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Abstract. Of late it has become very common for research compilers

to emit C as their target code, relying on a C compiler to generate

machine code. In e�ect, C is being used as a portable compiler target

language. It o�ers a simple and e�ective way of avoiding the need to

re-implement e�ective register allocation, instruction selection, and in-

struction scheduling, and so on, all for a variety of target architectures.

The trouble is that C was designed as a programming language not as a

compiler target language, and is not very suitable for the latter purpose.

The obvious thing to do is to de�ne a language that is designed as a

portable target language.

This paper describes C--, a portable compiler target language, or assem-

bler. C-- has to strike a balance between being high-level enough to allow

the back end a fair crack of the whip, while being low level enough to

give the front end the control it needs. It is not clear that a path exists

between these two rocks; the ghost of UNCOL lurks ominously in the

shadows [6]. Yet the increasing popularity of C as a compiler target lan-

guage (despite its unsuitability) suggests strong demand, and provides

an existence proof that something useful can be done.

This paper appears in the Proceedings of the 1997 Workshop on Imple-

menting Functional Languages, St Andrews, ed C Clack, Springer Verlag

LNCS, 1998.

1 Introduction

The author of a new compiler often wants to generate good code, but does not

want to duplicate the e�ort involved in writing a good code generator. One

approach is to use C as a portable assembler, relying on a collection of tricks

and non-standard extensions to persuade C to generate the sort of code they

want. This approach has become quite common among compilers for functional

and logic languages [8, 19, 11, 21, 3], including our own compiler for Haskell, the

Glasgow Haskell Compiler.

In the light of our experience we have become more and more dissatis�ed with

using C as a compiler target language. (That is not a criticism of C | it was

not designed for that purpose.) For example, a particular di�culty with using

C for a garbage-collected language is that it is di�cult for the garbage collector

to �nd pointers that are manipulated by C-compiled code. Another is the lack

of unrestricted jumps. We elaborate on these di�culties in Section 3.



A possible way to resolve these problems is to design a language that is specif-

ically intended as a compiler target language for garbage-collected languages.

This paper sketches the design for just such a language, C--. Despite its name

C-- is by no means a strict subset of C. The name arose from the above-noted

popularity of C as a compiler target language, suggesting that a good design

approach would be to delete as many features as possible from C, and add as

few new features as possible. Whether C-- is su�ciently better than C to justify

the switching costs is an open question | but it is a question that we can only

answer by debating a particular concrete design.

The paper gives only an informal overview of C--, concentrating on design

choices, rather than giving a complete de�nition.

2 Goals and non-goals

The goals of C-- are these:

C-- is a portable assembler, intended particularly for garbage-collected

source languages, such as Prolog, Lisp, Smalltalk, ML, Erlang, and Haskell.

However, C-- does not embody a particular garbage collector. The garbage-

collection �eld is too active, and the storage management loads imposed by

di�erent languages too diverse, to make the collector part of the C-- imple-

mentation. Nor does C-- force the use of a conservative garbage collector

(Section 3.2). Instead, it makes enough information available to support an

accurate garbage collector.

C-- generates high-performance code. A conventional assembler does not

guarantee good code, but by de�nition it does not stand in the way of the

highest possible performance | it simply exposes the bare machine. That

is not true of programming languages in general: the more a language hides

the machine behind tractable and portable abstractions, the harder it is to

generate really fast code. C-- sits near the bare-machine end of the spectrum.

It is designed to gain a reasonable degree of architecture independence for

an extremely modest cost in performance.

C-- exploits existing code generators. The raison d'etre of C-- is the desire

to exploit the tremendous amount of research and implementation has been

done in code generation technology. The tasks that should be largely or

completely done by the code generator are:

{ Register allocation, both local and inter-procedural.

{ Instruction selection.

{ Instruction scheduling.

{ Jump elimination and other local optimisations.

In particular, C-- should support the abstraction of an in�nite number of

named \registers" | usually called \local variables" in a programming-



language context | rather than requiring the front end to map its values

onto a �nite set (no matter how large). For example, the front end should

not have to worry about re-using a register for two di�erent purposes; it can

just use two di�erent local variables.

