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Abstract

In this paper, we develop distributed optimiza-

tion algorithms that are provably robust against

Byzantine failures—arbitrary and potentially ad-

versarial behavior, in distributed computing sys-

tems, with a focus on achieving optimal statistical

performance. A main result of this work is a

sharp analysis of two robust distributed gradient

descent algorithms based on median and trimmed

mean operations, respectively. We prove statis-

tical error rates for all of strongly convex, non-

strongly convex, and smooth non-convex popula-

tion loss functions. In particular, these algorithms

are shown to achieve order-optimal statistical er-

ror rates for strongly convex losses. To achieve

better communication efficiency, we further pro-

pose a median-based distributed algorithm that is

provably robust, and uses only one communica-

tion round. For strongly convex quadratic loss,

we show that this algorithm achieves the same op-

timal error rate as the robust distributed gradient

descent algorithms.

1. Introduction

Many tasks in computer vision, natural language processing

and recommendation systems require learning complex pre-

diction rules from large datasets. As the scale of the datasets

in these learning tasks continues to grow, it is crucial to uti-

lize the power of distributed computing and storage. In such

large-scale distributed systems, robustness and security is-

sues have become a major concern. In particular, individual

computing units—known as worker machines—may exhibit

abnormal behavior due to crashes, faulty hardware, stalled

computation or unreliable communication channels. Secu-

rity issues are only exacerbated in the so-called Federated

Learning setting, a modern distributed learning paradigm

that is more decentralized, and that uses the data owners’

devices (such as mobile phones and personal computers)
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as worker machines (McMahan & Ramage, 2017; Konečnỳ

et al., 2016). Such machines are often more unpredictable,

and in particular may be susceptible to malicious and coor-

dinated attacks.

Due to the inherent unpredictability of this abnormal (some-

times adversarial) behavior, it is typically modeled as Byzan-

tine failure (Lamport et al., 1982), meaning that some

worker machines may behave completely arbitrarily and can

send any message to the master machine that maintains and

updates an estimate of the parameter vector to be learned.

Byzantine failures can incur major degradation in learning

performance. It is well-known that standard learning algo-

rithms based on naive aggregation of the workers’ messages

can be arbitrarily skewed by a single Byzantine-faulty ma-

chine. Even when the messages from Byzantine machines

take only moderate values—hence difficult to detect—and

when the number of such machines is small, the perfor-

mance loss can still be significant. We demonstrate such an

example in our experiments in Section 7.

In this paper, we aim to develop distributed statistical learn-

ing algorithms that are provably robust against Byzantine

failures. While this objective is considered in a few re-

cent works (Feng et al., 2014; Blanchard et al., 2017; Chen

et al., 2017), a fundamental problem remains poorly un-

derstood, namely the optimal statistical performance of a

robust learning algorithm. A learning scheme in which the

master machine always outputs zero regardless of the work-

ers’ messages, is certainly not affected by Byzantine fail-

ures, but it will not return anything statistically useful either.

On the other hand, many standard distributed algorithms

that achieve good statistical performance in the absence of

Byzantine failures, become completely unreliable otherwise.

Therefore, a main goal of this work is to understand the

following questions: what is the best achievable statisti-

cal performance while being Byzantine-robust, and how to

design an algorithm that achieves such performance?

To formalize this question, we consider a standard statistical

setting of empirical risk minimization (ERM). Here nm data

points are sampled independently from some distribution

and distributed evenly among m machines, αm of which

are Byzantine. The goal is to learn a parametric model

by minimizing some loss function defined by the data. In

this statistical setting, one expects that the error in learning
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the parameter, measured in an appropriate metric, should

decrease when the amount of data nm becomes larger and

the fraction of Byzantine machines α becomes smaller. In

fact, we can show that, at least for strongly convex problems,

no algorithm can achieve an error lower than

Ω̃

(
α√
n
+

1√
nm

)
= Ω̃

(
1√
n

(
α+

1√
m

))
,

regardless of communication costs;1 see Observation 1 in

Section 6. Intuitively, the above error rate is the optimal rate

that one should target for, as 1√
n

is the effective standard

deviation for each machine with n data points, α is the

bias effect of Byzantine machines, and 1√
m

is the averaging

effect of m normal machines. When there are no or few

Byzantine machines, we see the usual scaling 1√
mn

with

the total number of data points; when some machines are

Byzantine, their influence remains bounded, and moreover

is proportional to α. If an algorithm is guaranteed to attain

this bound, we are assured that we do not sacrifice the

quality of learning when trying to guard against Byzantine

failures—we pay a price that is unavoidable, but otherwise

achieve the best possible statistical accuracy in the presence

of Byzantine failures.

Another important consideration for us is communication

efficiency. As communication between machines is costly,

one cannot simply send all data to the master machine. This

constraint precludes direct application of standard robust

learning algorithms (such as M-estimators (Huber, 2011)),

which assume access to all data. Instead, a desirable al-

gorithm should involve a small number of communication

rounds as well as a small amount of data communicated

per round. We consider a setting where in each round a

worker or master machine can only communicate a vector

of size O(d), where d is the dimension of the parameter to

be learned. In this case, the total communication cost is

proportional to the number of communication rounds.

