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Abstract—Recent years have witnessed a slew of coding tech-
niques custom designed for networked storage systems. Network
coding inspired regenerating codes are the most prolifically
studied among these new age storage centric codes. A lot of effort
has been invested in understanding the fundamental achievable
trade-offs of storage and bandwidth usage to maintain redun-
dancy in presence of different models of failures, showcasing
the efficacy of regenerating codes with respect to traditional
erasure coding techniques. For practical usability in openand
adversarial environments, as is typical in peer-to-peer systems,
we need however not only resilience against erasures, but also
from (adversarial) errors. In this paper, we study the resilience of
generalized regenerating codes (supporting multi-repairs, using
collaboration among newcomers) in the presence of two classes
of Byzantine nodes, relatively benign selfish (non-cooperating)
nodes, as well as under more active, malicious polluting nodes.
We give upper bounds on the resilience capacity of regenerating
codes, and show that the advantages of collaborative repaircan
turn to be detrimental in the presence of Byzantine nodes. We
further exhibit that system mechanisms can be combined with
regenerating codes to mitigate the effect of rogue nodes.

Keywords: distributed storage, regenerating codes, Byzan-
tine faults, pollution, resilience

I. I NTRODUCTION

Redundancy is essential for reliably storing data. This
basic principle has been adhered in designing diverse storage
solutions such as CDs and DVDs, RAID systems as well
as, more recently - networked distributed storage systems.
Such redundancy may be achieved by replicating the data, or
applying coding based techniques. Coding based techniques
incur much less storage overhead with respect to replication
based technique in order to achieve equivalent resilience (fault-
tolerance). Thus, coding based redundancy is often preferred
for efficiently storing large amount of data.

In networked storage systems, which may be as diverse as
peer-to-peer (P2P) storage systems or data centers, redundant
data is distributed across multiple storage devices. When some
of these devices become unavailable - be it due to failure
or (permanent) churn, redundancy needs to be replenished,
otherwise, over time, the system will lose the stored data. If
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replication based redundancy is used, a new replica is created
by copying data from existing replica(s). When using coding
based techniques, each storage node typically possesses a
small (w.r.to the size of the original data being stored) amount
of the data, that we will call anencoded block. Since the
data can be recovered by contacting a fraction of the storage
nodes, redundancy can be replenished in the same way: first
reconstruct the whole data, re-encode it, and re-distribute the
encoded blocks.

This is the case when using traditionalerasure codes(EC)
such as Reed-Solomon codes [19]. In order to replenish lost
redundancy, data equivalent in volume to the complete object
needs to be transferred (or stored at one node a priori), in
order to recreate even a single encoded block. To improve on
such a naive approach, network coding based coding [6] was
proposed to recreate one new encoded block by transferring
much less data, upto possibly equivalent volume of data to
only as is to be recreated. This new family of codes is called
regenerating codes[21] - and the strategy may be applied
on the original data itself, or on top of erasure encoding.
Two different types of works have emerged on regenerating
codes: those which establish the theoretical feasibility of such
bandwidth efficient redundancy replenishment through min-cut
bounds (such as [21], or [20] for more general bounds), and
those which instead try to provide various coding strategies to
do so in practice.

The current regeneration code related literature mostly (but
for [3] and [18] that we will discuss later on) assumes a
friendly environment, where all live nodes are well behaved. In
open environments, particularly P2P environments, one should
make such an assumption at his own peril.

We note that erasure codes such as Reed-Solomon codes
are resilient against not only ‘erasures’ but are also capable
of dealing with ‘errors’. In contrast, while regenerating codes
inherit the advantages of network coding such as bandwidth
efficiency, they also likewise suffer from the same vulnerabil-
ities of network coding. One of the most critical issues which
intrinsically affect network coding is the family of pollution
attacks. The idea behind network coding is to allow any inter-
mediate node in the network to forward linear combinations
of its incoming packets to its neighbors, which when done
cleverly and diligently, results in throughput gain. However,
it also means that one bogus packet can corrupt several other
packets downstream, and thus spread over and contaminate a
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large portion of the network. Such attacks are not possible in
a classical routing scenario.

The same problem of pollution attack can be directly
translated in the context of coding for distributed storagebased
on network coding, in particular in the case of regenerating
codes. In this paper, we study if and how well regenerating
codes may tolerate Byzantine nodes. We identify the cardinal
Byzantine attacks possible during the regeneration process.
Specifically, we look at the following families of Byzantine
nodes:

• Selfish (non-cooperating) nodes: Nodes may not actively
attack the network, however they may prioritize their own
interests, and might just decline to cooperate during the
regeneration process, that is, refuse to provide the data
that is requested from them to carry out regeneration.
In absence of the contribution from such selfish or
non-cooperating nodes, a regeneration protocol designed
assuming their contribution will fail to carry out the
regeneration task anymore.

• Polluters: Nodes may try to disrupt the regeneration
process actively, by deliberately sending wrong data.
Such active attack is particularly detrimental while using
regenerating codes, since it would affect future regenera-
tion processes where a victim participates and continues
to further spread the pollution unconsciously and unin-
tentionally.

The main contributions of this work are as follows. (i) We
determine bounds on the resilience capacity of regenerating
codes, taking into account the above mentioned adversarial
behaviors. (ii) Our analysis reveals that though collaboration
in regeneration can be beneficial in terms of bandwidth and
storage costs, the penalty in presence of Byzantine nodes is
also substantially larger. There is a blowback effect, in that,
collaboration may not only be useless under Byzantine attacks,
but can in fact be detrimental, such that one would be better
off by avoiding collaboration. (iii) Finally, we outline how
this effect can also be easily mitigated in practice using some
additional information and extrinsic mechanisms.