C-- is independent of any particular code generator. Despite all the work

on code generation, actual implementations of this technology are surpris-

ingly inaccessible to compiler writers. Usually the back-end implementation

is presented in the form of some data types and procedures for building

them, rather than as a language. (gcc's RTL, XIL [18], and ML-Risc [7] are

examples.) This approach forces the back-end user to adopt the language of

back-end provider. It also forces commitment to a particular back end.

C-- is intended to be independent of any particular back end, by the simple

expedient of being de�ned as a language with a concrete ASCII syntax, and

a semantics independent of any particular implementation. The hope is that

a relatively simple parser should su�ce to impedance-match C-- to a variety

of di�erent back ends.

C-- is inter-operable. It is possible to call C from C-- (and hence C++, COM,

and so on), and for a C-- procedure to be called by C. (Perhaps Pascal calling

conventions should also be supported; we're not sure.)

On the other hand, when a C-- procedure is calling, or jumping to, another

C-- procedure, there is no requirement that standard C parameter passing

conventions should be used | it's up to the C-- implementation.

C-- is largely independent of the target architecture. That is, a C-- pro-

gram contains very little architecture-speci�c code. It would be ideal if all

C-- programs would run unchanged on every architecture. As we will see,

that is a very hard goal to meet without sacri�cing e�ciency, so we accept

that the front-end compiler may need to know a few facts about the target

architecture (such as its word size).

C-- is human writable, and readable. While most C-- will be written by

compilers, some will be written by human beings (such as fragments of run-

time system code), and some will be read by compiler writers when debugging

their compilers, so C-- should not be impossibly inconvenient for human

programmers.

There are some important non-goals too.

C-- is not a distribution format. There are now manymachine-independent

distribution formats on the market, including mcode [14], ANDF [4], Java

byte codes [9], and Omniware [15]. Their war-cry is complete machine-

independence, safety, and compactness. They can still be executed rather

quickly using just-in-time compilation. Some of these properties come at the

price of having to adopt a higher-level execution model than one would want

for a compiler target language.

C-- is not a competitor in this market place. Complete machine indepen-



dence, checkable safety, and compactness are not goals.

C-- is an assembler, not a full programming language. While we expect

programmers to write a little C-- code, C-- lacks many features you would

expect to �nd in a language intended for large-scale programming. For ex-

ample, it has virtually no type system (Section 7).

Apart from C, which we discuss next, the Java Virtual Machine byte codes are

C--'s most obvious competitor. Why not compile into JVM, and rely on JVM

compilers for execution speed? The di�culty is that the JVM is much too high

level. To encode Haskell or ML or Prolog into the JVM can be done, but it

requires heroic optimism to believe that the resulting performance will ever be

good. For a start, these languages allocate like crazy, and Java implementations

are not built for that load; and even if they were, every object carries too much

baggage. The JVM is not a portable assembler; it is a compact representation

for Java.

3 Why C is not suitable as a portable assembler

An obvious question is this: why not (continue to) use C as a portable assem-

bler? Quite a few papers have appeared in the last few years describing ways of

achieving this e�ect [8, 19, 11, 21, 3], but all are unsatisfactory in one way or

another. More precisely, we can identify the following di�culties:

{ Some source languages require the so-called tail call optimisation. This means

that a procedure call whose result is returned to the caller of the current

procedure is executed in the stack frame of the current procedure. In turn,

this allows iteration to be implemented e�ciently using recursion.

C's generality makes it very di�cult to implement the tail call optimisation,

and no C compiler known to us does so across separately compiled modules.

This makes it di�cult to map source-language procedures onto C procedures

(Section 3.1).

{ A C compiler is at liberty to lay out its stack frames as it pleases. This makes

it di�cult for a garbage collector to �nd the live pointers. In fact, the use of

C procedures more or less forces the use of a conservative garbage collector

(Section 3.2).

{ A C compiler has to be very conservative about the possibility of memory

aliasing. This seriously limits the ability of the instruction scheduler to move

loads earlier in the instruction stream, perhaps past preceding stores, where

there is less chance of the load causing a stall. The front-end compiler of-

ten knows that aliasing cannot occur, but there is no way to convey this

information to the compiler.

