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Hoża 74, 00-682 Warszawa, Poland

Abstract

The main aim of this paper is to provide a proper mathematical framework
for the theory of topological non-compact quantum groups, where we have to
deal with non-unital C∗-algebras. The basic concepts and results related to the
affiliation relation in the C∗-algebra theory are recalled. In particular natural
topologies on the set of affiliated elements and on the set of morphisms are con-
sidered. The notion of a C∗-algebra generated by a finite sequence of unbounded
elements is introduced and investigated. It is generalized to include continuous
quantum families of generators. An essential part of the duality theory for C∗-
algebras is presented including complete proofs of many theorems announced in
[17]. The results are used to develop a presentation method of introducing non-
unital C∗-algebras. Numerous examples related mainly to the quantum group
theory are presented.

0 Introduction

In the theory of quantum groups we often deal with unital algebras introduced in terms
of generators and relations. Generators are distinguished elements of the algebra being
introduced and relations are the algebraic equalities imposed on the generators. The list
of generators and relations is called a presentation of the algebra. It is always assumed
that the algebra coincides with the set of all algebraic combinations of generators and
that the set of relations is complete: any algebraic equality satisfied by generators
must be a logical consequence of the relations. Given a presentation, the corresponding
algebra is the quotient

A = Afree/J, (0. 1)

where Afree is the algebra of all (noncommutatve) polynomials (with complex coeffi-
cients) of free variables t1, t2, . . . tN (N is the number of generators; dealing with ∗-
algebras one has to double the number of variables including t1

∗, t2
∗, . . . tN

∗) and J is
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the ideal of Afree generated by the relations. There is an alternative way of introducing
J .

Let ϕ be a homomorphism of Afree into an algebra B. We say that ϕ is compatible
with the relations if ϕ(t1), ϕ(t2), . . . , ϕ(tN) satisfy the relations in B. It turns out that
J is the intersection of kernels of all homomorphisms compatible with the relations.

With no essential changes, the presentation method works for unital C∗-algebras.
In this case there exist an universal object B = B(H) (the algebra of all bounded
operators acting on a separable infinite-dimensional Hilbert space H) that may serve as
a target algebra for homomorphisms ϕ. The relations must imply an uniform estimate
of the norm of generators: there exist numbers Mi (i = 1, 2, . . . N) such that

‖Ti‖ ≤Mi (0. 2)

for any N -tuples (T1, T2, . . . TN) of bounded operators acting on H satisfying the rela-
tions. For any w ∈ Afree we set

‖w‖ = sup ‖ϕ(w)‖, (0. 3)

where supremum is taken over all ∗-algebra homomorphisms ϕ : Afree → B(H) com-
patible with the relations. Due to (0. 2), ‖w‖ < ∞ for any w ∈ Afree. Clearly ‖ · ‖
introduced by (0. 3) is a C∗-semonorm on Afree. Moreover

J = {w ∈ Afree : ‖w‖ = 0} .

The definition of the algebra corresponding to the considered presentation should in-
clude the completion procedure. Instead of (0. 1) we have:

A = {Afree/J}
completion, (0. 4)

where completion is taken with respect to the C∗-norm on Afree/J induced by the
seminorm (0. 3). Clearly (0. 4) is a unital C∗-algebra.

A theory of unital C∗-algebras generated by a finite number of elements is developed
in [9]. The main results of this paper says, that such algebras are isomorphic to the
algebras of all continuous operator functions on compact domains. In the present
paper we shall generalize this result to include non-unital C∗-algebras and non-compact
domains.

The need of such a generalization comes from the theory of non-compact quantum
groups. Following the theory of compact groups we would like to say that the C∗-
algebra of all continuous functions vanishing at infinity on a group is generated by
matrix elements of a fundamental representations. However in the non-compact case
the fundamental representation is not unitary and its matrix elements are not bounded.
It means that we have to develop a framework enabling us to consider C∗-algebras
generated by unbounded elements.

