enable the system
to tolerate up to .f faults.

There is little benefit in any form of replication if the
replicas are likely to fail at the same time. We discuss tech-
niques to fight this problem in [5, 21.

3. Algorithm
The algorithm is described in detail in [2]. Here, we pro-

vide only a brief overview to help understand the perfor-
mance evaluation. The basic idea is simple. Clients send
requests to execute operations and all non-faulty replicas
execute the same operations in the same order. Since repli-
cas are deterministic and start in the same state, all non-
faulty replicas send replies with identical results for each
operation. The client chooses the result that appears in at
least f + 1 replies.

The hard problem is ensuring non-faulty replicas exe-
cute the same requests in the same order. BFT uses a com-
bination of primary-backup and quorum replication tech-
niques to order requests. Replicas move through a succes-
sion of numbered configurations called views. In a view,
one replica is the primary and the others are backups. The
primary picks the execution order by assigning a sequence
number to each request. Since the primary may be faulty,
the backups check the sequence numbers and trigger view
changes to select a new primary when it appears that the
current one has failed.

Figure 1 shows the operation of the algorithm in the nor-
mal case of no pritnary faults. In the figure, < m > p 7)

denotes a message m from i to j with a message authen-
tication code (MAC), and < m >a, is a message with a
vector of MACS with an entry for each replica other than
i. The algorithm also uses a cryptographic hash function
D. Currently, we use UMAC32 [11 to compute MACS and
MD5 to compute digests.

The figure illustrates an example where a client c sends
a request m to (execute an operation o with a timestamp t
to the primary for the current view II (replica 0). The pri-
mary assigns a sequence number n to m and sends a pre-
prepare message with the assignment to the backups. Each
backup i accepls the assignment if it is in view v, and it
has not assigned n to a different request in v. If i accepts
the pre-prepare, i t multicasts a prepare message to all other
replicas signalling that it accepted the sequence number as-
signment. Then, each replica collects messages until it has

a pre-prepare and 2f matching prepare messages for se-
quence number n, view U , and request m. When the replica
has these messages, we say that it prepared the request. The
protocol guarantees that it is not possible for correct repli-
cas to prepare distinct requests with the same view and se-
quence number.

The algorithm uses an additional phase to ensure this or-
dering information is stored in a quorum to survive view
changes. Each replica multicasts a commit message saying
that it has prepared the request. Then each replica collects
messages until i t has 2f + 1 commit messages for v and
n from different replicas (including itself). We say that the
request is committed when the replica has these messages.

Each replica executes operation o when m is commit-
ted and the replica has executed all requests with sequence
numbers less than n. Then, the replicas send replies with
the operation result T to the client. The reply message in-
cludes the current view number so that clients can track the
current primary.

3.1. Optimizations
This section describes several optimizations that improve

the performance during normal case operation while pre-
serving the safety and liveness properties.

With the digest replies optimization, a client request des-
ignaltes a replica to send the result. This replica may be cho-
sen randomly or using some other load balancing scheme.
After the designated replica executes the request, it sends
back a reply containing the result. The other replicas send
back replies containing only the digest of the result. The
client uses the digests to check the correctness of the result.
If thl: client does not receive a correct result from the desig-
nated replica, i t retransmits the request (as usual) requesting
all replicas to send replies with the result.

The tentative execution optimization reduces the number
of message delays for an operation invocation from five to
four. Replicas execute requests tentatively as soon as: the
request is prepared; their state reflects the execution of all
requests with lower sequence number; and these requests
have: committed. After executing the request, the replicas
send tentative replies to the client. Since replies are tenta-
tive, the client must wait for 2f + 1 replies with the same
result. This ensures that the request is prepared by a quo-
rum and, therefore, it is guaranteed to commit eventually at
non-faulty replicas.

11; is possible to take advantage of tentative execution
to eliminate commit messages without increasing latency:
they can be piggybacked in the next pre-prepare or prepare
message sent by a replica.

We also have a read-only optimization that reduces la-
tency to a single round trip for operations that do not mod-
ify the service state. A client multicasts a read-only request
to all replicas. The replicas execute the request immediately
after checking that it is properly authenticated, and that the
request is in fact read-only. A replica sends back a reply
only after all requests it executed before the read-only re-
q u a t have committed. The client waits for 2f + 1 replies
with the same result. It may be unable to collect these if
there are concurrent writes to data that affect the result. In

5 14

this case, it retransmits the request as a regular read-write
request after its retransmission timer expires. The read-only
optimization preserves linearizability provided clients ob-
tain 2f + 1 matching replies for both read-only and read-
write operations.

