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Abstract—An information-theoretic approach for detecting Byzantine or
adversarial modifications in networks employing random linear network
coding is described. Each exogenous source packet is augmented with a
flexible number of hash symbols that are obtained as a polynomial func-
tion of the data symbols. This approach depends only on the adversary not
knowing the random coding coefficients of all other packets received by the
sink nodes when designing its adversarial packets. We show how the detec-
tion probability varies with the overhead (ratio of hash to data symbols),
coding field size, and the amount of information unknown to the adversary
about the random code.

Index Terms—Byzantine adversary, multicast, network coding, network
error detection.

I. INTRODUCTION

We consider the problem of information-theoretic detection of
Byzantine, i.e., arbitrary, modifications of transmitted data in a net-
work coding setting.

Interest in network coding has grown following demonstrations of
its various advantages: in network capacity [1], robustness to noner-
godic network failures [2] and ergodic packet erasures [3], [4], and
distributed network operation [5]. Multicast in overlay and ad hoc net-
works is a promising application. Since packets are forwarded by end
hosts to other end hosts, such networks are susceptible to Byzantine
errors introduced by compromised end hosts.

We show that Byzantine modification detection capability can be
added to a multicast scheme based on random linear block network
coding [5], [6], with modest additional computational and communica-
tion overhead, by incorporating a simple polynomial hash/check value
in each packet. With this approach, a sink node can detect Byzantine
modifications with high probability, as long as these modifications have
not been designed with knowledge of the random coding combinations
present in all other packets obtained at the sink: the only essential con-
dition is the adversary’s incomplete knowledge of the random network
code seen by the sink. No other assumptions are made regarding the
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topology of the network or the adversary’s power to corrupt or inject
packets. The adversary can know the entire message as well as por-
tions of the random network code, and can have the same (or greater)
transmission capacity compared to the source. This approach works
even in the extreme case where every packet received by a sink has
been corrupted by being coded together with an independent adver-
sarial packet. This new adversarial model may be useful for applica-
tion scenarios in which conventional assumptions of an upper bound
on adversarial transmission capacity are less appropriate. For instance,
in some peer-to-peer or wireless ad hoc settings we may not know how
many adversarial nodes might join the network, while it may be more
likely that there will be some transmissions that are not received by the
adversarial nodes. In such cases, our approach can provide a useful al-
ternative to existing methods.

Our approach provides much flexibility in trading off between the
detection probability, the proportion of redundancy, the coding field
size, and the amount of information about the random code that is not
observed by the adversary. This approach can be used for low overhead
monitoring during normal conditions when no adversary is known to be
present, in conjunction with more complex, higher overhead techniques
which are activated upon detection of a Byzantine error, such as adding
more redundancy for error correction.

A preliminary version of this work with less general assumptions
appeared in [7]. The security model is substantially generalized and
strengthened in this work.

A. Background and Related Work

The problem of secure network communications in the presence of
Byzantine adversaries has been studied extensively, e.g., [8]–[11]. A
survey of information-theoretic research in this area is given in [12].
Two important issues are secrecy and authenticity;1 this work concerns
the latter. Like one-time pads [13], our approach relies on the genera-
tion of random values unknown to the adversary, though the one-time
pad provides secrecy and not authenticity.

In the network coding context, the problem of ensuring secrecy in
the presence of a wiretap adversary has been considered in [14]–[16].
The problem of correcting adversarial errors, which is complementary
to our work, has been studied in [17]–[21].

Adversarial models in existing works on information-theoretic
authenticity techniques commonly assume some upper bound on the
number of adversarial transmissions, which leads to a requirement
on the amount of redundant network capacity. For the problem of
adversarial error correction or resilient communication, the number
of links/transmissions controlled by the adversary must necessarily
be limited with respect to the number of links/transmissions in a
minimum source–sink cut or the amount of redundancy transmitted
by the source. For instance, in the resilient communication problem
of Dolev et al. [9], the source and sink are connected by n wires, and
their model requires that no more than (n � 1)=2 wires are disrupted
by an adversary for resilient communication to be possible. In the
network coding error correction problems of [17], [20], [21], the rate
of redundant information that the source needs to transmit is between
one and two times the maximum rate of information that can be
injected by the adversary, depending on the specific adversarial model.