{ C lacks the ability to control a number of important low-level features, in-

cluding returning multiple values in registers from a procedure, mis-aligned



memory accesses, arithmetic, data layout, and omitting range checks on

multi-way jumps (Section 5).

{ Many language implementations require frequent global access to certain

variables, such as the stack pointer(s), allocation pointer, environment pointer,

and so on. To accommodate this, most implementations rely on non-standard

gcc extensions to C that nail speci�ed global variables into particular regis-

ters. The wide availability of gcc means that this is not a pressing problem.

3.1 Tail calls

The ability to make tail calls requires the ability to jump to (rather than call)

an arbitrary address. In higher-order languages this address might be fetched

from a data structure rather than statically known. In an assembler we take for

granted the ability to branch arbitrarily, but not so in C.

Several ways of mapping tail calls onto C have become popular:

1. One can embed all of the program inside a single C procedure, using lo-

cal labels and gotos for control transfer. This does not work with separate

compilation, and some C compilers choke on multi-thousand-line procedures.

2. One can treat parameter-less C procedures as extended basic blocks, using

a so-called \trampoline" to transfer control between them [20, 21, 11]. The

idea is simple: to \jump" to the next basic block the C procedure returns

the address of the next C procedure. A tiny top-level loop simply calls the

returned address:

while TRUE { addr = (*addr)(); }

This portable trick avoids growing stack, at the cost of a call and return

instead of a jump.

3. One can trampoline more sparingly, by calling the next extended basic block

(rather than jumping to it), allowing the C stack to grow, and periodically

resetting it when it gets too big [2].

4. A gruesome but e�ective alternative to a trampoline is to post-process the

assembly code to remove procedure prologues and epilogues, and use asm

statements to generate real jumps.

5. gcc provides \�rst-class labels" as a non-standard extension. At �rst sight

these might seem to solve the problem, but there are signi�cant di�culties in

practice. Notably, gcc says that \totally unpredictable things will happen"

if control is transferred to a computed label in a di�erent function body. Not

only that, but some separate mechanism must be used to transfer parameters

from the jump site to the destination. With considerable care, the Mercury

compiler does, nevertheless, use this technique [8].

The bottom line seems to be this. The lack of tail calls is not an insuperable

obstacle to using C, especially if gcc is used, but to generate e�cient code usually



leads to a complex and fragile implementation that relies on un-speci�ed aspects

of the C compiler.

3.2 Garbage collection

Our particular interest is in source languages that require a garbage-collected

heap. That goal places quite complex requirements on the code generation tech-

nology.

One way of classifying garbage collectors is as follows:

{ A conservative collector treats any word that looks as if it is a pointer (e.g. it

points into the heap) as if it were a pointer. It might actually be an integer

that just happened to address the heap, but if so all that happens is that

some heap structure is retained that is not actually needed. A conservative

collector cannot, therefore, move live objects, because altering the apparent

\pointer" to it might instead alter the value of an integer.

{ An accurate collector accurately follows live pointers. It never treats an in-

teger (say) as a pointer. An accurate collector therefore needs a lot more

information than a conservative collector. Using C as a code generator is ef-

fectively incompatible with accurate garbage collection, because the C com-

piler may save heap pointers on the stack, using a layout known only to

itself. The only way out is to avoid letting C ever save a live pointer by never

calling a C procedure. Instead, one uses tail calls exclusively, saving all live

pointers explicitly on a separate, explicitly-managed stack.

The main reason that accurate garbage collection is desirable is because it allows

compaction. Compaction improves locality, eliminates fragmentation, and allows

allocation from a single contiguous area rather than from a free list or lists. This

in turn makes allocation much cheaper, amortises the cost of the heap-exhaustion

check over multiple allocations (where these occur together), and reduces register

pressure (because multiple allocations can all be addressed as o�sets from the

allocation pointer).

A second reason that accurate garbage collection is desirable is because it does

not follow pointers that are dead, even though they are valid pointers. A conser-

vative collector would follow a dead pointer and retain all the structure thereby

accessible. Plugging such \space leaks" is sometimes crucially important [10, 1].

