
Byzantine Stochastic Gradient Descent

Dan Alistarh⇤

IST Austria
dan.alistarh@ist.ac.at

Zeyuan Allen-Zhu⇤

Microsoft Research AI
zeyuan@csail.mit.edu

Jerry Li⇤

Simons Institute
jerryzli@berkeley.edu

Abstract

This paper studies the problem of distributed stochastic optimization in an ad-
versarial setting where, out of m machines which allegedly compute stochastic
gradients every iteration, an ↵-fraction are Byzantine, and may behave adversari-
ally. Our main result is a variant of stochastic gradient descent (SGD) which finds

"-approximate minimizers of convex functions in T = eO
�

1
"2m

+ ↵
2

"2

�
iterations.

In contrast, traditional mini-batch SGD needs T = O
�

1
"2m

�
iterations, but cannot

tolerate Byzantine failures. Further, we provide a lower bound showing that, up
to logarithmic factors, our algorithm is information-theoretically optimal both in
terms of sample complexity and time complexity.

1 Introduction

Machine learning applications are becoming increasingly decentralized, either because data is nat-
urally distributed—in applications such as federated learning [17]—or because data is partitioned
across machines to parallelize computation, e.g. [2]. Fault-tolerance is a critical concern in such
distributed settings. Machines in a data center may crash, or fail in unpredictable ways; even worse,
in some settings one must be able to tolerate a fraction of adversarial/faulty workers, sending cor-
rupted or even malicious data. This Byzantine failure model—where a small fraction of bad workers
are allowed to behave arbitrarily—has a rich history in distributed computing [19]. By contrast, the
design of machine learning algorithms which are robust to such Byzantine failures is a relatively re-
cent topic, but is rapidly becoming a major research direction at the intersection of machine learning,
distributed computing, and security.

We measure algorithms in this setting against two fundamental criteria: sample complexity, which
requires high accuracy from few data samples, and computational complexity, i.e. preserving the
runtime speedups achieved by distributing computation. These criteria should hold even under ad-
versarial conditions. Another important consideration in the design of these algorithms is that they
should remain useful in high dimensions.

System Model. We study stochastic optimization in the Byzantine setting. We assume an unknown
distribution D over functions Rd ! R, and wish to minimize f(x) := Es⇠D[fs(x)].

We consider a standard setting with m workers and a master (coordinator), where an ↵-fraction of
the workers may be Byzantine, with ↵ < 1/2. Each worker has access to T sample functions from
the distribution D. We proceed in iterations, structured as follows: workers first perform some local
computation, then synchronously send information to the master, which compiles the information
and sends new information to the workers. At the end, the master should output an approximate
minimizer of the function f .

While our negative results will apply for this general setting, our algorithms will be expressed in
the standard framework of distributed stochastic gradient methods: in each iteration k, the master
broadcasts the current iterate xk 2 R

d to worker machines, and each worker is supposed to compute
a stochastic gradient at xk and return it to the master. A good worker returns returns rfs(xk) for a

∗Authors in alphabetical order. Full version can be found on https://arxiv.org/abs/1803.08917.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

mailto:dan.alistarh@ist.ac.at
mailto:zeyuan@csail.mit.edu
mailto:jerryzli@mit.edu
https://arxiv.org/abs/1803.08917

random sample s ⇠ D, but a Byzantine worker machine may adversarially return any vector. This
stochastic optimization framework is general and very well studied, and captures many important
problems such as regression, learning SVMs, logistic regression, and training deep neural networks.
Traditional methods such as mini-batch stochastic gradient descent (SGD) are vulnerable to even
a single Byzantine failure. Our results are presented in the master-worker distribution model, but
can be generalized to a coordinator-free distributed setting using standard techniques [12], assuming
authenticated point-to-point channels.

In this setting, sample complexity is measured as the number of functions fs(·) we accessed. Since
every machine gets one sample per iteration, minimizing sample complexity is equivalent to mini-
mizing the number of iterations. Time complexity is determined by the number of iterations.

Our Results. In this work, we study the convex formulation of this Byzantine stochastic optimiza-
tion problem: we assume f(x) is convex, although each of the functions fs(x) may not necessarily
be convex. We provide the first algorithms that, in the presence of Byzantine machines, guarantee
the following, up to logarithmic and lower-order terms:

(1) achieve optimal sample complexity,

(2) achieve optimal number of stochastic gradient computations,

(3) match the sample and time complexities of traditional SGD as ↵! 0, and

(4) achieve (1)-(3) even as the dimension grows, without losing additional dimension factors.

In addition, our algorithms are optimally-robust, supporting a fraction of ↵ < 1/2 Byzantine work-
ers. Despite significant recent interest, e.g. [6, 8, 13, 26, 27, 30, 31], to the best of our knowl-
edge, prior to our work there were no algorithms for stochastic optimization in high dimensions that
achieved any of the four objectives highlighted above. Previous algorithms either provided weak
robustness guarantees, or had sample or time complexities which degrade polynomially with the
dimension d or with the error ".