The above techniques can also be considered in the context of error
detection. For example, in one phase of the secret sharing based algo-
rithm in [9], the source communicates a degree � polynomial f(x) 2
q(x) by sending f(i) on the ith wire. If the adversary controls at most

n � � wires, any errors it introduces can be detected. In general, for
approaches based on error-correcting codes such as in [17], the number

1These are independent attributes of a cryptographic system [13].
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of adversarial errors that can be detected is given by the difference be-
tween the source–sink minimum cut and the source information rate.

Such approaches have a threshold nature in that they do not offer
graceful performance degradation when the number of adversarial
transmissions exceeds the assumed upper bound. Their efficiency is
also sensitive to overestimates of adversarial transmission capacity,
which determines the amount of redundancy required.

The adversarial model considered in this work is slightly different.
Instead of assuming a limit on the number of adversarial errors, our
only assumption is on the incompleteness of the adversary’s knowl-
edge of the random code (the adversary can know the entire source
message). In this case, the overhead (proportion of redundant infor-
mation transmitted by the source) is no longer a function of the esti-
mated upper bound on the number of adversarial errors. Instead, it is
a design parameter which, as we will show, can be flexibly traded off
against detection probability and coding field size. Unlike approaches
based on secret sharing and its variants, where the required proportional
overhead is a function of the adversarial strength, in our approach, for
any nonzero proportional overhead and any adversarial strength short
of full knowledge or control of network transmissions, the detection
probability can be made arbitrarily high by increasing the field size.
The former has the advantage of deterministic guarantees, while our
approach has the advantage of greater flexibility with additional per-
formance parameters that can be traded off against one another.

The use of our error detection technique for low-overhead mon-
itoring under normal conditions when no adversary is known to be
present, in conjunction with a more complex technique activated upon
detection of an adversary, has a parallel in works such as [22] and [23].
These works optimize for normal conditions by using less complex
message authentication codes and signed digests, respectively, during
normal operation, resorting to more complex recovery mechanisms
only upon detection of a fault.

B. Notation

In this work, we denote matrices with bold uppercase letters and vec-
tors with bold lowercase letters. All vectors are row vectors unless in-
dicated otherwise with a subscript T . We denote by [xxx; yyy] the concate-
nation of two row vectors xxx and yyy.

II. MODEL AND PROBLEM FORMULATION

Consider random linear block network coding [5], [6], [24] of a block
of r exogenous packets which originate at a source node and are mul-
ticast to one or more sink nodes. We assume that the network coding
subgraph is given by some separate mechanism, the details of which
we are not concerned with.2 An adversary observes some subset of
packets transmitted in the network, and can corrupt, insert or delete one
or more packets, or corrupt some subset of nodes. The only assump-
tion we make is that the adversary’s observations are limited such that
when designing the adversarial packets, the adversary does not know
the random coding combinations present in all other packets obtained
at the sinks. This assumption is made precise using the notion of secret
packets which we define below. The source and sinks do not share any
keys or common information.

Each packet p in the network is represented by a row vector wwwp of
d + c + r symbols from a finite field q , where the first d entries
are data symbols, the next c are redundant hash symbols, and the last
r form the packet’s (global) coefficient vector tttp. The field size is 2
to the power of the symbol length in bits. The hash symbols in each
exogenous packet are given by a function  d : d

q !
c
q of the data

2The network coding subgraph defines the times at which packets are or can
be transmitted on each network link (see, e.g., [25]).

symbols. The coefficient vector of the ith exogenous packet is the unit
vector with a single nonzero entry in the ith position. The coefficient
vectors are used for decoding at the sinks as explained below.

Each packet transmitted by the source node is an independent
random linear combination of the r exogenous packets, and each
packet transmitted by a nonsource node is an independent random
linear combination of packets received at that node. The coeffi-
cients of these linear combinations are chosen with the uniform
distribution from the finite field q , and the same linear operation
is applied to each symbol in a packet. For instance, if packet p3 is
formed as a random linear combination of packets p1 and p2, then
wwwp = 
1;3wwwp + 
2;3wwwp where 
1;3 and 
2;3 are random scalar
coding coefficients distributed uniformly over q .