To summarize, we aim to develop distributed learning algo-

rithms that simultaneously achieve two objectives:

• Statistical optimality: attain an Õ( α√
n
+ 1√

nm
) rate.

• Communication efficiency: O(d) communication per

round, with as few rounds as possible.

To the best of our knowledge, no existing algorithm achieves

these two goals simultaneously. In particular, previous ro-

bust algorithms either have unclear or sub-optimal statistical

guarantees, or incur a high communication cost and hence

not applicable in a distributed setting—we discuss related

work in more detail in Section 2.

1Throughout the paper, unless otherwise stated, Ω(·) and O(·)

hide universal multiplicative constants; Ω̃(·) and Õ(·) further hide
terms that are independent of α, n,m or logarithmic in n,m.

Our Contributions We propose two robust distributed

gradient descent (GD) algorithms, one based on coordinate-

wise median, and the other on coordinate-wise trimmed

mean. We establish their statistical error rates for strongly

convex, non-strongly convex, and non-convex population

loss functions. Particularly for strongly convex losses, we

show that these algorithms achieve order-optimal statistical

rates under mild conditions. We further propose a median-

based robust algorithm that only requires one communica-

tion round, and show that it also achieves the optimal rate

for strongly convex quadratic losses. The statistical error

rates of these three algorithms are summarized as follows.

• Median-based GD: Õ( α√
n
+ 1√

nm
+ 1

n ), order-optimal

for strongly convex loss if n & m.

• Trimmed-mean-based GD: Õ( α√
n

+ 1√
nm

), order-

optimal for strongly convex loss.

• Median-based one-round algorithm: Õ( α√
n
+ 1√

nm
+

1
n ), order-optimal for strongly convex quadratic loss if

n & m.

A major technical challenge in our statistical setting here

is as follows: the nm data points are sampled once and

fixed, and each worker machine has access to the same set

of data throughout learning process. This creates compli-

cated probabilistic dependency across the iterations of the

algorithms. Worse yet, Byzantine machines may create fur-

ther unspecified dependency. We overcome this difficulty

by proving certain uniform bounds via careful covering ar-

guments. Furthermore, for the analysis of median-based

algorithms, we cannot simply adapt standard techniques

(such as those in Minsker et al. (2015)), which can only

show that the output of the master machine is as accurate

as that of one normal machine, leading to a sub-optimal

O( 1√
n
) rate even without Byzantine failures. Instead, we

make use of a more delicate argument based on normal

approximation and Berry-Esseen-type inequalities.

2. Related Work

Outlier-robust estimation in non-distributed settings is a clas-

sical topic in statistics (Huber, 2011). Particularly relevant

to us is the so-called median-of-means method, in which one

partitions the data m subsets, computes an estimate from

each sub-dataset, and finally takes the median of these m
estimates. This idea is studied in Nemirovskii et al. (1983);

Jerrum et al. (1986); Alon et al. (1999); Lerasle & Oliveira

(2011); Minsker et al. (2015), and has been applied to bandit

and least square regression problems (Bubeck et al., 2013;

Lugosi & Mendelson, 2016; Kogler & Traxler, 2016) as

well as problems involving heavy-tailed distributions (Hsu

& Sabato, 2016; Lugosi & Mendelson, 2017). In a very

recent work, Minsker & Strawn (2017) provide new analy-

sis of median-of-means using normal approximation. We

borrow some techniques from this paper, but need to address
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a significant harder problem: 1) we deal with the Byzan-

tine setting with arbitrary/adversarial outliers, which is not

considered in their paper; 2) we study iterative algorithms

for general multi-dimensional problems with convex and

non-convex losses, while they mainly focus on one-shot

algorithms for mean-estimation-type problems.

The median-of-means method is used in the context of

Byzantine-robust distributed learning in two recent papers.

In particular, the work of Feng et al. (2014) considers a

simple one-shot application of median-of-means, and only

proves a sub-optimal Õ( 1√
n
) error rate as mentioned. The

work of Chen et al. (2017) considers only strongly convex

losses, and seeks to circumvent the above issue by grouping

the worker machines into mini-batches; however, their rate

Õ(
√
α√
n
+ 1√

nm
) still falls short of being optimal, and in

particular their algorithm fails even when there is only one

Byzantine machine in each mini-batch.

Other methods have been proposed for Byzantine-robust

distributed learning and optimization; e.g., Su & Vaidya

(2016a;b). These works consider optimizing fixed functions

and do not provide guarantees on statistical error rates. Most

relevant is the work by Blanchard et al. (2017), who propose

to aggregate the gradients from worker machines using a ro-

bust procedure. Their optimization setting—which is at the

level of stochastic gradient descent and assumes unlimited,

independent access to a strong stochastic gradient oracle—is

fundamentally different from ours; in particular, they do not

provide a characterization of the statistical errors given a

fixed number of data points.

