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C0-CHARACTERIZATION OF SYMPLECTIC AND CONTACT

EMBEDDINGS AND LAGRANGIAN RIGIDITY

STEFAN MÜLLER

Abstract. We present a novel C0-characterization of symplectic embeddings

and diffeomorphisms in terms of Lagrangian embeddings. Our approach is

based on the shape invariant, which was discovered by J.-C. Sikorav and

Y. Eliashberg, intersection theory and the displacement energy of Lagrangian

submanifolds, and the fact that non-Lagrangian submanifolds can be displaced

immediately. This characterization gives rise to a new proof of C0-rigidity of

symplectic embeddings and diffeomorphisms. The various manifestations of

Lagrangian rigidity that are used in our arguments come from J-holomorphic

curve methods. An advantage of our techniques is that they can be adapted

to a C0-characterization of contact embeddings and diffeomorphisms in terms

of coisotropic (or pre-Lagrangian) embeddings, which in turn leads to a proof

of C0-rigidity of contact embeddings and diffeomorphisms. We give a detailed

treatment of the shape invariants of symplectic and contact manifolds, and

demonstrate that shape is often a natural language in symplectic and contact

topology. We consider homeomorphisms that preserve shape, and propose

a hierarchy of notions of Lagrangian topological submanifold. Moreover, we

discuss shape related necessary and sufficient conditions for symplectic and

contact embeddings, and define a symplectic capacity from the shape.

1. Introduction and main results

Let (W,ω) be a symplectic manifold of dimension 2n. We assume for simplicity

but without loss of generality thatW is connected. One goal of the present paper is

to give a proof of the following characterization theorem for symplectic embeddings.

Denote by B2n
r the open ball of radius r > 0 (centered at the origin) in Euclidean

space R2n with its standard symplectic structure ω0 =
∑n

i=1 dxi ∧ dyi.

Theorem 1.1. An embedding ϕ : B2n
r →W is symplectic if and only if it preserves

the shape invariant.

See section 2 for the definition and for properties of the shape invariant that are

needed in the proof, and section 3 for the proof and for necessary results concerning

intersection and displacement of (non-)Lagrangian submanifolds. As corollaries, we

obtain the well-known C0-rigidity of symplectic embeddings and diffeomorphisms.
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Key words and phrases. Symplectic, contact, embedding, diffeomorphism, C0-characterization,

C0-rigidity, shape, Lagrangian, non-displaceable, displacement energy, non-constant holomorphic
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neighborhood theorem, convex surface, strictly contact, homeomorphism, topological Lagrangian,

symplectic capacity.

1

http://arxiv.org/abs/1607.03135v3


2 STEFAN MÜLLER

Corollary 1.2 ([3]). Let ϕk : B
2n
r → W be a sequence of symplectic embeddings

that converges uniformly on compact subsets to an embedding ϕ : B2n
r →W . Then

ϕ is symplectic, that is, ϕ∗ω = ω0.

Corollary 1.3 ([4, 5, 10]). The group Symp (W,ω) of symplectic diffeomorphisms is

closed in the group Diff (W ) of diffeomorphisms of W in the C0-topology. That is, if

ϕk : W →W is a sequence of symplectic diffeomorphisms that converges uniformly

on compact subsets to a diffeomorphism ϕ : W →W , then ϕ is symplectic.

All three results imply analogous versions for anti-symplectic and conformally

symplectic embeddings and diffeomorphisms on the one hand, and for embeddings

and diffeomorphisms that rescale or reverse the shape invariant on the other hand.

See the end of section 3 for precise statements and their proofs.

An advantage of our methods is that they adapt to contact embeddings and

diffeomorphisms. Let (M, ξ) be a contact manifold of dimension 2n − 1. We may

again assume for simplicity thatM is connected. Denote by B2n−1
r the open ball of

radius r > 0 (centered at the origin) in R2n−1 with its standard contact structure

ξ0 = kerα0, where α0 = dz −
∑n−1

i=1 yi dxi. See Remark 4.2 as well as section 8 for

important remarks concerning coorientation related to the following results.

Theorem 1.4. An embedding ϕ : B2n−1
r →M is contact if and only if it preserves

the (modified) shape invariant.

This theorem is another main objective of this paper. See sections 4 and 5 for

details concerning the shape invariants of contact manifolds, and section 6 for the

proof. In addition to J-holomorphic curve methods, much of the proof uses purely

contact topological arguments.

Corollary 1.5. Let ϕk : B
2n−1
r → M be a sequence of contact embeddings that

converges uniformly on compact subsets to an embedding ϕ : B2n−1
r → M . Then ϕ

is contact, that is, ϕ∗ξ0 = ξ.

Corollary 1.6 ([18]). The group Diff (M, ξ) of contact diffeomorphisms is closed

in the group Diff (M) of diffeomorphisms of M in the C0-topology. That is, if

ϕk : M →M is a sequence of contact diffeomorphisms that converges uniformly on

compact subsets to a diffeomorphism ϕ : M → M , then ϕ is contact, i.e. ϕ∗ξ = ξ.

If ξ is coorientable, then the group Diff+(M, ξ) of contact diffeomorphisms that in

addition preserve coorientation is also C0-closed in the group Diff (M).

The first known proof of Corollary 1.3 is due to Y. Eliashberg [4, 5], and uses

the analysis of wave fronts. Another proof is based on M. Gromov’s alternative and

his non-squeezing theorem [9, 10]. Later it was realized by I. Ekeland and H. Hofer

[3] that symplectic capacities can be used for a C0-characterization of symplectic

embeddings, which gives rise to a proof of Corollary 1.2 and thus of Corollary 1.3.

See any of the monographs [11, 13, 14] for a summary. It is also possible to give a

proof of Corollary 1.3 based on the transformation law in topological Hamiltonian

dynamics and uniqueness of the topological Hamiltonian isotopy that is associated

to a topological Hamiltonian function [17].
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Theorem 1.1 and Theorem 1.4 give rise to C0-characterizations of symplectic and

contact embeddings and diffeomorphisms in terms of Lagrangian and coisotropic

embeddings, respectively, via the shape invariants. Both theorems, as well as the

first corollary to Theorem 1.4, are new results. A proof of Corollary 1.6 using global

methods (via Gromov’s alternative) is given in the recent paper [18]. Another

version of C0-rigidity of contact diffeomorphisms (that also takes into account the

conformal factors of the diffeomorphisms) can be found in the article [19].

Another advantage of our approach via the shape invariant instead of capacities is

that it avoids the cumbersome distinction between symplectic and anti-symplectic.

Moreover, a proof of C0-rigidity via symplectic capacities cannot possibly work in

the contact setting, since the capacity of the symplectization of a contact manifold

is always infinite. See section 5 for details.

The paper is organized as follows. Section 2 introduces the shape invariants of

exact symplectic manifolds, and section 3 contains the proof of Theorem 1.1 and

its corollaries. Sections 5 and 6 are the corresponding sections in the contact case,

that is, on the contact shapes and on the proof of Theorem 1.4 and its corollaries,

respectively. Section 4 presents a detailed treatment of coisotropic submanifolds

(of maximal dimension), including existence and neighborhood theorems; these are

also called pre-Lagrangian submanifolds in the literature. Section 7 explains an

analogous characterization and rigidity of strictly contact embeddings and diffeo-

morphisms, and section 8 generalizes the shape invariants to non-exact symplectic

manifolds and contact manifolds that are not necessarily coorientable. Section 9

discusses identical shapes as a necessary and sometimes sufficient condition for the

existence of symplectic and contact embeddings, and section 10 is concerned with

homeomorphisms that preserve shape. In section 11 we propose several notions

of Lagrangian topological submanifold, and finally section 12 defines a symplectic

capacity that is built from (a special case of) the shape invariant.

2. The Sikorav-Eliashberg symplectic shape invariants

In this section we review the symplectic shape invariants defined and studied in

the papers [6] and [21, 22]. The properties of these invariants that are needed to

characterize symplectic embeddings in the next section are rather elementary, with

the exception of a theorem of J. C. Sikorav regarding the shapes of certain products

in the cotangent bundle of a torus. This last result is only needed to distinguish

symplectic from anti-symplectic and conformally symplectic embeddings.

Throughout this paper, let L be a closed and connected n-dimensional manifold.

Let (W,ω) be an exact symplectic manifold of dimension 2n, and λ be a primitive

of ω, i.e. a one-form so that dλ = ω. An embedding ι : L →֒W is called Lagrangian

if ι∗ω = 0. The cohomology class [ι∗λ] ∈ H1(L,R) is called its λ-period.

Definition 2.1 ([6]). Let τ : H1(W,R) → H1(L,R) be a homomorphism. The

(λ, L, τ)-shape of W is the subset I(W,λ, L, τ) of H1(L,R) that consists of all

points z ∈ H1(L,R) such that there exists a Lagrangian embedding ι : L →֒ W

with ι∗ = τ and z = [ι∗λ]. �
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Note that this set may be empty. (See Theorem 3.10 for an example.) The shape

invariant depends on the choice of primitive one-form λ with dλ = ω.

Lemma 2.2 ([6]). If λ′ = λ + θ is another choice of primitive one-form (that is,

dθ = 0), then I(W,λ′, L, τ) = I(W,λ, L, τ) + τ([θ]).

Proof. If ι is a Lagrangian embedding with ι∗ = τ : H1(W,R) → H1(L,R), then

[ι∗λ′] = [ι∗λ] + [ι∗θ] = [ι∗λ] + ι∗[θ] = [ι∗λ] + τ([θ]). �

That is, the shape as an invariant of the symplectic structure is only defined up to

translation (by an element of the image of the homomorphism τ) in H1(L,R). This

lemma is a first indication why it is necessary to fix the induced homomorphism

ι∗ = τ on the first cohomology groups. Additional profound consequences appear

later in the proofs of Lemma 2.15, Theorem 2.17, and Theorem 3.10.

Definition 2.3 ([6]). The (L, τ)-shape I(W,ω,L, τ) of W is defined to be the

shape I(W,λ, L, τ) for any choice of primitive one-form λ, defined up to translation.

We usually omit the symplectic structure ω from the notation when its choice is

understood, and write I(W,L, τ) for the shape invariant. �

Lemma 2.4. The shape I(W,L, τ) is an open subset of H1(L,R). More precisely,

the subset I(W,λ, L, τ) is open, where H1(L,R) carries the natural topology as a

finite dimensional real vector space, and this property is independent of the choice

of primitive one-form λ.

Proof. Let λ be a primitive one-form of ω, i.e. dλ = ω, and let ι : L →֒ W be

a Lagrangian embedding such that ι∗ = τ and [ι∗λ] = z ∈ H1(L,R). By the

Weinstein Lagrangian Neighborhood Theorem, a neighborhood V of the image

of ι can be identified with a neighborhood U of (the image of the) zero section

ι0 : L →֒ T ∗L via a symplectic diffeomorphism ϕ : U → V so that ϕ ◦ ι0 = ι, i.e.

ι corresponds to the zero section, and nearby Lagrangian embeddings correspond

to graphs of closed one-forms. This identification corresponds to a translation in

H1(L,R) by ι∗0([ϕ
∗λ− λcan]), which is equal to z since the λcan-period of ι is zero.

Here λcan denotes the canonical one-form on T ∗L. If σ : L → T ∗L is a closed one-

form, then ϕ ◦σ is a Lagrangian embedding with (ϕ ◦ σ)∗ = (ϕ ◦ ι0)
∗ = ι∗ = τ , and

[(ϕ ◦ σ)∗λ] = [σ∗((ϕ∗λ− λcan) + λcan)] = z + [σ∗λcan] = z + [σ]. �

Remark 2.5. A Lagrangian embedding ι is called exact if the (closed) one-form ι∗λ

is exact. If τ is an isomorphism, then any Lagrangian embedding ι with ι∗ = τ is

exact with respect to the proper choice of primitive of ω, namely λ′ = λ−τ−1([ι∗λ]).

More generally, there is a choice λ′ that makes ι exact if and only if [ι∗λ] lies in the

image of the homomorphism τ , independent of the initial choice of primitive λ. �

Remark 2.6. On the other hand, if τ = 0, then the shape is defined without any

freedom of translation. This is the case for instance when H1(W,R) = 0. When

(W,ω) = (R2n, ω0), the λ-period [ι∗λ] is also called the Liouville class [20] or the

symplectic area class [1]; it is independent of the choice of primitive λ of ω0. �
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Remark 2.7. An open subset of an exact symplectic manifold is again an exact

symplectic manifold. Moreover, every point in an arbitrary symplectic manifold

has a neighborhood on which the symplectic form is exact. Indeed, if a subset U of

a (not necessarily exact) symplectic manifold is diffeomorphic to an open ball, then

the restriction of the symplectic form to U is exact by the Poincaré Lemma. (By

making the set U smaller if necessary, one may also invoke Darboux’s Theorem.)

Therefore the restriction of ω to the image of the embedding ϕ in Theorem 1.1

and Corollary 1.2 is exact, and we may assume without loss of generality that the

symplectic manifold W itself is exact. In fact, since the statement is local, we

may assume that (W,ω) = (R2n, ω0). See section 8 for the definition of the shape

invariants of non-exact symplectic manifolds. Thus Theorem 1.1 and Corollary 1.2

make sense for arbitrary symplectic manifolds. �

In this paper, we are mostly interested in the situation in which L is an n-

dimensional torus T n = Rn/Zn, and W is an open subset either of (R2n, ω0) or

of the cotangent bundle T ∗T n = T n × Rn with its canonical symplectic structure

ωcan = dλcan, where λcan =
∑n

i=1 pi dqi, and where (q1, . . . , qn) and (p1, . . . , pn)

denote coordinates on the base T n = R
n/Zn and the fiber R

n, respectively. We

therefore often omit the manifold T n from the notation.

Definition 2.8. The (λ, τ)-shape of W is the subset I(W,λ, τ) = I(W,λ, T n, τ) of

H1(T n,R), and the τ -shape I(W, τ) = I(W,ω, τ) of W is the set I(W,λ, τ) for any

primitive one-form λ of ω, defined up to translation. �

Remark 2.9. We choose the cohomology classes [dq1], . . . , [dqn] as a basis of

H1(T n,R) to identify it with the fiber Rn of the fibration T ∗T n → T n. �

Example 2.10. Let W be a connected open subset of R2, ω0 be the standard

symplectic form on R
2, and λ be a one-form on R

2 with dλ = ω0. Then every

embedding ι : S1 →֒ W is Lagrangian, and [ι∗λ] ∈ R = H1(S1,R) is equal to ± the

area enclosed by the image of ι (with respect to the area form ω0 and the standard

identification of H1(S1,R) with R, and where the ± sign depends on whether the

orientation of the image of ι agrees with its orientation as the boundary of the

enclosed domain). Thus I(W, 0) = (−a, 0) ∪ (0, a) ⊂ R, where a is the area of W

(which may be infinite). As remarked above, this shape is independent of the choice

of primitive one-form λ (i.e. there is no freedom of translation).

Suppose that H1(W,R) is non-trivial, and let ι : S1 →֒W be an embedding that

represents a generator of H1(W,R). In other words, the complement of W has at

least one bounded component (which are all contractible since W is connected),

and the image of ι is homologous to a union of boundaries of such components.

Then I(W,λ, ι∗) = (a, a+ b) or (−a− b,−a) ⊂ R (since the orientation is fixed by

ι∗), where a ≥ 0 is the sum of the areas of the enclosed bounded components, and b

is the area ofW (possibly ∞). Since this shape is defined only up to translation (by

τ([θ]) = [ι∗θ], where θ is a closed one-form on W , which is not defined globally on

R2 if the vector τ([θ]) is non-zero), the only invariant is the length b of the interval,

i.e. the area of W or ∞ if W is unbounded. �
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Remark 2.11. By the preceding example, an embedding W1 → W2, where W1

and W2 are open and connected subset of R2, preserves shape (see Definition 2.27)

if and only if it is area preserving. Theorem 1.1 is a generalization to symplectic

embeddings in higher dimensions. �

Example 2.12. Let W be a non-contractible open and connected subset of the

cotangent bundle T ∗S1 = S1 × R, and τ = ι∗0, where ι0 is the inclusion of the

zero section. Again every circle embedding is Lagrangian (for dimension reasons).

Embeddings that represent elements of the same shape are all homologous. Choose

a representative cycle; this corresponds to the choice of a primitive one-form λ for

ωcan. If this choice is the zero section (corresponding to the choice λcan), then

[ι∗λcan] is the signed area enclosed by the image ι(S1) and the zero section. The

translation in H1(S1,R) induced by a different choice of primitive one-form λ is

the real number
∫
S1×0

λ obtained by integrating λ over the zero section (and [ι∗λ]

is the signed area between ι(S1) and some cycle that is homologous to the zero

section). The shape I(W, ι∗0) is an interval (a, b) (where a and b may be negative

and infinite), defined up to translation, and its length b − a gives the area of W

(possibly ∞) independently of the choice of primitive λ. The discussion of the

shape corresponding to other homomorphisms τ is analogous to (a combination of

the above with) the one in the previous example. �

Lemma 2.13. If W is any symplectic manifold and τ = 0, then the shape I(W, τ)

is non-empty. In fact, the vector z = (z1, . . . , zn) is contained in I(W, 0), provided

that its coordinates zi are all positive and sufficiently small.