Let row vectormmmi 2
(c+d)
q represent the concatenation of the data

and hash symbols for the ith exogenous packet, and let MMM be the ma-
trix whose ith row ismmmi. A packet p is genuine if its data/hash symbols
are consistent with its coefficient vector, i.e.,wwwp = [tttpMMM; tttp]. The ex-
ogenous packets are genuine, and any packet formed as a linear com-
bination of genuine packets is also genuine. Adversarial packets, i.e.,
packets transmitted by the adversary, may contain arbitrary coefficient
vector and data/hash values. An adversarial packet p can be represented
in general by [tttpMMM + vvvp; tttp], where vvvp is an arbitrary vector c+d

q . If
vvvp is nonzero, p (and linear combinations of p with genuine packets)
are nongenuine.

A set S of packets can be represented as a block matrix
[TTTSMMM + VVV S jTTTS ] whose ith row is wwwp where pi is the ith packet
of the set. A sink node t attempts to decode when it has collected a
decoding set consisting of r linearly independent packets (i.e., packets
whose coefficient vectors are linearly independent). For a decoding
set D, the decoding process is equivalent to premultiplying the matrix
[TTTDMMM + VVV DjTTTD] with TTT�1

D
. This gives MMM + TTT

�1
D
VVV DjIII , i.e., the

receiver decodes to MMM + ~M~M~M , where

~M~M~M = TTT
�1
D VVV D (1)

gives the disparity between the decoded packets and the original
packets. If at least one packet in a decoding set is nongenuine,
VVV D 6= 0, and the decoded packets will differ from the original
packets. A decoded packet is inconsistent if its data and hash values
do not match, i.e., applying the function  d to its data values does not
yield its hash values. If one or more decoded packets are inconsistent,
the sink declares an error.

The coefficient vector of a packet transmitted by the source is uni-
formly distributed over r

q ; if a packet whose coefficient vector has
this uniform distribution is linearly combined with other packets, the
resulting packet’s coefficient vector has the same uniform distribution.
We are concerned with the distribution of decoding outcomes condi-
tioned on the adversary’s information, i.e., the adversary’s observed
and transmitted packets, and its information on independencies/depen-
dencies among packets. Note that in this setup, scaling a packet by some
scalar element of q does not change the distribution of decoding out-
comes.

For given MMM , the value of a packet p is specified by the row vector
uuup = [tttp; vvvp]. We call a packet p secret if, conditioned on the value
of vvvp and the adversary’s information, its coefficient vector tttp is uni-
formly distributed over r

qnW for some (possibly empty) subspace
or affine space W � r

q .3 Intuitively, secret packets include genuine
packets whose coefficient vectors are unknown (in the above sense)

3This definition of a secret packet is conservative as it does not distinguish
between packets with a nonuniform conditional distribution and packets that are
fully known to the adversary. Taking this distinction into account would make
the analysis more complicated but would in some cases give a better bound on
detection probability.



2800 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 6, JUNE 2008

to the adversary, as well as packets formed as linear combinations in-
volving at least one secret packet. A set S of secret packets is se-
crecy-independent if each of the packets remains secret when the ad-
versary is allowed to observe the other packets in the set; otherwise
it is secrecy-dependent. Secrecy-dependencies arise from the network
transmission topology, for instance, if a packet p is formed as a linear
combination of a set S of secret packets (possibly with other nonsecret
packets), then S [ fpg is secrecy-dependent.

To illustrate these definitions, suppose that the adversary knows that
a sink’s decoding set contains an adversarial packet p1 as well as a
packet p4 formed as some linear combination k2wwwp + k3wwwp of an
adversarial packet p2 with a genuine packet p3, so the adversary knows
tttp ; tttp ; vvvp ; vvvp andvvvp = 0. Since a decoding set consists of packets
with linearly independent coefficient vectors, the adversary knows that
tttp and tttp are linearly independent. Suppose also that the adversary
does not observe the contents of any packets dependent on p3. Thus, the
distribution of tttp , conditioned on the adversary’s information and any
potential value k2vvvp for vvvp , is uniform over r

qnfktttp : k 2 qg.
Also, packets p3 and p4 are secrecy-dependent.