Technical Contribution. A direct way to deal with Byzantine workers is to perform a robust
aggregation step to compute gradients, such as median of means: for each (good) worker machine
i 2 [m], whenever a query point xk is provided by the master, the worker takes n stochastic gradient

samples and computes their average, which we call vi. If n = eΘ("�2), one can show that for each
good machine i, it holds that kvi �rf(xk)k " with high probability. Therefore, in each iteration
k, we can determine a vector vmed 2 {v1, . . . , vm} satisfying kvmed �rf(xk)k 2", and move in
the negative direction of vmed.

However, the above idea requires too many computations of stochastic gradients. In the non-strongly
convex setting, each worker machine needs to compute "�2 stochastic gradients per iteration, and
the overall number of iterations will be at least "�1. This is because, even when fs(x) = f(x) and
↵ = 0, gradient descent converges in "�1 iterations. This amounts to a sample complexity of linear
dependency in "�3.

We take a different approach. We run the algorithm for T iterations, where each machine i 2 [m]

only computes one stochastic gradient per iteration. Let v
(k)
i be the stochastic gradient allegedly

computed by machine i 2 [m] at iteration k 2 [T]. By martingale concentration, Bi := (v1i + · · ·+

v
(T)
i)/T should concentrate around B? := (rf(x1) + · · ·+rf(xT))/T for each good machine i,

up to an additive error 1p
T

. Hence, if kBi �B?k > 1/
p
T for machine i, we can safely declare that

i is Byzantine.

Two non-trivial technical obstacles remain. First, we cannot restart the algorithm every time we
discover a new Byzantine machine, since that would ruin its time complexity. Second, Byzantine
machines may successfully “disguise” themselves by not violating the above criterion.

To address the first issue, we keep track of the quantity

B
(k)
i :=

v1i + · · ·+ v
(k)
i

k

at each step k; if a machine strays away too much from B
(k)
? , it is labeled as Byzantine, and removed

from future consideration. We prove that restarts are not necessary. For the second problem, we

2

algorithm
sampled functions

per machine
total work

per-iteration
per-machine work

SGD (α = 0 only) (folklore) O
�
1

ε
+ 1

ε
2m

�
O
�
m
ε
+ 1

ε
2

�
1

ByzantineSGD (Theorem 3.2) eO
�
1

ε
+ 1

ε
2m

+ α
2

ε
2

� eO
�
m
ε
+ 1

ε
2 + α

2m

ε
2

�
1

GD (α = 0 only) (folklore) eO
�
1 + 1

ε
2m

� eO
�
m
ε
+ 1

ε
3

�
1 + eO

�
1

ε
2m

�

Median-GD (Yin et al. [31]) eO
�
1 + d

ε
2m

+ α
2

ε
2

� eO
�
m
ε
+ d

ε
3 + α

2m

ε
3

�
1 + eO

�
d

ε
2m

+ α
2

ε
2

�

folklore (c.f. [29, Theorem 11]) Ω
�

1

ε
2m

�
Ω
�

1

ε
2

�

this paper (Theorem 4.3) Ω
�

1

ε
2m

+ α
2

ε
2

�
Ω
�

1

ε
2 + α

2m

ε
2

�

 convex � σ-strongly convex �

SGD (α = 0 only) (folklore) O
�
1

σ
+ 1

σεm

�
O
�
m
σ
+ 1

σε

�
1

ByzantineSGD (Theorem 3.4) eO
�
1

σ
+ 1

σεm
+ α

2

σε

� eO
�
m
σ
+ 1

σε
+ α

2m
σε

�
1

GD (α = 0 only) (folklore) O
�
1 + 1

σεm

�
O
�
m
σ
+ 1

σ
2
ε

�
1 +O

�
1

σεm

�

Median-GD (Yin et al. [31]) eO
�
1 + d

σεm
+ α

2

σε

� eO
�
m
σ
+ d

σ
2
ε
+ α

2m

σ
2
ε

�
1 + eO

�
d

σεm
+ α

2

σε

�

folklore (c.f. [29, Appendix C.5]) Ω
�

1

σεm

�
Ω
�

1

σε

�

this paper (Theorem 4.4) Ω
�

1

σεm
+ α

2

σε

�
Ω
�

1

σε
+ α

2m
σε

�

Table 1: Comparison of Byzantine optimization for smooth convex minimization f(x) = Es∼D[fs(x)].
Remark 1. In this table, we have hidden parameters L (smoothness), V (variance), and D (diameter).
The goal is to achieve f(x)� f(x∗) ε, and σ is the strong convexity parameter of f(x).
Remark 2. “# sampled functions” is the number of fs(·) to sample for each machine.
Remark 3. “total/per-iteration work” is in terms of the # of stochastic gradient computations rfs(·).

construct a similar “safety” criterion, in terms of the sequence

A
(k)
i :=

hv(1)i , x1 � x0i+ · · ·+ hv(k)i , xk � x0i
k

.