The first step in this direction is already done. Unbounded generators can not
belong to the algebra. Therefore one has to replace the membership relation ‘∈’ by a
weaker one denoted by ‘ η ’. If T η A then one says that T is an element affiliated with
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the C∗-algebra A. The affiliation relation in the theory of C∗-algebras was introduced
by S. Baaj and P. Jungl in [3].

In the present paper we use this relation to introduce the concept of a C∗-algebra
generated by a number of (unbounded) elements affiliated with it. One has to stress at
this moment some peculiar features of this concept. The sentence

A is generated by ele-
ments T1, T2, . . . TN .

(0. 5)

describes a definite relation between a C∗-algebra A and elements T1, T2, . . . TN η A. (0.
5) can not be used as a definition of A. The algebra A and the affiliated elements
T1, T2, . . . TN must be known in advance. Whenever in this paper we write:

Let A be a C∗-algebra ge-
nerated by T1, T2, . . . TN .

,

it means:

Let A be a C∗-algebra and T1, T2, . . . TN η A.
Assume that A is generated by T1, T2, . . . TN .

.

If B is a C∗-algebra and T1, T2, . . . TN η B, then for some non-degenerate subalgebra A
of (the multiplier algebra of) B, the elements T1, T2, . . . TN are affiliated with A and the
statement (0. 5) is meaningful. However no effective procedure producing A generated
by T1, T2, . . . TN is known. What is more, even the existence of A is not guaranteed.

The paper is organized in the following way. Section 1 contains necessary material
concerning the theory of non-unital C∗-algebras. Throughout the paper H is an infinite-
dimensional separable Hilbert space, B(H) is the algebra of all bounded linear operators
acting on H and CB(H) is the subalgebra composed of all compact operators. To make
the paper selfconsistent we formulate the definitions of multiplier algebra, z-transform,
affiliated elements and morphisms. Introducing these notions we shall assume that the
considered C∗-algebras are concrete i.e. embedded into B(H). This approach is more
suitable for our purposes. One should stress however that the definitions (being equiva-
lent to the ones given in previous papers [10, 16, 3, 20, 23]) are essentially independent
of the choice of the embeding. The only new result contained in Section 1 says that
any separable C∗-algebra is uniquely determined by its multiplier algebra. An impor-
tant technical tool used in this Section is the relation of strict inequality defined for
selfadjoint elements of multiplier algebras.

In Section 2 we investigate natural topologies on the multiplier algebra M(A) of any
C∗-algebra A, on the set Aη of all elements affiliated with A and on the set Mor(A,B)
of all morphisms from A into a C∗-algebra B. The topology on M(A) is introduced
in such a way that for any locally compact space Λ, the set of all continuous bounded
mappings from Λ into M(A) may be identified with M(C∞(Λ) ⊗ A), where C∞(Λ)
denotes the C∗-algebra of all continuous functions vanishing at infinity on Λ. Similarly,
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the topologies on Aη and Mor(A,B) are introduced in such a way that the sets of
all continuous mappings from Λ into Aη and Mor(A,B) respectively may be identified
with (C∞(Λ) ⊗ A)η and Mor(A,C∞(Λ) ⊗ B) respectively. These topologies will play a
fundamental role in Sections 5, 6 and 7.

Sections 3 and 4 contain the basic concepts of the paper. In Section 3 we give
the precise meanning to the sentence (0. 5). In Section 4 the sequence of generators
T1, T2, . . . TN η A is replaced by an element T η C ⊗A, where C is a C∗-algebra. Due to
this generalization we may consider in particular C∗-algebras generated by continuous
families of affiliated elements. This case corresponds to commutative C. In the theory
of quantum groups the C∗-algebra of all continuous functions vanishing at infinty on
a matrix quantum group is generated by the fundamental representation of the group.
In this case C = MN(C). The definition of a C∗-algebra A generated by a sequence
T1, T2, . . . TN η A (an element T η C ⊗ A respectively) formulated in Section 3 (Section
4 respectively) contains a very strong condition that is not easy to verify directly in
most cases. To deal with this problem we shall give a few criteria (sufficient conditions)
that are useful in concrete cases. On the other hand, if one knows that a C∗- algebra
is generated by T1, T2, . . . TN η A (T η C ⊗A respectively), then a number of interesting
conclusions follows easily. The Sections contain as many as twenty examples coming
mainly from the theory of quantum groups.