II. REGENERATING CODES IN A NUTSHELL

Consider an object of sizeB to be stored in a network with
n storage nodes, a sourceS which has adequate bandwidth
to upload data over the network to these nodes, and a data
collectorDC which should be able to retrieve a given stored
object by accessing data from any arbitrary choice ofk out
of the n nodes. Thus to say, such a storage network stores
the object redundantly, and can tolerate up ton − k failures
without affecting the object’s availability. For instance, erasure
codes may be used to encode the object and achieve such
redundancy.

Over time, some of the storage nodes may go offline (or
crash), and if the redundancy is not restored then the system’s
fault tolerance will reduce, leading to, in the worst case,
eventual loss of the stored object. Thus, mechanisms are
needed to repair or regenerate the lost redundancy. Naive
solutions include keeping a full copy of the object somewhere,

which can be used to recreate the lost data at any node.
Alternatively, if no such full copy is available, then one
can download adequate, i.e.,k encoded data blocks, and use
these to regenerate the lost encoded data blocks. These naive
solutions are sub-optimal in terms of efficient use of storage
space and bandwidth for regeneration respectively, and have in
the recent years prompted the exploration of better solutions
- such as (chronologically) Pyramid codes [10], Regenerating
codes [21], Hierarchical codes [7] and Self-repairing codes
[16] to name some of the most prominent ones. We next
summarize some key results related to regenerating codes,
since this paper studies their Byzantine fault tolerance.

Suppose that each node has a storage capacity ofα, i.e.,
the size of the encoded data block stored at a node is of the
sizeα. When one data block needs to be regenerated, a new
node contactsd (k ≤ d) other existing nodes, and downloadsβ
amount of data from each of the contacted nodes (referred to as
the bandwidth capacity of the connections between any node
pair)1. By considering an information flow from the source
to the data collector, a trade-off between the nodes’ storage
capacity and bandwidth can be computed [21], through a min-
cut bound.

Proposition 1: [21] A min-cut bound of an information
flow between the source and a data collector is

mincut(S,DC) ≥

k−1
∑

i=0

min{α, (d− i)β}.

Note that such a min-cut bound determines achievability -
without necessarily stating any specific way to actually do
so. Furthermore, it is required that

k−1
∑

i=0

min{α, (d− i)β} ≥ B

for regeneration to be possible. Two sub-families of regener-
ating codes have consequently emerged [22] - coined asfunc-
tional, respectivelyexact, to provide actual coding strategies.
Functional repair strategies rely on random network coding
arguments, and while they regenerate lost redundancy, the
data stored by new nodes is not ‘bit-by-bit’ identical to the
encoded block that previously existed: it is enough that it
allows the retrieval of the stored data. In contrast, exact repair
leads to regeneration of bit-by-bit identical encoded block as
was lost. Exact regeneration is preferable since it translates to
simplicity in system design and management. A more detailed
comparison between exact and functional repair can be found
in [8].

The original bound reported in Proposition 1 was derived
assuming that only one encoded data block for a single
node is being regenerated. However, this is not a realistic
assumption to build practical networked storage systems. In
highly dynamic scenarios, which is typical in peer-to-peer
environments, but also may happen in more static (data-center

1Note that, in contrast to conventional techniques which download the
whole encoded data block, only a smallerβ/α fraction of data from each
contacted node is being transferred.



like) environments due to correlated failures, it may be nec-
essary to regenerate data for multiple nodes. Naive strategies
would include regenerations sequentially, or in parallel,but
independently of each other.

In [11], the above framework has been extended for multiple
new nodes to carry out regeneration by not only downloading
data from (old) live nodes, but also by additionally collabo-
rating among each other under some specific settings. A more
generalized result is provided in [20] (and also, independently
in [12]).

The regeneration process is carried out in two phases,
a download phase during which a batch oft newcomers
download data from anyd live nodes each, and a collaborative
phase, where each newcomer shares some of its data to help
the t − 1 other new nodes. Such a two phase regeneration
involving collaboration among new nodes can lead to reduction
in the overall bandwidth usage for the regenerations.

Under such a setting, a more general min-cut bound is
derived. In the following,β′ represents the bandwidth during
the collaborative phase, i.e., each new node sends (and also
receives)β′ data to (from) each other new node. Consider that
the data collector contactsk nodes for reconstructing the data,
such that the contacted nodes can be arranged ing groups of
sizesui whereu0 + . . .+ ug−1 = k, where each such group
represents a generation oft nodes which had joined the system
together and carried out the regeneration collaboratively.

Proposition 2: [12], [20] A min-cut bound of an informa-
tion flow between the source and a data collector is

mincut(S,DC) ≥

g−1
∑

i=0

uimin{α, (d−

i−1
∑

j=0

uj)β + (t− ui)β
′}

wherek =
∑g−1

i=0 ui with 1 ≤ ui ≤ t,
and as above, we need

g−1
∑

i=0

uimin{α, (d−

i−1
∑

j=0

uj)β + (t− ui)β
′} ≥ B

for regeneration to be possible. Whent = 1, we get thatui =
1, thus g = k and the more general bound matches the one
given in Proposition 1.