Without an accurate garbage collector, the mutator must therefore \zap" dead

pointers by overwriting them with zero (or something). Frustratingly, these ex-

tra memory stores are usually redundant, since garbage collection probably will

not strike before the zapped pointer dies.

However, accurate garbage collection also imposes mutator costs, to maintain the

information required by the garbage collector to �nd all the pointers. Whether

accurate garbage collection is cheaper than conservative collection depends on

a host of factors, including the details of the implementation and the rate of

allocation.



Our goal for C-- is to permit but not require accurate collection.

4 Possible back ends

The whole point of C-- is to take advantage of existing code-generation technol-

ogy. What, then, are suitable candidates? The most plausible-looking back ends

we have found so far are these:

{ ML-Risc [7].

{ The Very Portable Optimiser (VPO) [5].

{ The gcc back end, from RTL onwards.

Some of these (e.g. VPO) have input languages whose form is architecture

independent, but whose details vary from one architecture to another. The

impedance-matcher, that reads C-- and stu�s it into the code generator, would

therefore need to be somewhat architecture-dependent too.

5 The main features of C--

The easiest way to get a 
avour of C-- is to look at an example program. Figure 1

gives three di�erent ways of writing a procedure to compute the sum and product

of the numbers 1::N . From it we can see the following design features.

Procedures. C-- provides ordinary procedures. The only unusual feature is

that C-- procedures may return multiple results. For example, all the sp

procedures return two results, the sum and the product. The return state-

ment takes zero or more parameters, just like a procedure call; and a call can

assign to multiple results as can be seen in the recursive call to sp1. This

ability to return multiple results is rather useful, and is easily implemented.

The number and type of the parameters in a procedure call must match

precisely the number and type of parameters in the procedure de�nition; and

similarly for returned results. Unlike C, procedures with a variable number

of arguments are not supported.

Types. C-- has a very weak type system whose sole purpose is to tell the

code generator how big each value is, and what class of operations can be

performed on it. (In particular, 
oating point values may well be kept in a

di�erent bank of registers.) Furthermore, the size of every type is explicit

| for example, word4 is a 4-byte quantity. We discuss the reasons for these

choices in Section 7.

Tail calls. C-- guarantees the tail call optimisation, even between separately

compiled modules. The procedure sp2_help, for example, tail-calls itself to

implement a simple loop with no stack growth. The procedure sp2 tail-calls

sp2_help, which returns directly to sp2's caller. A tail call can be thought

of as \a jump carrying parameters".



-- sp1, sp2, sp3 all compute the sum 1+2+...+n

-- and the product 1*2*...*n

-- Ordinary recursion

sp1( word4 n ) {

word4 s, p;

if n == 1 {

return( 1, 1 );

} else {

s, p = sp1( n-1 );

return( s+n, p*n );

} }

-- Tail recursion

sp2( word4 n ) {

jump sp2_help( n, 1, 1 );

}

sp2_help( word4 n, word4 s, word4 p ) {

if n==1 {

return( s, p );

} else {

jump sp2_help( n-1, s+n, p*n )

} }

-- Loops

sp3( word4 n ) {

word4 s, p;

s = 1; p = 1;

loop:

if n==1 {

return( s, p );

} else {

s = s+n;

p = p*n;

n = n-1;

goto loop;

} }

Fig. 1. Three C-- sum-and-product functions



Local variables. C-- allows an arbitrary number of local variables to be de-

clared. The expectation is that local variables are mapped to registers unless

there are too many alive at one time to keep them all in registers at once. In

sp3, for example, the local variables s and p are almost certainly register-

allocated, and never even have stack slots reserved for them.

Labels. C-- provides local labels and gotos (see sp3, for example). We think of

labels and gotos simply as a textual description for the control-
ow graph

of a procedure body. A label is not in scope anywhere except in its own

procedure body, nor is it a �rst class value. A label can be used only as the

target of a goto, and only a label can be the target of a goto. For all other

jumps, tail calls are used.