We prove that good machines will satisfy both criteria; more importantly, any Byzantine machine
which satisfies both of them must have negligible negative influence in the algorithm’s convergence.

Related Work. The closest work to ours is the concurrent and independent work of Yin et al. [31].
They consider a similar Byzantine model, but for gradient descent (GD). In their algorithm, each of
the m machines receives n samples of functions upfront. In an iteration k, machine i allegedly com-
putes n stochastic gradients at point xk and averages them (the n stochastic gradients are taken with
respect to the n sampled functions stored on machine i). Then, their proposed algorithm aggregates
all the average vectors from the m machines, and performs a coordinate-wise median operation to
determine the descent direction. In contrast, our algorithm is a Byzantine variant of SGD: a total of
Tm functions are sampled and a total of Tm stochastic gradient computations are performed. To be
robust against Byzantine machines, they average stochastic gradients within a single iteration and
compare them across machines. In contrast, we average stochastic gradients (and other quantities)
across iterations.

Further, in terms of sample complexity (i.e., the number of functions fs(·) to be sampled), their
algorithm’s complexity is higher by a linear factor in the dimension d (see Table 1). This is in large
part due to their coordinate-wise median operation. In high dimensions, this leads to sub-optimal
statistical rates. In terms of total computational complexity, each iteration of Yin et al. [31] requires
a full pass over the (sampled) dataset. In contrast, an entire run of ByzantineSGD requires only one
pass. Finally, their algorithm works under a weaker set of assumptions than ours. They assumed that
the stochastic error in gradients (namely, rfs(x) � rf(x)) has bounded variance and skewness;
in contrast, we only assume that rfs(x) � rf(x) is bounded with probability 1. Our stronger
assumption (which is standard) turns out to simplify our algorithm and analysis. We leave it as
future work to extend ByzantineSGD to bounded skewness.

Yin et al. [31] also provided a lower bound in terms of sampling complexity — the number of
functions fs(·) needed to be sampled in the presence of Byzantine machines. When translated to

3

our language, the result is essentially the same as the strongly convex part of Theorem 4.4. The
results in this paper are the first to cover the case of non-strongly convex functions.

Byzantine Stochastic Optimization. There has been a lot of recent work on Byzantine stochastic
optimization, and in particular, SGD [6, 8, 13, 26, 27, 30]. One of the first references to consider
this setting is Feng et al. [13], which investigated distributed PCA and regression in the Byzantine
distributed model. Their general framework has each machine running a robust learning algorithm
locally, and aggregating results via a robust estimator. However, the algorithm requires careful
parametrization of the sample size at each machine to obtain good error bounds, which renders it
suboptimal with respect to sample complexity. Our work introduces new techniques which address
both these limitations. Su and Vaidya [26, 27] consider a similar setting: in Su and Vaidya [26]
they focus on the single-dimensional (d = 1) case, whereas Su and Vaidya [27] considers the multi-
dimensional setting, but only consider a restricted family of consensus-based algorithms.

Blanchard et al. [6] propose a general Byzantine-resilient gradient aggregation rule called Krum
for selecting a valid gradient update. This rule has local complexity O(m2(d + logm)), which
makes it relatively expensive to compute when the d and/or m are large. Moreover, in each iteration
the algorithm chooses a gradient corresponding to a constant number of correct workers, so the
scheme does not achieve speedup with respect to the number of distributed workers, which negates
an important benefit of distributed training. Xie et al. [30] consider gradient aggregation rules in a
generalized Byzantine setting where a subset of the messages sent between servers can be corrupted.

The complexity of their selection rule can be as low as eO(dm), but their approach is far from sample-
optimal. Chen et al. [8] leverage the geometric median of means idea in a novel way, which allows
it to be significantly more sample-efficient, and applicable for a wider range of parameters. At the
same time, their technique only applies in the strongly convex setting, and is suboptimal in terms of
convergence rate by a factor of

p
↵m.

Adversarial Noise. Optimization and learning in the presence of adversarial noise is a well-studied
problem [4, 5, 15, 20, 22, 28]. Recently, efficient algorithms for high dimensional optimization
which are tolerant to a small fraction of adversarial corruptions have been developed [1, 7, 11, 16,
24], building on new algorithms for high dimensional robust statistics [5, 7, 9, 18]. This setting is
different from ours. For instance, in their setting, there are statistical barriers so that no algorithm
can achieve an optimization error below some fixed threshold, no matter how many samples are
taken. In contrast, in the current Byzantine setting, the adversarial corruptions can only occur in a
fraction of the machines (as opposed to each machine having some adversarial corruptions). For this
reason, our results do not extend to their scenario.