Communication efficiency has been studied extensively in

non-Byzantine distributed settings (McMahan et al., 2016;

Yin et al., 2017). An important class of algorithms are based

on one-round aggregation methods (Zhang et al., 2012;

2015; Rosenblatt & Nadler, 2016). More sophisticated algo-

rithms have been proposed in order to achieve better accu-

racy than the one-round approach while maintaining lower

communication costs; examples include DANE (Shamir

et al., 2014), Disco (Zhang & Lin, 2015), distributed

SVRG (Lee et al., 2015) and their variants (Reddi et al.,

2016; Wang et al., 2017). Developing Byzantine-robust ver-

sions of these algorithms is an interesting future direction.

For outlier-robust estimation in non-distributed settings,

much progress has been made recently in terms of improved

performance in high-dimensional problems (Diakonikolas

et al., 2016; Lai et al., 2016; Bhatia et al., 2015) as well as de-

veloping list-decodable and semi-verified learning schemes

when a majority of the data points are adversarial (Charikar

et al., 2017). These results are not directly applicable to

our distributed setting with general loss functions, but it

is nevertheless an interesting future problem to investigate

their potential extension for our problem.

3. Problem Setup

In this section, we formally set up our problem and intro-

duce a few concepts key to our the algorithm design and

analysis. Suppose that training data points are sampled

from some unknown distribution D on the sample space

Z . Let f(w; z) be a loss function of a parameter vector

w ∈ W ⊆ R
d associated with the data point z, whereW

is the parameter space, and F (w) := Ez∼D[f(w; z)] is

the corresponding population loss function. Our goal is to

learn a model defined by the parameter that minimizes the

population loss:

w∗ = arg min
w∈W

F (w). (1)

The parameter spaceW is assumed to be convex and com-

pact with diameter D, i.e., ‖w −w′‖2 ≤ D, ∀w,w′ ∈ W .

We consider a distributed computation model with one mas-

ter machine and m worker machines. Each worker machine

stores n data points, each of which is sampled indepen-

dently from D. Denote by zi,j the j-th data on the i-th
worker machine, and Fi(w) := 1

n

∑n
j=1 f(w; zi,j) the em-

pirical risk function for the i-th worker. We assume that

an α fraction of the m worker machines are Byzantine,

and the remaining 1− α fraction are normal. With the no-

tation [N ] := {1, 2, . . . , N}, we index the set of worker

machines by [m], and denote the set of Byzantine machines

by B ⊂ [m] (thus |B| = αm). The master machine com-

municates with the worker machines using some predefined

protocol. The Byzantine machines need not obey this pro-

tocol and can send arbitrary messages to the master; in

particular, they may have complete knowledge of the sys-

tem and learning algorithms, and can collude with each

other.

We introduce the coordinate-wise median and trimmed mean

operations, which serve as building blocks for our algorithm.

Definition 1 (Coordinate-wise median). For vectors xi ∈
R

d, i ∈ [m], the coordinate-wise median g := med{xi :
i ∈ [m]} is a vector with its k-th coordinate being gk =
med{xi

k : i ∈ [m]} for each k ∈ [d], where med is the

usual (one-dimensional) median.

Definition 2 (Coordinate-wise trimmed mean). For β ∈
[0, 1

2 ) and vectors xi ∈ R
d, i ∈ [m], the coordinate-wise β-

trimmed mean g := trmeanβ{xi : i ∈ [m]} is a vector with

its k-th coordinate being gk = 1
(1−2β)m

∑
x∈Uk

x for each

k ∈ [d]. Here Uk is a subset of {x1
k, . . . , x

m
k } obtained by

removing the largest and smallest β fraction of its elements.

For the analysis, we need several standard definitions con-

cerning random variables/vectors.

Definition 3 (Variance of random vectors). For a random

vector x, define its variance as Var(x) := E[‖x− E[x]‖22].
Definition 4 (Absolute skewness). For a one-dimensional

random variable X , define its absolute skewness2 as

2Note the difference with the usual skewness
E[(X−E[X])3]

Var(X)3/2
.
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γ(X) := E[|X−E[X]|3]
Var(X)3/2

. For a d-dimensional random vec-

tor x, we define its absolute skewness as the vector of the

absolute skewness of each coordinate of x, i.e., γ(x) :=
[γ(x1) γ(x2) · · · γ(xd)]

⊤.

Definition 5 (Sub-exponential random variables). A ran-

dom variable X with E[X] = µ is called v-sub-exponential

if E[eλ(X−µ)] ≤ e
1

2
v2λ2

, ∀ |λ| < 1
v .

Finally, we need several standard concepts from convex

analysis regarding a differentiable function h(·) : Rd → R.

Definition 6 (Lipschitz). h is L-Lipschitz if

|h(w)− h(w′)| ≤ L‖w −w′‖2, ∀ w,w′.

Definition 7 (Smoothness). h is L′-smooth if

‖∇h(w)−∇h(w′)‖2 ≤ L′‖w −w′‖2, ∀ w,w′.