As pointed out in [12], two extreme cases can be identified.
First, if there is no contribution inβ′, then the highest
contribution comes fromβ, that isui = t and g = k/t, and
the min-cut bound becomes

mincut(S,DC) ≥

k/t−1
∑

i=0

tmin{α, (d− it)β}. (1)

Conversely, the highest contribution fromβ′ comes whenβ
is minimized, which occurs whenui = 1 for all i andg = k.
Then the min-cut bound simplifies to

mincut(S,DC) ≥

k−1
∑

i=0

min{α, (d− i)β + (t− 1)β′}. (2)

The minimum possible amount of data that can be stored at
a node isB/k, since the data collector must be able to retrieve

the object out of anyk nodes. Codes using the lowest amount
of storageα = B/k are said to satisfy theminimum storage
regeneration (MSR) point, and using (1) and (2) are shown to
be characterized by [12]

α =
B

k
, β = β′ =

B

k

1

d− k + t
(3)

while codes requiring the minimum bandwidth for regenera-
tion similarly satisfy

α =
B

k

2d+ t− 1

2d− k + t
(4)

and
β =

B

k

2

2d− k + t
, β′ =

B

k

1

2d− k + t
, (5)

a point called theminimum bandwidth regeneration (MBR)
point.
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Fig. 1. The storage bandwidth (per repair) trade-off curve using regenerating
codes with collaboration fort = 1, 4, 8. This plot (and all others plots in this
paper) has been generated using linear non-convex optimization numerically.
The values have been normalized byB/k.

The benefit of collaborative regenerating codes with respect
to standard regenerating codes (that is, with no collaboration
phase) is illustrated in Fig. 1, where we setd = 48 andk =
32. Trade-off curves between the storage costα on they-axis
against the bandwidth cost per repair on thex-axis, determined
in (6) and denoted asγ are shown for different scenarios.
For collaborative regenerating codes, the total bandwidthfor
one node to be repaired is the data downloaded from live
nodes, that isβ from d nodes, and the data exchanged among
newcomer nodes during collaboration, which isβ′ from t− 1
nodes, for a total of

γ = dβ + (t− 1)β′. (6)

If no collaboration is done, thent = 1 and γ = dβ.
The trade-off curve fort = 1 in Fig. 1 thus corresponds
to standard (independent) regenerations. Larger value oft,
implying multiple repairs being carried out collaboratively,
allows the storage system to operate using both lower storage
and bandwidth costs.



Though several works discussed min-cut bounds for collab-
orative regeneration codes, we are aware of only one family
of collaborative regenerating codes [20], which provides exact
repair for d = k at MSR point. It is noted in [12] that for
d = k, the repair cost is the same as for erasure correcting
codes using delayed repair.

III. B YZANTINE FAULTS MODEL

The regeneration process can be dramatically affected if
some of the live nodes behave in a Byzantine manner, that is,
act in a manner different than as expected by the regeneration
process. So far, and to the best of our knowledge, [18] is
the only work looking at security issues related to regen-
erating codes. Besides considering a passive adversary who
eavesdrops, it also looks at malicious behaviors affectingdata
integrity at nodes during the regeneration process, but allthe
considered scenarios assume a single regeneration at a time,
rather than the more general problem of multiple simultaneous
regenerations. This naturally excludes the complicationsaris-
ing due to the collaboration phase, where a single Byzantine
node can potentially contaminate all the other regenerating
nodes simultaneously.

In this paper, we consider two types of Byzantine adver-
saries. A relatively benign form of faulty behavior is when a
live node does not provide any data for the regeneration pro-
cess. We will refer to such Byzantine nodes asselfish nodes.
Note that we distinguish a selfish node from an unavailable
(offline) node in that a selfish node is expected to continue
to respond to a data collector trying to recreate the object.
If a node refuses to help for both regeneration and also data
access, then it can be treated analogously as any other offline
node. Such a selfish behavior may arise due to various reasons:
the node may be overloaded with other tasks, or there may
be temporary problems in the communication link - so that
the node can not respond in a timely manner to meaningfully
contribute to the regeneration process. No such time-bounded
response is assumed for data reconstruction by a data collector.
Alternatively, a node participating in a peer-to-peer back-up
system may be comfortable with responding to data access
requests which are relatively infrequent, and hence less taxing
on its bandwidth resources, than regeneration process which
could be frequent due to system churn, prompting the node to
act selfishly for the regeneration process.

A more malign faulty behavior is when wrong data is
sent by a node. Such a behavior even by a single node, if
unchecked, may corrupt many nodes downstream. We will
refer to such nodes aspolluting nodes. Rapid propagation
of pollution is an inherent and general weakness of network
coding, on which rely regenerating codes, making the system
extremely vulnerable in the presence of even one or very few
polluting nodes.

We note that, for collaborative regeneration, the Byzantine
nodes may be among the originally online nodes when the
regeneration process is initiated; or among the newly joining
nodes, i.e., during the collaboration phase; or a mix of both.
Clearly, the amount of data that can be stored reliably and

needs to be transferred during regeneration will change under
these adversarial constraints, and in particular, so will the
trade-off between the storageα and the bandwidthβ, β′ as
described by the min-cut bounds in Propositions 1 & 2.

In the spirit of [18], we consider the resiliency capacity
of the distributed storage system as the maximum amount
of data that can be stored reliably over the network in the
presence of malign nodes, and made available to a legitimate
data collector. More precisely, we will focus on the resiliency
capacityCr,s(α, β, β

′) in the presence of selfish nodes, and
Cr,p(α, β, β

′) when polluting nodes are active.

IV. M IN-CUT BOUNDS UNDERBYZANTINE FAILURES

We will analyze how the storage bandwidth trade-off given
in Proposition 2 is affected in presence of the various Byzan-
tine nodes. We study the general case of regenerating codes,
which studies multiple simultaneous regenerations, and with
collaboration among the new nodes.

We determine upper-bounds, which means that it is not
possible to do any better than the constraints of the correspond-
ing bounds. Note that this is in contrast to the Propositions
1 & 2, which determined achievability, though both bounds
are derived through min-cut computations. Since we derive
upper bounds here, we can make simplifying (optimistic)
assumptions, implying that, under more realistic assumptions
and complicated derivations, it may be possible to determine
tighter bounds.
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Fig. 2. An abstract information flow graph model for the coordinated
regeneration process.