2 Preliminaries

Throughout this paper, we denote by k · k the Euclidean norm and [n] := {1, 2, . . . , n}. We reit-
erate some definitions regarding strong convexity, smoothness, and Lipschitz continuity (for other
equivalent definitions, see Nesterov [21]).

Definition 2.1. For a differentiable function f : Rd ! R,

• f is �-strongly convex if 8x, y 2 R
d, it satisfies f(y) � f(x)+hrf(x), y�xi+ �

2 kx�yk2.

• f is L-Lipschitz smooth (or L-smooth for short) if 8x, y 2 R
d, krf(x) � rf(y)k

Lkx� yk.
• f is G-Lipschitz continuous if 8x 2 R

d, krf(x)k G.

Byzantine Convex Stochastic Optimization. We let m be number of worker machines and assume
at most an ↵ fraction of them are Byzantine for ↵ 2

⇥
0, 1

2

�
. We denote by good ✓ [m] the set of

good (i.e. non-Byzantine) machines. Obviously, the algorithm does not know good.

We let D be a distribution over (not necessarily convex) functions fs : Rd ! R. Our goal is to
approximately minimize the following objective:

min
x2Rd

�
f(x) := Es⇠D[fs(x)]

, (2.1)

where we assume f is convex. In each iteration k = 1, 2, . . . , T , the algorithm is allowed to specify
a point xk and query m machines. Each machine i 2 [m] gives back a vector rk,i 2 R

d satisfying

4

Assumption 2.2. For each iteration k 2 [T] and for every i 2 good, we have rk,i = rfs(xk) for
a random sample s ⇠ D, and krk,i �rf(xk)k V .

Remark 2.3. For each k 2 [T] and i 62 good, the vector rk,i can be adversarially chosen and may
depend on {rk0,i}k0k,i2[m]. In particular, the Byzantine machines can even collude in an iteration.

The next fact is completely classical (for projected mirror descent).

Fact 2.4. If xk+1 = argminy : ky�x1kD{ 1
2ky � xkk2 + ⌘h⇠, y � xki}, then 8u : ku� x1k D:

h⇠, xk � ui h⇠, xk � xk+1i �
kxk � xk+1k2

2⌘
+
kxk � uk2

2⌘
� kxk+1 � uk2

2⌘
.

3 Description and Analysis of ByzantineSGD

Without loss of generality, in this section we assume that we are given a starting point x1 2 R
d and

want to solve the following more general problem:2

min
kx�x1kD

�
f(x) := Es⇠D[fs(x)]

. (3.1)

We denote by x⇤ an arbitrary minimizer to Problem (3.1).

Our algorithm ByzantineSGD is formally stated in Algorithm 1. In each iteration at point
xk, ByzantineSGD tries to identify a set goodk of “candidate good” machines, and then per-
form stochastic gradient update only with respect to goodk ✓ [m], by using direction ⇠k :=
1
m

P
i2good

k

rk,i.

The way goodk is maintained is by constructing two “estimation sequences”. Namely, for each ma-

chine i 2 [m], we maintain a real value Ai =
Pk

t=1hrt,i, xt � x1i and a vector Bi =
Pk

t=1rt,i.
Then, we denote by Amed the median of {A1, . . . , Am} and Bmed some “vector median” of
{B1, . . . , Bm}. We also define rmed to be some “vector median” of {rk,1, . . . ,rk,m}. For in-
stance for {rk,1, . . . ,rk,m}, our vector median is defined as follows. We select rmed to be any

rk,i as long as
��{j 2 [m] : krk,j �rk,ik 2V}

�� > m/2. Such an index i 2 [m] can be efficiently

computed because our later lemmas shall ensure that at least (1 � ↵)m indices in [m] are valid
choices for i. Therefore, one can for instance guess a random index i and verify whether it is valid.
In expectation at most 2 guesses are needed, so finding these quantities can be done in linear time.

Starting from good0 = [m], we define goodk to be all the machines i from goodk�1 whose Ai is
TA-close to Amed, Bi is TB-close to Bmed, and rk,i is 4V-close to rmed. We will prove that if the
thresholds TA and TB are chosen appropriately, then goodk always contains all machines in good.

Bounding the Error. As we shall see, the “error” incurred by ByzantineSGD contains two parts:

Error1 :=
X

k2[T]

X

i2good
k

hrk,i �rf(xk), xk � x⇤i

and

Error2 :=
1

T

X

k2[T]

��� 1

m

X

i2good
k

�
rk,i �rf(xk)

����
2

.

Error1 is due to the bias created by the stochastic gradient (of good machines) and the adversarial
noise (of Byzantine machines); while Error2 is the variance of using ⇠k to approximate rf(xk).

As we shall see, Error2 is almost always “well bounded.” However, the adversarial noise incurred
in Error1 can sometimes destroy the convergence of SGD. We therefore use {Ai}i and {Bi}i to
perform a reasonable estimation of Error1, and remove the bad machines if they misbehave. Note
that even at the end of the algorithm, goodT may still contain some Byzantine machines; however,
their adversarial noise must be negligible and shall not impact the performance of the algorithm.