Definition 8 (Strong convexity). h is λ-strongly convex if

h(w′) ≥ h(w)+〈∇h(w),w′−w〉+ λ
2 ‖w′−w‖22, ∀w,w′.

4. Robust Distributed Gradient Descent

We describe two robust distributed gradient descent algo-

rithms, one based on coordinate-wise median and the other

on trimmed mean. These two algorithms are formally given

in Algorithm 1 as Option I and Option II, respectively, where

the symbol ∗ represents an arbitrary vector.

In each parallel iteration of the algorithms, the master ma-

chine broadcasts the current model parameter to all worker

machines. The normal worker machines compute the gradi-

ents of their local loss functions and then send the gradients

back to the master machine. The Byzantine machines may

send any messages of their choices. The master machine

then performs a gradient descent update on the model pa-

rameter with step-size η, using either the coordinate-wise

median or trimmed mean of the received gradients. The Eu-

clidean projection ΠW(·) ensures that the model parameter

stays in the parameter spaceW .

Below we provide statistical guarantees on the error rates of

these algorithms, and compare their performance. Through-

out we assume that each loss functions f(w; z) and the

population loss function F (w) are smooth:

Assumption 1 (Smoothness of f and F ). For any z ∈ Z ,

the partial derivative of f(·; z) with respect to the k-th

coordinate of its first argument, denoted by ∂kf(·; z), is

Lk-Lipschitz for each k ∈ [d], and the function f(·; z) is

L-smooth. Let L̂ := (
∑d

k=1 L
2
k)

1/2. Also assume that the

population loss function F (·) is LF -smooth.

It is easy to see hat LF ≤ L ≤ L̂. We note that L̂ appears

because we have coordinate-wise operations and the L̂ quan-

tity combines the smoothness parameter of all the d partial

derivatives. When the dimension of w is high, the quantity

L̂ may be large. However, we will soon see that L̂ only

appears in the logarithmic factors in our bounds and thus

does not have a significant impact.

Algorithm 1 Robust Distributed Gradient Descent

Require: Initialize parameter vector w0 ∈ W , algorithm

parameters β (for Option II), η and T .

for t = 0, 1, 2, . . . , T − 1 do

Master machine: send wt to all the worker machines.

for i ∈ [m] in parallel do

Worker machine i: compute local gradient

gi(wt)←
{
∇Fi(w

t) normal machines,

∗ Byzantine machines,

send gi(wt) to master machine.

end for

Master machine: compute aggregate gradient

g(wt)←
{
med{gi(wt) : i ∈ [m]} Option I

trmeanβ{gi(wt) : i ∈ [m]} Option II

update model parameter wt+1 ← ΠW(wt − ηg(wt)).
end for

In addition, when F (·) is convex, we assume that w∗, the

minimizer of F (·) inW , is also the minimizer of F (·) in

R
d. Formally, we have

Assumption 2 (minimizer in W). Suppose that F (w) is

convex, and let w∗ = argminw∈W F (w). We assume that

∇F (w∗) = 0.

4.1. Median-based Gradient Descent

We first consider our median-based algorithm, namely Al-

gorithm 1 with Option I. We impose the assumptions that

the gradient of the loss function f has bounded variance,

and each coordinate of the gradient has coordinate-wise

bounded absolute skewness:

Assumption 3 (Bounded variance of gradient).

For any w ∈ W , Var(∇f(w; z)) ≤ V 2.

Assumption 4 (Bounded skewness of gradient).

For any w ∈ W , ‖γ(∇f(w; z))‖∞ ≤ S.

These assumptions are satisfied in many learning problems

with small values of V 2 and S. Below we provide a concrete

example in terms of a linear regression problem.

Proposition 1. Suppose that each data point z = (x, y) ∈
R

d × R is generated by y = x⊤w∗ + ξ with some

w∗ ∈ W . Assume that the elements of x are inde-

pendent and uniformly distributed in {−1, 1}, and that

the noise ξ ∼ N (0, σ2) is independent of x. With the

quadratic loss function f(w;x, y) = 1
2 (y − xTw)2, we

have Var(∇f(w;x, y)) = (d− 1)‖w −w∗‖22 + dσ2, and

‖γ(∇f(w;x, y))‖∞ ≤ 480.

We prove Proposition 1 in Appendix A.1. In this example,

the upper bound V on Var(∇f(w;x, y)) depends on di-

mension d and the diameter of the parameter space, and if

the diameter is a constant, we have V = O(
√
d). Moreover,
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the gradient skewness is bounded by a universal constant S
regardless of the size of the parameter space.

We now state our main technical results on the median-based

algorithm, namely statistical error guarantees for strongly

convex, non-strongly convex, and smooth non-convex popu-

lation loss functions F .