Consider a decoding set D containing one or more secret packets.
Choosing an appropriate packet ordering, we can express [TTTDjVVV D] in
the form

[TTTDjVVV D] =

AAA+BBB1 VVV 1

CCCAAA+BBB2 VVV 2

BBB3 VVV 3

(2)

where for any given values of BBBi 2
s �r
q , VVV i 2

s �(d+c)
q , i =

1; 2; 3, and CCC 2 s �s
q , the matrix AAA 2 s �r

q has a conditional
distribution that is uniform over all values for whichTTTD is nonsingular.
The first s1+s2 rows correspond to secret packets, and the first s1 rows
correspond to a set of secrecy-independent packets. s2 = 0 if there are
no secrecy-dependencies among the secret packets in D.

This notion of secret packets provides the most general characteri-
zation of the conditions under which the scheme succeeds. For a given
network topology, a requirement on the number of secrecy-independent
secret packets received at the sink can be translated into constraints on
the subsets of links/packets the adversary can observe and/or modify.
For instance, if information is sent on n parallel paths from a source to
a sink node, then the number of secrecy-independent secret packets is
the number of linearly independent packets received on paths that are
not observed or controlled by the adversary.

Note that we allow each packet of the decoding set to be corrupted
with an independent adversarial packet, as long as at least one of the
packets has been formed as a linear combination with some secret
packet.

III. MAIN RESULTS

In the following theorem, we consider decoding from a set of
packets that contains some nongenuine packet, which causes the
decoded packets to differ from the original exogenous packets. The
first part of the theorem gives a lower bound on the number of equally
likely potential values of the decoded packets—the adversary cannot
narrow down the set of possible outcomes beyond this regardless of
how it designs its adversarial packets. The second part provides, for a
simple polynomial hash function, an upper bound on the proportion
of potential decoding outcomes that can have consistent data and hash
values, in terms of k = d

c
, the ceiling of the ratio of the number

of data symbols to hash symbols. Larger values for k correspond
to lower overheads but lower probability of detecting an adversarial
modification. This tradeoff is a design parameter for the network.

Theorem 1: Consider a decoding set D containing a secrecy-inde-
pendent subset of s1 secret (possibly nongenuine) packets, and suppose
the decoding set contains at least one nongenuine packet.

a) The adversary cannot determine which of a set of at least (q�1)s

equally likely values of the decoded packets will be obtained at the
sink. In particular, there will be at least s1 packets such that, for each
of these, the adversary cannot determine which of a set of at least q�1
equally likely values will be obtained.

b) Let  : k
q ! q be the function mapping (x1; . . . ; xk), xi 2

q , to

 (x1; . . . ; xk) = x
2
1 + � � �+ x

k+1
k (3)

where k = d

c
. Suppose the function  d mapping the data symbols

x1; . . . ; xd to the hash symbols y1; . . . ; yc in an exogenous packet is
defined by

yi = (x(i�1)k+1; . . . ; xik); 8 i = 1; . . . ; c� 1

yc = (x(c�1)k+1; . . . ; xd):

Then the probability of not detecting an error is at most k+1
q

s

.

Corollary 1: Let the hash function  d be defined as in Theorem 1b.
Suppose a sink obtains more than r packets, including a secrecy-inde-
pendent set of s secret packets, and at least one nongenuine packet. If
the sink decodes using two or more decoding sets whose union includes
all its received packets, then the probability of not detecting an error is
at most k+1

q

s

.

Example: With 2% overhead (k = 50), symbol length = 7 bits,
s = 5, the detection probability is at least 98.9%; with 1% overhead
(k = 100), symbol length = 8 bits, s = 5, the detection probability
is at least 99.0%.