We have the following argument to establish bounds on the two error terms:

Lemma 3.1. With probability 1� �, we simultaneously have

��Error1
�� 4DV

p
TmC + 16↵mDV

p
TC and Error2 32↵2V2 +

4V2C

m
.

2This is so because even in unconstrained setting, classical SGD requires knowing an upper bound D to
kx1 � x∗k in order to choose the learning rate. We can thus add the constraint to the objective.

5

Algorithm 1 ByzantineSGD(⌘, x1, D, T,TA,TB)

Input: learning rate ⌘ > 0, starting point x1 2 R
d, diameter D > 0, number of iterations T ,

thresholds TA,TB > 0;
⇧ theory suggests TA = 4DV

p
T log(16mT/δ) and TB = 4V

p
T log(16mT/δ)

⇧ where δ is confidence parameter

1: good1 [m];
2: for k 1 to T do
3: for i 1 to m do
4: receive rk,i 2 R

d from machine i 2 [m]; ⇧ we have E[rk,i] = rf(xk) if i 2 good

5: Ai
Pk

t=1hrt,i, xt � x1i and Bi
Pk

t=1rt,i;
6: end for
7: Amed := median{A1, . . . , Am}
8: Bmed Bi where i 2 [m] is any machine s.t.

��{j 2 [m] : kBj �Bik TB}
�� > m/2.

⇧ all machines i 2 good will be valid choice, see Claim A.3b

9: rmed rk,i where i 2 [m] is any machine s.t.
��{j 2 [m] : krk,j �rk,ik 2V}

�� > m/2
⇧ all machines i 2 good will be valid choice due to Assumption 2.2

10: goodk
�
i 2 goodk�1 : |Ai�Amed| TA^kBi�Bmedk TB^krk,i�rmedk 4V

;

⇧ with high probability goodk ◆ good

11: xk+1 = argminy : ky�x1kD

n
1
2ky � xkk2 + ⌘

⌦
1
m

P
i2good

k

rk,i, y � xk

↵o
;

12: end for

The proof of this lemma will be in two parts: first, we define a set of determinstic conditions, and
show that these conditions hold with high probability. Then, we will demonstrate that assuming
these concentration results hold, the error will be bounded. The details of the proof are deferred to
the full version of this paper.

With this crucial lemma, we can now prove some rates for our algorithm.

Smooth functions. We first consider the setting where our objective is smooth, and prove:

Theorem 3.2. Suppose in Problem (3.1) our f(x) is L-smooth and Assumption 2.2 holds. Suppose

⌘ 1
2L and TA = 4DV

p
TC and TB = 4V

p
TC. Then, with probability at least 1 � �, letting

C := log(16mT/�) and x := x2+···+xT+1

T
, we have

f(x)� f(x⇤) D2

⌘T
+

8DV
p
TmC + 32↵mDV

p
TC

Tm
+ ⌘ ·

⇣8V2C

m
+ 32↵2V2

⌘
.

If ⌘ is chosen optimally, then

f(x)� f(x⇤) O
⇣LD2

T
+

DV
p
Cp

Tm
+

↵DV
p
Cp

T

⌘
.

We remark that

• The first term O
�
LD2

T

�
is the classical error rate for gradient descent on smooth objec-

tives [21] and should exist even if V = 0 (so every rk,i exactly equals rf(xk)) and
↵ = 0.

• The first two terms eO
�
LD2

T
+ DVp

Tm

�
together match the classical mini-batch error rate

for SGD on smooth objectives, and should exist even if ↵ = 0 (so we have no Byzantine
machines).

• The third term eO
�
↵DVp

T

�
is optimal in our Byzantine setting due to Theorem 4.3.

Proof of Theorem 3.2. Applying Fact 2.4 for k = 1, 2, . . . , T with u = x⇤, we have

1

T

X

k2[T]

h⇠k, xk � x⇤i D2

2⌘T
+

1

T

X

k2[T]

⇣
h⇠k, xk � xk+1i �

1

2⌘
kxk � xk+1k2

⌘

=
D2

2⌘T
+

1

T

X

k2[T]

⇣D 1

m

X

i2good
k

rk,i, xk � xk+1

E
� 1

2⌘
kxk � xk+1k2

⌘

(3.2)

6

We notice that the left hand side of (3.2)X

k2[T]

h⇠k, xk � x⇤i (3.3)

=
1

m

X

k2[T]

X

i2good
k

hrk, xk � x⇤i+ 1

m

X

k2[T]

X

i2good
k

hrk,i �rk, xk � x⇤i

¨

� 1

m

X

k2[T]

X

i2good
k

�
f(xk)� f(x⇤)

�
+

Error1

m

≠

� 1

m

X

k2[T]

X

i2good
k

�
f(xk+1)� f(x⇤)� hrk, xk+1 � xki �

L

2
kxk � xk+1k2

�
+

Error1

m
(3.4)

Above, inequality ¨ uses the convexity of f(·) and the definition of Error1, and inequality ≠ uses

the smoothness of f(·) which implies f(xk+1) f(xk)+ hrf(xk), xk+1�xki+ L
2 kxk�xk+1k2.