Proof. By Darboux’s Theorem, the inclusion of a split torus S1(r1)× · · · × S1(rn)

into R2×· · ·×R2 = R2n gives rise to a Lagrangian embedding intoW , provided the

radii ri > 0 of the circles are sufficiently small. The λ-period [ι∗λ] of this embedding

is (πr21 , . . . , πr
2
n) ∈ R

n for any primitive one-form λ of ω (since τ = 0). �

Recall that GL(n,Z) denotes the group of unimodular matrices, i.e. the group of

matrices with integer coefficients and determinant equal to +1 or −1. In particular,

GL(1,Z) = {±1} (corresponding to orientation, cf. Example 2.10 above). Every

matrix A ∈ GL(n,Z) gives rise to a diffeomorphism A : T n → T n.

Proposition 2.14. If φ : L → L is a diffeomorphism, then the shape satisfies

I(W,λ, L, φ∗ ◦ τ) = φ∗(I(W,λ, L, τ)). In particular, I(W,λ,A ◦ τ) = A(I(W,λ, τ))

provided that A ∈ GL(n,Z).

Proof. Let ι : L →֒ W be a Lagrangian embedding with ι∗ = τ and [ι∗λ] = z.

Then ι ◦ φ : L →֒ W is again a Lagrangian embedding, with (ι ◦ φ)∗ = φ∗ ◦ τ and

[(ι ◦φ)∗λ] = φ∗(z). That proves the inclusion I(W,λ, L, φ∗ ◦ τ) ⊃ φ∗(I(W,λ, L, τ)).

Since φ is a diffeomorphism, the same argument applies to its inverse (with τ

replaced by φ∗ ◦ τ), and thus equality holds. The last part of the lemma is the

special case L = T n and φ = At. �

Recall that a vector z ∈ H1(L,R) is called rational if the image of H1(L,Z)

under the homomorphism z : H1(L,R) → R, σ 7→
∫
σ
z is a discrete subgroup, and

irrational otherwise.
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Lemma 2.15 (Viterbo [21]). If W is any symplectic manifold of dimension greater

than two, then I(W, 0) contains all irrational vectors z ∈ H1(T n,R) = Rn.

Proof. For a matrix A ∈ GL(n,Z), the pre-composition of a Lagrangian embedding

ι : T n →֒ W with the diffeomorphism At : T n → T n is again Lagrangian, and

[(ι◦At)∗λ] = A([ι∗λ]) (as in the previous lemma). By Lemma 2.13, I(W, 0) contains

all y whose coordinates are positive and sufficiently small. For every irrational

vector z there exists such a vector y and a matrix A ∈ GL(n,Z) so that Ay = z,

and the claim follows. �

On the other hand, the shape may not contain all rational vectors. This is the

case for instance if W is a subset of the (symplectic) cylinder B2
r × R2n−2 ⊂ R2n

by a theorem of Gromov and Sikorav [21, Theorem 1].

Theorem 2.16 ([21]). If z is rational and the positive generator γ of z(H1(L,Z))

satisfies γ ≥ πr2, then there exists no Lagrangian embedding ι : L →֒ B2
r × R2n−2

such that z = [ι∗λ]. In other words, z /∈ I(B2
r × R2n−2, ω0, L, 0).

Sketch of proof. In order to derive a contradiction, suppose that there exists such

a Lagrangian embedding ι : L →֒ B2
r × R2n−2 with z = [ι∗λ]. Then there exists a

(non-constant) holomorphic disk D with boundary on the image of L and area a

so that 0 < a < πr2. But a =
∫
D
ω0 =

∫
∂D

λ ∈ z(H1(L,Z)), and thus a ≥ γ. �

Denote by ιa : T
n = T n × a →֒ T n × Rn = T ∗T n the canonical embedding. It is

obviously Lagrangian with [ι∗aλcan] = a. It follows immediately from the definition

that for A ⊂ Rn open and connected, A ⊂ I(T n ×A, λcan, ι
∗
0). That equality holds

is a theorem of Sikorav [21], see also [6].

Theorem 2.17 ([6]). If A ⊂ Rn is open and connected, I(T n ×A, λcan, ι
∗
0) = A.

Remark 2.18. We only need this theorem here to distinguish symplectic from

anti-symplectic and conformally symplectic embeddings and diffeomorphisms. Its

proof is a simple consequence of Gromov’s Theorem on the intersection of the image

of an exact Lagrangian embedding into a cotangent bundle with the zero section.

We give the proof here to make it transparent to the reader why the homotopy class

of the Lagrangian embedding must be fixed, that is, ι∗ = ι∗0 in the definition of the

shape. We would like to remark that the only known proofs of Gromov’s Theorem

use J-holomorphic curve techniques [13, 14]. �

Proof. Let a = (a1, . . . , an) ∈ I(T n × A, λcan, ι
∗
0) ⊂ Rn. By definition, there exists

a Lagrangian embedding ι : T n →֒ T n × A such that ι∗ = ι∗0 (as a homomorphism

H1(T n×A,R) → H1(T n,R)) and [ι∗λcan] = a. The translation σ : (q, p) 7→ (q, p−a)

in the fiber is a symplectic diffeomorphism that interchanges the one-forms λcan
and λ = λcan −

∑n
i=1 ai dqi, and maps the section T n × a to the zero section of

T ∗T n. Since the difference λ−λcan is a closed one-form and ι∗ = ι∗0, the Lagrangian

embedding σ◦ ι : T n →֒ T n×Rn = T ∗T n is exact with respect to the canonical one-

form λcan. Thus by Gromov’s Theorem [9, 2.3.B4”], see also [13, Theorem 11.19]

or [14, Corollary 9.2.15], the image of σ ◦ ι intersects the zero section. Equivalently,

the image ι(T n) ⊂ T n ×A of ι must intersect T n × a, and hence a ∈ A. �
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Remark 2.19. In our application of Sikorav’s Theorem below, we may choose the

set A to be contractible (or more generally, to have trivial first and second homotopy

groups). In that case, the full force of Gromov’s Theorem is not required, and an

alternate and perhaps more elementary proof goes as follows. It is well-known that

Arnold’s conjecture holds if π2(T
n ×A, T n) = 0, see for instance [13, Section 11.3]

or [14, Theorem 9.2.14]. (The proof of Arnold’s conjecture in this case is due to

M. Chaperon.) Consider the long exact sequence

· · · → π2(T
n) → π2(T

n ×A) → π2(T
n ×A, T n) → π1(T

n)
ι∗→ π1(T

n ×A) → · · ·

of homotopy groups of the pair (T n×A, T n). Since T n×A deformation retracts onto

T n times a point, and π2(T
n) = 0, it suffices to show that ι∗ : π1(T

n) → π1(T
n×A)

is injective. But π1(T
n) ∼= H1(T

n,Z) ∼= H1(T n,Z) ∼= Zn, and by hypothesis

ι∗ : H1(T n × A,R) → H1(T n,R) is the identity, which implies that ι induces an

isomorphism π1(T
n) → π1(T

n ×A) of the fundamental groups. �

Proposition 2.20 ([6]). Let (W1, ω1) and (W2, ω2) be exact symplectic manifolds

of the same dimension, and let ϕ : W1 → W2 be a symplectic embedding. Then

I(W1, L, τ) ⊂ I(W2, L, τ ◦ ϕ∗) (up to translation). In fact, if dλ2 = ω2 and λ1 =

ϕ∗λ2, then I(W1, λ1, L, τ) ⊂ I(W2, λ2, L, τ ◦ϕ
∗). In particular, if ϕ is a symplectic

diffeomorphism, then I(W1, λ1, L, τ) = I(W2, λ2, L, τ ◦ ϕ
∗).

Proof. The statements follow immediately from the definitions by composing every

Lagrangian embedding into W1 with the symplectic embedding ϕ. �

Remark 2.21. In the special case (W1, ω1) = (T ∗L, dλcan) and τ = ι∗0, the previous

proposition gives rise to an alternate proof of Lemma 2.4 (choose ι and ϕ as in the

above proof of Lemma 2.4). �

The proposition implies that the shape is a symplectic invariant, and thus an

obstruction to symplectic embedding. Gromov’s proof of the existence of exotic

symplectic structures on R2n for instance can be restated in terms of the shape.

Recall that for W = R2n, the homomorphism τ is automatically trivial, and there

is no freedom of translation in the definition of the shape invariant.

Example 2.22 (Gromov [9]). I(R2n, ω0, 0) = Rn − {0}. Indeed, embedding split

tori (cf. the proof of Lemma 2.13) shows that every vector with positive coordinates

is contained in I(R2n, ω0, 0), and thus Rn−{0} ⊂ I(R2n, ω0, 0) by Proposition 2.14.

On the other hand, Gromov showed that there are no exact Lagrangian embeddings

into (R2n, ω0) [9, 2.3.B2], and thus equality holds above. Gromov also proved that

there exist so-called exotic symplectic structures ωex on R2n that do admit exact

Lagrangian embeddings [9, 2.3.B5]. In terms of the shape invariant, this means that

I(R2n, ωex, 0) contains the zero vector. The existence of a symplectic embedding

(R2n, ωex) → (R2n, ω0) would therefore contradict Proposition 2.20. �

Remark 2.23. Regarding the freedom of translation in the definition of the shape

invariant, a statement of the form I(W1, L, τ1) ⊂ I(W2, L, τ2), without explicit

choices of primitive one-forms, will always mean that the inclusion holds up to

translation, and likewise for equality. More precisely, it means that (for every choice
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of primitive one-form λ2 of the symplectic form ω2) there exists a (corresponding)

primitive one-form λ1 of ω1 so that inclusion holds, provided that the shape is

computed with respect to these specific one-form(s).

On the other hand, the shape with respect to a specific primitive one-form λ

(Definition 2.1) is defined as a genuine subset ofH1(L,R) (not up to translation), so

a statement of the form I(W1, λ1, L, τ1) ⊂ I(W2, λ2, L, τ2) means genuine inclusion,

and likewise for equality. �

Remark 2.24. Combining Proposition 2.20 with Lemma 2.2, we see that if there

exists a symplectic embedding ϕ : W1 →W2, then I(W1, λ1, L, τ)+ b is a (genuine)

subset of I(W2, λ2, L, τ ◦ ϕ∗), where b = τ([ϕ∗λ2 − λ1]). If W1 ⊂ W2 and ϕ is

isotopic to the identity, then τ ◦ ϕ∗ = τ , and if in addition ϕ is Hamiltonian, then

the translation vector b = 0. �

The following properties of the symplectic shape invariant are not mentioned in

[6], but follow almost directly from the definition, with the exception that Sikorav’s

Theorem is applied to prove Proposition 2.29.

Remark 2.25. More precisely, the proof calls for an explicit computation of the

shape of some subset of a given manifold. We only need the fact that there exists

a subset U ⊂ W , an n-dimensional manifold L, and a homomorphism τ , such

that the shape I(U,L, τ) is not symmetric about the zero vector and not rescaling

invariant (up to translation). At present, Sikorav’s Theorem is the only known

explicit computation of the shape of an open subset of a symplectic manifold of

dimension greater than two. (There is a generalization of Sikorav’s Theorem to

arbitrary cotangent bundles T ∗L, see section 9, but the statement is most natural

for tori since they are parallelizable.) �

Lemma 2.26. Let V ⊂ W be an open subset. Then for any sufficiently small

numbers ai > 0 and any sufficiently small open and connected neighborhood A of

a = (a1, . . . , an) in Rn, there exists a subset U ⊂ V and a Lagrangian embedding

ι : T n →֒ U , such that I(U, ι∗) = A.

Proof. The existence of the Lagrangian embedding ι follows directly from Darboux’s

Theorem. By Weinstein’s Lagrangian Neighborhood Theorem, we may identify a

neighborhood of ι(T n) in V with a neighborhood of the zero section in the cotangent

bundle T ∗T n, which contains U = T n × A provided that the numbers ai > 0 and

the neighborhood A are sufficiently small. After replacing ι with ιa for some a ∈ A,

the claim follows from Theorem 2.17. �

Definition 2.27. Let (W1, ω1) and (W2, ω2) be exact symplectic manifolds of the

same dimension. We say that an embedding ϕ : W1 → W2 preserves the shape

invariants (or for short, preserves the shape) of two open subsets U ⊂ W1 and

V ⊂W2 such that U ⊂W1 is compact and ϕ(U ) ⊂ V if I(U,L, τ) ⊂ I(V, L, τ ◦ϕ∗)

for every closed and connected n-dimensional manifold L and every homomorphism

τ : H1(U,R) → H1(L,R). An embedding is said to preserve shape if it preserves

the shape of all open subsets U ⊂W1 and V ⊂W2 as above. �
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Remark 2.28. By Proposition 2.20, symplectic embeddings preserve the shape

invariant. In fact, symplectic embeddings preserve the shape of subsets without

the compactness assumption. However, our definition has the advantage that it is

preserved by uniform limits, see Proposition 2.32 below. The restriction of a shape

preserving embedding to an open subset by definition again preserves shape, and

symplectic is a pointwise condition. Then by virtue of Theorem 1.1, every shape

preserving embedding is symplectic, and thus a fortiori preserves the shape of all

subsets regardless of whether the closures of the domains are compact or not. A

discussion of this relationship in dimension two appeared in Example 2.10. Thus

shape preserving is a generalization to higher dimensions of area preserving that also

makes sense for homeomorphisms. This last remark is elaborated in section 10. �

Proposition 2.29. Let (W1, ω1) and (W2, ω2) be exact symplectic manifolds of the

same dimension, and ϕ : W1 → W2 be a conformally symplectic embedding, i.e.

ϕ∗ω2 = c ω1 for a constant c 6= 0. Then ϕ preserves shape if and only if c = 1.

Proof. That symplectic embeddings preserve shape is Proposition 2.20. The proof

of the converse follows along the same lines, with the exception that ϕ rescales the

shape of every subset by the factor |c|, and reflects it about the zero vector if c < 0,

with translation vector b = τ([ϕ∗λ2 − λ1]). By Lemma 2.26, for any sufficiently

small numbers ai > 0 and any sufficiently small open and connected neighborhood

A of a = (a1, . . . , an) in Rn, there exists a subset U ⊂ W1 and a homomorphism

τ such that I(U, τ) = A. Choosing A to be a subset of Rn that is not symmetric

about the origin (up to the above translation) shows that c > 0, and taking A so

that it is not rescaling invariant (e.g. a sufficiently small ball so that the position

vector of its center is not parallel to b) implies that c = 1. �

Remark 2.30. By the proposition, in contrast to symplectic capacities, the shape

invariant is able to distinguish between symplectic and anti-symplectic embeddings.

The underlying key to this fact is that while the diffeomorphism q 7→ −q of the

torus causes a reflection of the shape about the origin in Rn, it also reverses the sign

of the homomorphism τ , that is, I(W, τ) = −I(W,−τ) (cf. Proposition 2.14). �

Remark 2.31. It is crucial to note that the definition requires an embedding ϕ

to preserve the shape of open subsets of its domain and not just the shape of the

domain itself, and likewise for open subsets of its target. In the case n = 1, this

amounts to the difference between being area preserving and merely preserving

total area (Example 2.10). In general, the induced homomorphism ι∗ on the first

cohomology groups, and therefore also the subgroup of possible translations of the

shape, both depend on these choices. As seen above, a small tubular neighborhood

N of a (small) Lagrangian torus contains a lot of useful information. On the other

hand, in a contractible Darboux neighborhood U , the induced homomorphism ι∗ is

trivial, and the shape I(U, ι∗) contains too many λ-periods of embedded Lagrangian

tori L with π2(N,L) 6= 0, see Lemmas 2.13 and 2.15. In practice, U will often be a

tubular neighborhood of the image L of an embedded Lagrangian torus in W1, V

will be a tubular neighborhood of ϕ(L) in W2, and ι
∗ will be an isomorphism (in

fact, the identity with respect to the usual identifications). �
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One of the key ingredients in the proof of Corollary 1.2 is the following continuity

property of the shape invariants.

Proposition 2.32. Let (W1, ω1) and (W2, ω2) be exact symplectic manifolds of the

same dimension. Suppose that ϕk : W1 → W2 is a sequence of embeddings that

converges uniformly on compact subsets to an embedding ϕ : W1 → W2, and that

ϕk preserves the shape invariants for every k. Then ϕ preserves shape.

Proof. Let U ⊂W1 and V ⊂W2 be open subsets such that U ⊂W1 is compact and

ϕ(U) ⊂ V . Since ϕk converges to ϕ uniformly on compact subsets, the image ϕk(U)

is contained in V for k sufficiently large. By hypothesis, I(U,L, τ) ⊂ I(V, L, τ ◦ϕ∗

k),

and the latter equals I(V, L, τ ◦ϕ∗) for large k, since then ϕk is homotopic (in fact,

isotopic) to ϕ. �

Remark 2.33. There are other meaningful shape invariants one can define by

further restricting the homotopy type of the Lagrangian embeddings that contribute

to the shape. It is sometimes useful to consider only Lagrangian embeddings that

induce prescribed homomorphisms on the first and second homotopy groups, or are

(weakly) homotopic to a given map, cf. Remark 3.11 and Section 11 below. All of

the results in this paper continue to hold for such shape invariants, provided only

that the additional assumptions on the Lagrangian embedding depend only on its

homotopy type (see for instance the proofs of Theorem 2.17, Proposition 2.20, and

Proposition 2.32 in this section). The shape in Definition 2.3 we are working with in

this paper is sufficient for our purposes, and in order to streamline the exposition

of this paper as much as possible, we do not formally define these other shape

invariants or restate the corresponding results in this more general context. �

3. C0-characterization of symplectic embeddings

In this section we give proofs of the results concerning symplectic embeddings

and diffeomorphisms that are stated in section 1.