Section 5 is devoted to the theory of topological W∗-categories. It contains the
proofs of many theorems announced in [16]. We shall prove that elements affiliated
with a C∗-algebra A may be identified with continuous operator functions on the W∗-
category Rep (A,H) = Mor(A,CB(H)) of all non-degenerate representations of A (cf
(5. 15)). Moreover for any C∗-algebras A and B, the set Mor(A,B) is in one to one
natural correspondence with the set of all W∗-category morphisms from Rep (B,H)
into Rep (A,H) (cf Theorem 5.6).

The last result is used in Section 6 to prove the main theorem of this paper. It
says that an element T η C ⊗ A generates a C∗-algebra A if and only if the evaluation
map: π 7−→ (id ⊗ π)T is an homeomorphism of Rep (A,H) onto a closed subset of
(C ⊗ CB(H))η. This result is the cornerstone of the presentation theory of C∗-algebras
developed in Section 7. A large number of examples is given.

We belive that the concepts introduced in this paper will play a crucial role in the
future general theory of non-compact quantum groups. In particular these concepts
allow us to reformulate Conditions 1 and 2 of the Definition 1.1 of [19] to cover a non-
compact matrix quantum group case. Instead of Condition 1 we postulate that the
algebra A of all continuous functions vanishing at infinity on the group is generated by
the fundamental representation u ηMN ⊗ A. In Condition 2 we demand that the co-
multiplication Φ ∈ Mor(A,A⊗A). At the moment we do not know, how to reformulate
Condition 3 concerning the coinverse (antipode) map.

1 C∗-algebras, affiliated elements and morphisms

In this section we recall the main concepts of the theory of non-unital C∗-algebras intro-
duced in [3, 16, 20]. To this end it is convenient to assume that we deal with concrete
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C∗-algebras. The definitions given below use particular embeddings of C∗-algebras into
B(H). However the notions introduced in this way are essentially independent of the
choice of the embeddings. We shall also assume that all C∗-algebras considered in
this paper are separable. The only exceptions are the multiplier algebras; according to
Proposition 1.1, in the non-compact case, they are never separable.

If A is a commutative C∗-algebra then there exists a locally compact space Λ such
that A = C∞(Λ). The space Λ is called a spectrum of A: Λ = SpA. If A is noncom-
mutative then SpA will denote the quantum space (pseudospace) corresponding to A
[16].

For any separable Hilbert space H, C∗(H) will denote the set of all separable non-
degenerate C∗-subalgebras of B(H) (a C∗-subalgebra A ⊂ B(H) is nondegenerate if
AH is dense in H). For any A ∈ C∗(H), the embedding A →֒ B(H) will be denoted
by iA.

Let H be a separable Hilbert space and A ∈ C∗(H). An operator a ∈ B(H) is called
a multiplier of A if aA and Aa are contained in A. The set of all multipliers of A is
denoted by M(A):

M(A) =

{
a ∈ B(H) :

ab, ba ∈ A
for any b ∈ A

}

Clearly M(A) is a C∗-subalgebra of B(H) and IB(H) ∈ M(A). A is an ideal in M(A).
If a ∈ M(A) and ab = 0 for all b ∈ A then a = 0. We say that A is an essential ideal
of M(A). In fact M(A) is the largest C∗-algebra containing A as an essential ideal (cf
[10, Proposition 3.12.8]).

If CB(H) ∈ C∗(H) is the algebra of all compact operators acting on H, then
M(CB(H)) = B(H). If A is commutative, then M(A) = Cbounded(SpA).

Let A be a C∗-algebra. An element a ∈M(A) is said to be strictly positive on SpA
if 0 ≤ a and aA is dense in A. For any separable C∗-algebra A there exists a ∈ A strictly
positive on SpA. To construct such an element it is sufficient to choose a denumerable
dense subset (ai)i∈N of the unit ball of A and set

a =
∞∑

i=1

2−iai
∗ai. (1. 1)

If an element a ∈ A is strictly positive on SpA and ‖a‖ ≤ 1 then the sequence(
a1/n

)
n=1,2,...

is an approximate unit of A.