Putting (3.4) back to (3.2), we have

1

Tm

X

k2[T]

X

i2good
k

�
f(xk+1)� f(x⇤)

�

 D2

2⌘T
� Error1

Tm
+

1

T

X

k2[T]

⇣D 1

m

X

i2good
k

�
rk,i �rk

�
, xk � xk+1

E
�
� 1

2⌘
� L

2

�
kxk � xk+1k2

⌘

¨

 D2

2⌘T
� Error1

Tm
+

⌘

T

X

k2[T]

��� 1

m

X

i2good
k

�
rk,i �rk

����
2

=
D2

2⌘T
� Error1

Tm
+ ⌘Error2 . (3.5)

Above, inequality ¨ uses the fact that 1
2⌘ � L

2 � 1
4⌘ , and Young’s inequality which says ha, bi �

1
2kbk2 1

2kak2.

Finally, we conclude the proof by plugging Lemma 3.1 and the following convexity inequality into
(3.5):

1

Tm

X

k2[T]

X

i2good
k

�
f(xk+1)� f(x⇤)

�
=

1

T

X

k2[T]

|goodk|

m

�
f(xk)� f(x⇤)

�

� 1

T

X

k2[T]

1

2

�
f(xk)� f(x⇤)

�
� 1

2

�
f(x)� f(x⇤)

�
.

⇤

Nonsmooth Functions. We also derive a similarly tight result when the objective is not assumed
to be smooth. The proof is similar to the previous one and we defer it to the supplementary material.

Theorem 3.3. Suppose in Problem (3.1) our f(x) is differentiable, G-Lipschitz continuous and

Assumption 2.2 holds. Suppose ⌘ > 0 and TA = 4DV
p
TC and TB = 4V

p
TC. Then, with

probability at least 1� �, letting C := log(16mT/�) and x := x1+···+xT

T
, we have

f(x)� f(x⇤) D2

⌘T
+

2⌘G2

T
+

8DV
p
TmC + 32↵mDV

p
TC

Tm
+ ⌘ ·

⇣8V2C

m
+ 32↵2V2

⌘
.

If ⌘ is chosen optimally, then

f(x)� f(x⇤) O
⇣GDp

T
+

DV
p
Cp

Tm
+

↵DV
p
Cp

T

⌘
.

We remark that, as for Theorem 3.2, the first two terms are asymptotically tight for SGD in this
setting, and the last term is necessary in our Byzantine setting, as we show in Theorem 4.3.

Strongly convex functions. We now consider the problem3

min
x2Rd

�
f(x) := Es⇠D[fs(x)]

where f(x) is �-strongly convex. (3.6)

3To present the simplest result, we have assumed that Problem (3.6) is unconstrained. One can also impose
an addition constraint kx� x0k D but we refrain from doing so.

7

In this setting, we can obtain similarly optimal rates to those we obtained before, by reducing the
problem to repeatedly solving non-strongly convex ones, as in Hazan and Kale [14]. When the
function is additionally smooth, we obtain:

Theorem 3.4. Suppose in Problem (3.6) our f(x) is L-smooth and Assumption 2.2 holds. Given

x0 2 R
d with guarantee kx0 � x⇤k D, one can repeatedly apply ByzantineSGD to find a point

x satisfying with probability at least 1� �0, f(x)� f(x⇤) " and kx� x⇤k2 2"/� in

T = eO
⇣L
�
+

V2

m�"
+

↵2V2

�"

⌘

iterations, where the eO notation hides logarithmic factors in D,m,L,V,��1, "�1, ��1.

When the function is non-smooth, we instead obtain:

Theorem 3.5. Suppose in Problem (3.6) our f(x) is differentiable, G-Lipschitz continuous and

Assumption 2.2 holds. Given x0 2 R
d with guarantee kx0 � x⇤k D, one can repeatedly apply

ByzantineSGD to find a point x satisfying with probability at least 1 � �0, f(x) � f(x⇤) " and
kx� x⇤k2 2"/� in

T = eO
⇣G2

�"
+

V2

m�"
+

↵2V2

�"
+ 1

⌘

iterations, where the eO notation hides logarithmic factors in D,m,L,V,��1, "�1, ��1.

We defer the proofs to the supplementary material, but we remark that again in all of these equations,
our rates have three terms. Just as in the rates for non-strongly convex functions, the first two terms
are necessary even when there are no Byzantine workers, and the last term matches the lower bound
we give in Theorem 4.4 for Byzantine optimization.