Remark 3.1. For most of this section, we need to assume that dimW > 2; this

dimensional restriction is due to the fact that in dimension two there are “too

many” Lagrangian submanifolds (namely, every one-dimensional submanifold is

automatically Lagrangian). If dimW = 2, then a symplectic form is just an area

form, and an embedding is symplectic if and only if it is area preserving. Thus in

dimension two Theorem 1.1 holds by Example 2.10 (use Darboux’s Theorem as in

the proof given below for higher dimensions). Corollaries 1.2 and 1.3 are well-known

(and easy to prove) for surfaces. �

An n-dimensional submanifold L of W is Lagrangian if the restriction ω|L = 0;

the image of a Lagrangian embedding is of course a Lagrangian submanifold. A

proof of Theorem 1.1 cannot possibly work without the next lemma. It says in

essence that by Darboux’s Theorem, Lagrangian submanifolds (in fact, embeddings)

are abundant enough to distinguish (conformally) symplectic embeddings. The

proof uses nothing other than symplectic linear algebra.
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Lemma 3.2. Let (W1, ω1) and (W2, ω2) be two symplectic manifolds of the same

dimension. An embedding ϕ : W1 → W2 is conformally symplectic if and only if

it preserves Lagrangian submanifolds. The latter means that the image ϕ(L) is a

Lagrangian submanifold whenever L is Lagrangian. The same statement holds if

one restricts to embedded Lagrangian tori that are contained in elements of any

given open cover of W1.

Proof. The fact that a conformally symplectic embedding preserves Lagrangian

submanifolds is obvious; we will prove the converse.

Let x ∈ W . By Darboux’s Theorem, we may assume that x is the origin in R2n,

and that ω1 = ω0 =
∑n

i=1 dxi ∧ dyi. In these local coordinates,

ϕ∗ω2 =

n∑

i,j=1

(fij dxi ∧ dxj + gij dxi ∧ dyj + hij dyi ∧ dyj) .

Any two vectors v1 and v2 that lie in an isotropic subspace of R2n can be extended

to a basis {v1, . . . , vn} of a Lagrangian subspace, which in turn can be extended to

a symplectic basis {v1, . . . , vn, w1, . . . , wn} of R2n. Let Si be a circle in the linear

(symplectic) subspace spanned by vi and wi that is tangent to vi at the origin.

Then the product S1 × . . . × Sn is an embedded Lagrangian torus. If v1 = ∂/∂xi
and v2 = ∂/∂xj , then by hypothesis

0 = ω2 (dϕ(v1), dϕ(v2)) = ϕ∗ω2 (v1, v2) = fij(0),

i.e. the smooth function fij vanishes at the origin. Similarly, with v1 = ∂/∂xi
and v2 = ∂/∂yj, we obtain gij(0) = 0 for i 6= j, and the choice v1 = ∂/∂yi
and v2 = ∂/∂yj yields hij(0) = 0. Moreover, if we let v1 = ∂/∂xi + ∂/∂xj and

v2 = ∂/∂yi − ∂/∂yj, we see that gii(0) = gjj(0).

Since x ∈W was arbitrary, we have proved that ϕ∗ω = g ω for a smooth function

g on W . Since ϕ∗ω is closed and dimW1 > 2, the function g must be constant. �

From the above proof of the lemma, we see that in one direction the following

stronger statement holds. An n-dimensional submanifold L is non-Lagrangian if at

least one tangent space TxL is not a Lagrangian subspace of TxM .

Lemma 3.3. Let (W1, ω1) and (W2, ω2) be two symplectic manifolds of the same

dimension. Suppose that ϕ : W1 → W2 is an embedding that is not conformally

symplectic at a point x ∈W1, and let U be a neighborhood of x. Then there exists a

Lagrangian embedding ι : T n →֒W1 through x whose image L is contained in U , and

so that ϕ(L) is non-Lagrangian (at the point ϕ(x)). If λ is a one-form on W1 with

dλ = ω1, and a = (a1, . . . , an) ∈ H1(T n,R) = R
n with ai > 0 sufficiently small,

then we may in addition assume that [ι∗λ] = a. In particular, we may assume that

ι is a rational Lagrangian embedding.

Remark 3.4. A similar argument applies to two symplectic structures on the same

smooth manifold. That is, two symplectic structures ω and ω′ on a smooth manifold

W are conformally equivalent, i.e. there exists a (necessarily non-zero) constant c

such that ω′ = c ω, if and only if every Lagrangian submanifold with respect to ω

is also a Lagrangian submanifold with respect to ω′. The same statement holds if
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one restricts to embedded Lagrangian tori that are contained in elements of any

given open cover ofW . The proof is essentially the same as the one for Lemma 3.2,

and thus is omitted. It is also a direct consequence of Lemma 3.2 by considering

overlapping Darboux coordinate charts of the two symplectic forms. �

To complete the proof of Theorem 1.1, we need a result of F. Laudenbach and

Sikorav on immediate displacement of non-Lagrangian submanifolds [12]. It is

needed in the proof of Theorem 1.1 only for embeddings of half-dimensional tori.

Theorem 3.5 ([12]). Let (W,ω) be a symplectic manifold of dimension 2n, and

L be a closed and connected submanifold of dimension n. Assume that L is non-

Lagrangian, and that the normal bundle of L in W has a non-vanishing section.

Then there exists a Hamiltonian vector field XF on W that is nowhere tangent to

L. In particular, L can be disjoined from itself by a Hamiltonian diffeomorphism.

For later reference in section 6, we provide a brief sketch of the proof.

Sketch of proof. Denote by E = TL⊥ the symplectic orthogonal complement of

TL, which is isomorphic to the normal bundle of L in W . By hypothesis, the n-

dimensional bundle E thus has a non-vanishing section. Laudenbach and Sikorav

modify such a given section to a non-vanishing section X of E such that there

exists a neighborhood of L without compact subset that is invariant by the flow of

X . The latter is equivalent to the existence of a smooth function F defined near

L such that dF (X) > 0. Of course dF (X) = ω(XF , X), so that its non-vanishing

combined with the fact that X is a section of E = TL⊥ implies that XF is nowhere

tangent to L. We refer to the short paper [12] for details. �

Remark 3.6 ([12]). The conclusion of the preceding theorem is actually quite a bit

stronger than just the fact that the submanifold L can be displaced from itself by

a Hamiltonian diffeomorphism. If U and V are arbitrary neighborhoods of L with

U ⊂ V , η is a cut-off function with η = 1 on U that vanishes outside V , and ǫ > 0,

then the Hamiltonian vector field of the function ǫηF is also nowhere tangent to L.

That is, the manifold L can be displaced from itself by a C∞-small Hamiltonian

isotopy with support in an arbitrarily small neighborhood of L. In particular, the

displacement energy of L is zero. It follows from compactness of L that given such

a Hamiltonian isotopy, a sufficiently small neighborhood of L is also displaced from

itself by the same Hamiltonian isotopy. �

As a consequence, Laudenbach and Sikorav prove the following rigidity theorem

for (embedded) Lagrangian submanifolds.

Theorem 3.7 ([12]). An (embedded) closed n-dimensional submanifold of (R2n, ω0)

that is the uniform limit of (embedded) Lagrangian submanifolds is itself Lagrangian.

Remark 3.8. The preceding theorem is already enough to prove Corollary 1.2: by

shrinking the domain of ϕ if necessary, we may assume that its image is contained

in a Darboux chart in W . If L is a Lagrangian submanifold of B2n
r and ϕk is a

sequence of symplectic embeddings that converges uniformly on compact subsets to
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ϕ, then ϕ(L) is Lagrangian by Theorem 3.7. Then by Lemma 3.2, the embedding

ϕ is conformally symplectic, and since it must be volume preserving, ϕ is either

symplectic or anti-symplectic. A standard argument using orientation if n is odd or

increasing dimension by 1 shows that ϕ must be symplectic [13, Section 12.2]. �

We choose to follow a different argument that proves Corollary 1.2 as a genuine

corollary to Theorem 1.1, since the latter also gives rise to a C0-characterization

of symplectic embeddings and diffeomorphisms. In addition, the present approach

avoids the cumbersome argument needed above to distinguish between symplectic

and anti-symplectic and conformally symplectic embeddings. Since it will be needed

shortly, we again provide a brief sketch of the proof of the theorem.

Remark 3.9. Unless explicitly stated otherwise, a tubular neighborhood N of a

submanifold L shall mean a tubular neighborhood (with respect to a fixed auxiliary

Riemannian metric) that is open and deformation retracts onto L. The specific

choice of Riemannian metric is unimportant. A compact tubular neighborhood is

a compact subset whose interior is an open tubular neighborhood N as above. �

Sketch of proof of Theorem 3.7. Let ιk : L →֒ R2n be a sequence of Lagrangian

embeddings that converges uniformly to an embedding ι : L →֒ R2n, and suppose

that the latter is non-Lagrangian. For notational convenience, we identify L with

the image ι(L) in R2n. We may assume without loss of generality that the normal

bundle of L in R2n has a non-vanishing section (we only need the argument in the

case L = T n; see [12] for the general argument). Let Nǫ be a tubular neighborhood

of L in R2n and XF be a Hamiltonian vector field defined on a neighborhood of

Nǫ, so that its Hamiltonian flow displaces Nǫ and ‖F‖ < ǫ; these exist by virtue of

Theorem 3.5. For k sufficiently large, the image of the Lagrangian embedding ιk is

contained in this neighborhood Nǫ.

By a theorem of Gromov and Sikorav [21], and by the Lagrangian suspension

construction on the (double of the) Hamiltonian isotopy {φtF ◦ ιk}, the displace-

ment energy of ιk is at least half the area of a non-constant holomorphic disk in

R
2n+2 with boundary on the Lagrangian suspension; see Chapters 3 and 4 of [20].

The proof then follows by showing that the areas of the holomorphic disks remain

bounded from below by a topological invariant of the tubular neighborhood Nǫ0 for

a fixed parameter ǫ0 > 0. Choosing ǫ < ǫ0 sufficiently small yields a contradiction,

and therefore L has to be Lagrangian. See [12, page 165] for details. �

The hypothesis regarding uniform convergence in Theorem 3.7 can be replaced

by an assumption on the homotopy class of the Lagrangian embeddings. We provide

several versions of that result. Either one of them can be used to prove Theorem 1.1.

An embedding ι : L →֒ W is non-Lagrangian if ι∗ω 6= 0, or equivalently, its image

is a non-Lagrangian submanifold.

Theorem 3.10. Let ι : L →֒ (R2n, ω0) be a non-Lagrangian embedding. Then

there exists a tubular neighborhood N of ι(L) that admits no Lagrangian embedding

 : L →֒ N so that the homomorphism ∗ : H1(L,R) → H1(N,R) is injective (i.e.

an isomorphism). In particular, the shape I(N,L, ι∗) is empty.
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Proof. The proof is almost verbatim the same as the one by Laudenbach and Sikorav

that is sketched above. Again arguing by contradiction, let N = Nk be a sequence

of shrinking tubular neighborhoods of ι(L) with displacement energies converging to

zero, and suppose there exists a sequence of Lagrangian embeddings ιk : L →֒ R2n

so that the image of ιk is contained in Nk. The fact that the holomorphic disks have

non-trivial boundary in H1(N,R) follows in this case, using the same argument,

from the assumption that (ιk)∗ is injective, and the proof that these areas are

bounded from below independent of k is verbatim the same. �

Remark 3.11. In the proof of Theorem 1.1 below, we only need Theorem 3.10

with L = T n. In this case there is a more direct proof that goes as follows. Choose

a compact tubular neighborhood K and an open tubular neighborhood N ⊂ K

of ι(T n) that is displaced by a Hamiltonian diffeomorphism whose Hamiltonian is

compactly supported in K. Suppose that  : T n →֒ N is a Lagrangian embedding so

that ∗ : H1(L,R) → H1(N,R) is injective. Arguing as in Remark 2.19, the latter

implies that π2(K, (T
n)) = 0. But by (a known case of) the Arnold conjecture

(again see [13, Section 11.3] or [14, Theorem 9.2.14]), (T n) is non-displaceable.

This contradiction shows that no such Lagrangian embedding can exist.

In fact, this argument extends to arbitrary (closed and connected) manifolds

L under additional hypotheses that guarantee that π2(K, (L)) = 0. This can

be achieved for instance by working with a different shape invariant that further

restricts the homotopy type of the Lagrangian embedding, see Remark 2.33. �

Theorem 3.12. Let ι : L →֒ (R2n, ω0) be a non-Lagrangian embedding, λ be a

one-form on R2n with dλ = ω0, and z ∈ H1(L,R) be rational. Then there exists a

neighborhood N of ι(L) that does not contain any Lagrangian embeddings  : L →֒ N

such that [∗λ] = z. That is, z /∈ I(N, λ, L, τ) for any homomorphism τ .

Proof. Recall from Example 2.22 that there are no exact Lagrangian embeddings

into (R2n, ω0) [9], so z 6= 0. The proof of the theorem is then again almost verbatim

the same as for the previous two theorems. The only exception is that in this

case the lower bound for the areas of the holomorphic disks follows directly from

Theorem 2.16 by Gromov and Sikorav: the area of a holomorphic disk coincides

with its symplectic area, which in turn equals integration of the primitive one-form

λ over the boundary of the curve. In particular, the area of the disk is contained

in the image of H1(L,Z) under the homomorphism z : H1(L,R) → R; see [21] for

details. �

Remark 3.13. Note that in the above theorems, N is a tubular neighborhood of L

and ι∗ is the identity, so that the homomorphism ι∗ : H1(N,R) → H1(L,R) is non-

trivial when H1(L,R) 6= 0. Thus in contrast to I(R2n, L, ι∗), the shape I(N,L, ι∗)

is defined only up to translation. This however does not cause any difficulties in

later applications. Theorem 3.12 does not extend to cohomology classes z that

are not rational. Although the displacement energy is still positive (see the end of

Subsection 3.2.G in [20] for some references), a lower bound depends on more than

just the λ-period; compare to Lemma 2.15. �
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Remark 3.14. We would like to point out that the cohomology class [ι∗λ] does not

appear in Theorem 3.10, while Theorem 3.12 on the other hand makes no mention

of the homomorphism ι∗ on the first cohomology groups. Either of these results by

itself is sufficient to give a proof of Theorem 1.1, which we are now in a position

to do. Note that neither Theorem 3.10 nor Theorem 3.12 mean that there are no

Lagrangian embeddings nearby a given non-Lagrangian embedding; by Darboux’s

Theorem, there are many such Lagrangian embeddings, but they are in a different

homotopy class (in fact, in the trivial class, and their relative second fundamental

groups are non-trivial), and have small (or irrational) λ-periods. The statements

mean that there are no Lagrangian embeddings nearby the given non-Lagrangian

embedding of a certain shape (the given induced homomorphism on cohomology)

or size (the given rational λ-period). �

Proof of Theorem 1.1. The fact that a symplectic embedding preserves shape is

Proposition 2.20. We only need to prove the converse. By Remark 3.1, we may

assume that n > 1.

If ϕ is conformally symplectic at every point x ∈ B2n
r , then ϕ∗ω = c ω0 for a

constant c 6= 0 since ϕ∗ω is a closed form. By Proposition 2.29, we must have c = 1.

Suppose then that the embedding ϕ : B2n
r → W is not conformally symplectic

at x ∈ B2n
r . By replacing B2n

r by a small ball centered at x, we may assume that

the image of ϕ is contained in a Darboux chart in W . By Lemma 3.3, there exists

a Lagrangian embedding ι : T n →֒ B2n
r so that the composition ϕ ◦ ι : T n →֒ R2n

is non-Lagrangian. Let z = [ι∗λ], where λ is a one-form on B2n
r with dλ = ω0.

In particular, if U is any neighborhood of ι(T n) in B2n
r , then the shape I(U, ι∗) is

non-empty. In fact, by Lemma 2.4, it is open.

By Theorem 3.10 there exists a neighborhood V of (ϕ◦ι)(L) such that there is no

Lagrangian embedding  : T n →֒ V with ∗ = (ϕ◦ι)∗ : H1(V,R) → H1(T n,R). That

is, the shape I(V, (ϕ ◦ ι)∗) is empty. By shrinking U if necessary, we may assume

that U ⊂ B2n
r is compact and ϕ(U) ⊂ V . Thus ϕ does not preserve shape. �

Remark 3.15. For an alternate argument (that replaces the final paragraph of

the preceding proof), observe that we may assume that the cohomology class z is

rational, and then Theorem 3.12 guarantees the existence of a neighborhood V of

(ϕ ◦ ι)(L) so that there exists no Lagrangian embedding  : T n →֒ V with [∗λ] = z.

A different choice of primitive one-form λ on V with dλ = ω causes a translation of

the shape by a vector b. After a small perturbation of ι, i.e. by composing with a

C1-small symplectic diffeomorphism (corresponding to a closed one-form in T ∗T n),

we may assume that z + b is rational. This modification may affect the size of the

(tubular) neighborhood V (since the generator of the group (z + b)(H1(L,Z)) may

be different in general), but it does not affect the argument or conclusion. Thus for

any homomorphism τ one can choose z so that z /∈ I(V, τ ◦ ϕ∗) (up to the above

translation determined by a choice of primitive one-forms). Again by shrinking U

if necessary, we may assume that U ⊂ B2n
r is compact and ϕ(U ) ⊂ V . Thus ϕ does

not preserve the shape invariant. �
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Proof of Corollary 1.2. By Propositions 2.20 and 2.32 in the previous section, the

hypotheses imply that the embedding ϕ preserves the shape invariant, and then by

Theorem 1.1, ϕ is a symplectic embedding. �

We state two further corollaries to Corollary 1.2. The first one is a special case

of the second one, but is stated separately for emphasis and to divide the proofs.