Let ω be a state (a positive linear functional of norm 1) on a C∗-algebra A. According
to [6, Proposition 2.11.7] there exists unique state on M(A) that extends ω. It will be
denoted by the same symbol ω. Let a ∈M(A). Using [6, Theorem 2.9.5] one can easily
show that a > 0 if and only if ω(a) > 0 for any pure state ω of A.

For any selfadjoint a, b ∈M(A) we say that a < b on SpA whenever b− a is strictly
positive on SpA. One can easily show that a+b > 0 for any a > 0 and b ≥ 0. Therefore
for any a, b, c ∈M(A) such that a > b and b ≥ c we have a > c. The same result follows
from a ≥ b and b > c. In particular the relation of strict inequality is transitive.

It turns out that A is uniquely determined by M(A). We have1:

1the author is grateful to Alain Connes for setting a problem leading to this result

5



Proposition 1.1 Let A be a separable C∗-algebra. Then

A = {a ∈M(A) : aM(A) is separable}. (1. 2)

The proof will be given latter.

For any closed densely defined operator T acting on a Hilbert space H we set

zT = T (I + T ∗T )−
1

2 (1. 3)

One should notice that zT ∈ B(H) and ‖zT‖ ≤ 1. The operator zT is called the
z-transform of T . It contains the full information about T :

T = zT (I − zT
∗zT )−

1

2

Clearly ‖T‖ < ∞ if and only if ‖zT‖ < 1. Let M < ∞. Then (by the Weierstrasse
approximation theorem) there exist sequences of polynomials vn and wn (with real
coefficients) such that

T = norm- lim zTvn(zT
∗zT )

zT = norm- limTwn(T ∗T )
(1. 4)

for any T with ‖T‖ ≤M . It shows that T and zT belong to the same C∗-algebra.

Let H be a separable Hilbert space, A ∈ C∗(H) and T be a closed, densely defined
operator acting on H. We say that T is affiliated with A and write T η A if zT ∈M(A)
and zT

∗zT < I on SpA.
The set of all elements affiliated with A will be denoted by Aη. It is known that T ∗

and T ∗T are affiliated with A for any T η A. Multipliers are the only bounded elements
affiliated with A: {T η A : ‖T‖ < ∞} = M(A). Any closed, densely defined operator
acting on H is affiliated with the algebra CB(H) of all compact operators on H. If A
is commutative, then Aη = C(SpA). A is unital if and only if Aη = A.

Let A be a C∗-algebra and H be a separable Hilbert space. The symbol Rep (A,H)
will denote the set of all non-degenerate representations of A in H. By definition
π ∈ Rep (A,H) if and only if π : A −→ B(H) is a ∗-algebra homomorphism such that
π(A)H is dense in H. If A ∈ C∗(H) then iA ∈ Rep (A,H).

Remembering that A is an ideal in M(A) and using Proposition 2.10.4 of [6] we see
that any π ∈ Rep (A,H) admits the unique extension to a unital ∗-algebra homomorphism2

π : M(A) −→ B(H). Clearly π(zT ) = zπ(T ) for any T ∈ M(A). Using this property
one can easily extend the action of π to elements affiliated with A: If T η A then
zT ∈M(A) and there exists unique densely defined closed operator S acting on H such
that π(zT ) = zS. We say that S is the π-image of T and write S = π(T ).

Let A and B be C∗-algebras. Assume that B ∈ C∗(H). We say that π is a morphism
from A into B if π ∈ Rep (A,H) and π(A)B is a dense subset of B. The set of all
morphisms from A into B will be denoted by Mor(A,B):

2denoted by the same symbol
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Mor(A,B) =
{
π ∈ Rep (A,H) : π(A)B = B

}
(1. 5)

The reader should notice that Rep (A,H) = Mor(A,CB(H)).
Let A, B be C∗-algebras and π ∈ Mor(A,B). Then π(T ) η B for any T η A. In other

words any morphism from A into B defines in a natural way a mapping from Aη into
Bη.