4 Lower Bounds for Byzantine Stochastic Optimization

In this section, we prove that the convergence rates we obtain in Section 3 are optimal up to log
factors, even in d = 1 dimension. Recall a random vector X 2 R

d is subgaussian with variance
proxy V2 if uTX is a univariate subgaussian random variable with variance proxy V2 for all unit
vectors u 2 R

d. We require the following definition:

Definition 4.1 (Stochastic estimator). Given X ✓ R
d and f : X ! R, we say a random function

fs (with s drawn from some distribution D) is a stochastic estimator for f if E[fs(x)] = f(x) for
all x 2 X . Furthermore, we say fs is subgaussian with variance proxy V2 if rfs(x) �rf(x) is a
subgaussian random variable with variance proxy V2/d for all x 2 X .

Note that the normalization factor of 1/d in this definition ensures that E
⇥
krfs(x)�rf(x)k2

⇤

O(V2), which matches the normalization used in this paper and throughout the literature. However,
in our lower bound constructions it turns out that it suffices to take d = 1.

We prove our lower bounds only against subgaussian stochastic estimators. This is different from
our Assumption 2.2 used in the upper-bound theorems, where we assumed krfs(x)�rf(x)k V
is uniformly bounded for all x in the domain.

Remark 4.2. Such difference is negligible, because by concentration, if fs is a sample from a sub-

gaussian stochastic estimator with variance proxy V2, then krfs(x)�rf(x)k O
�
V
p
log(mT)

�

with overwhelming probability. As a result, this impacts our lower bounds only by a log(mT) factor.
For simplicity of exposition, we only state our theorems in subgaussian stochastic estimators.

Our result for non-strongly convex stochastic optimization is the following:

Theorem 4.3. For any D,V, " > 0 and ↵ 2 (0, 0.1), there exists a linear function f : [�D,D]!
R (of Lipscthiz continuity G = "/D) with a subgaussian stochastic estimator with variance proxy
V2 so that, given m machines, of which ↵m are Byzantine, and T samples from the stochastic
estimator per machine, no algorithm can output x so that f(x)� f(x⇤) < " with probability � 2/3

unless T = Ω

⇣
D2

V
2

"2m
+ ↵

2
V

2D2

"2

⌘
, where x⇤ = argminx2[�D,D] f(x).

Observe that up to log factors, this matches the upper bound in Theorem 3.3 exactly, demonstrating
that both are exactly tight. We get a similarly tight result for the strongly convex case:

8

Theorem 4.4. For any V,� > 0 and ↵ 2 (0, 0.1), there exists a �-strongly convex quadratic
function f : R! R with a subgaussian stochastic estimator of variance proxy V2 so that, given m
machines, of which ↵m are Byzantine, and T samples from the stochastic estimator per machine, no

algorithm can output x so that |x�x⇤| < b" with probability� 2/3 unless T = Ω

⇣
V

2

m�2b"2
+ ↵

2
V

2

�2b"2

⌘
,

where x⇤ = argminx2R f(x).

Since f(x) � f(x⇤) " = �b"
2

2 implies kx � x⇤k b" by the strong convexity of f , Theorem 4.4
also implies the following corollary for function value approximation:

Corollary 4.5. In the same setting as Theorem 4.4, no algorithm can output x so that f(x) �
f(x⇤) " with probability � 2/3 unless T = Ω

⇣
V

2

m�"
+ ↵

2
V

2

�"

⌘
.

Remark 4.6. The lower bound of Yin et al. [31] uses essentially the same construction as we do
in the proof of Theorem 4.4. However, in d dimensions, they use a subgaussian estimator for f
with variance proxy dV2 (so E

⇥
krfs(x)�rf(x)k2

⇤
 O(dV2)). As a result, their lower bound

appears to have an additional d factor in it. Once re-normalized to have variance proxy V2, the hard
instance in [31] yields exactly the same lower bound as our Theorem 4.4.

5 Conclusion

We have presented the first tight (up to logarithmic factors) sample and time complexity bounds for
distributed SGD in the Byzantine setting, by leveraging concentration bounds to obtain a new set
of detection criteria for malevolent machines. While this setting is arguably the most fundamen-
tal setting for Byzantine SGD, there remain a number of open questions to explore. For instance,
our methods require strong concentration of the gradients, strong enough to invoke Pinelis’ 1994
inequality. Is it possible to achieve similar results while assuming weaker assumptions on the gradi-
ents? Alternatively, is it possible that the problem provably becomes more difficult?

There are two additional interesting questions for future work. The first is to study Byzantine-
resilient variants of our protocol in a decentralized model, where there is no “correct” central coor-
dinator, which can safely aggregate gradients. A second important question is exploring practical
implementations of our algorithm. Our algorithm only requires adding simple, efficiently imple-
mentable checks to traditional mini-batch SGD. As a result, we believe that in practice, our algo-
rithm should add minimal overhead, while providing strong robustness guarantees against machine
failure, essentially “for free”. We leave such a real-world evaluation of our method to future work.