IV. DEVELOPMENT, PROOFS, AND ANCILLARY RESULTS

A. Vulnerable Scenarios

Before analyzing the scenario described in the previous sections, we
first point out when this approach fails to detect adversarial modifica-
tions.

First, the sink needs some way of knowing if the source stops trans-
mitting, otherwise, the assumption of no shared secret information re-
sults in the adversary being indistinguishable from the source. One pos-
sibility is that the source either transmits at a known rate or is inactive,
and that the sink knows at what rates it should be receiving information
on various subsets of incoming links when the source is active. If the
adversary is unable to reproduce those information rates, e.g., because
it does not control the same part of the network as the source, then the
sink knows when the source is inactive.

Second, if the adversary knows that the genuine packets received at
a sink have coefficient vectors that lie in somew-dimensional subspace
W � r

q , the following strategy allows it to control the decoding out-
come and so ensure that the decoded packets have consistent data and
hash values.

The adversary ensures that the sink receives w genuine packets with
linearly independent coefficient vectors in W , by supplying additional
such packets if necessary. The adversary also supplies the sink with
r � w nongenuine packets whose coefficient vectors ttt1; . . . ; tttr�w are
not in W . Let tttr�w+1; . . . ; tttr be a set of basis vectors for W , and let
TTT be the matrix whose ith row is ttti. Then the coefficient vectors of the
r packets can be represented by the rows of the matrix

III 0

0 KKK
TTT

whereKKK is a nonsingular matrix in w�w
q . From (5), we have

III 0

0 KKK
TTT ~M~M~M =

~V~V~V

0
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~M~M~M = TTT
�1

III 0

0 KKK�1

~V~V~V

0

= TTT
�1

~V~V~V

0

:

Since the adversary knows TTT and controls ~V~V~V , it can determine ~M~M~M .

B. Byzantine Modification Detection

We next consider the scenario described in Section II, where the ad-
versary designs its packets without knowing the contents of one or more
secret packets the receiver will use for decoding, and prove the results
of Section III.

We first establish two results that are used in the proof of The-
orem 1. Consider the hash function defined in (3). We call a vector
(x1; . . . ; xk+1) 2

k+1
q consistent if xk+1 =  (x1; . . . ; xk).

Lemma 1: At most k + 1 out of the q vectors in a set

fuuu+ 
vvv : 
 2 qg

where uuu = (u1; . . . ; uk+1) is a fixed vector in k+1
q and vvv =

(v1; . . . ; vk+1) is a fixed nonzero vector in k+1
q , can be consistent.

Proof: Suppose some vector uuu+ 
vvv is consistent, i.e.,

uk+1 + 
vk+1 = (u1 + 
v1)
2 + � � �+ (uk + 
vk)

k+1
: (4)

Note that for any fixed value of uuu and any fixed nonzero value of vvv, (4)
is a polynomial equation in 
 of degree equal to 1+~k, where ~k 2 [1; k]
is the highest index for which the corresponding vk is nonzero, i.e.,
v~k 6= 0; vk = 0 8 k0 > ~k. By the fundamental theorem of algebra,
this equation can have at most 1+ ~k � 1+ k roots. Thus, the property
can be satisfied for at most 1 + k values of 
.

Corollary 2: Letuuu be a fixed row vector in n
q andYYY a fixed nonzero

matrix in n�(k+1)
q . If row vector ggg is distributed uniformly over n

q ,
then the vector uuu+ gggYYY is consistent with probability at most k+1

q
.

Proof: Suppose the ith row of YYY , denoted yyyi, is nonzero. We can
partition the set of possible values for ggg such that each partition consists
of all vectors that differ only in the ith entry gi. For each partition, the
corresponding set of values of uuu+gggYYY is of the form fuuu0+giyyyi : gi 2

qg. The result follows from Lemma 1 and the fact that gi is uniformly
distributed over q .