For determining a min-cut, we consider an information
flow graph and use the same abstraction as in [12], which is
illustrated in Fig. 2. Each new storage node is modeled using
three logical nodes in an information flow graph connecting
the source to the data collector, namelyxin, xcoord andxout.
It is assumed thatt such new nodes carry out the regeneration
in a collaborative manner.xin represents the aggregation of
information by a new node fromd of the existing live nodes,
collecting β data from each such contacted live nodes. In
the next (collaborative) phase, each new node provides (and



also obtains)β′ data from each of the other new nodes. This
collected data is then processed at individual nodes, and finally
they retain (store)α amount of data each. Thus to each node
corresponds a triplexin → xcoord → xout where both edges
xin → xcoord andxcoord → xout have a capacity ofα. We will
later (in Example 1, Section V) elaborate a concrete example
of multiple regenerations with coordination.

A. Effect of selfish nodes

In the following we assume that the number of selfish nodes
among the live (old) nodes is given byL0 in any generation,
and li ≤ lmax is the number of selfish nodes among theith
group of new comers, for some upper boundlmax. The total
number of selfish nodes participating in the collaborative phase
of regeneration overg generations isL =

∑g−1
i=0 li.

Proposition 3: The resiliency capacityCr,s(α, β, β
′) in the

presence of selfish nodes is upper bounded by

Cr,s(α, β, β
′) ≤

∑g−1
i=0 uimin{α, (d− L0 −

∑i−1
j=0 uj)β + (t− li − ui)β

′}.

Proof: Consider a cut of the network, between the set
U which contains the sourceS, and its complementary set̄U
which contains the data collectorDC. The information flow
goes from the source to the data collector, throughxin →
xcoord → xout, where both edges are assumed to have capacity
α. Let u0 be the number of new comers contacted by the data
collector in the first group oft new comers, withm of them
in U , andu0 −m of the others inŪ . Take a first node, if it
belongs toU , then it contributes toα (if either xcoord ∈ U or
xcoord ∈ Ū ) to the cut, thus them nodes inU contribute to a
total of mα to the cut.

Consider now theu0 − m nodes in Ū . There are two
contributions to the cut, coming from eitherxin or xcoord.
The xin part downloads from live nodes, of which, there are
L0 selfish nodes. In an adversarial scenario, the firstL0 nodes
contacted may all be selfish, and as a result, the contribution
to the cut would be(d−L0)β. Now for xcoord, it contactst−1
other new comers,u0 −m could already be in̄U (including
itself), and l0 could be selfish, thus the cut is increased of
(t− (u0 −m)− l0)β

′, for a total of

c0(m) ≥ mα+ (u0 −m)[(d− L0)β +

(t− u0 +m− l0)β
′]

≥ u0min{α, (d− L0)β + (t− l0 − u1)β
′}

by a concavity argument: since we have a function concave
in m, it takes values always greater than in its minima which
are on the domain boundary, namely inm = 0 (for which we
haveu0[(d − L0)β + (t − l0 − u1)β

′]) and inm = u0 (for
which we haveu0α). Thus the function is always greater than
in the value it takes at the smallest of its minima.

Analogously, for the second groupu1, taking into account
thatxin might contact among the live nodes those who joined

in the first group ofu0 nodes, we get

c1(m) ≥ mα+ (u1 −m)[(d− L0 − u0)β +

(t− u1 +m− l1)β
′]

≥ u1 min{α, (d− L0 − u0)β + (t− l1 − u1)β
′}.

By iteration and by summing over all the groupsu0, . . . , ug−1

such thatu0 + . . .+ ug−1 = k we get

g−1
∑

i=0

uimin{α, (d− L0 −
i−1
∑

j=0

uj)β + (t− li − ui)β
′}. (7)

As explained in Section II, one of the two extremes in
the storage-bandwidth trade-off is the minimum storage re-
generation (MSR) point, which corresponds to the minimum
amount of storage that is needed at each node to support data
reconstruction by data collector by contactingk nodes. The
minimum storage point continues to beα = B/k under our
selfishness model.

Since Proposition IV-A is true for all possible values ofui,
it also holds particularly whenui = t − li for all i. Such a
choice ofuis eliminates theβ′ component from the min-cut
equation, allowing us to bound the value ofβ at the MSR
point as follows.

Recall that
∑g−1

i=0 ui = k, hence,gt − L = k, so when
ui = t− li we have

g =
k + L

t
.

For data reconstruction, we needB ≤ Cr,s(α, β, β
′), hence

B ≤

k+L

t
−1

∑

i=0

(t− li)min{α, (d− L0 −
i−1
∑

j=0

(t− lj))β},

whereα = B/k. Note that the expression on the right hand

side is less than or equal toBk
∑

k+L

t
−1

i=0 (t − li), which is
however equal toB (the same as the expression on the left
hand side).

Thus, for everyi

(d− L0 −

i−1
∑

j=0

(t− lj))β ≥ B/k.

Indeed, we know that having all themin terms equal toB/k
gives B, thus it cannot be that one of the terms is strictly
smaller thanB/k. The expression on the left hand side is the
smallest wheni = k+L

t − 1, which in turn means

(d− L0 −

k+L

t
−2

∑

j=0

(t− lj))β ≥ B/k.