Request batching reduces protocol overhead under load
by starting a single instance of the protocol for a batch of re-
quests. We use a sliding-window mechanism to bound the
number of protocol instances that can run in parallel with-
out increasing latency in an unloaded system. Let e be the
sequence number of the last batch of requests executed by
the primary and let p be the sequence number of the last pre-
prepare sent by the primary. When the primary receives a
request, it starts the protocol immediately unless p 2 e+ W ,
where W is the window size. In the latter case, it queues
the request. When requests execute, the window slides for-
ward allowing queued requests to be processed. Then, the
primary picks the first requests from the queue such that
the sum of their sizes is below a constant bound; it assigns
them a sequence number; and it sends them in a single pre-
prepare message. The protocol proceeds exactly as it did
for a single request except that replicas execute the batch
of requests (in the order in which they were added to the
pre-prepare message) and they send back separate replies
for each request.

We modified the algorithm to use separate request trans-
mission: requests whose size is greater than a threshold
(currently 255 bytes) are not inlined in pre-prepare mes-
sages. Instead, the clients multicast these requests to all
replicas; replicas authenticate the requests in parallel; and
they buffer those that are authentic. The primary selects a
batch of requests to include in a pre-prepare message but it
only includes their digests in the message.

4. Micro-Benchmarks
This section presents results of micro-benchmarks de-

signed to characterize the performance of the BFT library
in a service-independent way, and to evaluate the impact of
each performance optimization. The experiments were per-
formed using the setup in Section 4.1. Sections 4.2 and 4.3
measure the latency and throughput of a simple replicated
service using all the optimizations. The impact of the dif-
ferent optimizations is studied in Section 4.4. See [2] for
a more detailed performance evaluation and description of
the experimental setup.

4.1. Experimental Setup
The experiments ran on Dell Precision 4 10 workstations

with a single 600 MHz Pentium 111 processor, 5 12 MB of
memory, and a Quantum Atlas 10K 18WLS disk. All ma-
chines ran Linux 2.2.16-3 compiled without SMP support.
The machines were connected by a 100 Mb/s switched Eth-
ernet. The switch was an Extreme Networks Summit48
V4.1. Replicas and clients ran on different machines and
all experiments ran on an isolated network.

The experiments compare the performance of two imple-
mentations of a simple service: one implementation, BFT,
is replicated using the BFT library and the other, NO-REP,
is not replicated and uses UDP directly for communication
between the clients and the server. The simple service is
really the skeleton of a real service: i t has no state and the
service operations receive arguments from the clients and
return (zero-filled) results but they perform no computation.
We performed experiments with different argument and re-
sult sizes for both read-only (RO) and read-write (RW) op-
erations. It is important to note that this is a worst-case com-
parison; in real services, computation or U0 at the clients
and servers would reduce the slowdown introduced by the
BFT library (as shown in Section 5).

The results were obtained by timing a large number of
invocations in at least three separate runs. We report the av-
erage of the three runs. The standard deviation was always
below 10% of the reported value.

4.2. Latency
We measured the latency to invoke an operation with

four replicas when the service is accessed by a single client.
Figure 2 shows the latency to invoke the replicated service
as the size of the operation result increases while keeping
the argument size fixed at 8 B. It has one graph with elapsed
times and another with the slowdown of BFT relative to
NO-REP. We also ran experiments with varying argument
sizes (see Figure 3) and obtained very similar results.

The library introduces a significant slowdown relative to
NO-REP but the slowdown decreases quickly as the oper-
ation argument or result sizes increase. In both cases, the
slowdown decreases till an asymptote of 1.26 [2]. The two
major sources of overhead are digest computation (of re-
quests and replies) and the additional communication due
to the replication protocol. The cost of MAC computation
is negligible.