Corollary 3.16. Let ϕk : B
2n
r → W be a sequence of anti-symplectic embeddings

that converges uniformly on compact subsets to an embedding ϕ : B2n
r →W . Then

ϕ is anti-symplectic, that is, ϕ∗ω = −ω0.

Proof. We may assume without loss of generality that a neighborhood of the image

of ϕ is contained in a Darboux chart. Then for k sufficiently large, the ball ϕk(B
2n
r )

is contained in the same chart. Let i denote the anti-symplectic involution induced

by the reflection about the origin in R2n. The sequence i ◦ ϕk is symplectic and

converges to the embedding i◦ϕ, and thus the conclusion follows from Corollary 1.2.

Equivalently, one can consider the symplectic embeddings ϕk ◦ i. �

Corollary 3.17. Let ϕk : B
2n
r → W be a sequence of embeddings that converges

to an embedding ϕ : B2n
r → W uniformly on compact subsets, and suppose that

ϕ∗

kω = ck ω0. Then ϕ is conformally symplectic. Moreover, the numbers ck converge

to a non-zero constant c, and ϕ∗ω = c ω0.

Proof. We may again assume without loss of generality that a neighborhood of the

image of ϕ is contained in a Darboux chart inW . Then ϕk(B
2n
r ) is contained in the

same Darboux chart for k sufficiently large. Denote by ms multiplication by s 6= 0

in R2n. These conformally symplectic diffeomorphisms depend continuously on the

parameter s. The sequence m−1
ck

◦ϕk (or the sequence ϕk ◦m
−1
ck

) is symplectic, and

thus the proof follows from Corollary 1.2 in the same way Corollary 3.16 does, once

we show that the numbers ck form a Cauchy sequence.

Choose a subsequence of ϕk such that the numbers ck all have the same sign.

Composing with the anti-symplectic involution i from the proof of Corollary 3.16 if

necessary, we may assume that ck > 0. Let r′ < r be positive. Since the volume of

ϕk(B
2n
r′ ) is c

n
k times the volume of B2n

r′ , and the embeddings ϕk converge uniformly

on (the closure of) B2n
r′ , the numbers ck converge to a number c 6= 0 (where cn is

the volume of the ball ϕ(B2n
r′ )). �

Proof of Corollary 1.3. By Darboux’s Theorem, a neighborhood of a point x ∈ W

can be identified with a ball B2n
r in (R2n, ω0). Restricting ϕk and ϕ to B2n

r and

applying Corollary 1.2 yields ϕ∗ω = ω at (and near) x. Since the point x was

arbitrary, the proof is complete. �

Corollary 3.18. Let ϕk : W → W be anti-symplectic diffeomorphisms that con-

verge uniformly on compact subsets to a diffeomorphism ϕ : W → W . Then ϕ

is anti-symplectic, that is, ϕ∗ω = −ω. In other words, the set of anti-symplectic

diffeomorphisms is C0-closed in the group of all diffeomorphism.
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Proof. This follows from Corollary 3.16 and Darboux’s Theorem (cf. the proof of

Corollary 1.3), or from Corollary 1.3 as in the proof of Corollary 3.16 (if the set of

anti-symplectic diffeomorphisms is empty, then there is nothing to prove. �

Corollary 3.19. Let ϕk : W →W be a sequence of conformally symplectic diffeo-

morphisms that converges to a diffeomorphism ϕ : W → W uniformly on compact

subsets. Then ϕ is conformally symplectic. If ϕ∗

kω = ck ω, then the numbers ck
converge to a non-zero constant c, and ϕ∗ω = c ω. In particular, the group of

conformally symplectic diffeomorphisms is C0-closed in the group Diff (W ). The

subgroup of diffeomorphisms for which c > 0 and the subset of diffeomorphisms for

which c < 0 are also C0-closed in the group Diff (W ).

Proof. This follows directly from Corollary 3.17 and Darboux’s Theorem by the

same argument as in the proof of Corollary 1.3. �

An embedding ϕ : W1 → W2 is said to be shape rescaling if there exists a non-

zero constant c such that I(U,L, τ) ⊂ c I(V, L, τ ◦ ϕ∗) for all open subsets U ⊂W1

and V ⊂W2 such that U ⊂W1 is compact and ϕ(U ) ⊂ V , and for every closed and

connected n-dimensional manifold L and homomorphism τ : H1(V,R) → H1(U,R).

If c = −1, we also say that ϕ reverses shape. It can be shown along the same lines

as the proof of Proposition 2.29 that the number c is unique.

The following two results are almost immediate corollaries of Theorem 1.1 along

the same lines as the proofs of Corollaries 3.16 and 3.17. Again the first one is

really a special case of the second one.

Corollary 3.20. An embedding ϕ : B2n
r → W is anti-symplectic if and only if it

reverses the shape invariant.

Corollary 3.21. An embedding ϕ : B2n
r →W is conformally symplectic if and only

if it rescales the shape invariant. Moreover, the rescaling constant coincides with

the conformal factor of ϕ.

Proofs. That anti-symplectic and conformally symplectic embeddings reverse and

rescale shape, respectively, follows directly from the definition. The converse is

proved exactly as in the proofs of Corollaries 3.16 and 3.17, respectively. A similar

argument could also be applied directly in a proof that closely follows the line of

argument in the proof of Theorem 1.1. �

Remark 3.22. As further corollaries one can give alternate proofs of the corollaries

in this section that concern anti-symplectic and conformally symplectic embeddings

and diffeomorphisms. The precise alternate proofs are too similar to our previous

arguments to be duplicated. �

Remark 3.23. The proof of Proposition 2.32 applies almost verbatim to show

that rescaling shape is a property that is preserved by uniform limits (on compact

subsets) with c = lim inf ck, though this also follows from the previous corollaries

combined with Corollary 3.17 (with c = lim ck). �
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4. (Maximal) coisotropic embeddings

According to Lemma 3.2, every symplectic manifold contains enough Lagrangian

submanifolds to distinguish conformally symplectic embeddings. In particular, if

an embedding ϕ is not conformally symplectic, then there exists an embedded

Lagrangian torus T n such that ϕ(T n) is not Lagrangian, and thus is immediately

displaceable (Lemma 3.3 and Theorem 3.5). Lemma 6.11 below is the counterpart

for coisotropic submanifolds of a contact manifold.

This section contains a few preliminary results, which may be known to an

expert in contact topology. For everyone else, the book [8] is a good starting point.

We adopt the guiding principle to at least sketch proofs of any result that is not

explicitly stated in [8]. Not the entire discussion of coisotropic submanifolds below

is necessary for the proof of Theorem 1.4, but we choose to present a systematic

treatment of coisotropic submanifolds since it requires little extra effort.

Let (M, ξ) be a contact manifold, that is, ξ ⊂ TM is a completely non-integrable

codimension one tangent distribution. That means that at least locally ξ ⊂ TM

can be written as the kernel of a one-form α so that α ∧ (dα)n−1 6= 0. Unless it is

explicitly mentioned otherwise, we assume that ξ is coorientable, i.e. there exists

a global one-form α as above (and in particular, α ∧ (dα)n−1 is nowhere vanishing

on M). We fix a coorientation of ξ, so that the contact form α is determined up to

multiplication by a positive function. Again unless explicitly stated otherwise, we

assume that all contact embeddings preserve the given coorientations.

Remark 4.1. To simplify notation, we often suppress the contact structure and

contact form from the notation, and simply write M for example for a contact

manifold. If a specific contact manifold M admits a canonical contact structure

or form that has previously been referenced, a statement about M refers to these

canonical choices. Whenever there is a potential ambiguity however, the choices

will be made explicit. �

Remark 4.2. A sufficiently small open subset of a contact manifold M is always

coorientable, so that by restricting its domain and target if necessary, the domain

and target of a given contact embedding are coorientable. Thus we may assume

that the contact structure ξ in Theorem 1.4 and in Corollary 1.5 is cooriented.

A given contact embedding automatically preserves coorientation for a consistent

choice of coorientation on the domain and target. Corollary 1.5 is to be interpreted

in the sense that the limit ϕ maps the hyperplane bundle ξ0 to ξ, and preserves

(or reverses) coorientation when a subsequence of the sequence ϕk does. A contact

diffeomorphism (M, ξ) → (M, ξ) of course preserves one choice of coorientation if

and only if it preserves the opposite choice (on both the domain and target). �

Definition 4.3. Let (M, ξ = kerα) be a cooriented contact manifold of dimension

2n − 1, and L as before be a closed and connected n-dimensional manifold. An

embedding ι : L →֒ M is called coisotropic (or pre-Lagrangian) if

(1) ι (or its image ι(L)) is transversal to the contact structure ξ, and

(2) the distribution ι∗ξ = ker(ι∗α) ⊂ TL can be defined by a closed one-form.
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A (closed and connected) n-dimensional submanifold C of (M, ξ) is called coisotropic

if TC is transversal to ξ|C and the codimension one distribution ξ|C ∩ TC ⊂ TC

can be defined by a closed one-form on C. �

Remark 4.4. Condition (1) in the definition is equivalent to the assumption that

the subspaces (ι∗ξ)x ⊂ TxL have constant codimension one. Any one-form that

defines the distribution ι∗ξ must be of the form f ι∗α for a non-zero function f

on L. The second condition is therefore equivalent to the existence of a contact

form α′ = gα, where g > 0, so that ι∗α′ = (g ◦ ι)ι∗α is a closed one-form (the

function f ◦ ι−1, which is defined on the image of ι, can be extended to a tubular

neighborhood of ι(L), and then to a globally defined everywhere non-zero function

g on M ; after replacing g by −g if necessary, we may assume that g is positive). As

a consequence of condition (2), the distribution ι∗ξ ⊂ TL is integrable (and ι(L) is

foliated by Legendrian submanifolds). By the contact condition, transversality of ι

and ξ is a necessary condition for the latter.

Similarly, the definition of coisotropic submanifold is equivalent to the existence

of a smooth positive function g such that the restriction of gα to C is closed. Of

course the image of a coisotropic embedding is a coisotropic submanifold. �

Remark 4.5. The definition of coisotropic makes sense for submanifolds of larger

codimension. However, all coisotropic submanifolds in this paper are assumed to

be closed, connected, and of (maximal) dimension n. �

Recall that the restriction of dα to the hyperplane bundle ξ is a symplectic bundle

structure, which does not depend on the choice of contact form α up to conformal

rescaling. In particular, the symplectic orthogonal complement of a subspace of ξ

is independent of the choice of contact form.

Lemma 4.6. Let C be a (closed and connected) n-dimensional submanifold of

(M, ξ) that is transversal to ξ|C . Then C is coisotropic if and only if ξ|C ∩ TC is

a Lagrangian subbundle of ξ|C and TC = (ξ|C ∩ TC) ⊕ 〈R〉, where R is the Reeb

vector field of a contact form α that defines ξ. In fact, a closed one-form on C that

defines the distribution ξ|C ∩ TC is given by the restriction of α to C.

Proof. Suppose that C is coisotropic, and let α be a contact form on (M, ξ) whose

restriction to C is closed. In particular, dα restricted to ξ|C ∩ TC vanishes, and

therefore the latter is Lagrangian. Denote by R the Reeb vector field of α. Let

x ∈ C and v ∈ ξx be a vector so that R(x) + v ∈ TxC. Since dα is zero when

restricted to TC, v belongs to the Lagrangian complement of ξx ∩ TxC. We have

already shown the latter to be a Lagrangian subspace of ξx, and thus v ∈ ξx∩TxC.

Thus TC = (ξ|C ∩ TC)⊕ 〈R〉 as claimed. In the converse direction, the one-form

dα|C is clearly closed, and therefore C is coisotropic. �

Lemma 4.7. Let (M, ξ) be a contact manifold, x ∈ M be a point, v /∈ ξx be a

vector, W ⊂ ξx be an isotropic subspace, and U ⊂M be a neighborhood of x. Then

there exists a coisotropic embedding T n →֒ M through the point x, whose image C

is contained in U . Moreover, we may assume that v and W are tangent to C, and

in fact, that v = R(x) for a Reeb vector field as in Lemma 4.6.
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Proof. It is an elementary fact in contact topology that any open subset U ⊂ M

contains an embedded transverse knot, i.e. an embedding S1 →֒M that is transverse

to ξ. This can easily be seen from the fact that ξ is a hyperplane bundle that is

nowhere integrable, see a picture of the standard contact structure on R3 (which

canonically embeds into (R2n−1, ξ0)) for example on page 4 of [8]. By Darboux’s

Theorem, we can identify a neighborhood of the origin with a neighborhood of x

in M so that x corresponds to the origin and the vector v to ∂/∂z. In particular,

we may choose the transverse knot tangent to v. (We would like to alert the

reader that the contact structures defined by all of the following contact forms are

referred to as the standard contact structure on R2n−1 in various places in the

literature: dz −
∑n−1

i=1 yi dxi, dz +
∑n−1

i=1 xi dyi, dz +
∑n−1

i=1 (xi dyi − yi dxi), and

dz+ 1
2

∑n−1
i=1 (xi dyi − yi dxi). However, all of these contact forms are easily seen to

be mutually diffeomorphic by writing down explicit diffeomorphisms.)

By the Contact Neighborhood Theorem, a sufficiently small neighborhood of this

knot (inside the set U) is contact diffeomorphic to an open neighborhood S1 × V

of S1 × 0 ⊂ S1 × R2n−2 with the contact structure (still denoted by ξ) induced by

the contact form

α = dz +
1

2

n−1∑

i=1

(xi dyi − yi dxi) = dz +
1

2

n−1∑

i=1

r2i dθi,

where z ∈ S1, and xi = ri cos θi and yi = ri sin θi are coordinates on R2n−2, see

Theorem 2.5.15 and Example 2.5.16 in [8]. Let L ⊂ R2n−2 be an (embedded)

Lagrangian torus with respect to the standard symplectic structure dα|ξ = ω0.

Then the n-torus S1 × L is an (embedded) coisotropic submanifold of M . (This

notation is not meant to suggest that L is everywhere tangent to ξ, which is of course

impossible by the contact condition, i.e. the twisting of the hyperplane bundle ξ.

For instance, if L is a split torus where ri = ci > 0 is constant for all i, then ξ(z,r,θ)
is spanned by the vectors ∂/∂ri and ∂/∂θi −

1
2c

2
i ∂/∂z for i = 1, . . . , n − 1.) If L

contains the origin, then the image of the embedding contains x, and the vector

v = ∂/∂z = R(x). Finally, choose L so that W is tangent to C (cf. the proof of

Lemma 3.2). �

Remark 4.8. For later reference, we point out that if the numbers ri > 0, i =

1, . . . , n−1 are sufficiently small, then the image of the standard (up to translation)

Lagrangian embedding  of the split torus S1(r1) × · · · × S1(rn−1) into R2n−2 is

contained in V ; the embedding ι : T n →֒ S1 × V , ι(z, x) = (z, (x)) is coisotropic,

the one-form ι∗α is closed, and [ι∗α] = (2π, πr21 , . . . , πr
2
n−1) ∈ Rn = H1(T n,R).

Here we identify the first S1-factor with R/(2πZ). In general, the first coordinate

depends on the size of the transverse knot, and can be chosen to be any sufficiently

small non-zero number. If V = R2n−2, this holds for all positive numbers ri. �

The following theorem is the analog of Weinstein’s Lagrangian Neighborhood

Theorem for coisotropic submanifolds. (On the other hand, the symplectic version

of Lemma 4.7 is an immediate consequence of Darboux’s Theorem.)
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Theorem 4.9. Let ι : L →֒ (M, ξ) be a coisotropic embedding, and α be a contact

form on (M, ξ) so that ι∗α is closed. Let β = p ◦ ι∗α : L →֒ ST ∗L be the section

defined by ι∗α, where p : T ∗L\L0 → ST ∗L is the obvious map, and L0 denotes the

zero section. Then there exists a neighborhood U of β in ST ∗L, a neighborhood V

of ι(L) in M , and a contact diffeomorphism ϕ : U → V that restricts to the identity

on L, that is, ι = ϕ ◦ β.

Remark 4.10. Recall that in Weinstein’s Lagrangian Neighborhood Theorem, a

neighborhood of (the image of) a Lagrangian embedding ι : L →֒ W of a compact

manifold is identified with a neighborhood of the zero section in T ∗L. To see why

ι(L) can be identified with the zero section (and not only a specific section of T ∗L),

note that for a sufficiently small tubular neighborhood U of ι(L) inM , the inclusion

ι : L →֒ U induces an isomorphism H1(U,R) → H1(L,R), and thus there exists a

choice of primitive one-form λ of the symplectic form on U that makes ι∗λ exact,

see Remark 2.5.