Conditionals. C-- provides conditional statements, but unlike C there is no

boolean type. (In C, int doubles as a boolean type.) Instead, conditionals

syntactically include a comparison operation, such as \==", \>", \>=", and

so on. Like C, C-- also supports a switch statement. The only di�erence is

that C-- allows the programmer to specify that the scrutinised value is sure

to take one of the speci�ed values, and thus omit range checks.

6 Procedures

Most machine architectures (and hence assembler) support a jump instruction,

and usually a call instruction. However, these instructions deal simply with con-

trol 
ow; it is up to the programmer to pass parameters in registers, or on the

stack, or whatever. In contrast, C-- supports parameterised procedures like most

high-level languages. Why?

If C-- had instead provided only an un-parameterised call/return mechanism,

the programmer would have to pass parameters to the procedure through explicit

registers, and return results the same way. So a call to sp1 might look something

like this, where R1 and R2 register names:

R1 = 12; /* Load parameter into R1 */

call sp1;

/* Results returned in R1, R2 */

This approach has some serious disadvantages:

{ Di�erent code must be generated for machines with many registers than for

machines with few registers. (Presumably, some parameters must be passed

on the stack in the latter case.) This means that the front end must know

how many registers there are, and generate a calling sequence based on this

number. Matters are made more complicated by the fact that there are often

two sorts of registers (integer and 
oating point) { this too must be exposed

to the front end.

{ If the front end is to pass parameters on the stack, responsibility for stack

management must be split between the front end and the back end. That



is quite di�cult to arrange. Is the front end or the back end responsible for

saving live variables across a call? Is the front end or the back end responsible

for managing the callee-saves registers? Does the call \instruction" push a

return address on the stack or into a register? What if the target hardware's

call instruction di�ers from the convention chosen for C--? And so on. We

have found this question to be a real swamp. It is much cleaner for either

the front end or the back end to have complete responsibility for the stack.

{ If the mapping between parameters and registers is not explicit, then it

may be possible for the code generator to do some inter-procedural register

allocation and use a non-standard calling convention. It is premature for the

front end to �x the exact calling convention.

{ Finally, it seems inconsistent to have an in�nite number of named \virtual

registers" available as local variables, but have to pass parameters through

a �xed set of real registers.

For these reasons, C-- gives complete control of the stack to the back end, and

provides parameterised procedures as primitive

3

.

However, C--'s procedures are carefully restricted so that they can be called

very e�ciently:

{ The types and order of parameters to a call completely determine the calling

convention for a vanilla call. (After inter-procedural register allocation C--

might decide to use non-vanilla calling conventions for some procedures, but

that is its business.)

{ The actual parameters to a call must match the formal parameters both

in number and type. No checks are made. All the information needed to

compile a vanilla call is apparent at the call site; the C-- compiler need

know nothing about the procedure that is called. There is no provision for

passing a variable number of arguments.

{ Procedure calls can only be written as separate statements. They cannot be

embedded in expressions, like this:

x = f(y) + 1;

The reason for this restriction is partly that the expression notation makes

no sense when f returns zero or more than one result, and partly that C--

may not be able to work out the type of the procedure's result. Consider:

g( f( x ) );

This is illegal, and must instead be written:

float8 r;

...

r = f( x );

3

Of course, a C-- implementation is free not to use a control stack at all, provided

it implements the language semantics; but we will �nd it convenient to speak as if

there were a stack.



g( r );

Now the type of the intermediate is clear.

6.1 Parameterised returns

The return statement takes as arguments the values to return to the caller.

In fact a return statement looks just like a call to a special procedure called

\return".

At a call site, the number and type of the returned values must match precisely

the actual values returned by return. For example, if f returns an word4 and a

float8 then every call to f must look like:

r1, r2 = f( ... );

where r2 is an lvalue of type word4 and r2 of type float8. It is not OK to say

f( ... );

and hope that the returned parameters are discarded.

6.2 Tail calls

A tail call is written

jump f( ...parameters... )

Here, we do not list the return arguments; they will be returned to the current

procedure's caller.

No special properties are required of f, the destination of the tail call

4

. It does

not need to take the same number or type of parameters as the current procedure

(the tail call to sp2_help in sp2 in Figure 1 illustrates this); it does not need

to be de�ned in the same compilation unit; indeed, f might be dynamically

computed, for example by being extracted from a heap data structure.