Consequently, the smallest feasible value forβ (which in turn
leads to the smallest usage of bandwidth for regeneration) is

B/k

(d− L0)− k + (t− l(k+L)/t−1)
. (8)



This suggests that the bandwidth needed for download from
the live nodes only depends on the last phase of regeneration,
whered−L0 and insteadd where contacted, and likewise, only
(t − l(k+L)/t−1) nodes instead oft − 1 actually participated
in the collaborative phase. We can thus conclude that

B/k

(d− L0)− k + t
≤ β ≤

B/k

(d− L0)− k + (t− lmax)
. (9)

We will like to specifically emphasize that the above bounds
onβ are not to be confused with the range of valuesβ can take
on the trade-off curve. Instead, what this result implies isthat,
even for the minimum storage point, the minimum feasibleβ
can be anywhere within this range, and depends on the precise
number of selfish nodes involved in the collaborative phase,
as noted in (8).

To computeβ′, we consider the other extreme regime, where
ui = 1 for all i, and thusg = k (recall that we still have
α = B/k). Then

B ≤
k−1
∑

i=0

min{B/k, (d− L0 − i)β + (t− li − 1)β′}.

Similarly as the computations done forβ, since

min{B/k, (d− L0 − i)β + (t− li − 1)β′} ≤ B/k

we have that
k−1
∑

i=0

min{B/k, (d− L0 − i)β + (t− li − 1)β′} ≤ B,

and thus equality holds:

k−1
∑

i=0

min{B/k, (d− L0 − i)β + (t− li − 1)β′} = B.

We observe that this is a sum ofk terms, so if any of themin
terms were smaller thanB/k, there would be a contradiction.
Thus, it must be that(d−L0− i)β+(t− li−1)β′ ≥ B/k for
all i = 0, ..., k − 1. The smallest feasibleβ′ then corresponds
to i = k − 1, and we obtain that

(d− L0 − (k − 1))β + (t− lk−1 − 1))β′ = B/k. (10)

This simplifies to

β′ =
B/k − (d− L0 − (k − 1))β

t− lk−1 − 1
.

Using (9), we determine that

(B/k)(t− lmax − 1)

(d− L0 − k + t− lmax)(t− 1)
≤ β′ (11)

and

β′ ≤
(B/k)(t− 1)

(d− L0 − k + t)(t− lmax − 1)
. (12)

With suitable choices of parametersL0, l
max, the results

from Proposition 1 on standard (independent) regenerations
and Proposition 2 corresponding to collaborative regeneration
can be deduced (not surprisingly) from the results of our
generalization.

• If lmax = 0, then there is no selfish node in the
collaborative phase, onlyL0 live nodes might be selfish,
and thus the bounds described in (9) and (11)-(12) give

α =
B

k
, β = β′ =

B

k

1

d− L0 − k + t
.

Note that this is analogous to using less (i.e.,d − L0

instead of d) nodes from among the live nodes for
regeneration, and the specific result from Proposition 2
can be obtained by furthermore settingL0 = 0.

• If lmax takes its maximum value, that islmax = t −
1, that would imply that there is no collaboration. The
upper bound in (9) is then satisfied only corresponding
to t = 1, giving β = B/k

(d−L0)−k+1 which is analogous
to the result from Proposition 1 for standard independent
regeneration whenL0 = 0. Also, lmax = t − 1 implies
that the coefficient ofβ′ in (10) is zero, and hence there
is no information from the collaborative flows, and thus
there is no practical meaning in discussing aboutβ′.

These extreme cases are essentially a sanity check of our
generalization, and the drawn conclusions are on expected
lines. Similar conclusions can also be drawn about the other
extreme point (minimum bandwidth regeneration) in the trade-
off curve. Unlike the extreme points however, the intermediate
points in the trade-off curve are not as amenable to closed
form analysis, and comprise of an interesting regime, which
we study using numerical optimization and discuss later in
Section IV-C.

B. Effect of polluting nodes

We now consider a worse case where the nodes are not
selfish anymore, but are maliciously sending wrong data. We
assume that there areB0 polluting nodes among the live nodes
in any generation of regeneration, whilebi ≤ bmax is the
number of polluting nodes among theith group of newcomers,
with B =

∑g−1
i=0 bi.

Proposition 4: The resiliency capacityCr,p(α, β, β
′) in the

presence of polluting nodes is upper bounded by

Cr,p(α, β, β
′) ≤

∑g
i=0 uimin{α, (d− 2B0 −

∑i−1
j=0 uj)β + (t− 2bi − ui)β

′}.

Proof: Let u0 be the number of new comers contacted
by the data collector in the first group oft comers, withm of
them inU , andu0 − m of the others inŪ . As in the proof
above for selfish nodes, the contribution to the bound ismα.

We now look at theu0 − m nodes inŪ . There are two
contributions to the cut, coming from eitherxin or xcoord. Take
the first node. Thexin part downloads from live nodes. Among
these live nodes, there could beB0 polluting nodes. It thus
gets a system of linear equations2 from the d nodes, solving
which would provide the unknown pieces of the encoded
blocks. In the standard regeneration scenario, the unknowns
correspond to the different pieces stored in the node itself. In
the collaborative regeneration scenario, the unknowns include

2Since all the network coding results used rely on linear network coding,
we use an argument valid in this setting.
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Fig. 3. Storage-bandwidth tradeoff curves (normalized with B/k) using collaborative regenerating codes under Byzantine (selfish and pollution, respectively)
attacks, determined by consideringg = 32 generations or regenerations wheret new nodes join and collaborate in each generation.

a subset of its own pieces, and additional information which
allows it to collaborate and help other nodes regenerate.

There might or might not be wrong equations, depending
on whether any of the live Byzantine nodes are contacted,
but to be able to detect them, a naive, brute-force technique
will be to solve all possible valid combinations (determined
by the number of unknowns) of the subsets of equations, and
choose the solution which concurs in majority of these com-
binations. Independently of even if more elegant mechanisms
are employed, in order to actually figure out which equations
are valid, it requiresB0 good equations to compensate for
the B0 potentially wrong ones. This is a more fundamental
limit in Byzantine settings [14]. Having said that, we will like
to note that if some extrinsic information is available, better
Byzantine fault tolerance may be achievable, which we will
briefly discuss later in Section VI. However, the rest of this
section continues the analysis under the assumption that no
other extrinsic (side-channel) information is available.