Strongly Convex Losses: We first consider the case

where the population loss function F (·) is strongly con-

vex. Note that we do not require strong convexity of the

individual loss function f(·; z).
Theorem 1. Consider Option I in Algorithm 1. Suppose

that Assumptions 1, 2, 3, and 4 hold, F (·) is λF -strongly

convex, and the fraction α of Byzantine machines satisfies

α+

√
d log(1 + nmL̂D)

m(1− α)
+ 0.4748

S√
n
≤ 1

2
− ǫ (2)

for some ǫ > 0. Choose step-size η = 1/LF . Then, with

probability at least 1− 4d

(1+nmL̂D)d
, after T parallel itera-

tions, we have

‖wT −w∗‖2 ≤ (1− λF

LF + λF
)T ‖w0 −w∗‖2 +

2

λF
∆,

where

∆ := O
(
CǫV

( α√
n
+

√
d log(nmL̂D)

nm
+

S

n

))
, (3)

and Cǫ is defined as

Cǫ :=
√
2π exp

(1
2
(Φ−1(1− ǫ))2

)
, (4)

with Φ−1(·) being the inverse of the cumulative distribution

function of the standard Gaussian distribution Φ(·).
We prove Theorem 1 in Appendix B. In (3), we hide uni-

versal constants and a higher order term that scales as 1
nm ,

and the factor Cǫ is a function of ǫ; as a concrete exam-

ple, Cǫ ≈ 4 when ǫ = 1
6 . Theorem 1 together with the

inequality log(1− x) ≤ −x, guarantees that after running

T ≥ LF+λF

λF
log(λF

2∆‖w0 −w∗‖2) parallel iterations, with

high probability we can obtain a solution ŵ = wT with

error ‖ŵ −w∗‖2 ≤ 4
λF

∆.

Here we achieve an the error rate (defined as the dis-

tance between ŵ and the optimal solution w∗) of the

form Õ( α√
n
+ 1√

nm
+ 1

n ). In Section 6, we provide a

lower bound showing that the error rate of any algorithm is

Ω̃( α√
n
+ 1√

nm
). Therefore the first two terms in the upper

bound cannot be improved. The third term 1
n is due to the

dependence of median on the skewness of the gradients.

When each worker machine has a sufficient amount of data,

more specifically n & m, we achieve an order-optimal error

rate up to logarithmic factors.

Non-strongly Convex Losses: We next consider the case

where the population risk function F (·) is convex, but not

necessarily strongly convex. In this case, we need a mild

technical assumption on the size of the parameter spaceW .

Assumption 5 (Size ofW). The parameter spaceW con-

tains the following ℓ2 ball centered at w∗: {w ∈ R
d :

‖w −w∗‖2 ≤ 2‖w0 −w∗‖2}.

This assumption (and Assumption 6 below) ensures that the

iterates wt always stay inW without projection. Doing so

streamlines our analysis, as our main focus is on robustness.

We then have the following result on the convergence rate

in terms of the value of the population risk function.

Theorem 2. Consider Option I in Algorithm 1. Sup-

pose that Assumptions 1, 2, 3, 4 and 5 hold, and that

the population loss F (·) is convex, and α satisfies (2) for

some ǫ > 0. Define ∆ as in (3), and choose step-size

η = 1/LF . Then, with probability at least 1− 4d

(1+nmL̂D)d
,

after T = LF

∆ ‖w0 −w∗‖2 parallel iterations, we have

F (wT )− F (w∗) ≤ 16‖w0 −w∗‖2∆
(
1 +

1

2LF
∆
)
.

We prove Theorem 2 in Appendix C. We observe that the

error rate, defined as the excess risk F (wT )−F (w∗), again

has the form Õ
(

α√
n
+ 1√

nm
+ 1

n

)
.

Non-convex Losses: When F (·) is non-convex but

smooth, we need a somewhat different technical assumption

on the size ofW .

Assumption 6 (Size of W). Suppose that ∀ w ∈ W ,

‖∇F (w)‖2 ≤M . We assume thatW contains the ℓ2 ball

{w ∈ R
d : ‖w−w0‖2 ≤ 2

∆2 (M+∆)(F (w0)−F (w∗))},
where ∆ is defined as in (3).

We have the following guarantees on the rate of convergence

to a critical point of the population loss F (·).
Theorem 3. Consider Option I in Algorithm 1. Suppose

that Assumptions 1 3, 4 and 6 hold, and α satisfies (2) for

some ǫ > 0. Define ∆ as in (3), and choose step-size

η = 1/LF . With probability at least 1− 4d

(1+nmL̂D)d
, after

T = 2LF

∆2 (F (w0)− F (w∗)) parallel iterations, we have

min
t=0,1,...,T

‖∇F (wt)‖2 ≤
√
2∆.

We prove Theorem 3 in Appendix D. We again obtain an

Õ( α√
n
+ 1√

nm
+ 1

n ) error rate in terms of the gap to a critical

point of F (w).

4.2. Trimmed-mean-based Gradient Descent

We next analyze the robust distributed gradient descent al-

gorithm based on coordinate-wise trimmed mean, namely

Option II in Algorithm 1. Here we need stronger assump-

tions on the tail behavior of the partial derivatives of the loss

functions—in particular, sub-exponentiality.