Tail calls are expected to be cheap. Apart from getting the parameters in the

right registers, the cost should be about one jump instruction.

Every control path must end in a jump or a return statement. There is no

implicit return() at the end of a procedure. For example, this is illegal:

f( word4 x ) {

word4 y;

y = x+x;

}

4

This situation contrasts rather with C, where gcc's manual says of the -mtail-call


ag: \Do (or do not) make additional attempts (beyond those of the machine-

independent portions of the compiler) to optimise tail-recursive calls into branches.

You may not want to do this because the detection of cases where this is not valid

is not totally complete."



7 Data types

C-- has a very weak type system, recognising only the following types:

{ word1, word2, word4, word8.

{ float4, float8.

The su�x indicates the size of the type in bytes. This list embodies two major

design choices that we discuss next: the paucity of types (Section 7.1), and the

explicit size information (Section 7.2).

7.1 Minimal typing

The main reason that most programming languages have a type system is to

detect programming errors, and this remains a valid objective even if the program

is being generated by a front-end compiler. However, languages that use dynamic

allocation are frequently going to say \I know that this pointer points to a

structure of this shape", and there is no way the C-- implementation is going to

be able to verify such a claim. Its truth depends on the abstractions of the original

source language, which lie nakedly exposed in its compiled form. Paradoxically,

the lower level the language the more sophisticated the type system required to

gain true type security, so adding a secure type system to an assembler is very

much a research questions [17, 16].

So, like a conventional assembler, C-- goes to the other extreme, abandoning

any attempt at providing type security. Instead, types are used only to tell the

code generator the information it absolutely has to know, namely:

{ The kind of hardware resource needed to hold the value. In particular, 
oat-

ing point values are often held in di�erent registers than other values.

{ The size of the value.

For example, signed and unsigned numbers are not distinguished. Instead, like

any other assembler, it is the operations that are typed. Thus, \+" adds signed

integers, while \+u" adds unsigned integers, but the operands are simply of type

word1, word2 etc. (The size of the operation is, however, implicit in the operand

type.)

Similarly, C-- does not have a type corresponding to C's \*" pointer types.

In C, int* is the type of a pointer to int. In C-- this type is just word4 (or

word8). When doing memory loads or stores, the size of the value to be loaded or

stored must therefore be given explicitly. For example, to increment the integer

in memory location foo we would write:

word4[foo] = word4[foo] + 1;

The addressing mode word4[foo] is interpreted as a memory load or store in-

struction, depending on whether it appears on the left or right of an assignment.



7.2 Type sizes

Since di�erent machines have di�erent natural word sizes, it is tempting to sug-

gest that C-- should abstract away from word-size issues. That way, an un-

changed C-- program could run on a variety of machines. C does this: an int is

32 bits wide on some machines and 64 bits on others.

While this is somewhat attractive in a programming language, it seems less

appropriate for an assembler. The front-end compiler may have to generate huge

o�set-calculation expressions. Suppose the front-end compiler is computing the

o�set of a �eld in a dynamically-allocated data structure containing two 
oats,

a code pointer, and two integers. Since it does not know the actual size of any

of these, it has to emit an o�set expression looking something like this:

2*sizeof(float) + sizeof(codepointer) + 2*sizeof(int)

Apart from the inconvenience of generating such expressions (and implement-

ing arithmetic over them in the front-end compiler) they produce a substantial

increase in the size of the C-- program.

Another di�culty is that the front-end compiler cannot calculate the alignment

of �elds within a structure based on the alignment of the start of the structure.

One way of mitigating these problems would be to introduce struct types, as in

C; o�sets within them would then be generated by �eld selectors. However, this

complicates the language, and in a Haskell or ML implementation there might

have to be a separate struct declaration for each heap-allocated object in the

program. O�set calculations using sizeof would still be required when several

heap objects were allocated contiguously. And so on.

C-- instead takes a very simple, concrete approach: each data type has a �xed

language-speci�ed size. So, for example, word4 is a 4-byte word, while word8 is

an 8-byte word.