Thus among thed nodes contacted, those which will provide
actual information to recover the lost data contribute to the cut
by only (d − 2B0)β. Now for xcoord, it contactst − 1 other
new comers (together with the edgexin → xcoord), u0 − m
could already be in̄U , and b0 could be bad, thus using the
same argument as forB0, the contribution to the cut is(t −
(u0 −m)− 2b0)β

′, for a total of

c0(m) ≥ mα+ (u0 −m)[(d− 2B0)β +

(t− u0 +m− 2b0)β
′]

≥ u0min{α, (d− 2B0)β + (t− 2b0 − u1)β
′}.

Likewise, for the second groupu1, we get

c1(m) ≥ mα+ (u1 −m)[(d− 2B0 − u0)β +

(t− u1 +m− 2b2)β
′]

≥ u1 min{α, (d− 2B0 − u0)β + (t− 2b2 − u1)β
′}.

By iterating and by summing over all the groupsu0, . . . , ug−1

such thatu0 + . . .+ ug−1 = k we get

g
∑

i=0

uimin{α, (d− 2B0 −

i−1
∑

j=0

uj)β + (t− 2bi − ui)β
′}.

C. Interpretation of the analysis

We are interested in understanding the effects of both selfish
and polluting nodes on the storage-bandwidth storage trade-
off curve. To do so, we numerically minimize the bandwidth
under the respective min-cut constraints, and report some of
our results in Fig 3 corresponding tod = 48, k = 32, t = 4,
g = 32 and compare how the trade-off curves for different
adversarial scenarios behave with respect to both collaborative
and standard regenerating codes.

In Fig. 3 (a), selfish nodes are introduced in the network.
We fix their maximum number among the live nodes to be
only L0 = 1, and similarly lmax = 1 bounds the number
of selfish nodes during collaboration. We consider two cases:
whenL = 16, that is all together 16 selfish nodes interfered
during collaboration, andL = 32, that is one selfish node
was present at each stage of the regeneration process. The
optimization was performed by letting the parametersβ, β′

range through a range of values limited by the MSR and MBR
points. Derivation for the MSR points were provided above,
analogous formulas can be derived for the MBR points. We
observe in Fig.3(a) that when only half of theg groups had
selfish nodes (L = 16), the performance gets close to standard
regenerating codes for a middle range of repair cost values,
while it is even worse forL = 32. For the later, the trade-off
curve is worse, as expected, since not only the collaboration
phase is not contributing, but there is furthermore one selfish
node in the live nodes themselves.

In Fig. 3(b), the same setting is repeated, this time with
polluting nodes. We see that even a small number of pollutant



nodes in a collaborative regeneration group, or among the live
nodes leads to drastic deterioration of what can be achieved
using collaborative regeneration - casting some doubt on the
efficacy of regenerating codes. In practice, some additional
extrinsic mechanisms can alleviate the situation, which wewill
briefly mention in Section VI.

It is important to note that the plot for pollution attacks
corresponds to the case where polluting nodes actually an-
swer correctly to the request of a data collector, meaning in
particular that the minimum storage point is stillα = B/k. If
it were not the case, namely, the polluting nodes could give
wrong data to the data collector, then the minimum storage
point would shift toα = B/(k − 2B0). Further analysis is
needed to comprehend the impact of the same, which we defer
for future investigation.

V. EXACT COLLABORATIVE REGENERATINGCODES

Currently, [20] is, up to our knowledge, the only example of
explicit codes for exact regeneration with collaboration,which
works specifically for only the minimum storage regeneration
point. We will first recall the construction, before considering
it in the context of Byzantine adversaries. Note that in presence
of Byzantine nodes, the number of nodes to be accessed might
be different than what is used if there are no Byzantine nodes,
for example as noted above, the minimum storage point is
shifted fromB/k to B/(k− 2B0) whereB0 is the number of
Byzantine nodes that might send wrong information during
data collection. Thus in what follows, we will retaink to
denote the number of nodes that the data collector accesses to
retrieve the data stored, whileκ is used as the dimension of
the codes used, such as for Reed-Solomon codes.

Consider the(n, κ) Reed-Solomon code which is defined
over the finite fieldFq with q ≥ n a power of a prime. Suppose
that the objecto to be stored inn nodes can be written as
oT = (o11, . . . ,o1κ, . . . ,ot1, . . . ,otκ) with oij in either Fq

or any finite field extension ofFq. Note that this means that
the object is cut into a number of pieces which depends on
the numbert of (predetermined, expected) failures,3 with k <
n− t. Furthermore, [20] considers only the regimek = d.

The generator matrixG of the Reed-Solomon code is a
κ×n Vandermonde matrix whose columns are denoted bygi,
i = 1, . . . , n. Every node is assumed to knowG. Now create
a matrixO as follows:

O =





o11 . . . o1κ

ot1 . . . , otκ



 .

The ith node storesOgi wheregi denotes theith column of
G, for example, node 1 stores

Og1.

3While such an assumption is somewhat restrictive, and design of more
adaptive codes constitute an interesting future directionof research, we note
that such codes can nevertheless be practically used eitherby over-estimating
the number of faults (though this may not be optimal anymore), and also when
failures are corrected lazily by deliberately postponing the repair process till
a predetermined number of faults are accumulated.

The t rows represent what we will call thet piecesthat the
corresponding node stores. That is, theencoded data block
stored by each node comprises ofmultiple pieces. We will
use the size of such a piece to define one unit of data.