Morphisms may be composed. Let A, B, C be C∗-algebras, ϕ ∈ Mor(A,B) and
ψ ∈ Mor(B,C). Then there exists unique composition ψϕ ∈ Mor(A,C) such that
(ψϕ)(T ) = ψ(ϕ(T )) for any T η A.

For any C∗-algebra A there exists unique morphism idA ∈ Mor(A,A) such that
idA(T ) = T for any T η A. Clearly π idA = idBπ = π for any π ∈ Mor(A,B). It
means that we have constructed a category of C∗-algebras: Objects of this category are
C∗-algebras and morphisms are introduced by (1. 5). The category of quantum spaces
is by definition the category dual to the category of C∗-algebras described above [16].

Let A and B be C∗-algebras, a ∈ A and π ∈ Mor(A,B). We shall show that π
preserves the strict inequalities:

(
a > 0

on SpA

)
=⇒

(
π(a) > 0
on SpB

)
. (1. 6)

Indeed, if a > 0 on SpA, then aA is dense in A, π(a)π(A) is dense in π(A) and
π(a)B ⊃ π(a)π(A)B is dense in π(A)B which in turn is dense in B (see (1. 5)). It
shows that π(a) > 0 on SpB and (1. 6) holds.

Let A be a C∗-algebra and a be an element of M(A) such that rI < a < sI on
SpA (r, s ∈ R). Then (a − rI)(sI − a)A is dense in A. For any f ∈ C∞(]r, s[) we set
π(f) = f(a). Then π is a ∗-algebra homomorphism acting from C∞(]r, s[) into M(A).
Clearly the function ]r, s[∋ λ 7→ (λ − r)(s − λ) ∈ R belongs to C∞(]r, s[). Therefore
π(C∞(]r, s[))A ⊃ (a− rI)(sI − a)A is dense in A and

π ∈ Mor(C∞(]r, s[), A).

One can easily show that Sp a ⊂ [r, s] and that the end points r and s are not
eigenvalues of a. The extension of π to C(]r, s[) = C∞(]r, s[)η is given by the same
formula: π(f) = f(a). It shows that f(a) η A for any f ∈ C(]r, s[). In particular

f(a) ∈M(A) (1. 7)

for any f ∈ Cbounded(]r, s[). Moreover, using (1. 6) we get



rI < a < sI on SpA

and
f ∈ C(]r, s[, ]r′, s′[)


 =⇒

(
r′I < f(a) < s′I

on SpA

)
. (1. 8)

Clearly in the above results the interval ]r, s[ may be replaced by ]r,∞[ and ]−∞, s[.

Proof of Proposition 1.1:
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Let B be the right hand side of (1. 2). Clearly, B is a two sided ideal in M(A). If
an ∈ B and an −→ a in norm, then aM(A) is contained in the closure of separable set
∪nanM(A). Therefore aM(A) is separable and a ∈ B. It shows that B is a closed ideal
in M(A). In particular (cf [6]) a∗ ∈ B for any a ∈ B.

For any a ∈ A, aM(A) ⊂ A is separable. Therefore A ⊂ B. To prove the converse
we have to show that the quotient C∗-algebra B/A = {0}.

Assume that the latter does not hold. Let b̃ be a positive element of B/A of norm
1 and b be an element of B representing b̃. Positive elements admit positive lifts.
Therefore b may be choosen in such a way that b = b∗ and b ≤ I. Replacing if necessary
b by b− a (where a is introduced by (1. 1)) we may assume that b < I.

According to (1. 7), f(b) ∈ M(A) for any f ∈ Cbounded(] −∞, 1[). We know that 1
is not an eigenvalue of b. Therefore

‖bf(b)‖ = sup {|λf(λ)| : λ ∈ Sp b, λ 6= 1} (1. 9)

Since b ∈ B, {bf(b) : f ∈ Cbounded(] −∞, 1[)} ⊂ bM(A) is separable, so is
Cbounded(] − ∞, 1[) equipped with the seminorm given by the right hand side of (1.
9). It is not difficult to show that this is the case if and only if Sp b ⊂ ]−∞, 1[. There-
fore 1 ∈/ Sp b. Consequently 1 ∈/ Sp b̃ and ‖b̃‖ < 1. We obtained the contradiction
with ‖b̃‖ = 1. It shows that B/A contains no positive element of norm 1. Therefore
B/A = {0}, A = B and (1. 2) follows.