The read-only optimization improves performance by eli-
minating the time to prepare the requests, This time does

515

0
0 2000 4000 6000 8000 0 2000 4000 6000 8000

result size (bytes)

0

result size (bytes)

Figure 2. Latency with and without BFT.

not change as the argument or result size increases. There-
fore, the speed up afforded by the read-only optimization
decreases to zero as the argument or result size increases,

The experiments in Figure 2 ran in a configuration with
four replicas, which can tolerate one fault. We believe this
level of reliability will be sufficient for most applications
but some may require more replicas. Figure 3 compares the
latency to invoke the replicated service with four replicas
(f = 1) and seven replicas (f = 2). In both configurations,
all the replicas had a 600 MHz Pentium 111 processor and
the client had a 700 MHz Pentium I11 processor.

result size (bytes)
o h d o O ' 6 0 0 0 Sdoo

argument size (bytes)

Figure 3. Latency with f = 2 and with f = 1.

The results show that the slowdown caused by increasing
the number of replicas to seven is low. The maximum slow-
down is 30% for the read-write operation and 26% for the
read-only operation. Furthermore, the slowdown decreases
quickly as the argument or result size increases.

4.3. Throughput
This section reports the result of experiments to measure

the throughput of BFT and NO-REP as a function of the
number of clients accessing the simple service. The client
processes were evenly distributed over 5 client machines'.
There were four replicas. We measured throughput for op-
erations with different argument and result sizes. Each op-
eration type is denoted by d b , where a and b are the sizes
of the argument and result in KB.

Figure 4 shows throughput results for operations O/O, 0/4,
and 4/0. The bottleneck in operation 010 is the server's CPU.
BFT has lower throughput than NO-REP due to extra mes-
sages and cryptographic operations that increase the CPU
load. The read-only optimization improves throughput by
eliminating the cost of preparing the batch of requests. The

'Two client machines had 700 MHz Pllls but were otherwise identical
to the other machines.

throughput of the read-write operation improves as the num-
ber of clients increases because the cost of preparing the
batch of requests is amortized over the size of the batch.
Throughput saturates because the batch size is limited by
how many requests can be inlined in a pre-prepare message.

BFT has better throughput than NO-REP for operation
0/4. 'The bottleneck for NO-,REP is the link bandwidth that
imposes an upper bound of 3000 operations per second.
BFT achieves better throughput because of the digest-replies
optimization: clients obtain the replies with the 4 KB result
in parallel from different replicas. BFT achieves a maxi-
mum throughput of 6625 operations per second (26MB/s)
for the read-write operation and 8987 operations per second
(35 MB/s) with the read-only optimization. The bottleneck
for EIFT is the replicas' CPU.

The bottleneck in operation 4/0 for both NO-REP and
BFT is the time to get the requests through the network,
which imposes a bound of 3000 operations per second. NO-
REP achieves a maximum throughput of 2921 operations
per second while BFT achieves I 1% less for read-write ope-
rations and 2% less with the read-only optimization. There
are no points with more than 15 clients for NO-REP because
of lost request messages; NO-REP uses UDP directly and
does not retransmit requests.

4.4. Impact of Optimizations
The experiments in the previous sections show perfor-

mance with all the optimizations for both read-write and
read-only operations. This section analyses the performance
impaqt of the other optimizations.

&..& .A .- A...&b. RW NDR
-*. RO NDR ,,.$;*""

. . - RW
-A- RO

.*;,,
:'.$ k 2000 . .I

O i 20 i o . 60 $0 IO0
result size (bytes) number of clients

Figure 5. Digest Replies Optimization
Figure 5 compares the performance of BFT with and

without the digest replies optimization. We called the ver-
sion of BFT without the optimization BFT-NDR. The first
graiph measures latency as the size of the operation result in-
creases with the argument size fixed at 8 B, and the second
shows the throughput results for operation 0/4. We chose
these experiments because the impact of the digest replies
optimization increases with the result size.

The digest replies optimization reduces the latency to
invoke operations with large results significantly. Further-
more, this speedup increases linearly with the number of
replicas. Additionally, BFT achieves a throughput up to 3
times better than BFT-NDR. The bottleneck for BFT-NDR
is the link bandwidth: it is limited to a maximum of at
most 3000 operations per-second regardless of the number
of replicas. The digest replies optimization enables band-
width for sending replies to scale linearly with the number
of replicas and it also reduces load on replicas' CPUs.

516

0 20 40 60
0 1

0 50 100 150 200
number of clients number of clients number of clients

0 t
0 so 100 150 200

Figure 4. Throughput for operations O/O, 0/4 and 4/0.

0 i
0 10 20 30 40

number of clients

Figure 6. Request Batching Optimization.