Proof of Theorem 1: We condition on any given values of
BBBi; VVV i; i = 1; 2; 3, andCCC in (2). WritingAAA0 = AAA+BBB1, TTTD becomes

AAA0

CCC(AAA0 �BBB1) +BBB2

BBB3

:

From (1), we have

AAA0

CCC(AAA0 �BBB1) +BBB2

BBB3

~M~M~M =

VVV 1

VVV 2

VVV 3

AAA0

�CCCBBB1 +BBB2

BBB3

~M~M~M =

VVV 1

VVV 2 �CCCVVV 1

VVV 3

which we can simplify to

AAA0

BBB0
~M~M~M =

VVV 1

VVV 02
(5)

by writing

BBB
0 =

�CCCBBB1 +BBB2

BBB3
; VVV

0

2 =
VVV 2 �CCCVVV 1

VVV 3
:

Since the determinant of a matrix is not changed by adding a multiple of

one row to another row, and
AAA0

BBB0
is obtained from TTTD by a sequence

of such operations, we have

AAA0

BBB0
is nonsingular , TTTD is nonsingular:

Thus, matrixAAA0 2 s �r
q has a conditional distribution that is uniform

over the set A of values for which
AAA0

BBB0
is nonsingular.

The condition that the decoding set contains at least one nongenuine
packet corresponds to the condition VVV D 6= 0. We consider two cases.
In each case, we show that we can partition the set A such that at most
a fraction k+1

q

s

of values in each partition give decoding outcomes

MMM + ~M~M~M with consistent data and hash values. The result then follows
since the conditional distribution of values within each partition is uni-
form.

Case 1: VVV 02 6= 0. Let vvvi be some nonzero row of VVV 02, and bbbi the
corresponding row of BBB0. Then bbbi ~M~M~M = vvvi.

We first partition A into cosets

An = fAAAn + rrr
T
bbbi : rrr 2

s
q g; n = 1; 2; . . . ; �

where

� =
jAj

qs
:

This can be done by the following procedure. Any element of A can
be chosen as AAA1. Matrices AAA2; AAA3; . . . ; AAA� are chosen sequentially;
for each m = 2; . . . ; �, AAAm is chosen to be any element of A not in
the cosets An; n < m. Note that this forms a partition of A, since the
presence of some element c in two sets An and Am, n < m, implies
thatAAAm is also inAn, which is a contradiction. It is also clear that each
coset has size frrr : rrr 2 s

q g = qs .
For each such cosetAn, the corresponding values of ~M~M~M satisfy, from

(5)

AAAn + rrrT bbbi

BBB0
~M~M~M =

VVV 1

VVV 02

AAAn

BBB0
~M~M~M =

VVV 1 � rrrTvvvi

VVV 02

~M~M~M =
AAAn

BBB0

�1
VVV 1 � rrrTvvvi

VVV 02

where rrr 2 s
q . Let UUU be the submatrix consisting of the first s1

columns of
AAAn

BBB0

�1

. Since UUU is full rank, we can find a set J �

f1; . . . ; rg of s1 indices that correspond to linearly independent rows

ofUUU . Let [UUU1 j UUU2 ] be the s1�r submatrix of
AAAn

BBB0

�1

consisting of

rows with indices in J . Consider the corresponding rows ofMMM + ~M~M~M ,
which can be expressed in the form

MMMJ +UUU1VVV 1 �UUU1rrr
T
vvvi +UUU2VVV

0

2 (6)

where MMMJ is the submatrix of MMM consisting of rows corresponding
to set J . Since UUU1 is nonsingular by the choice of J , UUU1rrr

T takes
potentially any value in s

q . Thus, the set of potential values for each
row of (6), for any given value of MMMJ ; AAAn; BBB

0; VVV 1; VVV
0
2; vvvi, and the

other rows, is of the form fuuu+ 
vvvi : 
 2 qg where uuu is a function
of MMMJ ; AAAn; BBB

0; VVV 1; VVV
0
2. Applying Lemma 1 yields the result for this

case.
Case 2: VVV 02 = 0, i.e., VVV 2 �CCCVVV 1 = VVV 3 = 0. Then VVV 1 6= 0, since

otherwise VVV 1 = VVV 2 = 0 and VVV D = 0 which would contradict the
assumption that there is at least one nongenuine packet.