Q.E.D.

To fix a notation we insert a few remarks concerning the tensor products. The tensor
product of C∗-algebras corresponds to the cartesian product of underlying quantum
spaces. We shall exclusively use the minimal tensor product. Let A ∈ C∗(H) and
B ∈ C∗(K) (H and K are Hilbert spaces). The norm closure of the linear span of all
operators of the form a⊗ b, where a ∈ A and b ∈ B, will be denoted by A⊗B. Clearly
A⊗B ∈ C∗(H ⊗K).

Let S and T be closed operators acting on the Hilbert spaces H and K. Then (cf
[23]) there exists unique closed operator S⊗T acting on H⊗K such that the algebraic
tensor product of the domains of S and T is a core for S⊗T and (S⊗T )(h⊗k) = Sh⊗Tk
for any h ∈ H and k ∈ K. If S η A and T η B, then S ⊗ T is affiliated with A⊗B (see
[23] for details)

Let ϕ ∈ Mor(A1, A2) and ψ ∈ Mor(B1, B2) (A1, A2, B1 and B2 are C∗-algebras).
Then there exists unique morphism ϕ⊗ ψ ∈ Mor(A1 ⊗B1, A2 ⊗B2) such that
(ϕ⊗ ψ)(S ⊗ T ) = ϕ(S) ⊗ ψ(T ).

Let B ∈ C∗(H), where H is a Hilbert space. Then the embedding iB : B →֒ B(H)
belongs to Mor(B,CB(H)), id ⊗ iB ∈ Mor(A ⊗ B,A ⊗ CB(H)) and (id ⊗ iB)U η A ⊗
CB(H) for any U η A ⊗ B. In what follows we shall omit (id ⊗ iB) identifying in this
way (A⊗B)η with a subset of (A⊗ CB(H))η:

(A⊗B)η ⊂ (A⊗ CB(H))η

Let N be an integer. Throughout the paper, MN will denote the C∗-algebra of all
N × N matrices with complex entries. If A is a C∗-algebra, then MN ⊗ A coincides
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with the C∗-algebra MN(A) of all N ×N matrices with entries belonging to A. Clearly
M(MN ⊗ A) = MN ⊗M(A). We shall use the following simple

Proposition 1.2 Let A be a C ∗-algebra and p, q, s ∈M(A). Then




(
p , q
q∗ , s

)
> 0

on Sp (M2 ⊗ A)


⇐⇒




s > 0 and
p− qs−1q∗ > 0

on SpA


 .

The standard proof is left to the reader.

2 Natural topologies

The spaces M(A), Aη, Rep (A,H) and Mor(A,B) (where A, B are C∗-algebras and H
is a Hilbert space) are endowed with natural topologies.

Let A be a C∗-algebra. Strict topology on M(A) is the weakest topology such that
for all a ∈ A the mappings

M(A) ∋ x 7−→ ax ∈ A
M(A) ∋ x 7−→ xa ∈ A

are continuous. The strict topology is weaker than the norm topology. A net (xλ)λ∈Λ

of elements of M(A) strictly converges to 0 if and only if ‖axλ‖ → 0 and ‖xλa‖ → 0 for
any a ∈ A. Let us notice that A is dense in M(A). Indeed if (eλ)λ∈Λ is an approximate
unit in A, then for any x ∈M(A), (eλx)λ∈Λ is a net of elements of A converging strictly
to x. The strict topology on B(H) = M(CB(H) coincides with the ∗-strong operator
topology.