On the other hand, there exist contact invariants of coisotropic submanifolds

that are not present for (or correspond to any symplectic invariants of) Lagrangian

submanifolds. In dimension 3, the characteristic foliation (see section 6 for the

definition) is one example, but there are others (in all dimensions). Possibly the

simplest one occurs when C = T n × a ⊂ T n × Sn−1 (the unit cotangent bundle

of a torus with its standard contact structure), where a = (a1, . . . , an) ∈ Sn−1 is

a point. As already pointed out above, T n × a is a coisotropic submanifold, and

ι∗aαcan is a closed one-form on T n. Suppose that f is a (positive) smooth function

on T n so that f ι∗aαcan is also closed. Then df(v) = 0 for every vector v that is

tangent to ξ|C ∩ TC, and f must be of the form f(q) = g(〈a, q〉) for a function g

of a single variable, where q = (q1, . . . , qn) ∈ T n. If a is irrational, then f must

be constant, and thus in this case the function f in Definition 5.4 is unique (up

to rescaling by a positive constant). In particular, the Reeb foliation on T n × a

is unique and provides a contact invariant of the coisotropic submanifold. If a

is rational, g can be identified with a smooth function on S1 (and the space of

functions f as in Definition 5.4 with C∞(S1,R)). The cohomology class [f ι∗aαcan]

lies on the oriented line through [ι∗aαcan] ∈ H1(T n,R), and thus defines the same

element in PH1(T n,R). �

Proof of Theorem 4.9. It is possible to give a proof of the theorem using Weinstein’s

Lagrangian Neighborhood Theorem on the symplectization. We prefer to give a

purely contact geometric proof here. The two proofs are to a large extend dual to

one another. For convenience, we identify both ι(L) and the section β with L.

Let g be a Riemannian metric on L and J be an almost complex structure on ξ

that are compatible with α in the sense that g = α⊗α+ dα|ξ(·, J ·) [2]. We assume

that the unit cotangent bundle ST ∗L is determined by this metric. As a contact

manifold, the latter does not depend on the choice of Riemannian metric. In fact,

we may identify ST ∗L (as a contact manifold with its canonical contact structure)

with the oriented projectivization PT ∗L = (T ∗L\L0)/R+, where L0 again denotes

the zero section. That is, an element of ST ∗L can be considered as an oriented
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line in T ∗L. A choice of Riemannian metric on L is required however to define

the canonical contact form αcan = λcan|ST∗L, and any two choices yield naturally

diffeomorphic contact manifolds.

Since L is coisotropic, the normal bundle of L in TM is given by NL = J(ξ|L).

Thus the tangent bundle TL is isomorphic to the direct sum bundle R ⊕ NL,

and the Riemannian metric induces an isomorphism of the latter with T ∗L. (In the

symplectization, the factor R is generated by the one-form dt.) In a neighborhood of

ι∗α, the R-component is always non-zero (an oriented line in ST ∗L is not orthogonal

to the R-factor), and thus we may identify ST ∗L with NL = 1⊕NL.

The Riemannian metric induces an isomorphism T (ST ∗L) = TL ⊕ ST ∗L, see

Exercises 3.10 and 3.11 in [13]. The canonical contact form αcan restricted to the

section β is by definition β ◦ dπ, where π : ST ∗L → L is the canonical projection,

and thus α and αcan coincide on L. By construction, the two-forms dα and dαcan

also agree on L: the above isomorphism identifies the restriction of the latter to ξ|L
with the canonical two-form on ξ|L ⊕ ST ∗L ⊂ TL ⊕ T ∗L (again see Exercise 3.10

in [13]), which in turn is the two-form dα|ξ = g|ξ(J ·, ·) on ξ|L ⊕ NL under the

previous identifications. The conclusion then follows from a Gray stability argument

verbatim as in the first paragraph of the proof of Theorem 2.5.15 in [8]. �

Combining the previous results yields the following proposition.

Proposition 4.11 ([18]). Let (M, ξ) be a contact manifold, U ⊂ M be an open

subset, and a = (a1, . . . , an) ∈ Sn−1 be a point with 0 < ai < 1 for all i. If ai,

i = 2, . . . , n, are sufficiently small, then there exists a neighborhood A of a in Sn−1

and a contact embedding of T n × A with its standard contact structure into U . If

x ∈M , we may in addition assume that x lies in the image of T n × a.

Remark 4.12. Using the action of GL(n,Z) on T n, the restrictions on the point a

can be relaxed to some extend (see Proposition 5.9 below). The proof in [18] gives

an explicit construction of the contact diffeomorphism between a neighborhood of

T n × a and an open subset of S1 × R2n−2 with the canonical contact structure

induced by the contact form dz + 1
2

∑n−1
i=1 r

2
i dθi. Let O be the open subset of

S1 × R2n−2 on which ri > 0 for all i, and define a function r : O → (0, 1) by

r = (1 + 1
4

∑n−1
i=1 r

4
i )

−
1

4 . Then the map O → T n × Sn−1 defined by

(z, r1, . . . , rn−1, θ1, . . . , θn−1) 7→

(
z, θ1, . . . , θn−1, r

2,
1

2
(r · r1)

2, . . . ,
1

2
(r · rn−1)

2

)

is a contact diffeomorphism onto the subset P of T n × Sn−1 on which all spherical

coordinates are positive. The intersection (S1 × V ) ∩ O is open and contains the

(preimage of the) point a provided that ai > 0 are sufficiently small for all i > 1.

The coisotropic submanifold S1×T n−1 constructed in the course of the proof of

Lemma 4.7, where T n−1 is a split torus, is mapped to the coisotropic submanifold

T n × a ⊂ T n × Sn−1 by this diffeomorphism. Its shape is [ι∗αcan] = a, which

is consistent with the computation in Remark 4.8 (the two vectors differ by the

constant factor 2π/r2 and thus belong to the same oriented line). �
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5. Eliashberg’s contact shape invariants

We recall the definitions of two shape invariants for contact manifolds from [6].

The second version is a refinement of the first one; both are contact invariants.

Denote by M × R+ the symplectization of (M,α) endowed with the symplectic

structure ω = dλ, where λ = t π∗α (the Liouville one-form), π : M × R+ → M is

the projection to the first factor, and t is the coordinate on the factor R+ = (0,∞).

Up to an exact symplectic diffeomorphism (i.e. that interchanges the corresponding

Liouville one-forms), the symplectization depends only on the contact structure ξ,

and not on the particular choice of contact form α with kerα = ξ. A contact

embedding ϕ : (M1, ξ1 = kerα1) → (M2, ξ2 = kerα2) with ϕ∗α2 = fα1, where f

is a positive function on M , induces an (R+-equivariant) symplectic embedding

(M1 × R+, d(t π
∗α1)) → (M2 × R+, d(t π

∗α2)) given by (x, t) 7→ (ϕ(x), t/f(x)).

That is, the lift of a contact embedding preserves not only the symplectic structure

but also the Liouville one-form λ itself. Since the product M × R+ deformation

retracts onto the first factor M , a given homomorphism τ : H1(M,R) → H1(L,R)

can be identified with a homomorphism H1(M × R+,R) → H1(L,R). Thus the

symplectic shape I(M ×R+, λ, L, τ) of the symplectization is a contact invariant of

the contact manifold (M, ξ), and in contrast to the symplectic case, we may define

the shape as a contact invariant of the Liouville one-form λ without any freedom

of translation.

Remark 5.1. The map σs : (x, t) 7→ (x, s t), s > 0, is an R+-equivariant conformal

symplectic diffeomorphism that is isotopic to the identity. It thus follows from the

definition that I(M × R+, λ, L, τ) is a cone in H1(L,R). It does not contain its

vertex. That last fact is well known, but maybe the proof deserves to be repeated

here. Suppose that ι is an exact Lagrangian embedding L →֒ M × R+. Then

the Lagrangian embedding ιs = σs ◦ ι is also exact, and therefore there exists a

Hamiltonian isotopy ψt : M × R+ → M × R+ such that ψ0 is the identity and

ιs = ψs ◦ ι, see e.g. Exercise 11.26 in [13]. For s sufficiently large, the image

of ιs does not intersect the image of ι, which contradicts Gromov’s Theorem, cf.

Remark 11.21 in [13]. �

Thus I(M ×R+, λ, L, τ) is a cone without its vertex in H1(L,R). It is therefore

convenient to projectivize the invariant (in the oriented sense of identifying vectors

that differ by a positive scalar factor).

Definition 5.2. The contact (L, τ)-shape of (M, ξ) is the subset

IC(M,L, τ) = IC(M, ξ, L, τ) = PI(M × R+, λ, L, τ) = I(M × R+, λ, L, τ)/R+

of PH1(L,R) = H1(L,R)/R+, that is, the projectivization of the set of all z in

H1(L,R) such that there exists a Lagrangian embedding ι : L →֒ M × R+ with

ι∗ = τ and [ι∗(t π∗α)] = z. �

The following result is the analog of Proposition 2.20 for contact embeddings.

We give a proof here to illustrate why the (symplectic) shape invariant is more

suitable to study contact embeddings than other symplectic invariants (such as

symplectic capacities) of the symplectization of a contact manifold.
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Proposition 5.3 ([6]). Let (M1, ξ1 = kerα1) and (M2, ξ2 = kerα2) be two contact

manifolds of the same dimension, and let ϕ : M1 → M2 be a contact embedding.

Then IC(M1, L, τ) ⊂ IC(M2, L, τ ◦ ϕ∗). If ϕ is a contact diffeomorphism, then

IC(M1, L, τ) = IC(M2, L, τ ◦ ϕ
∗).

Proof. Let ϕ̂(x, t) = (ϕ(x), t/f(x)) be the lift of the contact embedding ϕ to the

symplectization; it maps the coneM1×R+ into the cone ϕ(M1)×R+ ⊂M2×R+ (in

fact, ϕ̂(M1×R+) = ϕ(M1)×R+). Recall that we identify ϕ̂
∗ with ϕ∗, and likewise

for the homomorphism τ . Since ϕ̂ is a symplectic embedding (that preserves the

one-form λ), the inclusion I(M1 × R+, λ, L, τ) ⊂ I(M2 × R+, λ, L, τ ◦ ϕ
∗) holds by

Proposition 2.20. The claim now follows from the definition of the invariant IC . �

We next recall the definition of the modified contact shape ĨC from [6]. An

advantage of this invariant is that it is defined in intrinsic contact terms without

the use of the symplectization. Thus for the definition of this invariant (and in fact

for coisotropic embeddings as well), it is not necessary to assume that the contact

structure is cooriented. The latter is necessary however to compare the modified

shape to the shape invariant IC , and for convenience, we give the definition for

cooriented contact structures only.

Definition 5.4. The modified contact (L, τ)-shape ĨC(M,L, τ) = ĨC(M, ξ, L, τ) ⊂

PH1(L,R) of (M, ξ) is by definition the projectivization of the set of all points

z ∈ H1(L,R) such that there exists a coisotropic embedding ι : L →֒ M and a

positive function f on L, so that ι∗ = τ , the one-form f ι∗α is closed and defines

the codimension one distribution ι∗ξ, and z = [f ι∗α]. �

Remark 5.5. Note that if β is closed and defines the distribution ι∗ξ, then so

does sβ for any s 6= 0. Moreover, since a smooth function on a closed manifold

must have a critical point, a codimension one distribution cannot be defined by an

exact one-form. Thus the subset of H1(L,R) that appears in the definition of the

modified contact shape is again a cone without its vertex. �

Remark 5.6. The other choice of coorientation of ξ replaces the cone ĨC(M,L, τ)

by its opposite −ĨC(M,L, τ). If one chooses to ignore coorientation, the modified

contact shape can be defined as the union of these two cones, and similarly for the

original contact shape invariant in Definition 5.2. �

Proposition 5.7. Let (M1, ξ1 = kerα1) and (M2, ξ2 = kerα2) be two contact

manifolds of the same dimension, and let ϕ : M1 → M2 be a contact embedding.

Then ĨC(M1, L, τ) ⊂ ĨC(M2, L, τ ◦ ϕ∗). If ϕ is a contact diffeomorphism, then

ĨC(M1, L, τ) = ĨC(M2, L, τ ◦ ϕ
∗).

Proof. Consider the positive function g on M1 defined by the relation ϕ∗α2 = gα1.

Let ι : L →֒ M1 be a coisotropic embedding, and β = f ι∗α1 be a closed one-form

that defines the distribution ι∗ξ1. Then the embedding ϕ◦ι : L →֒M2 is coisotropic,

and (f/(g ◦ ι))(ϕ ◦ ι)∗α2 = β. �

Again we are mostly interested in the situation in which L = T n andM is an open

subset of either R2n−1 with its standard contact structure or of the unit cotangent
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bundle ST ∗T n ⊂ T ∗T n of T n (with respect to some Riemannian metric) with its

canonical contact structure ξcan = kerαcan, where αcan is the restriction of the

canonical one-form λcan on T ∗T n. The symplectization of ST ∗T n is diffeomorphic

to T ∗T n minus the zero section with its standard symplectic structure ωcan via the

diffeomorphism (q, p, t) 7→ (q, t p). The trivialization T ∗T n = T n × Rn restricts

to the trivialization ST ∗T n = T n × Sn−1. This gives rise to an identification of

the (oriented) projectivized group PH1(T n,R) with the fiber Sn−1 of the fibration

ST ∗T n = T n × Sn−1 → T n. As in the symplectic case, for brevity we often omit

the manifold T n from the notation.

Definition 5.8. Define IC(M, τ) = IC(M,T n, τ) and ĨC(M, τ) = ĨC(M,T n, τ).

For a given homomorphism Φ: H1(L,R) → H1(L,R), denote by PΦ the induced

homomorphism PH1(L,R) → PH1(L,R). The analog of Proposition 2.14 holds

for the contact shapes; the proof is almost verbatim the same and thus is omitted.

Proposition 5.9. If φ : L → L is a diffeomorphism, then the two shapes satisfy

IC(M,L, φ∗ ◦ τ) = Pφ∗(IC(M,L, τ)) and ĨC(M,L, φ∗ ◦ τ) = Pφ∗(ĨC(M,L, τ)).

In particular, IC(M,A ◦ τ) = PA(IC(M, τ)) and ĨC(M,A ◦ τ) = PA(ĨC(M, τ))

provided that A ∈ GL(n,Z).

The modified contact shape is related to the original contact shape by means of

the following proposition and its corollary.

Proposition 5.10. Let ι : L →֒ M be an embedding, and let ι̂f : L →֒ M × R+

denote the embedding ι̂f (x) = (ι(x), f(x)) into the symplectization of (M,α), where

f is a positive function on L. Then the embedding ι is coisotropic if and only if the

embedding ι̂f is Lagrangian for some f > 0. Equivalently, there exists a contact

form α′ on (M, ξ) so that the embedding ι̂1(x) = (ι(x), 1) into the symplectization

of (M,α′) is Lagrangian. In fact, the one-form f ι∗α (that defines the distribution

ι∗ξ) is closed if and only if ι̂f is Lagrangian, and α′ = fα.

Proof. It is immediate to verify that ι̂∗f (t π
∗α) = f ι∗α and the diffeomorphism

σf (x, t) = (x, t/f(x)) of M × R+ satisfies σ∗

f (t π
∗(fα)) = t π∗α. �

Corollary 5.11 ([6]). ĨC(M,L, τ) ⊂ IC(M,L, τ) for every (cooriented) contact

manifold (M, ξ = kerα) and every L and τ as in the definitions of the shapes.

In certain situations, the shapes can be (partly) calculated explicitly, as the

following lemmas and proposition show.

Lemma 5.12. If (M, ξ) is any contact manifold, and the homomorphism τ factors

through a composition H1(M,R) → H1(S1,R) → H1(T n,R), where S1 ⊂M is an

embedded circle, and the first map is induced by its inclusion, then IC(M, τ) and

ĨC(M, τ) are non-empty.

Proof. By Theorem 3.3.1 in [8], every circle embedding can be C0-approximated

by a transverse knot that is isotopic to the original embedding. For the modified

shape the lemma thus follows from the construction in the proof of Lemma 4.7, and

for the original shape it then follows from Corollary 5.11. �
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Lemma 5.13. ĨC(M, 0) = IC(M, 0) = Sn−1 for any contact manifold (M, ξ).

Proof. By Proposition 5.7 and Corollary 5.11 (and Darboux’s Theorem), it suffices

to show that Sn−1 ⊂ ĨC(R
2n−1, 0). (Here we also use the standard contact dilation

(z, x, y) 7→ (s2z, sx, sy) of R2n−1.) By the same argument as in Remark 4.8, the

element (1 : a1 : . . . : an) ∈ ĨC(R
2n−1, 0) for all ai > 0. Then by (the GL(n,Z)-

action in) Proposition 5.9, we have Sn−1 ⊂ ĨC(R
2n−1, 0). �

Lemma 5.14. Consider S1 × R
2n−2 with its standard contact structure, and let

τ : H1(S1 × U,R) → H1(T n,R) be the homomorphism induced by the canonical

embedding S1 × T n−1 → S1 × 0 →֒ S1 × R2n−2, where U is an open subset of

R2n−2. Then the shape ĨC(S
1 × U, τ) equals the upper hemisphere of Sn−1 minus

the north pole.

Proof. By Proposition 1.24 in [7], for any positive numbers r1 and r2 there exists a

contact embedding ϕ : S1 ×B2n−2
r1

→ S1 ×B2n−2
r2

that is trivial on the first factor,

and thus τ ◦ ϕ∗ = τ . (In fact, for n > 1, the induced homomorphism ϕ∗ is the

identity.) Thus it suffices to prove the lemma for the case U = R2n−1. Again by

Remark 4.8, we have (1 : a2 : . . . : an) ∈ ĨC(S
1 × R2n−2, τ) for all ai > 0, and by

Proposition 5.9, the shape ĨC(S
1×R2n−2, τ) contains the upper hemisphere minus

the north pole.

On the other hand, since the canonical map S1 = S1×T n−1 →֒ S1×R2n−2 → S1

has degree one for any (coisotropic) embedding ι : S1 × T n−1 →֒ S1 × R2n−2, the

shape ĨC(S
1 ×R2n−2, τ) does not contain any point (a1 : a2 : . . . : an) with a1 ≤ 0.