2802 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 6, JUNE 2008

We partition A such that each partition consists of all matrices in A
that have the same row space

An = RRRAAAn : RRR 2 s �s
q ; det(RRR) 6= 0 ; n = 1; 2; . . . ; �

where

jAnj =

s �1

i=0

q
s � q

i
; � =

jAj

jAnj
:

This can be done by choosing any element of A as AAA1, and choosing
AAAn; n = 2; . . . ; � sequentially such that AAAn is any element of A not
in Am; m < n.

For each An; n = 1; . . . ; �, the corresponding values of ~M~M~M satisfy,
from (5)

RRRAAAn

BBB
0

~M~M~M =
VVV 1

0

AAAn

BBB
0

~M~M~M =
RRR
�1
VVV 1

0

~M~M~M =
AAAn

BBB
0

�1
RRR
�1
VVV 1

0
:

LetUUU be the submatrix consisting of the first s1 columns of
AAAn

BBB
0

�1

.

We can find an ordered set J = fi1; . . . ; is : i1 < � � � < is g �
f1; . . . ; rg of s1 indices that correspond to linearly independent rows
of UUU . Let UUUJ and MMMJ be the submatrices of UUU and MMM , respectively,
consisting of the s1 rows corresponding toJ . ThenUUUJ is nonsingular,
and the value of the matrix representation of the corresponding decoded
packets is uniformly distributed over the set

MMMJ +RRR
0
VVV 1 : RRR

0 2 s �s
q ; det(RRR0) 6= 0 : (7)

Let � be the rank of VVV 1. Consider a set of � linearly independent
rows of VVV 1. Denote by I the corresponding set of row indices, and
denote by VVV I the submatrix of VVV 1 consisting of those rows. We can
write

VVV 1 = LLLVVV I

where LLL 2 s ��
q has full rank � . We define RRRI = RRR

0
LLL, noting that

RRRIVVV I = RRR
0
LLLVVV I = RRR

0
VVV 1

and that RRRI is uniformly distributed over all matrices in s ��
q that

have full rank � . Thus, (7) becomes

MMMJ +RRRIVVV I : RRRI 2
s ��
q ; rank(RRRI) = � : (8)

Denote by rrr1; . . . ; rrrs the rows of RRRI , and by RRRn the submatrix of
RRRI consisting of its first n rows. We consider the rows sequentially,
starting with the first row rrr1. For n = 1; . . . ; s1, we will show that
conditioned on any given value of RRRn�1, the probability that the inth
decoded packet MMM i + rrrnVVV I is consistent is at most k+1

q
.

Case A: RRRn�1 has zero rank. This is the case if n = 1, or if n > 1
and RRRn�1 = 0.

Suppose we remove the restriction rank(RRRI) = � , so that rrrn is
uniformly distributed over �

q . By Corollary 2, mmmi + rrrnVVV I would
have consistent data and hash values with probability at most k+1

q
. With

the restriction rank(RRRI) = � , the probability of rrrn being equal to 0
is lowered. Since the corresponding decoded packet mmmi + rrrnVVV I is
consistent for rrrn = 0, the probability that it is consistent is less than
k+1

q
.

Case B: n > 1 and RRRn�1 has nonzero rank.

Conditioned on rrrn being in the row space of RRRn�1, rrrn = gggRRRn�1

where ggg is uniformly distributed over n�1
q . Since VVV I has linearly in-

dependent rows,RRRn�1VVV I 6= 0, and by Corollary 2, the corresponding
decoded packet

mmmi + rrrnVVV I =mmmi + gggRRRn�1VVV I

is consistent with probability at most k+1

q
.

Conditioned on rrrn not being in the row space ofRRRn�1, we can par-
tition the set of possible values for rrrn into cosets

rrr + gggRRRn�1 : ggg 2
n�1
q

where rrr is not in the row space of RRRn�1; the corresponding values of
the inth decoded packet are given by

mmmi + rrrVVV I + gggRRRn�1VVV I : ggg 2 n�1
q :

Noting as before thatRRRn�1VVV I 6= 0 and applying Corollary 2, the inth
decoded packet is consistent with probability at most k+1

q
.