This decision makes life easy for the C-- implementation, at the cost of having to

tell the front-end compiler what C-- data types to use for the front end's various

purposes. In practice this seems unlikely to cause di�culties, and simpli�es some

aspects (such as arithmetic on o�sets).

8 Memory

8.1 Static allocation

C-- supports rather detailed control of static memory layout, in very much

the way that ordinary assemblers do. A data block consists of a sequence of:

labels, initialised data values, uninitialised arrays, and alignment directives. For

example:

data {

foo: word4{10}; /* One word4 initialised to 10 */



word4{1,2,3,4}; /* Four initialised word4's */

word4[80]; /* Uninitialised array of 80 word4's */

baz1:

baz2: word1 /* An uninitialised byte */

end:

}

Here foo is the address of the �rst word4, baz1 and baz2 are both the address

of the word1, and end is the address of the byte after the word1.

All the labels have type word4 or word8, depending on the particular architecture.

On a Sparc, foo, baz1, baz2 and end all have type word4. You should think of

foo as a pointer, not as a memory location.

Unlike C, there is no implicit alignment nor padding. Furthermore, the address

relationships between the data items in a data block is guaranteed; for example,

baz1 = foo+ 340.

8.2 Dynamic allocation

The C-- implementation has complete control over the system stack; for exam-

ple, the system stack pointer is not visible to the C-- programmer. However,

sometimes the C-- programmer may want to allocate chunks of memory (not

virtual registers) on the system stack. For this, the stack declaration is provided:

f( word4 x ) {

word4 y;

stack {

p : word4;

q : float8;

r : word4[30];

}

...

Just as with static allocation, p, q, and r all have type word4 (or word8 on

64-bit architectures). Their address relationship is guaranteed, regardless of the

direction in which the system stack grow; for example, q = p+4.

stack declarations can only occur inside procedure bodies. The block is pre-

served across C-- calls, and released at a return or a tail call. (It is possible

that one might want to allocate a block that survives tail calls, but we have not

yet found a reasonable design that accommodates this.)

8.3 Alignment

Getting alignment right is very important. C-- provides the following support.

{ Simple alignment operations, aligni, are provided for static memory alloca-

tion. For example, the top-level statements



foo: word4;

align8;

baz: float8;

ensures that baz is the address of a 8-byte aligned 8-byte memory location.

There is no implicit alignment at all.

{ Straightforward memory loads and stores are assumed aligned to the size of

the type to be loaded. For example, given the addressing mode float8[ptr],

C-- will assume that ptr is 8-byte aligned.

Sometimes, however, memory accesses may be mis-aligned, or over-aligned:

{ When storing an 8-byte 
oat in a dynamically allocated object, it may be

convenient to store it on a 4-byte boundary, the natural unit of allocation.

{ Byte-coded interpreters most conveniently store immediate constants on byte

boundaries.

{ Sometimes one might make a byte load from pointer that is known to be

4-byte aligned, for example when testing the tag of a heap-allocated object.

Word-oriented processors, such as the Alpha, can perform byte accesses much

more e�ciently if they are on a word boundary, so this information is really

worth conveying to the code generator.

Coding up mis-aligned accesses in a language that does not support them di-

rectly is terribly ine�cient (lots of byte loads and shifts). This is frustrating,

because many processors support mis-aligned access reasonably well. For exam-

ple, loading a 8-byte 
oat with two 4-byte loads is easy on a Sparc and MIPS

R3000; the Intel x86 and PowerPC support pretty much any unaligned access;

and the Alpha has canned sequences using the LDQ_U and EXTxx instructions

that do unaligned accesses reasonably e�ciently.

For these reasons, C-- also supports explicitly-
agged mis-aligned or over-aligned

accesses.

{ The load/store addressing mode is generalised to support an alignment as-

sumption: type{align}[ptr]. For example:

� float8{align4}[ptr] does a 8-byte load, but only assumes that ptr is

aligned to a 4 byte boundary.

� word4{align1}[ptr] does a 4-byte load from a byte pointer.

� word1{align4}[ptr] does a 1-byte load from a pointer that is 4-byte

aligned.

8.4 Endian-ness

There is no support varying endian-ness. (No language provides such support.