Assumption 7 (Sub-exponential gradients). We assume that

for all k ∈ [d] and w ∈ W , the partial derivative of f(w; z)
with respect to the k-th coordinate of w, ∂kf(w; z), is v-

sub-exponential.
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The sub-exponential property implies that all the moments

of the derivatives are bounded. This is a stronger assumption

than the bounded absolute skewness (hence bounded third

moments) required by the median-based GD algorithm.

We use the same example as in Proposition 1 and show that

the derivatives of the loss are indeed sub-exponential.

Proposition 2. Consider the regression problem in Propo-

sition 1. For all k ∈ [d] and w ∈ W , the partial derivative

∂kf(w; z) is
√
σ2 + ‖w −w∗‖22-sub-exponential.

Proposition 2 is proved in Appendix A.3. We now proceed

to establish the statistical guarantees of the trimmed-mean-

based algorithm, for different loss function classes. When

the population loss F (·) is convex, we again assume that

the minimizer of F (·) inW is also its minimizer in R
d. The

next three theorems are analogues of Theorems 1–3 for the

median-based GD algorithm.

Strongly Convex Losses: We have the following result.

Theorem 4. Consider Option II in Algorithm 1. Suppose

that Assumptions 1, 2, and 7 hold, F (·) is λF -strongly con-

vex, and α ≤ β ≤ 1
2 − ǫ for some ǫ > 0. Choose step-size

η = 1/LF . Then, with probability at least 1− 4d

(1+nmL̂D)d
,

after T parallel iterations, we have

‖wT −w∗‖2 ≤
(
1− λF

LF + λF

)T

‖w0 −w∗‖2 +
2

λF
∆′,

where

∆′ := O
(vd

ǫ

( β√
n
+

1√
nm

)√
log(nmL̂D)

)
. (5)

We prove Theorem 4 in Appendix E. In (5), we hide uni-

versal constants and higher order terms that scale as β
n or

1
nm . By running T ≥ LF+λF

λF
log( λF

2∆′
‖w0 −w∗‖2) paral-

lel iterations, we can obtain a solution ŵ = wT satisfying

‖ŵ − w∗‖2 ≤ Õ( β√
n
+ 1√

nm
). Note that one needs to

choose the parameter for trimmed mean to satisfy β ≥ α. If

we set β = cα for some universal constant c ≥ 1, we can

achieve an order-optimal error rate Õ( α√
n
+ 1√

nm
).

Non-strongly Convex Losses: Again imposing Assump-

tion 5 on the size ofW , we have the following guarantee.

Theorem 5. Consider Option II in Algorithm 1. Suppose

that Assumptions 1, 2, 5 and 7 hold, F (·) is convex, and

α ≤ β ≤ 1
2 − ǫ for some ǫ > 0. Choose step-size η =

1/LF , and define ∆′ as in (5). Then, with probability at

least 1− 4d

(1+nmL̂D)d
, after T = LF

∆′
‖w0 −w∗‖2 parallel

iterations, we have

F (wT )− F (w∗) ≤ 16‖w0 −w∗‖2∆′
(
1 +

1

2LF
∆′

)
.

The proof of Theorem 5 is similar to that of Theorem 2,

and we refer readers to Remark 1 in Appendix E. Again, by

choosing β = cα (c ≥ 1), we obtain the Õ( α√
n
+ 1√

nm
)

error rate in the function value of F (w).

Non-convex Losses: In this case, imposing a version of

Assumption 6 on the size ofW , we have the following.

Theorem 6. Consider Option II in Algorithm 1, and de-

fine ∆′ as in (5). Suppose that Assumptions 1 and 7

hold, Assumption 6 holds with ∆ replaced by ∆′, and

α ≤ β ≤ 1
2 − ǫ for some ǫ > 0. Choose step-size

η = 1/LF . Then, with probability at least 1− 4d

(1+nmL̂D)d
,

after T = 2LF

∆′2 (F (w0) − F (w∗)) parallel iterations, we

have
min

t=0,1,...,T
‖∇F (wt)‖2 ≤

√
2∆′.

The proof of Theorem 6 is similar to that of Theorem 3; see

Remark 1 in Appendix E. By choosing β = cα with c ≥ 1,

we again achieve the statistical rate Õ( α√
n
+ 1√

nm
).

4.3. Comparisons

We compare the performance guarantees of the above two

robust distribute GD algorithms. The trimmed-mean-based

algorithm achieves the statistical error rate Õ( α√
n
+ 1√

nm
),

which is order-optimal for strongly convex loss. In com-

parison, the rate of the median-based algorithm is Õ( α√
n
+

1√
nm

+ 1
n ), which has an additional 1

n term and is only

optimal when n & m. In particular, the trimmed-mean-

based algorithm has better rates when each worker machine

has small local sample size—the rates are meaningful even

in the extreme case n = O(1). On the other hand, the

median-based algorithm requires milder tail/moment as-

sumptions on the loss derivatives (bounded skewness) than

its trimmed-mean counterpart (sub-exponentiality). Finally,

the trimmed-mean operation requires an additional param-

eter β, which can be any upper bound on the fraction α
of Byzantine machines in order to guarantee robustness.