Any choice ofκ nodesi1, . . . , iκ clearly allows to retrieve
o since we get

O[gi1 , . . . ,giκ ]

where the matrix formed by anyκ columns of G is a
Vandermonde matrix and is thus invertible.

Let us now assume thatt nodes go offline, andt new nodes
join. Let us call thet new nodes as nodes 1 tot. The ith
newcomer will ask(oi1, . . . ,oiκ)gj for any choice ofκ nodes
among the live nodes.

Each newcomer can invert the matrix formed by the
columns ofG, and each decode(oi1, . . . ,oiκ) respectively.
Thus it can compute the piece corresponding to its own first
row, and also can compute(oi1, . . . ,oiκ)gj and send it to
the jth node, which all will do similar computations and
likewise deliver the missing pieces to the other newcomers,
hence completing the collaborative regeneration process.

Example 1:Consider the(n, κ) = (7, 3) Reed-Solomon
code which is defined over the finite fieldF8 =
{0, 1, w, w2, w3, w4, w5, w6, w7} with w3 = w + 1. Suppose
that the objecto is to be stored inn = 7 nodes, while
expecting to deal witht = 2 failures. First, represent the object
asoT = (o11,o12,o13,o21,o22,o23) with oij in eitherF8 or
any finite field extension ofF8, sayFq. The generator matrix
G of the Reed-Solomon code is given by:
[

1 1 1 1 1 1 1

w w2 1 +w w + w2 1 +w + w2 1 + w2 1

w2 w +w2 1 + w2 w 1 + w 1 + w +w2 1

]

.

Now create a matrixO as follows:

O =

[

o11 o12 o13

o21 o22, o23

]

.

The ith node storesOgi wheregi denotes theith column of
G, for example, node 1 stores

O





1
w
w2



 =

[

o11 + o12w + o13w
2.

o21 + o22w + o23w
2

]

.

Thus each encoded data block comprises of two pieces of
size one unit each in this example, and the original object is
of size six units, and each encoded block is of size two units.

Any choice ofk = κ = 3 nodesi1, i2, i3 clearly allows to
retrieveo since we get

O[gi1 ,gi2 ,gi3 ]

where the matrix formed by any 3 columns ofG is a
Vandermonde matrix and is thus invertible.

Let us now assume that 2 nodes go offline, and 2 new nodes
join. Let us call the two new nodes as node 1 and node 2.
The first new comer will ask(o11,o12,o13)gi for any choice
of 3 nodes among the 5 live nodes, while the second new



cost l0 = L0 = 0 l0 = 1,L0 = 0 l0 = 0,L0 = 1

β 1/2 1 βav=3/4
β′ 1/2 0 1/2
γ 2 3 2

TABLE I
SELFISH NODES: α = 1, t = 2, d = 3

cost b0 = B0 = 0 b0 = 1,B0 = 0 b0 = 0,B0 = 1

β 1/2 1 1/2
β′ 1/2 0 1/2
γ 2 3 3 (d = 5)

TABLE II
POLLUTING NODES: α = 1, t = 2, d = 3

comer will similarly ask(o21,o22,o23)gi from any of the 5
live nodes.

Both new comers can invert the matrix formed by the
columns ofG, and decode each respectively(o11,o12,o13)
and (o21,o22,o23). Now the first node can compute the
piece corresponding its own first row, and also can compute
(o11,o12,o13)g2 and send it to the second node, which
likewise can compute(o21,o22,o23)g1 and send it to node
1, which completes the regeneration process.

Thus, overall, eight units of data transfer is needed in this
example, in order to replenish four units of lost data. Note
that if one node did regeneration of two pieces using six data
transfer, it could send the other node the other two pieces
directly, needing again a total of eight units of data transfer.
As mentioned previously in Section II, whend = k as is the
case for this code construction, the repair cost is the same as
that of erasure codes, though with a better load balancing, as
seen in this example.

We use the above toy example to illustrate the effect of
selfish/polluting nodes. We consider two scenarios with selfish
nodes: (i) Consider that one of the two newcomer nodes
does not agree to collaborate with the other. In this case,
the other node has no choice than to download more data
from the live nodes. Given that each node contactsd = 3
live nodes, this means downloading 2 encoded pieces from
each of the 3 nodes, for a total of 6 pieces. The cost of one
repair is thenγ = 3. Note that all the bandwidth costs in
this example are normalized withB/k = 2. Note also that,
in a general scenario, during the collaborative regeneration
process, different nodes may face different number of self-
ish nodes, affecting accordingly the necessary bandwidth for
regenerations. (ii) Consider now that both newcomer nodes
collaborate, but there isL0 = 1 selfish node among the live
nodes. In the worst case, both newcomers try two well behaved
lives nodes and the same non-responding node. It might or
not be easy for these newcomers to contact other nodes that
are willing to help with the download. So if the newcomers
decide to keep on downloading more from only the already
responding nodes, we get that they each need to download at
least 1 piece of data from one responding live node, and 2
pieces from the other responding live node, for an average of
βav = (1 + 1/2)/2 = 3/4 download bandwidth, after which
collaboration can proceed as normal. The bandwidth costs are
summarized in Table I. It can be seen that in this caseL0 is
not harmful for total bandwidth cost per repair, though it does
imbalance the network load.