At best, the type system prevents one reading a 4-byte integer one byte at a

time, and hence discovering the endian-ness of the machine, but that would be

inappropriate for an assembler.)



8.5 Aliasing

It is often the case that the programmer knows that two pointers cannot address

the same location or, even stronger, no indexed load from one pointer will access

the same location as an indexed load from the other.

The noalias directive supports this:

noalias x y;

is a directive that speci�es that no memory load or store of the form type[x op e]

can con
ict with a load or store of similar form involving y. Here op is + or -.

9 Garbage collection

How should C-- support garbage collection?

One possibility would be to o�er a storage manager, including a garbage col-

lector, as part of the C-- language. The trouble is that every source language

needs a di�erent set of heap-allocated data types, and places a di�erent load on

the storage manager. Few language implementors would be happy with being

committed to one particular storage manager. We certainly would not.

Another possibility would be to provide no support at all. The C-- user would

then have the choice of using a conservative collector, or of eschewing C-- proce-

dures altogether and instead using tail calls exclusively (thereby avoiding having

C-- store any pointers on the stack). This alternative has the attraction of clar-

ity, and of technical feasibility, but then C-- would be very little better than

C.

The third possibility is to require C-- to keep track of where the heap pointers

are that it has squirreled away in its stack, and tell the garbage collector about

them when asked. A possible concrete design is this. The garbage collector calls a

C procedure FindRoots( mark ), passing a C procedure mark. FindRoots �nds

all the heap pointers in the C-- stack, and calls mark on each of them. Which

of the words stored in the stack are reported as heap pointers by FindRoots?

The obvious suggestion is to have a new C-- type, gcptr, which identi�es such

pointers.

This is easily said, but not quite so easily done. How might C-- keep track of

where the gcptr values are in the stack? The standard technique is to associate

a stack descriptor (a bit pattern, for example) with each return address pushed

on the stack. After all, the code at the return address "knows" the layout of

the stack frame, and it is only a question of making this information explicitly

available. One can associate the descriptor with the code either by placing it

just before the code, or by having a hash table that maps the code address to

the descriptor information.

The trouble with this approach is that it is somewhat speci�c to a particular

form of garbage collection. For example, what if there is more than one kind of



heap pointer that should be treated separately by the collector? Or, what if the

pointer-hood of one procedure parameter can depend on the value of another,

as is the case for the TIL compiler [22]. We are instead developing other ideas

that provide much more general support for garbage collection, and also provide

support for debuggers and exception handlers, using a single uni�ed mechanism

[13].

10 Other features of C--

There are several features of C-- that we have not touched on so far:

{ Global registers.

{ Arithmetic operations and conversions between data types.

{ Interfacing to C.

{ Separate compilation.

They are described in the language manual [12].

11 Status and future directions

C-- is at a very early stage. We have two implementations of a core of the

language, one using VPO and one using ML-Risc. Each was built in a matter

of weeks, rather than months, much of which was spent understanding the code

generator rather than building the compiler. These implementations do not,

however, cover the whole of C-- and are far from robust.

The support for tail calls raises an interesting question: does it make sense for

the implementation to use callee-saves registers, as do most implementations of

conventional languages? The trouble is that the callee-saves registers must be

restored just before a tail call, and then perhaps immediately saved again by

the destination procedure. Since each procedure decides independently which

callee-saves registers it needs to save it is not at all obvious how to avoid these

multiple saves of the same register. Perhaps callee-saves registers do not make

sense if tail calls are common. Or perhaps some inter procedural analysis might

help.

As modern architectures become increasingly limited by memory latency, one of

C--'s biggest advantages should be its ability to provide detailed guidance about

possible aliasing to the code generator, and thereby allow much more 
exibility

in instruction scheduling. We have not yet implemented or tested such facilities.

Many garbage-collected languages are also concurrent, so our next goal is to work

out some minimal extensions to C-- to support concurrency. We have in mind

that there may be thousands of very light-weight threads, each with a heap-

allocated stack. This means that C-- cannot assume that the stack on which



it is currently executing is of unbounded size; instead it must generate stack-

over
ow checks and take some appropriate action when the stack does over
ow,

supported by the language-speci�c runtime system.
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