Moreover, it does not contain the north pole (1 : 0 : . . . : 0) [16, Theorem 1.4]. �

As another corollary to Theorem 4.9, we have the following lemma. The proof

is analogous to the proof of Lemma 2.4, and also follows from Proposition 5.7 by

the same argument as in the symplectic case.

Lemma 5.15. IC(W,L, τ) and ĨC(W,L, τ) are open subsets of PH1(L,R).

If M = T n × A ⊂ T n × Sn−1 is an open and connected subset of the unit

cotangent bundle of a torus with its standard contact structure, then the contact

shapes can again be calculated completely.

Proposition 5.16. If A ⊂ Sn−1 is an open and connected subset, and a ∈ A is

any point, then ĨC(T
n ×A, ι∗a) = IC(T

n ×A, ι∗a) = A.

Proof. As above denote by αcan the canonical contact form on ST ∗T n, that is,

the restriction of the canonical one-form λcan on T ∗T n to ST ∗T n. Its Reeb vector

field is R =
∑n

i=1 pi · ∂/∂qi. Thus for a point a′ ∈ A ⊂ Sn−1, the canonical

embedding ιa′ : T n = T n × a′ →֒ ST ∗T n is transversal. The one-form ι∗a′αcan is

closed, and [ι∗a′αcan] = a′. Thus A ⊂ ĨC(T
n × A, ι∗a). On the other hand [6], let

CA = {ta′ | a′ ∈ A, t ∈ R+} denote the cone over A without its vertex. Then

I(T n × CA, λcan, ι
∗
a) = CA by Theorem 2.17, and hence IC(T

n × A, ι∗a) = A by

definition of the contact shape IC . �
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Remark 5.17. In contrast, the capacity of the symplectization is infinite for any

contact manifold. Indeed, let c(W,ω) denote the Gromov width of a symplectic

manifold (W,ω). Then 0 < πr2 < c(M ×R+, d(t π
∗α)) by Darboux’s Theorem. On

the other hand, the existence of the diffeomorphism (x, t) 7→ (x, s t) implies that

c(M × R+, d(t π
∗α)) = c(M × R+, s d(t π

∗α)) for every s > 0 by the monotonicity

axiom, and c(M × R+, s d(t π
∗α)) = s2 c(M × R+, d(t π

∗α)) by the conformality

axiom. Thus c(M × R+, d(t π
∗α)) > π(r/s)2 → +∞ (as s → 0+), which proves

that c(M ×R+, d(t π
∗α)) = +∞. Since the Gromov width is the smallest capacity,

the capacity of the symplectization of any contact manifold is always infinite. �

The following definition is the contact analog of Definition 2.27. It likewise plays

a crucial role in the proof of Corollary 1.5.

Definition 5.18. Let (M1, ξ1) and (M2, ξ2) be cooriented contact manifolds of the

same dimension. We say that an embedding ϕ : M1 → M2 preserves the shape

invariants (or for short, preserves the shape) of two open subsets U ⊂ M1 and

V ⊂M2 so that U ⊂M1 is compact and ϕ(U) ⊂ V if IC(U,L, τ) ⊂ IC(V, L, τ ◦ϕ
∗)

for every L and every homomorphism τ : H1(V,R) → H1(U,R). An embedding

is said to preserve shape if it preserves the shape of all open subsets U and V as

above. It is said to preserve the modified shape (of two subsets) if IC is replaced

by ĨC in the above definition. �

Remark 5.19. By Propositions 5.3 and 5.7, contact embeddings preserve both

shape invariants; of course, for contact embeddings it is again not necessary to make

the compactness assumption. This definition however is preserved under uniform

convergence (Proposition 5.21). The restriction of a (modified) shape preserving

embedding to an open subset by definition again preserves the (modified) shape.

An embedding that preserves the (modified) shape is contact by Theorem 1.4, and

thus preserves the (modified) shape of arbitrary subsets. �

The following analog of Proposition 2.29 is used later to distinguish contact

embeddings that preserve coorientation from those that reverse it.

Proposition 5.20. Let (M1, ξ1) and (M2, ξ2) be cooriented contact manifolds of

the same dimension, and ϕ : M1 →M2 be a contact embedding (that a priori may or

may not preserve coorientation). Then ϕ preserves the (modified) shape invariant

if and only if it preserves coorientation.

Proof. The argument is the same as in the proof of Proposition 2.29, except that

c = ±1, there is no freedom of translation, and the reference to Theorem 2.17 is

replaced by Propositions 4.11 and 5.16. �

The analog of Proposition 2.32 is the following continuity property of the contact

shape invariants. The proof is verbatim the same and thus is omitted.

Proposition 5.21. Let (M1, ξ1) and (M2, ξ2) be cooriented contact manifolds of

the same dimension. Suppose that ϕk : M1 →M2 is a sequence of embeddings that

converges uniformly on compact subsets to another embedding ϕ : M1 → M2, and

that ϕk preserves (modified) shape for every k. Then ϕ preserves (modified) shape.
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6. C0-characterization of contact embeddings

This section contains the proof of Theorem 1.4 and its corollaries.

Remark 6.1. For the earlier parts of the present section (up to but not including

Theorem 6.13), we have to ignore coorientation. In particular, a contact embedding

may or may not preserve coorientation. �

Lemma 6.2. Let (M1, ξ1) and (M2, ξ2) be contact manifolds of the same dimension.

Then an embedding ϕ : M1 → M2 is contact if and only if it preserves coisotropic

submanifolds. The latter means that the image ϕ(C) is coisotropic whenever C is

a coisotropic submanifold. The same statement holds when restricted to embedded

coisotropic tori that are contained in an element of any given open cover of M1.

Proof. That contact embeddings preserve coisotropic submanifolds is obvious. We

will prove the converse. In fact, we will prove that if ϕ is not contact at x, then

there exists a coisotropic submanifold C through x so that dϕ(TxC) ⊂ (ξ2)ϕ(x).

Our arguments are local in nature, and therefore also apply to contact manifolds

that are not coorientable.

Let ξ1 = kerα1 and ξ2 = kerα2, and define a (not necessarily nowhere vanishing)

function f and a one-form β on M1 by f = (ϕ∗α2)(R1) and β = (ϕ∗α2) − fα1,

where R1 denotes the Reeb vector field associated to α1. Then ϕ∗α2 = fα1 + β

and β(R1) = 0. By non-degeneracy of dα1|ξ1 there exists a unique vector field X

on M1 that is tangent to ξ1 and such that β = dα1(X, ·) (see Exercise 3.54 in [13]).

Suppose that ϕ is not contact at a point x ∈ M1, or equivalently, the vector

v = X(x) 6= 0 (by the contact condition, f and X cannot vanish simultaneously).

Let w ∈ (ξ1)x be a vector such that dα1(v, w) = 1. By Lemma 4.7, there exists a

coisotropic torus C through x that is tangent to both R1(x) − fw and v, and so

that TxC/〈R1(x) − fw〉 ⊂ (ξ1)x. But then (ϕ∗α2)|C = 0 at the point x, and thus

ϕ(C) is not transversal to ξ2. �

Remark 6.3. The same proof applies to two contact structures ξ1 and ξ2 on

the same smooth manifold M . That is, ξ1 = ξ2 if and only if every coisotropic

submanifold with respect to ξ1 is also a coisotropic submanifold with respect to ξ2.

This statement continuous to hold when restricted to embedded coisotropic tori in

an element of any given open cover of M . This fact is not needed anywhere in this

paper but is stated for the sake of completeness. �

We again record the converse statement in a separate lemma.

Lemma 6.4. Let (M1, ξ1) and (M2, ξ2) be contact manifolds of the same dimension.

Suppose an embedding ϕ : M1 → M2 is not contact at x ∈ M1, and let U ⊂ M1

be a neighborhood of x. Then there exists a coisotropic embedding ι : T n →֒ M1

through x whose image is contained in U , and so that ϕ ◦ ι : T n →֒ M2 is not

coisotropic (at the point ϕ(x)). The embedding ϕ̂ ◦ ιf : T
n →֒ M2 × R+ given by

x 7→ ((ϕ ◦ ι)(x), f(x)) is thus not Lagrangian for any (positive) function f on T n

and any contact forms on (M1, ξ1) and (M2, ξ2) defining the symplectizations.
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Remark 6.5. In order to put the forthcoming argument that completes the proof of

Theorem 1.4 in perspective, assume that C is an (embedded, closed, and connected)

n-dimensional submanifold of a contact manifold (M, ξ) that is not coisotropic.

Then any lift L of C to a symplectization of M is not Lagrangian. This applies in

particular to C× 1 ⊂M ×R+. By Laudenbach-Sikorav’s Theorem 3.5, there exists

a Hamiltonian vector field that is nowhere tangent to L. If C is transversal to ξ,

then the bundle E = (ξ|C)
⊥ ⊕ 〈R〉 over C is (up to identification of C with C × 1)

precisely the symplectic orthogonal complement of T (C × 1) in T (M ×R+). Then

the proof by Laudenbach-Sikorav applies directly in the contact setting, without the

need to lift to the symplectization. The contact vector field XF so derived of course

lifts to the Hamiltonian vector field generated by the Hamiltonian function t π∗F .

Let X be a nowhere vanishing section of E so that dF (X) > 0 (see the sketch of the

proof of Theorem 3.5 above). In the contact setting, dF = dF (R)α − dα(XF , ·),

so that in contrast to the proof of Theorem 3.5, this last condition alone does not

necessarily imply that XF is nowhere tangent to C. A more contact topological

proof is therefore required for Theorem 1.4. �

Definition 6.6. A submanifold C of a contact manifold is called immediately

displaceable if there exists a contact vector field XF (defined in a neighborhood of

C) that is nowhere tangent to C. �

Recall that if M has dimension 3, such a surface is called convex, see [8] and

the references therein. We will take advantage of the following known facts. An

embedded hypersurface S ⊂M is immediately displaceable if and only if there exists

an embedding of S×R intoM that restricts to the inclusion of S on S×0 and pulls

back the contact structure on M to a vertically invariant contact structure on a

neighborhood of S×0 [8, Lemma 4.6.19] (the proof given there for surfaces in contact

3-manifolds applies verbatim to hypersurfaces in higher dimensions). Moreover, a

surface S is convex if and only if its characteristic foliation is divided by a collection

of embedded circles [8, Theorem 4.8.5 (a)] (see below for the definitions). We will

prove a generalization of this result to higher dimensions in the course of the proof

of Lemma 6.11 below.

Remark 6.7. Just like Lagrangian submanifolds, a closed coisotropic submanifold

C can never be immediately displaceable, and in fact, the argument is quite similar.

Let F be a smooth function defined near C, and denote byXF = FR+YF its contact

vector field, where YF is tangent to ξ and R is a Reeb vector field that is tangent

to C (see Lemma 4.6). Since C is closed, F must have a critical point x ∈ C. Then

dα(YF (x), v) = −dF (v) = 0 for all v ∈ ξx ∩TxC, i.e. YF (x) ∈ (ξx ∩TxC)
⊥. But the

latter is Lagrangian, so that YF (x) must be tangent to C, and since R(x) is also

tangent to C, the claim follows. �

Example 6.8. By Theorem 3.5, a closed n-dimensional submanifold L of W is

either Lagrangian or immediately displaceable. In contrast, a closed n-dimensional

submanifold C ofM can be neither coisotropic nor immediately displaceable, as this

example shows. In fact, the example can be generalized to any contact manifold.
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Consider the contact manifold M = T 2 × R with coordinates (ϕ, θ) on T 2 and

z on R, and contact form α = dθ + zdϕ. Let ζ : S1 → S1 be a smooth function.

The surface S = {z = ǫ sin(ζ(θ))} is a graph over T 2 × 0, so that we may use

the coordinates (ϕ, θ) on S. If the function ζ is constant, then S is coisotropic [8,

Example 4.8.4 (2)]. (The case ζ = 0 is equivalent to the choice ǫ = 0.) On the other

hand, if ζ is strictly monotone (i.e. its derivative ζ′ nowhere vanishes), then S is

convex [8, Example 4.8.10] and [8, Figure 4.42 (left)] (with ζ the identity function).

However, if ζ is constant on some open subset and strictly monotone on another

open subset, then S is neither coisotropic nor convex. �

Before stating the main lemma, we provide further details on the aforementioned

notions. Let S ⊂ M be an embedded oriented hypersurface. At a point x ∈ S,

the vector space (ξx ∩ TxS)
⊥ is either {0} or a one-dimensional subspace of ξx

that is contained in ξx ∩ TxS. The characteristic foliation F of S (with respect

to the contact structure ξ) is the singular one-dimensional foliation defined by the

distribution (ξ|S∩TS)
⊥ (with the orientation established below). In a neighborhood

of S (which is identified with S×R so that S corresponds to S× 0), a contact form

(that defines ξ) can be written as α = βt+ut dt, where t denotes the coordinate on

R, βt is a smooth family of one-forms and ut a smooth family of functions on S.

Definition 6.9. Let Ω be a volume form on an embedded oriented hypersurface

S ⊂ M . The characteristic foliation is defined by the vector field X that satisfies

ιXΩ = β0 ∧ (dβ0)
n−2, with the orientation provided by X . �

Here ιXΩ denotes interior multiplication of Ω with X . The vector field λX ,

where λ is a positive function on S, defines the same oriented foliation, and X is

unique up to this form of rescaling. See section 2.5.4 in [8] for details.

Definition 6.10. Let S be an embedded closed surface in a contact 3-manifold. A

collection Γ of embedded circles (in S) is said to divide the characteristic foliation

F of S if Γ is transverse to F , and there exists an area form Ω on S and a vector

field X that defines F , so that LXΩ 6= 0 on S\Γ, and the vector field X points out

of S+ = {x ∈ S | divΩ(X)(x) > 0} along Γ. �

Here LXΩ denotes the Lie derivative and divΩ(X) the divergence. See section 4.8

in [8] and in particular [8, Definition 4.8.3] for details.

Lemma 6.11. Let (M1, ξ1) and (M2, ξ2) be contact manifolds of dimension 2n−1.

Suppose an embedding ϕ : M1 → M2 is not contact at x ∈ M1, and let U ⊂ M1

be a neighborhood of x. Then there exists a coisotropic embedding ι : T n →֒ M1

through x whose image is contained in U , and so that (the image of) the embedding

ϕ ◦ ι : T n →֒M2 is immediately displaceable.

The notions of non-Lagrangian, transversal, and immediately displaceable (and

in particular, convex) are all generic, so the heart of the argument is really a matter

of carefully choosing the starting coisotropic embedding.

Proof. The machinery for the aforementioned contact topological proof is mostly

developed in dimension 3, so we handle that case first.
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Let ι : T 2 →֒ M1 be an embedded coisotropic torus; by Lemma 4.7, these exist

in abundance (in a sense made precise there), and we will successively modify this

embedding to prove the present lemma. To simplify notation, we identify ι with its

image ι(T 2) = C, and write ∂z and ∂θ for the vector fields ι∗(∂/∂z) and ι∗(∂/∂θ),

respectively, where (z, θ) are coordinates on T 2. By the construction of such tori in

Lemma 4.7, we may assume that ∂z = R1 is the restriction of the Reeb vector field

of a contact form α1 on M1 to C. Moreover, we identify the image ϕ(C) with C as

a submanifold of (M1, ϕ
∗ξ2), and to simplify notation further, we write ξ2 for the

contact structure ϕ∗ξ2 on M1, and α2 for the pull-back ϕ∗α2 of a contact form on

M2. Our argument thus takes place entirely on the manifold M1 with two different

contact structures ξ1 and ξ2 (and with a single submanifold C, which is coisotropic

with respect to ξ1).

Since we have the freedom to choose the submanifold C, we may assume that

∂z is transverse to both ξ1 and ξ2. The necessary argument is entirely analogous

to the construction of a transverse knot; the circle embedding can be chosen to be

transverse to two (hyper-)plane bundles that are nowhere integrable. Let α1 be a

contact form with kerα1 = ξ1 so that its Reeb vector field restricts to ∂z along the

transverse knot S1. This contact form will be fixed for the remainder of the proof.

If α2 is any contact form that defines ξ2, then α2 = fα1 + β = fα1 + dα1(X, ·),

with X tangent to ξ1, see the proof of Lemma 6.2. By assumption, the function f

does not vanish along S1, and by continuity, it is non-vanishing in a neighborhood

U of S1. We may assume that C ⊂ U , again see Lemma 4.7. By reversing the

orientation of S1 if necessary, we therefore have f > 0 in a neighborhood of C.

As a consequence of positivity of f , there exists a unique smooth function v on

C so that the vector field Y = ∂θ − v ∂z is tangent to ξ2 everywhere on C. In

fact, this function is given by v = α1(∂θ) + dα1(X, ∂θ)/f , and ∂/∂z (α1(∂θ)) = 0.

The vector field Y defines the characteristic foliation F of C with respect to ξ2,

which in this case is non-singular. Let λ : C → R denote a positive function. The

divergence of the vector field λY with respect to the area form Ω = dz ∧ dθ on

C is ∂λ/∂θ − v ∂λ/∂z − λ∂v/∂z. By assumption, ϕ does not preserve the plane

bundle (ξ1)x, so the vector X(x) is non-zero. By shrinking U if necessary, we may

assume that X is nowhere vanishing on U . We may then choose the Lagrangian

circle L = S1 (in the notation of Lemma 4.7, C = S1 × L) so that v is not locally

constant anywhere on C. In fact, for generic choices of L and λ, the zeroes of

the divergence of λY are non-degenerate, and thus divΩ(λY ) vanishes only on a

collection Γ of isolated embedded circles, and moreover, Γ is transverse to F . In

other words, the collection of embedded circles Γ divides the characteristic foliation

of C, and hence C is convex.