Using an overly large β may lead to a looser bound and

sub-optimal performance. In contrast, median-based GD

does not require knowledge of α. We summarize these ob-

servations in Table 1. We see that the two algorithms are

complementary to each other, and our experiment results

corroborate this point.

median GD trimmed mean GD

Rate Õ( α√
n
+ 1√

nm
+ 1

n ) Õ( α√
n
+ 1√

nm
)

∂kf(w; z) Bounded skewness Sub-exponential

α known? No Yes

Table 1. Comparison between the two robust distributed gradient

descent algorithms.

5. Robust One-round Algorithm

As mentioned, in our distributed computing framework, the

communication cost is proportional to the number of parallel

iterations. The above two GD algorithms both require a

number iterations depending on the desired accuracy. Can

we further reduce the communication cost while keeping

the algorithm Byzantine-robust and statistically optimal?



Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates

A natural candidate is the so-called one-round algorithm.

Previous work has considered a standard one-round scheme

where each local machine computes the empirical risk

minimizer (ERM) using its local data and the master ma-

chine receives all workers’ ERMs and computes their av-

erage (Zhang et al., 2012). Clearly, a single Byzantine

machine can arbitrary skew the output of this algorithm. We

instead consider a Byzantine-robust one-round algorithm.

As detailed in Algorithm 2, we employ the coordinate-wise

median operation to aggregate all the ERMs.

Algorithm 2 Robust One-round Algorithm

for i ∈ [m] in parallel do

Worker machine i: compute & send to master machine:

ŵi ←
{
argminw∈W Fi(w) normal machines

∗ Byzantine machines

end for

Master machine: compute ŵ← med{ŵi : i ∈ [m]}.

Our main result is a characterization of the error rate of Al-

gorithm 2 in the presence of Byzantine failures. We are only

able to establish such a guarantee when the loss functions

are quadratic andW = R
d. However, one can implement

this algorithm in problems with other loss functions.

Definition 9 (Quadratic loss function). The loss function

f(w; z) is quadratic if it can be written as

f(w; z) =
1

2
wTHw + pTw + c,

where z = (H,p, c), H, and p, and c are drawn from the

distributions DH , Dp, and Dc, respectively.

Denote by HF , pF , and cF the expectations of H, p, and

c, respectively. Thus the population risk function takes the

form F (w) = 1
2w

THFw + pT
Fw + cF .

We need a technical assumption which guarantees that each

normal worker machine has unique ERM.

Assumption 8 (Strong convexity of Fi). With probability

1, the empirical risk minimization function Fi(·) on each

normal machine is strongly convex.

Note that this assumption is imposed on Fi(w), rather than

on the individual loss f(w; z) associated with a single data

point. This assumption is satisfied, for example, when all

f(·; z)’s are strongly convex, or in the linear regression

problems with the features x drawn from some continuous

distribution (e.g. isotropic Gaussian) and n ≥ d. We have

the following guarantee for the robust one-round algorithm.

Theorem 7. Suppose that ∀ z ∈ Z , the loss function f(·; z)
is convex and quadratic, F (·) is λF -strongly convex, and

Assumption 8 holds. Assume that α satisfies

α+

√
log(nmd)

2m(1− α)
+

C̃√
n
≤ 1

2
− ǫ

for some ǫ > 0, where C̃ is a quantity that depends on

DH , Dp, λF and is monotonically decreasing in n. Then,

with probability at least 1− 4
nm , the output ŵ of the robust

one-round algorithm satisfies

‖ŵ −w∗‖2 ≤
Cǫ√
n
σ̃
(
α+

√
log(nmd)

2m(1− α)
+

C̃√
n

)
,

where Cǫ is defined as in (4) and

σ̃2 := E
[
‖H−1

F

(
(H−HF )H

−1
F pF − (p− pF )

)
‖22
]
,

with H and p drawn from DH and Dp, respectively.

We prove Theorem 7 and provide an explicit expression

of C̃ in Appendix F. In terms of the dependence on α, n,

and m, the robust one-round algorithm achieves the same

error rate as the robust gradient descent algorithm based

on coordinate-wise median, i.e., Õ( α√
n
+ 1√

nm
+ 1

n ), for

quadratic problems. Again, this rate is optimal when n & m.

Therefore, at least for quadratic loss functions, the robust

one-round algorithm has similar theoretical performance

as the robust gradient descent algorithm with significantly

less communication cost. Our experiments show that the

one-round algorithm has good empirical performance for

other losses as well.

6. Lower Bound

In this section, we provide a lower bound on the error rate for

strongly convex losses, which implies that the α√
n
+ 1√

nm

term is unimprovable. This lower bound is derived using a

mean estimation problem, and is an extension of the lower

bounds in the robust mean estimation literature such as Chen

et al. (2015); Lai et al. (2016).