Figure 6 compares throughput with and without request
batching for read-write operation 0/0. The throughput with-
out hatching grows with the number of clients because the
algorithm can process many requests in parallel. But the
replicas' CPUs saturate for a small number of clients be-
cause processing each of these requests requires a full in-
stance of the protocol. Our hatching mechanism reduces
both CPU and network overhead under load without in-
creasing the latency to process requests in an unloaded sys-
tem. Previous state machine replication systems that tole-
rate Byzantine faults [IO, 91 have used batching techniques
that impact latency significantly.

h ; a 2000 ~ 0 0 0 1 - - ~~~~ .d -
v *'
x 9' P * 1 - 8 - - -8 - ..*

0

-+ SRT j 1000 ?' g1oOo ;
?' s -* NO-SRT -

0
0 20 40 60

number of clients

0
0 2000 4000 6000 8OOO

argument size (bytes)

Figure 7. Separate Request Transmission.
Figure 7 compares performance with and without the

separate request transmission optimization. The first graph
shows latency for varying argument sizes, and the second
shows throughput for read-write operation 4/0. We labeled
the version of BFT without the optimization BFT-NO-SRT.
Separating request transmission reduces latency by up to
40% because the request is sent only once and the primary
and the backups compute the request's digest in parallel.
The other benefit of separate request transmission is im-
proved throughput for large requests because it enables more
requests per batch.

The impact of the tentative execution optimization on

throughput is insignificant. The optimization reduces la-
tency by up to 27% with small argument and result sizes
but its benefit decreases quickly when sizes increase.

Piggybacking commits has a negligible impact on la-
tency because the commit phase of the protocol is performed
in the background (thanks to tentative execution of requests).
It also has a small impact on throughput except when the
number of concurrent clients accessing the service is small.
For example, i t improves the throughput of operation 0/0
by 33% with 5 clients but only by 3% with 200 clients.
The benefit decreases because hatching amortizes the cost
of processing the commit messages over the batch size. This
optimization is the only one that is not currently part of the
BFT library; we only wrote code for the normal case.

5. File System Benchmarks
We compared the performance of BFS with two other

implementations of NFS: NO-REP, which is identical to
BFS except that it is not replicated, and NFS-STD, which
is the NFS V2 implementation in Linux with Ext2fs at the
server. The first comparison allows us to evaluate the over-
head of the BFT library accurately within an implementa-
tion of a real service. The second comparison shows that
BFS is practical: it performs similarly to NFS-STD, which
is used daily by many users but is not fault-tolerant.

5.1. Experimental Setup
The experiments to evaluate BFS used the setup descri-

bed in Section 4.1. They ran two well-known file system
benchmarks: Andrew [1 13 and PostMark [8]. There were no
view changes or proactive recoveries in these experiments.

The Andrew benchmark emulates a software develop-
ment workload. We scaled up the benchmark by creating
n copies of the source tree in the first two phases and ope-
rating on all copies in the remaining phases [4]. We ran
a version of Andrew with n equal to 100, Andrewl00, and
another with n equal to 500, Andrew500. They generate ap-
proximately 200 MB and 1 GB of data; Andrew100 fits in
memory at both the client and the replicas but Andrew500
does not.

PostMark [8] models the load on Internet Service Provi-
ders. We configured PostMark with an initial pool of 10000
files with sizes between 5 12 bytes and 16 Kbytes. The
benchmark ran 100000 transactions.

For all benchmarks and NFS implementations, the actual
benchmark code ran at the client workstation using the stan-

517

dard NFS client implementation in the Linux kernel with the
same mount options. The most relevant of these options:
UDP transport, 3 KB buffers, write-back client caching, and
attribute caching. BFS and NO-REP do not to maintain the
time-last-accessed attribute. We report the mean of at least
three runs, of each benchmark and the standard deviation
was always below 2% of the reported value.

BFS's throughput is only 13% lower than NFS-STD's. The
higher overhead is offset by an increase in the number of
disk. accesses performed by NFS-STD in this workload.