Before giving the proof in the case dimM > 3, we provide details of the proof of

Theorem 4.8.5 (a) in [8] that are relevant for generalizing the argument to arbitrary

dimensions. Let β = ιZΩ, where Z = λY and Ω = dz ∧ dθ are as above, and define

α = β + u dt, where t denotes the coordinate on R and u is a smooth function on

S. It suffices to show that α is a contact form on a neighborhood of S × 0 (which

is again identified with S) in S × R, which in turn is equivalent to the condition
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that u divΩ(Z)− du(Z) > 0. The latter is satisfied away from Γ with u = ±1. One

can use the flow of Z to identify a neighborhood of Γ with Γ × [−ǫ, ǫ] so that Γ

corresponds to Γ× 0. Then the function u(p, s) = g(p, s) · h(p, s), where h(p, s) =

exp
(
−
∫ s

0 divΩ(Z)(p, r) dr
)
, and g satisfies ∂g/∂s > 0 and g(p, s) = ±1/h(p, s) near

s = ±ǫ, satisfies the above contact condition.

Now suppose that dimM > 3 (so that n > 2). Let C be an embedded torus

as in the above proof in the dimension 3 case, and extend C to a coisotropic torus

T n = S1 × T n−1 = C × T n−2 inside S1 × R2n−2. We continue to write (z, θ)

for coordinates on C. Denote by W(z,θ) the (2n − 4)-dimensional subspace of the

symplectic orthogonal complement of ∂θ at (z, θ) that is linearly independent of

∂θ. Then the above T n−2-factor can be chosen as (or tangent to) any Lagrangian

subspace of W . Strictly speaking, the resulting coisotropic torus T n = C ×T n−2 is

a fibered product over C, but for simplicity of notation we disregard this subtlety.

The fibered product S = C ×W (or C × V , where V ⊂ W is a neighborhood of

the torus T n−2) is then an oriented embedded hypersurface of S1 × R2n−2, whose

characteristic foliation induced by ξ2 is precisely given by the vector field Z that

we constructed in the dimension 3 case. (The hypersurface S is of course not

compact, but our constructions are all local near T n, and thus this issue does not

affect our arguments.) The set Γ of zeroes of its divergence (with respect to an

appropriate volume form Ω on S) is a collection of isolated embedded codimension

one submanifolds of S (of the form S1 × V , where S1 belongs to the dividing set

in the dimension 3 case) that are transverse to F .

Let β be the restriction of a contact form for ξ2 to S so that ιZΩ = β ∧ (dβ)n−2

(see the remarks before this lemma). As before, define a vertically invariant one-

form α = β + u dt on S. In this case, the contact condition for α translates into

u divΩ(Z) − (n − 1)du(Z) > 0 (the computation is step-by-step the same as in

dimension 3, see [8], and in fact is partly carried out there, so we omit lengthy

details). But then the argument in the dimension 3 case goes through almost

verbatim, except that the exponent in the definition of h must be divided by n− 1,

and the second condition on g has to be replaced by the requirement that g(p, s)

equals the reciprocal of ±(n − 1)h(p, s) near s = ±ǫ. Thus α defines a vertically

invariant contact structure on a neighborhood of S× 0 that coincides with ξ2 on S,

which is equivalent to the existence of a contact vector field that is transverse to S.

In particular, this contact vector field is transverse to T n (which is identified with

(ϕ ◦ ι)(T n)), and the proof of the lemma (for arbitrary dimension) is complete. �

Remark 6.12. Denote by Ψ the embedding of a neighborhood of S × 0 into M

from the preceding proof. Then the vertical vector field XF = Ψ∗(∂/∂t) that is

transverse to T n is in fact strictly contact (i.e. it preserves the contact form α on

(M, ξ) so that Ψ∗α = β+u dt). The lift of XF to a Hamiltonian vector field on the

symplectization (with respect to α) is then trivial in the R-direction. �

The following proposition from [16] is a contact analog of the Laudenbach-Sikorav

theorems from section 3, and it is proved similarly by constructing a non-constant

holomorphic disk with prescribed coisotropic boundary conditions.
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Theorem 6.13 ([16, Theorem 1.3]). Let ι : L →֒ (R2n−1, ξ0) be an embedding of

a (closed and connected) n-dimensional manifold that is immediately displaceable.

Then there exists a neighborhood N of ι(L) that does not admit any coisotropic

embeddings  : L →֒ N so that the homomorphism ∗ : H1(L,R) → H1(N,R) is

injective. In particular, the modified shape ĨC(N,L, ι
∗) is empty.

Remark 6.14. There is no immediate counterpart of Theorem 3.12 for coisotropic

embeddings. Although the property of being rational is preserved by rescaling, the

size of the generator γ rescales by the same factor. More importantly, the latter

depends on more than just the embedding itself [16]. The analog of Theorem 3.7

(with the assumption of uniform convergence) can of course be proved similarly. �

If a compact submanifold L of a contact manifold is immediately displaceable,

then (a neighborhood of) the cone over L is also immediately displaceable. That

observation gives rise to a more direct proof of Theorem 3.10 in the case L = T n,

which also applies to the original contact shape invariant.

Theorem 6.15. Let ι : T n →֒M be an embedding that is immediately displaceable.

Then there exists a neighborhood N of ι(T n) that does not admit any coisotropic

embeddings  : T n →֒ N so that the homomorphism ∗ : H1(T
n,R) → H1(N,R)

is injective. In particular, the modified shape ĨC(N, ι
∗) is empty. In fact, there

exists no Lagrangian embedding of T n into the cone N × R+ so that the induced

homomorphism ∗ : H1(T
n,R) → H1(N,R) is injective, and in particular, the shape

IC(N, ι
∗) is also empty.

Proof. The Arnold conjecture holds for the symplectization of a compact contact

manifold, and thus the argument in Remark 3.11 applies verbatim. �

Remark 6.16. As in Remark 3.11, the previous argument extends to arbitrary

(closed and connected) manifolds L under the same additional hypotheses on the

homotopy type of the coisotropic embedding, and one can again define a suitable

contact shape invariant for that purpose. �

We are finally in a position to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. We have already verified in Propositions 5.3 and 5.7 that

contact embeddings preserve the (modified) shape invariants, so we only need to

prove the converse.

By Proposition 5.20, we may assume that ϕ is not a contact embedding that

reverses coorientation. As in the proof of Theorem 1.1, suppose that ϕ is not contact

at x ∈ B2n−1
r , and again assume without loss of generality thatW = R2n−1 with its

standard contact structure. By Lemma 6.11, there exists a coisotropic embedding

ι : T n →֒ B2n−1
r so that ϕ ◦ ι : T n →֒ R2n−1 is immediately displaceable. Let U

be a neighborhood of ι(T n) so that ĨC(N,ϕ ◦ ι∗) is empty, where U ⊂ B2n−1
r is

compact and (ϕ ◦ ι)(U ) ⊂ N ; this exists by Theorem 6.13 or Theorem 6.15. But

ĨC(U, ι
∗) contains at least the (oriented line represented by the) vector a = [ι∗α0]

(and in fact, by Proposition 4.11, we may choose the neighborhood U of ι(T n) so

that ĨC(U, ι
∗) = A, where A ⊂ Sn−1. Therefore ϕ does not preserve the modified

shape invariant. The proof for the original shape invariant IC is analogous. �
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Proof of Corollary 1.5. The proof is a carbon copy of the proof of Corollary 1.2 with

Theorem 1.1 and Proposition 2.20 replaced by Theorem 1.4 and Proposition 5.3 or

5.7. If the embeddings ϕk are not assumed to preserve coorientation, we may pass to

a subsequence and if necessary argue as we did for anti-symplectic embeddings. �

Proof of Corollary 1.6. The proof is virtually the same as the proof of Corollary 1.3

with Corollary 1.2 replaced by Corollary 1.5. If ξ is not coorientable or if the

diffeomorphisms ϕk are not assumed to preserve coorientation, we may again pass to

a subsequence and if necessary argue as we did for anti-symplectic embeddings. �

Corollary 6.17. Let ϕk : B
2n−1
r → M be a sequence of contact embeddings that

reverse coorientation that converges uniformly on compact subsets to an embedding

ϕ : B2n−1
r →M . Then ϕ is contact but reverses coorientation.

Proof. One can either argue as for anti-symplectic embeddings using Corollary 1.5,

or use the final corollary of this section and the remark after it. �

Corollary 6.18. Let ϕk : M → M be contact diffeomorphisms that reverse the

given coorientation and converge uniformly on compact subsets to another diffeo-

morphism ϕ : M → M . Then ϕ is contact but reverses the coorientation. In other

words, the set of diffeomorphisms that preserve ξ but reverse its coorientation is

C0-closed in the group Diff (M) of all diffeomorphisms.

Proof. Indeed, if this set is non-empty, then it coincides with ϕ · Diff+(M, ξ) for

some diffeomorphism ϕ that reverses the coorientation of ξ. Alternatively, one may

give a proof using the previous corollary. �

Corollary 6.19. An embedding ϕ : B2n−1
r → M preserves the contact structures

but reverses coorientation if and only if it reverses the shape invariant.

Proof. This follows from Theorem 1.4 by the same argument as for anti-symplectic

embeddings, or directly along the same lines as the proof of Theorem 1.4. �

Remark 6.20. Reversing shape is again a property that is preserved by uniform

convergence on compact subsets. The proof is verbatim the same as the proof of

Proposition 5.21. �

Remark 6.21. For all results that ignore coorientation, one may instead work with

the version of the (modified) shape that ignores coorientation, see Remark 5.5. �

7. Contact forms and strictly contact embeddings

The present section is concerned with (contact) embeddings and diffeomorphisms

that preserve given contact forms. Recall that the contact condition for ξ = kerα

can be expressed as Ωα = α ∧ (dα)n−1 6= 0.

Suppose that (M1, ξ1 = kerα1) and (M2, ξ2 = kerα2) are (cooriented) contact

manifolds of the same dimension, and ϕ : M1 →M2 is a (coorientation preserving)

contact embedding. Then ϕ∗α2 = fα1 for a positive function f on M1, and thus

ϕ∗Ωα2
= fn Ωα1

. In particular, the contact embedding ϕ also preserves the contact

forms if and only if it in addition preserves the induced volume forms. Therefore

the following theorem is an immediate corollary of Theorem 1.4.
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Theorem 7.1. An embedding ϕ : B2n−1
r → M is strictly contact if and only if it

preserves the (modified) shape invariant and preserves volume.

Proof. If ϕ is strictly contact then it preserves the (modified) shape and the induced

volume forms. Conversely, if ϕ preserves the (modified) shape, then it is contact

by Theorem 1.4, and since it also preserves volume, it must be strictly contact. �

Corollary 7.2. Let ϕk : B
2n−1
r → M be a sequence of strictly contact embeddings

that converges uniformly on compact subsets to an embedding ϕ : B2n−1
r → M .

Then ϕ is strictly contact, that is, ϕ∗α = α0.

Proof. By Proposition 5.21, the limit ϕ preserves the (modified) shape invariant.

Each ϕk preserves the measures induced by the volume forms Ωα0
and Ωα (which

is a Radon measure if M is not compact), and this property is also preserved by

uniform convergence on compact subsets. But a smooth map preserves measure

if and only if it preserves the corresponding volume forms, and thus ϕ is volume

preserving. Then by the previous theorem, ϕ is a strictly contact embedding. �

One could also argue using Corollary 1.5 to prove this corollary. Similarly, one

may use either the corollary we just proved or Corollary 1.6 to prove the next result.

At this point the proof is straightforward and therefore omitted.

Corollary 7.3 ([18]). The group Diff (M,α) of strictly contact diffeomorphisms

is closed in the group Diff (M) of diffeomorphisms of M in the C0-topology. That

is, if ϕk : M → M is a sequence of strictly contact diffeomorphisms that converges

uniformly on compact subsets to a diffeomorphism ϕ : M → M , then ϕ is strictly

contact, i.e. ϕ∗α = α.

Remark 7.4. The proof in [18] uses the fact that the lift of a strictly contact

diffeomorphism to the symplectization (with respect to the specific contact form α)

is symplectic and trivial in the second argument. The previous corollary is then a

direct consequence of Corollary 1.3, and one can argue similarly for strictly contact

embeddings. �

It is tempting to restrict the definition of the (modified) shape invariant to single

out strictly contact embeddings, and based on that invariant give a proof of the

previous three results along the same lines as the arguments in section 6. Here is

an ad hoc adaptation of Definition 5.4 to an invariant of a contact form α.

Definition 7.5. The strictly contact (α,L, τ)-shape ĨSC(M,α,L, τ) ⊂ H1(L,R)

ofM is by definition the set of all z ∈ H1(L,R) such that there exists a coisotropic

embedding ι : L →֒ M so that ι∗ = τ , the one-form ι∗α is closed and defines the

codimension one distribution ι∗ξ, and z = [ι∗α]. �

Remark 7.6. The coisotropic embeddings as in this definition lift to Lagrangian

embeddings into M × 1 ⊂ M × R+, where the latter denotes the symplectization

with respect to the contact form α. Clearly a strictly contact embedding preserves

the strictly contact shape. However, coisotropic is really a concept related to a

contact structure, not a contact form, and embeddings as in the previous definition
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are not as abundant in general (or fail to exist) to make the line of argument in

section 6 go through. For example, the Reeb vector field of the standard contact

form α0 on R2n−1 is ∂/∂z, and there cannot exist a closed submanifold of R2n−1

that is everywhere tangent to ∂/∂z. Therefore ĨSC(R
2n−1, α0, L, τ) is always empty,

and there is no hope to prove Theorem 7.1 based on the strictly contact shape. �

There are some special cases however where the situation is more promising. We

prove the next lemma just for the sake of completeness. It applies for instance to

S1×R2n−2 with the contact form considered in section 6, the unit cotangent bundle

ST ∗T n with its standard contact form, and to regular contact manifolds (i.e. the

Reeb vector field induces a free S1-action on M).

Lemma 7.7. Let (M, ξ = kerα) be a contact manifold such that for each point

x ∈ M and each vector v ∈ ξx there exists a coisotropic submanifold C through x

that is tangent to v, and so that the restriction of α to C is closed. Suppose further

that f is a nowhere vanishing smooth function on M so that the restriction of fα

to each such coisotropic submanifold is also closed. Then f is constant. In other

words, the contact form α with the above property is unique up to rescaling by a

constant. If (M1, ξ1 = kerα1) and (M2, ξ2 = kerα2) are two contact manifolds

as above of the same dimension, and ϕ : M1 → M2 is a contact embedding that

preserves such coisotropic submanifolds, then ϕ∗α2 = c α1 for a constant c 6= 0.

Proof. The argument is similar to the discussion before the proof of Theorem 4.9.

Denote by R the Reeb vector field associated to the contact form α. Since d(fα) =

df ∧ α + f dα, we have by assumption df(v) = (d(fα) − f dα)(v,R) = 0 for every

v ∈ ξ. That means that for each regular value c of f , the preimage f−1(c) is a

codimension one submanifold that is everywhere tangent to ξ. This is of course

impossible, so that f possesses no regular values whose preimage is non-empty. By

Sard’s Theorem, the image of f then does not contain an open interval, and by

continuity, it is comprised of a single point. The last part of the lemma follows

from the first part by considering the contact form fα1 = ϕ∗α2. �

Remark 7.8. One can replace the assumption that ϕ is contact in the last part of

the lemma by a stronger hypothesis on the existence of the special type of coisotropic

submanifolds considered here so that the proof of Lemma 6.2 applies. �

8. Shape preserving embeddings of non-exact symplectic manifolds

and contact manifolds that are not coorientable

We now extend the definition of shape preserving to symplectic manifolds that

are not necessarily exact by making minor changes to Definition 2.27, and likewise

for contact manifolds that are not necessarily coorientable.

Definition 8.1. We call an open subset U of a (not necessarily exact) symplectic

manifold (M,ω) exact if the cohomology class [ω] belongs to the kernel of the

homomorphism i∗ : H1(M,R) → H1(U,R), where i : U →M is the inclusion. By a

slight abuse of notation, we call an open subset U of a (not necessarily coorientable)

contact manifold (M, ξ) exact if ξ|U is coorientable. �
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Definition 8.2. Let M1 and M2 be (not necessarily exact) symplectic manifolds

or (not necessarily coorientable) contact manifolds of the same dimension, and

ϕ : M1 → M2 be an embedding. Let U ⊂ M1 and V ⊂ M2 be two exact open

subsets so that U ⊂ M1 is compact, and ϕ(U ) ⊂ V . We say that ϕ preserves the

(modified) shape invariant of U and V provided that I(U,L, τ) ⊂ I(V, L, τ ◦ ϕ∗)

(or IC(U,L, τ) ⊂ IC(V, L, τ ◦ ϕ∗) or ĨC(U,L, τ) ⊂ ĨC(V, L, τ ◦ ϕ∗)) for every L

and for every homomorphism τ : H1(U,R) → H1(L,R). An embedding is said to

preserve the (modified) shape invariant if it preserves the (modified) shape of all

open subsets U ⊂M1 and V ⊂M2 as above. �

Remark 8.3. Recall from section 2 that every point in a symplectic manifold has

an exact neighborhood, and likewise for contact manifolds, see Remark 4.2. The

proofs in this paper therefore apply directly to symplectic manifolds that are not

necessarily exact and to contact manifolds that are not necessarily coorientable. �

9. Shape as sufficient condition for existence

of symplectic and contact embedding

Proposition 2.20 implies that the shape is an obstruction to the existence of a

symplectic embedding, and by Theorem 1.1, a given embedding is symplectic if and

only if it preserves shape (Definition 2.27). It is therefore natural to ask, given two

exact symplectic manifoldsW1 andW2 (of the same dimension) that have the same

shape, does this property imply the existence of a symplectic embeddingW1 → W2?