Let us now consider the case of polluting nodes, where
we first assume that the polluting nodes do not interfere with
data collection. (i) If one of the two collaborating nodes is
polluting, then the other node has no choice but to retrieve

the whole object from the live nodes, and no collaboration
is possible. In this particular toy example, this gives the same
end result as with one selfish collaborating node, since in both
cases reconstructing the object is needed. (ii) IfB0 = 1, in
the worst case, both collaborating nodes get 1 fake encoded
piece of data, and 2 genuine ones. Now to check which data,
if any, is corrupted, 2 more genuine encoded fragments are
needed. However, since the nodes do not know which of the
live nodes might have gone rogue, they are forced to contact
the remaining two more nodes. This inflates the numberd = 3
to d = 5, the maximum amount of available live nodes here.
These results are summarized in Table II.

Finally, in the worst case, the polluting nodes can also send
wrong information to the data collector. Since the stored data
at the live nodes is encoded using Reed-Solomon code in this
example, it is resistant to errors, as long as the number of
errors is not more than twice the maximal number of tolerated
erasures. However, this also means that either the number of
contacted nodes is increased, or for a fixedk, the amount of
data stored in each node has to be increased.

In this example, since we have 5 live nodes, only one
polluting node sending wrong information to the data collector
can be tolerated. More generally, a(n, κ) Reed-Solomon code
is known to toleratens = n− κ erasures, ornb = (n− κ)/2
errors, or more generallyns erasures andnb errors as long as
ns + 2nb ≤ n− κ.

VI. PRACTICAL CONSIDERATIONS

In practice, the number of Byzantine nodes is not known a
priori. While selfish nodes are trivially dealt with, pollutants
can not be detected a priori, and hence are difficult to deal
with. Thus, regenerating nodes may try to first regenerate
with responses from the minimal number of nodes, assuming
(possibly, wrongly) that there are no pollutants. If there are
however pollutants, then the regenerated block will be different
from what ought to have been regenerated. For exact regener-
ation, a globally known hash function, and prior, secure and
globally accessible look-up table with the hashes (signature)
for the encoded fragments of an object can be used, to verify
with low communication overhead whether the regenerated
block is correct or not. If integrity violation is detected,then
progressively more nodes data may be downloaded, possibly
by contacting more nodes. Such an extrinsic information can
alleviate the effect of Byzantine nodes. As soon as the node
has enough good information to regenerate, it can be easily
verified, thus, there is no need to waste one bit of good
information just to negate each wrong bit. For the example
in Section V, with the use of such extra information, if there
is one pollutant among the live nodes, the regenerations could
be carried out by contacting at most four of the live nodes,



and one can also tolerate upto two Byzantine nodes - both
infeasible without such extra information.

The actual achieved system performance will depend on
the precise protocol details, and there will in all cases be
additional protocol overheads, both in terms of storage as
well as bandwidth needs. Such systems considerations were
beyond the scope of the current paper which studies the
theoretical constraints of regenerating codes in the presence
of Byzantine nodes. Furthermore, regenerating codes incur
high computational complexity [8] even without consideration
of Byzantine failures. Byzantine nodes will further amplify
the computational overheads. Thus, even though regenerating
codes have promising qualities (theoretically), and have been
much studied in the last few years, all these practical issues
need to be taken into account and studied holistically, to
determine their benefits and trade-offs in practice.

VII. R ELATED WORKS

We have already provided a concise survey of regenerating
codes related literature in the discussion precursing the new
bounds for collaborative regenerating codes under Byzantine
faults determined in this paper. Thus, here we will discuss
about pollution attacks in general, both in the context of
different kinds of peer-to-peer systems, and in the contextof
network coding.

Pollution attacks are mitigated in peer-to-peer content dis-
semination systems [9], [5], [15] using a combination of
proactive strategies such as digital signature provided bythe
content source or by reactive strategies such as by random-
ized probing of the content source, leveraging on the causal
relationship in the sequence of content to be delivered, as
well as by deploying reputation mechanisms. In such settings,
the prevention of pollution attacks is furthermore facilitated
by a continuous involvement of the content source, which is
assumed to be online.

Generally speaking, P2P storage environments are funda-
mentally different from P2P content distribution networks. The
content owner may or not be online all the while. Furthermore,
the very premise of regenerating codes is a setting where no
one node possesses the whole copy of the object to be stored,
i.e., a hybrid storage strategy where one full copy of the data is
stored in addition to the encoded blocks, is excluded for other
practical considerations. Likewise, different stored objects may
be independent of each other. Hence, mechanisms to provide
protection against errors as an inherent property of the code
(similar to error correcting codes) becomes essential. Thepre-
sented study looks at the fundamental capacity of such codes
under some specific adversarial models. This work is thus
complementary to other existing storage systems approaches
such as incentive and reputation mechanisms [4] and remote
data checking techniques [3] for data outsourced to third
parties to name a few. Likewise, Byzantine algorithms have
been used in Oceanstore [13] to support reliable data updates.
The focus there is on application level support for updating
content, rather than storage infrastructure level Byzantine
behavior studied in this paper.

Pollution attacks have also been studied specifically in the
context of network coding where it has already been noticed
that though collaboration among the nodes through coding
does increase the throughput, it also makes the network much
more vulnerable to pollution attacks than under traditional
routing. To remedy this threat, several authentication tech-
niques have been studied in the context of network coding,
such as digital signatures (for e.g., [2], [23], [24], [1] and
authentication codes [17].

VIII. C ONCLUSION

Leveraging on network coding results, regenerating codes
were introduced as a redundancy technique in networked dis-
tributed storage. Collaboration among the nodes participating
in the regeneration process has recently been shown to improve
the storage-bandwidth trade-offs. In this paper we determine
the resilience capacity of collaborative regeneration in the
presence of selfish or polluting nodes, and expose that collab-
oration may be detrimental under Byzantine attacks to such
an extent that it may instead be better not to collaborate. We
also show that, while collaborative regeneration is extremely
vulnerable as a stand alone process, Byzantine attacks can be
easily mitigated using some additional extrinsic information.
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