Finally, we believe that the general algorithmic framework developed in this paper may find further
applications to robust distributed estimation problems. Philosophically, our algorithm enforces con-
ditions on the malicious machines in an “online” fashion, as the data arrives in every iteration. This
is in contrast to previous approaches to Byzantine optimization such as [31] which instead enforce
similar conditions using “offline” techniques, i.e. by looking at the entire dataset. The main advan-
tage of our technique is that the per iteration time complexity is substantially faster, since we do not
need to inspect the entire dataset every time. It is an interesting question whether similar techniques
can yield fast distributed algorithms for other estimation problems.

Acknowledgement

We would like to thank Yuval Peres for suggesting reference [23]. Jerry Li is supported by NSF
CAREER Award CCF-1453261, CCF-1565235, a Google Faculty Research Award, and an NSF
Graduate Research Fellowship.

9

References

[1] Sivaraman Balakrishnan, Simon S Du, Jerry Li, and Aarti Singh. Computationally efficient
robust sparse estimation in high dimensions. In Conference on Learning Theory, pages 169–
212, 2017.

[2] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up machine learning: Parallel
and distributed approaches. Cambridge University Press, 2011.

[3] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization. Society
for Industrial and Applied Mathematics, January 2013. ISBN 978-0-89871-491-3. doi: 10.
1137/1.9780898718829.

[4] K. Bhatia, P. Jain, P. Kamalaruban, and P. Kar. Consistent robust regression. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, pages 2107–2116, 2017.

[5] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard thresholding. In
Advances in Neural Information Processing Systems, pages 721–729, 2015.

[6] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In NIPS, pages 118–128, 2017.

[7] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In
STOC, pages 47–60. ACM, 2017.

[8] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. arXiv preprint arXiv:1705.05491, 2017.

[9] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high dimensions without the computational intractability. In
FOCS, pages 655–664. IEEE, 2016.

[10] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robustly learning a gaussian: Getting optimal error, efficiently. In SODA, pages
2683–2702. SIAM, 2018.

[11] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt, and Alis-
tair Stewart. Sever: A robust meta-algorithm for stochastic optimization. arXiv preprint
arXiv:1803.02815, 2018.

[12] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 148–161. ACM, 1988.

[13] Jiashi Feng, Huan Xu, and Shie Mannor. Distributed robust learning. arXiv preprint
arXiv:1409.5937, 2014.

[14] Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: Optimal algorithms for
stochastic strongly-convex optimization. The Journal of Machine Learning Research, 15(1):
2489–2512, 2014.

[15] P. J. Huber and E. M. Ronchetti. Robust statistics. Wiley New York, 2009.

[16] Adam Klivans, Pravesh K. Kothari, and Raghu Meka. Efficient algorithms for outlier-robust
regression. arXiv preprint arXiv:1803.03241, 2018.

[17] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492, 2016.

[18] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance.
In FOCS, pages 665–674. IEEE, 2016.

[19] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[20] N. M. Nasrabadi, T. D. Tran, and N. Nguyen. Robust lasso with missing and grossly corrupted
observations. In Advances in Neural Information Processing Systems (NIPS), 2011.

[21] Yurii Nesterov. Introductory Lectures on Convex Programming Volume: A Basic course, vol-
ume I. Kluwer Academic Publishers, 2004. ISBN 1402075537.

[22] N. H. Nguyen and T. D. Tran. Exact recoverability from dense corrupted observations via
`1-minimization. IEEE Transactions on Information Theory, 59(4):2017–2035, 2013.

10

[23] Iosif Pinelis. Optimum bounds for the distributions of martingales in banach spaces. The
Annals of Probability, pages 1679–1706, 1994.

[24] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar. Robust
estimation via robust gradient estimation. arXiv preprint arXiv:1802.06485, 2018.

[25] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. In ICML, 2012.

[26] Lili Su and Nitin H Vaidya. Fault-tolerant multi-agent optimization: optimal iterative dis-
tributed algorithms. In PODC, pages 425–434. ACM, 2016.

[27] Lili Su and Nitin H Vaidya. Defending non-bayesian learning against adversarial attacks.
ISDC, 2016.

[28] J.W. Tukey. Mathematics and picturing of data. In Proceedings of ICM, volume 6, pages
523–531, 1975.

[29] Blake Woodworth and Nati Srebro. Tight Complexity Bounds for Optimizing Composite Ob-
jectives. In NIPS, 2016.

[30] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized Byzantine-tolerant SGD.
arXiv preprint arXiv:1802.10116, 2018.

[31] Dong Yin, Yudong Chen, Kanna Ramchandran, and Peter Bartlett. Byzantine-robust dis-
tributed learning: Towards optimal statistical rates. arXiv preprint arXiv:1803.01498, 2018.

11