6. Conclusions
Elyzantine-fault-tolerant replication can be used to build

highly-available systems that can tolerate even malicious
5.2. Experiments

Figure 8 presents results for Andrew 100 and Andrew500
in a configuration with four replicas and one client machine.
The comparison between BFS and NO-REP shows that the
overhead of Byzantine fault tolerance is low for this ser-
vice - BFS takes only 14% more time to run Andrew100
and 22% more time to run Andrew500. This slowdown is
smaller than the one measured with the micro-benchmarks
because the client spends a significant fraction of the elapsed
time computing between operations, and operations at the
server perform some computation. Additionally, there are a
significant number of disk writes at the server in Andrew500.

h h 2000
8 300 U
aJ 1500

E - loo0 z z
n

v

.g 200 .-

p 100
0)

4 500 -
n 0

BFS NO-REP NFS-STD " BFS NO-REP NFS-STD
Andrew100 Andrew500

Figure 8. Modified Andrew.

The comparison with NFS-STD shows that BFS can be
used in practice - it takes only 15% longer to complete
Andrew100 and 24% longer to complete AndrewSOO. The
performance difference would be smaller if Linux imple-
mented NFS correctly. For example, the results in [2] show
that BFS is 2% faster than the NFS implementation in Di-
gital Unix, which implements the correct semantics. The
implementation of NFS on Linux does not ensure stability
of modified data and meta-data before replying to the client
(as required by the NFS protocol), whereas BFS ensures
stability through replication.

" BFS NO-REP NFS-STD

Figure 9. PostMark.

The overhead of Byzantine fault tolerance is higher in
PostMark: BFS's throughput is 47% lower than NO-REP'S.
This is explained by a reduction on the computation time
at the client relative to Andrew. What is interesting is that

behavior from fauity replicas. But previous work on Byzan-
tine fault tolerance has failed to produce solutions that per-
form well. This paper presented a detailed performance
evaluation of the BFT library, a replication toolkit to build
syst,ems that tolerate Byzantine faults. Our results show that
services implemented with the library perform well even
when compared with unreplicated implementations that are
not fault-tolerant.

Acknowledgements

We thank the anonymous reviewers and Lorenzo Alvisi for
their comments on drafts of this paper.

References

[I] J . Black et al. UMAC: Fast and Secure Message Authentication. In
Advnnces in Cryprolog? - CRYPTO, 1999.

[2] M. Castro. Practical Byzantine Fault Tolerance. Technical Report
TR-8 17, PhD thesis. MIT Lab. for Computer Science. 2001.

[3] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In
USENIX Symposium on Opercrting Sjsterns Design and Irnplenienm-
rion, 1999.

[4] M. Castro and B. Liskov. Proactive Recovery in a Byzantine-Fault-
Tolerant System. In USENIX Synposium on Operating Sjstenis De-
s ign rind It~r~~lenierrtntion, 2000.

[5] M. Castro, R . Rodrigues. and B. Liskov. Using Abstraction to Jm-
prove Fault Tolerance. Submitted for publication, 2001.

[6] M. Herlihy and J. Wing. Axioms for Concurrent Objects. In ACM
Synrposirrm on Principles (if Prognr~zriiirrg Lnngurrges, 1987.

[7] A. lyengar et al. Design and Implementation of a Secure Distributed
Data Repository. In I N P lriterntrtiorrul Infirmtition Secrrriv Confer-
ence, 1998.

[8] I. Katcher. PostMark: A New File System Benhmark. Technical
Report TR-3022, Network Appliance, 1997.

[9] K. Kihlstrom, L. Moser, and P. Melliar-Smith. The SecureRing Pro-
tocols for Securing Group Communication. In Hrrwuii Imernntionrrl
Conference on Sjstem Sciences, 1998.

[IO] D. Malkhi and M. Reiter. A high-throughput secure reliable multicast
protocol. In Cornputer Security Fourrdutiorrs Workshop. 1996.

[I I] I . Ousterhout. Why Aren't Operating Systems Getting Faster as Fast
:1s Hardware? In USENlX Summer Conference, 1990.

[I21 !M. Reiter. The Rampart toolkit for building high-integrity services.
'Theory rind Pructice in Distributed Systetns (LNCS 9381, 1995.

[I31 IW. Reiter et al. The R Key Management Service. In ACM Confer-
m c e on Computer trnd Conrmrinictrtio~is Securiry. 1996.

[141 1' Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Conrpuring Surveys, 22(4), 1990.

[151 I,. Zhou, F. Schneider, and R. Renesse. COCA: A Secure Distributed
On-line Certification Authority. Technical Report TR 2000- 1828,
C . S . Department, Cornell University, 2000.

5 18