We consider the problem of estimating the mean µ of some

random variable z ∼ D, which is equivalent to solving the

following minimization problem:

µ = arg min
w∈W

Ez∼D[‖w − z‖22], (6)

Note that this is a special case of the general learning prob-

lem (1). We consider the same distributed setting as in

Section 4, with a minor technical difference regarding the

Byzantine machines. We assume that each of the m worker

machines is Byzantine with probability α, independently

of each other. The parameter α is therefore the expected

fraction of Byzantine machines. In this setting we have the

lower bound in Observation 1. In Appendix G, we also dis-

cuss how we can translate this average-case bound to a lower

bound holds under the setting of our main theorems, that

is, an unknown set of αm Byzantine machines are selected

without any assumption.

Observation 1. Consider the distributed mean estimation

problem in (6) with Byzantine failure probability α, and

suppose that Z is Gaussian distribution with mean µ and

covariance matrix σ2I (σ = O(1)). Then, any algorithm
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Figure 1. Test error vs the number of parallel iterations. For logistic

regression, we set m = 40, and for trimmed mean, we choose

β = 0.05; for CNN, we set m = 10, and for trimmed mean, we

choose β = 0.1.

that computes an estimation µ̂ of the mean from the data has

a constant probability of error ‖µ̂−µ‖2 = Ω( α√
n
+
√

d
nm ).

We prove Observation 1 in Appendix G. According to this

observation, we see that the α√
n
+ 1√

nm
dependence cannot

be avoided, which in turn implies the order-optimality of

the results in Theorem 1 (when n & m) and Theorem 4.

7. Experiments

We conduct experiments to show the effectiveness of the

median and trimmed mean operations. Our experiments

are implemented with Tensorflow (Abadi et al., 2016) on

Microsoft Azure system. We use the MNIST (LeCun et al.,

1998) dataset and randomly partition the 60,000 training

data into m subsamples with equal sizes. We use these

subsamples to represent the data on m machines.

In the first experiment, we compare the performance of

distributed gradient descent algorithms in the following 4
settings: 1) α = 0 (no Byzantine machines), using vanilla

distributed gradient descent (aggregating the gradients by

taking the mean), 2) α > 0, using vanilla distributed gradi-

ent descent, 3) α > 0, using median-based algorithm, and 4)

α > 0, using trimmed-mean-based algorithm. We generate

the Byzantine machines in the following way: we replace

every training label y on these machines with 9−y, e.g., 0 is

replaced with 9, 1 is replaced with 8, etc, and the Byzantine

machines simply compute gradients based on these data.

We also note that when generating the Byzantine machines,

we do not simply add extreme values in the features or gra-

dients; instead, the Byzantine machines send messages to

the master machine with moderate values.

We train a multi-class logistic regression model and a con-

volutional neural network (CNN) using distributed gradient

descent, and for each model, we compare the test accura-

cies in the aforementioned 4 settings. For the convolutional

neural network model, we use the stochastic version of the

distributed gradient descent algorithm; more specifically, in

every iteration, each worker machine computes the gradient

using 10% of its local data. We plot the test error as a func-

tion of the number of parallel iterations (i.e., communication

rounds) in Figure 1. The final test accuracies are presented

in Tables 2 and 3.

α 0 0.05

Algorithm mean mean median trimmed mean

Acc. (%) 88.0 76.8 87.2 86.9

Table 2. Test accuracy on the logistic regression model using gra-

dient descent. We set m = 40, and for trimmed mean, we choose

β = 0.05.

α 0 0.1

Algorithm mean mean median trimmed mean

Acc. (%) 94.3 77.3 87.4 90.7

Table 3. Test accuracy on CNN using gradient descent. We set

m = 10, and for trimmed mean, we choose β = 0.1.

As we can see, in the adversarial settings, the vanilla dis-

tributed gradient descent algorithm suffers from severe per-

formance loss, and using the median and trimmed mean

operations, we observe significant improvement in test ac-

curacy. This shows these two operations indeed have strong

ability in defense against Byzantine failures.

In the second experiment, we compare the performance of

distributed one-round algorithms in the following 3 settings:

1) α = 0, mean aggregation, 2) α > 0, mean aggregation,

and 3) α > 0, median aggregation. To show that our algo-

rithm is able to defend against different types of adversarial

behavior, we generate the Byzantine machines differently

from the first experiment—the training labels are i.i.d. uni-

formly sampled from {0, . . . , 9}, and these machines train

models using the faulty data. We choose the multi-class lo-

gistic regression model, and the test accuracies are presented

in Table 4.

α 0 0.1

Algorithm mean mean median

Acc. (%) 91.8 83.7 89.0

Table 4. Test accuracy on the logistic regression model using one-

round algorithm. We set m = 10.

As we can see, for the one-round algorithm, although the the-

oretical guarantee is only proved for quadratic loss, in prac-

tice, the median-based one-round algorithm still improves

the test accuracy in problems with other loss functions, such

as the logistic loss here.
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