Recall from Example 2.10 that the shape of an open and connected subset of

(R2, ω0) recovers its area. It is well known that there exists an area preserving

diffeomorphism between two such subsets if and only if the sets are diffeomorphic

and have the same (total) area. Both of the last two conditions are obviously

necessary. The present section discusses similar results in higher dimensions.

The following theorem is due to V. Benci and Sikorav [22]. We will give an

elegant proof in which the difficult parts of the argument are hidden within the

previously established properties of the shape invariant.

Theorem 9.1 ([22]). Let U ⊂ U ′ and V ⊂ V ′ be open and connected subsets of Rn

such that H1(U ′,Z) and H1(V ′,Z) are trivial. Then the following three statements

are equivalent:

(1) there exists a symplectic diffeomorphism ϕ : T n × U ′ → T n × V ′ that maps

T n × U to T n × V ,

(2) there exists a diffeomorphism ϕ : T n × U ′ → T n × V ′ that maps T n × U to

T n × V , and I(T n × U, ι∗0) = I(T n × V, ι∗0 ◦ ϕ
∗) (up to translation), and

(3) there exists a unimodular matrix A ∈ GL(n,Z) and a vector b ∈ Rn such

that V = AU + b = A(U +A−1b).

In fact, if statement (1) or (2) holds, the matrix A represents the homomorphism

H1(T n,Z) → H1(T n,Z) induced by ϕ (under the identification of H1(T n,R) with

Rn), and the translation vector in (2) is given by A−1b, which corresponds to the

cohomology class ι∗0([ϕ
∗λcan − λcan]). Moreover, we may choose U ′ = V ′ = R

n.
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Remark 9.2. In [22], Sikorav proved the theorem with U = U ′ and V = V ′. A

proof of the other extreme case U ′ = V ′ = Rn can be found in [13, Section 11.3].

Neither version contains statement (2) above. �

Proof. That (1) implies (2) follows immediately from Proposition 2.20.

By the hypotheses on U ′ and V ′, we may identify H1(T n×U ′,R) with H1(T n,R)

via the isomorphism ι∗0, and likewise for H1(T n × V ′,R). Assuming statement (2),

the diffeomorphism ϕ induces an isomorphism Φ: H1(T n,Z) → H1(T n,Z) so that,

under the above identifications, ι∗0 ◦ ϕ∗ = Φ ◦ ι∗0. Then by Proposition 2.14, the

shape satisfies I(T n × V, ι∗0 ◦ ϕ∗) = I(T n × V,Φ ◦ ι∗0) = Φ(I(T n × V, ι∗0)). By

Sikorav’s Theorem 2.17, we have I(T n × U, ι∗0) = U and I(T n × V, ι∗0) = V . Then

by assumption, U = Φ(V −b) for some vector b ∈ Rn, and (3) follows with A = Φ−1.

To see that (3) implies (1), define a diffeomorphism ϕ : T n × Rn → T n × Rn

by (q, p) 7→ ((A−1)tq, Ap + b). Then ϕ is clearly symplectic, and maps T n × U to

T n × V . Moreover, the translation vector is ι∗0([ϕ
∗λcan − λcan]) = A−1b. �

Remark 9.3. Sikorav’s Theorems 2.17 and 9.1 can be generalized to arbitrary

(closed and connected) n-dimensional manifolds L. The statements are however

more cumbersome than in the case of tori due to the lack of the natural product

structure T ∗T n = T n × Rn for general manifolds L. (For submanifolds L ⊂ Rn,

the cotangent bundle T ∗L can be naturally identified with a quotient of L × Rn,

see [13, Exercise 11.22].) In that case, one should consider subsets A ⊂ H1(L,Rn)

that are comprised of the union of the images of harmonic sections L→ T ∗L (with

respect to some auxiliary Riemannian metric). For the proof of Theorem 2.17 to

continue to apply, one needs to impose that if A intersects the image of such a

section, then the entire image is contained in A. The proposed generalization is

then straightforward; since we have no need for the precise statements, the details

are omitted. �

Example 9.4. Consider (R2n−W )∪Hǫ with the standard symplectic structure on

R2n, where W is the wall {y1 = 0}, and Hǫ = {x ∈ R2n|‖x‖ < ǫ} (so that W −Hǫ

is a wall in R2n with a hole). Then I((R2n −W ) ∪Hǫ, ω0, 0) = Rn = I(R2n, ω0, 0),

but there exists no symplectic diffeomorphism between these symplectic manifolds

(a symplectic camel cannot fit through the wall, see e.g. [13, pages 32-33]). �

These examples lead to a better understanding of the proper formulation of the

question posed in the opening paragraph of this section. If W1 and W2 are two

exact symplectic manifolds, and Φ: H1(W2,R) → H1(W1,R) is an isomorphism

so that I(W1, L, τ) = I(W2, L, τ ◦ Φ) for an appropriate closed manifold L and

homomorphism τ (or all L and τ), must there exist a symplectic diffeomorphism

W1 → W2? The shape alone may not be able to detect if two manifolds (or

subsets of a given manifold) are diffeomorphic, so in general, that may need to be

assumed. It also seems reasonable to assume that the isomorphism Φ is induced

by a diffeomorphism W1 → W2. A more restrictive version of the above question

can then be phrased as follows: if I(W,ω1, L, τ) = I(W,ω2, L, τ), must there exist

a diffeomorphism ϕ of W so that ϕ∗ω2 = ω1? For example, does I(R2n, ω, 0) =

R
n − {0} imply that ω is diffeomorphic to the standard symplectic form on R

2n?
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At present, with the exception of the special cases discussed above, this question

is open. In each of the examples, the desired symplectic diffeomorphism arises from

a corresponding linearized problem. For the plane, it is the time-one map of a time-

dependent vector field, and for cotangent bundles, it comes from a linear map on

H1(T n,Z). In the latter case, it also sends a distinguished foliation by Lagrangian

submanifolds (diffeomorphic to T n) to another such distinguished foliation.

These questions can be translated to the contact case in a straightforward

manner. Suppose that M1 and M2 are two coorientable contact manifolds, and

Φ: PH1(M2,R) → PH1(M1,R) is an isomorphism so that the (modified) contact

shapes satisfy IC(M1, L, τ) = IC(M2, L, τ ◦Φ) (or ĨC(M1, L, τ) = ĨC(M2, L, τ ◦Φ))

for an appropriate closed manifold L and homomorphism τ (or all L and τ , and

similarly if M1 and M2 are diffeomorphic and Φ is induced by a diffeomorphism).

Then must there exist a contact diffeomorphism M1 →M2? With the exception of

the following two results, this question is also open.

Consider the unit sphere S3 ⊂ C2 with its standard contact structure, and for

0 < r < 1, denote by Ur the open solid torus {(z1, z2) ∈ C2 | |z1| < r} ∩ S3. The

next theorem is the main result of [6]; its proof is based on the shape invariant.

Since the precise argument is not needed here, it is not repeated.

Theorem 9.5 ([6]). There exists a contact diffeomorphism between Ur1 and Ur2 if

and only if the difference (1/r21)− (1/r22) is an integer.

The second theorem is a straightforward adaptation of Theorem 9.1 to unit

cotangent bundles.

Theorem 9.6. Let U ⊂ U ′ and V ⊂ V ′ be open and connected subsets of Sn−1

so that H1(U ′,Z) and H1(V ′,Z) are trivial. Then the following statements are

equivalent:

(1) there exists a contact diffeomorphism ϕ : T n × U ′ → T n × V ′ that maps

T n × U to T n × V ,

(2) there exists a diffeomorphism ϕ : T n × U ′ → T n × V ′ that maps T n × U

to T n × V , and IC(T
n × U, ι∗a) = IC(T

n × V, ι∗a ◦ ϕ∗), where a ∈ U is any

point,

(3) there exists a diffeomorphism ϕ : T n × U ′ → T n × V ′ that maps T n × U

to T n × V , and ĨC(T
n × U, ι∗a) = ĨC(T

n × V, ι∗a ◦ ϕ∗), where a ∈ U is any

point, and

(4) there exists a matrix A ∈ O(n,Z) so that V = AU .

In fact, the matrix A represents the homomorphism PH1(T n,Z) → PH1(T n,Z)

induced by ϕ, and given (4), we may choose U ′ = V ′ = Sn−1, and there exists a

contact diffeomorphism that preserves the canonical contact form αcan.

Proof. The proof only requires minor modifications of the proof of Theorem 9.1.

The implication (1) implies (3) is again obvious. In case (3), by the same argument

the hypotheses yield an isomorphism Φ: H1(T n,Z) → H1(T n,Z) (which in general

may not preserve length) so that ι∗a ◦ ϕ∗ = Φ ◦ ι∗ϕ(a), and induces a well-defined

isomorphism PΦ: PH1(T n,Z) → PH1(T n,Z) so that U = PΦ(V ) (recall that
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there is no freedom of translation in the contact case). The definition of the contact

diffeomorphism in (1) given statement (4) is the same as before (with b = 0), and

thus it extends to a (strictly) contact diffeomorphism T n×Sn−1 → T n×Sn−1 (the

fact that H1(S1,Z) is non-zero is irrelevant in the case n = 2). The proof that (1)

and (4) are equivalent to (2) is verbatim the same. �

10. Homeomorphisms that preserve shape

In this section we extend the definition of shape preserving to homeomorphisms

and derive a few basic properties of such homeomorphisms. Definition 8.2 in fact

extend verbatim to homeomorphisms of symplectic and contact manifolds, since it

does not involve derivatives. For convenience, we restate the definition here. In

order to not have to duplicate every statement, we again write M1 and M2 for

either symplectic or contact manifolds.

Definition 10.1. A homeomorphism ϕ : M1 →M2 preserves the (modified) shape

of two exact open subsets U ⊂ M1 and V ⊂ M2 such that U ⊂ M1 is compact

and ϕ(U ) ⊂ V if I(U,L, τ) ⊂ I(V, L, τ ◦ ϕ∗) (or IC(U,L, τ) ⊂ IC(V, L, τ ◦ ϕ∗)

or ĨC(U,L, τ) ⊂ ĨC(V, L, τ ◦ ϕ∗)) for every L and every homomorphism τ , and it

preserves the (modified) shape if it preserves the (modified) shape of all subsets

U ⊂M1 and V ⊂M2 as above. �

Proposition 10.2. Suppose that ϕ : M1 →M2 is a homeomorphism that preserves

the (modified) shape invariant, and in addition that ϕ is a diffeomorphism. Then

ϕ is a symplectic (respectively contact) diffeomorphism.

Proof. We give the proof for a homeomorphism of a symplectic manifold. The proof

in the contact case is verbatim the same.

Let x ∈M1 and U ⊂M1 be a Darboux neighborhood of x that is diffeomorphic

to an open ball. By Theorem 1.1, the restriction of ϕ to U is symplectic. Since x

was an arbitrary point in M1, ϕ is symplectic. �

The following proposition is implicitly contained in the proofs of Theorems 1.1

and 1.4, but stated here for emphasis.

Proposition 10.3. Let ϕ : M1 → M2 be a homeomorphism that preserves the

(modified) shape invariant, and L ⊂M1 be an (embedded) Lagrangian (respectively

coisotropic) submanifold such that ϕ(L) is smooth. Suppose that M1 and M2 are

open and connected subsets of Rk (with k = 2n or 2n − 1, respectively), or that

L = T n. Then ϕ(L) is again Lagrangian (respectively not convex).

Proof. Arguing by contradiction, assume that ϕ(L) is not Lagrangian (respectively

convex). Then argue as in the proof of Theorem 1.1 (respectively Theorem 1.4)

using Theorem 3.10 (respectively Theorem 6.13 or Theorem 6.15) to conclude that

ϕ does not preserve the (modified) shape invariant. �

Remark 10.4. The preceding theorem can again be extended to arbitrary (closed

and connected n-dimensional) manifolds L verbatim as in Remark 6.16. �
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Proposition 10.5. Let ϕk : M1 → M2 be symplectic (respectively contact) diffeo-

morphisms that converge to a homeomorphism ϕ : M1 → M2 uniformly on compact

subsets. Then ϕ preserves the (modified) shape invariant.

Proof. The proofs of Propositions 2.32 and 5.21 apply verbatim to show that the

limit ϕ preserves the (modified) shape invariant. �

Remark 10.6. A homeomorphism ϕ (of a symplectic manifold) as in the above

proposition is called a symplectic homeomorphism [17] (see its final section for open

manifolds). The converse implication that a shape preserving homeomorphism is

symplectic in the sense of [17] is not known. A necessary and sufficient condition for

when a given homeomorphism can be approximated uniformly by diffeomorphisms

can be found in [15]. This question as well as a comparison of various other notions

of symplectic homeomorphism is work in progress. The same question for the

(modified) contact shape and homeomorphism that can be approximated uniformly

by contact diffeomorphisms is also open. �

11. Topological Lagrangian submanifolds

The shape invariant allows us to define what it means for a closed n-dimensional

topological submanifold to be Lagrangian. We propose several definitions, and

discuss the relationships between them.

Let L as before be a closed and connected smooth n-dimensional manifold, and

f : L→W be a continuous map. Assume that there exist tubular neighborhoods U

of the zero section L0 in T
∗L and V of f(L) inW , and a homeomorphism ϕ : U → V

such that ϕ ◦ ι0 = f . We consider the following properties of such a map f .

(1) There exists an extension ϕ as above to a symplectic homeomorphism.

(2) There exists an extension ϕ as above to a shape preserving homeomorphism.

(3) For every tubular neighborhood N ⊂ V of the image f(L), the shape

I(N,L, τ) is nonempty, where τ = f∗ : H1(N,R) → H1(L,R).

(4) For every tubular neighborhood N0 ⊂ V of the image f(L), the intersection⋂
I(N,L, τ) of shapes is nonempty, where the intersection is over all tubular

neighborhoods N ⊂ N0 of f(L) such that the inclusion i : N → N0 induces

an isomorphism on the first cohomology groups and τ ◦ i∗ = f∗, where

f∗ : H1(N0,R) → H1(L,R).

It is obvious that (1) ⇒ (2) ⇒ (4) ⇒ (3). Indeed, the first implication follows

from Proposition 10.5, and the second implication from the definition of shape

preserving, while the third implication is the special case N = N0. Moreover, if L is

a smooth submanifold, then each of the four conditions imply that L is Lagrangian.

This follows immediately from Theorem 3.10 if (W,ω) = (R2n, ω0) or Remark 3.11

if L = T n. For arbitrary (closed and connected n-dimensional) manifolds L, one

must again replace the shape invariant above by a more restrictive shape invariant

as in Remarks 2.33 and 3.11. Finally note that if the intersection in (4) contains a

single point and τ = 0, one can assign a λ-period to the map f : L→W .
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12. A symplectic capacity from the shape invariant

We have seen that in the present context the (symplectic) shape invariants have

several advantages over symplectic capacities, see Remarks 2.30 and 5.17. In this

section we observe that a (small) part of the shape invariants defines a symplectic

capacity (which is normalized by its value on unit polydisks rather than unit balls).

Definition 12.1. We define c(M,ω) as the non-negative number (possibly ∞)

that assign to each symplectic manifold (M,ω) the supremum over the positive

generators γ of rational vectors z ∈ H1(T n,R) = Rn such that there exists a

Lagrangian embedding ι : T n →֒ U into an exact open subset U ⊂M such that the

induced homomorphism ι∗ : H1(U,R) → H1(T n,R) is trivial and z = [ι∗λ], where

λ is a primitive one-form of ω|U . �

Remark 12.2. In other words, c(M,ω) is the supremum over all positive generators

of vectors that belong to the rational part of the shape I(M, 0). Since τ = 0, the

λ-periods [ι∗λ], and in particular their rationality, do not depend on the choice of

one-form λ with dλ = ω on U ⊂M . �

Theorem 12.3. The number c(M,ω) is a symplectic capacity. More precisely, it

satisfies the following axioms:

• (monotonicity) if there exists a symplectic embedding (M1, ω1) → (M2, ω2)

and dimM1 = dimM2, then c(M1, ω1) ≤ c(M2, ω2),

• (conformality) c(M, r ω) = r c(M,ω) for any real number r 6= 0, and

• (non-triviality) c(B2n
1 , ω0) > 0 and c(B2

1 × R2n−2, ω0) <∞.

Moreover, c(M,ω) satisfies the normalization axiom

• (normalization) c(B2
1 × · · · ×B2

1 , ω0) = π = c(B2
1 × R2n−2, ω0),

where B2
1 × · · · ×B2

1 ⊂ R2n denotes the polydisk of dimension 2n.

Proof. The monotonicity axiom follows immediately from Proposition 2.20, and the

conformality axiom is obvious from the definition. For any real number 0 < ǫ < 1,

the standard embedding ι : T n = S1(1 − ǫ) × · · · × S1(1 − ǫ) →֒ B2
1 × · · · × B2

1 is

Lagrangian, and [ι∗λ] = (π(1 − ǫ)2, . . . , π(1 − ǫ)2) with generator π(1 − ǫ)2, which

shows that c(B2
1 × · · ·×B2

1 , ω0) ≥ π. On the other hand, c(B2
1 ×R2n−2, ω0) ≤ π by

Sikorav’s Theorem 2.16. �
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