Proof of Corollary 1: Suppose two or more different sets of
packets are used for decoding. If not all of them contain at least
one nongenuine packet, the decoded values obtained from different
decoding sets will differ: sets containing only genuine packets will be
decoded to MMM , while sets containing one or more nongenuine packets
will not. This will indicate an error.

Otherwise, suppose all the decoding sets contain at least one non-
genuine packet. Let S denote the set of s secrecy-independent packets.
Consider the decoding sets in turn, denoting by s0i the number of un-
modified packets from S in the ith decoding set that are not in any set
j < i. Conditioned on any fixed values of packets in sets j < i, there
remain s0i secrecy-independent packets in the ith decoding set, and we

have from Theorem 1 that at most a fraction k+1

q

s

of decoding out-
comes for set i have consistent data and hash values. Thus, the overall
fraction of consistent decoding outcomes is at most

k + 1

q

s

=
k + 1

q

s

:

V. CONCLUSION

We have described an information-theoretic approach for detecting
Byzantine modifications in networks employing random linear network
coding. Byzantine modification detection capability is added by aug-
menting each packet with a small, flexible number of hash symbols;
this overhead can be traded off against the detection probability and
symbol length. The hash symbols can be obtained as a simple poly-
nomial function of the data symbols. The only necessary condition is
that the adversarial packets are not all designed with knowledge of the
random coding coefficients of all other packets received by the sink
nodes. This approach can be used in conjunction with higher overhead
schemes that are activated only upon detection of a Byzantine node.
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Computational Complexity of Continuous Variable
Quantum Key Distribution

Yi-Bo Zhao, You-Zhen Gui, Jin-Jian Chen, Zheng-Fu Han, and
Guang-Can Guo

Abstract—The continuous variable quantum key distribution has been
considered to have the potential to provide high secret key rate. However,
in present experimental demonstrations, the secret key can be distilled only
under very small loss rates. Here, by calculating explicitly the computa-
tional complexity with the channel transmission, we show that under high
loss rate it is hard to distill the secret key in present continuous variable
scheme and one of its advantages, the potential of providing high secret
key rate, may therefore be limited.

Index Terms—Computational complexity, continuous variable (CV),
error correction, quantum key distribution (QKD), reconciliation.

I. INTRODUCTION

Due to its potential for achieving high modulation and detection
speed, continuous variable (CV) quantum key distribution (QKD) has
recently attracted more and more attention. Compared to single photon
counting schemes, CVQKD does not require single photon sources
and detectors which are technically challenging now. The CVQKD
schemes typically use the quadrature amplitude of light beams as infor-
mation carrier, and homodyne detection rather than photon counting.
Some of these schemes use nonclassical states, such as squeezed states
[1] or entangled states [2], while others use coherent states [3]–[6]. Be-
cause the squeezed states and entangled states are sensitive to losses in
the quantum channel, coherent states are much more attractive for long
distance transmission. To improve the performance of the CVQKD
against the channel loss, Grosshans et al. proposed a reverse reconcilia-
tion (RR) protocol [11]. In the traditional direct reconciliation protocol,
Alice sends Bob the quantum state and also sends the reconciliation
information later.1 Finally, Bob obtains Alice’s data without any error.
However, in the reverse reconciliation protocol, the quantum state is
sent by Alice to Bob, but the reconciliation information is sent by Bob
to Alice. Finally, Alice gets Bob’s received data with no error.

Tabletop experimental setups that encode information in the phase
and amplitude of coherent states have been demonstrated [7], [8], and
recent experiments have shown the feasibility of CVQKD in optical
fibers up to a distance of 55 km [9], [10], but without obtaining the
final secret keys.

Unlike the single photon QKD schemes, many CVQKD schemes uti-
lize the inertial quantum noise to protect information from Eve’s attack
[7], [12]. However, at the same time the quantum noise also causes er-
rors between two legitimate communicators, Alice and Bob. It is widely
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1In the following, we use the conventional appellation. Alice is the quantum
state sender and Bob is the quantum state receiver.
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