M(A) endowed with the strict topology is a locally convex topological vector space.
Moreover the mapping

M(A) ∋ x 7−→ x∗ ∈M(A) (2. 1)

is continuous.
Let (xλ)λ∈Λ and (yλ)λ∈Λ be bounded nets of elements of M(A) strictly converging to

x and y respectively. Using the estimates ‖xλyλa−xya‖ ≤ ‖xλ‖‖yλa−ya‖+‖xλya−xya‖
and ‖axλyλ − axy‖ ≤ ‖axλ − ax‖‖yλ‖ + ‖axyλ − axy‖ (where a ∈ A) we see that xλyλ

strictly converges to xy. It shows that the multiplication map

Q×Q ∋ (x, y) 7−→ xy ∈M(A) (2. 2)

where Q is a bounded subset of M(A) is continuous.

Let (aλ)λ∈Λ be a net of elements of A norm converging to a ∈ A and (xλ)λ∈Λ be a
bounded net of elements of M(A) strictly converging to x ∈M(A). Using the estimates
‖xλaλ−xa‖ ≤ ‖xλ‖‖aλ−a‖+‖xλa−xa‖ and ‖aλxλ−ax‖ ≤ ‖aλ−a‖‖xλ‖+‖axλ−ax‖
we see that xλaλ and aλxλ are norm converging to xa and ax respectively. It shows
that the multiplication maps
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Q× A ∋ (x, a) 7−→ xa ∈ A
A×Q ∋ (a, x) 7−→ ax ∈ A

(2. 3)

where Q is a bounded subset of M(A) are continuous. It turns out that the z-transform
is continuous. We have:

Proposition 2.1 Let A be a C∗-algebra, (an)n=1,2,... be a sequence of elements of M(A)
and a ∈M(A). Then the following two conditions are equivalent:

1. an strictly converge to a.
2. The sequence (an)n=1,2,... is bounded and zan

strictly converge to za.

Proof: The boundness of strictly converging sequences of multipliers follows imme-
diately from [7, Chapter II, Section 1, Theorem 17]. Now, taking into account the
continuity of (2. 2) and using (1. 4) we get the equivalence of Conditions 1 and 2.

Q.E.D.

In Section 4 we shall use the following version of the Stone - Weierstrass Theorem:

Proposition 2.2 Let A be a C∗-algebra and Q be a strictly closed unital ∗-subalgebra
of M(A) separating representations of A: if ϕ, ϕ′ are different elements of Rep (A,H)
then ϕ(q) 6= ϕ′(q) for some q ∈ Q. Then Q = M(A).

Proof: It is sufficient to show that A ⊂ Q. Assume on the contrary that a∈/ Q for
some a ∈ A. Then there exists a strictly continuous linear functional φ on M(A) such
that φ|Q = 0 and φ(a) 6= 0.

Taking into account the definition of the strict topology given at the begining of
Section 2 we see that φ is of the form

φ(x) =
N∑

i=1

φi(xai) +
M∑

i=N+1

φi(aix),

where N ≤ M are nonnegative integers, ai ∈ A and φi are norm-continuous linear
functionals on A (i = 1, 2, . . . ,M). Using the GNS construction one can find ϕ ∈
Rep (A,H) and trace class operators ρi acting on H such that φi(c) = Tr ρiϕ(c) (c ∈ A,
i = 1, 2, . . . ,M). Therefore for any x ∈M(A) we have:

φ(x) = Tr ρϕ(x)

where

ρ =
N∑

i=1

ϕ(ai)ρi +
M∑

i=N+1

ρiϕ(ai)

is a trace class operator acting on H. Remembering that φ vanishes on Q and that
φ(a) 6= 0 we see that ϕ(a) does not belong to the weak closure of ϕ(Q). By virtue of
the von Neumann double commutant theorem, there exists a unitary operator U such
that U∗ϕ(x)U = ϕ(x) for all x ∈ Q and U∗ϕ(a)U 6= ϕ(a). Let ϕ′(y) = U∗ϕ(y)U for
any y ∈ A. Then ϕ′ ∈ Rep (A,H), ϕ′|Q = ϕ|Q and ϕ′(a) 6= ϕ(a). It shows that Q does
not separate representations of A.

Q.E.D.
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The natural topology on Aη is the one of almost uniform convergence. It is the
weakest topology such that the z-transform

Aη ∋ T 7−→ zT ∈M(A)

(where M(A) is equipped with the strict topology) is continuous. A net (Tλ)λ∈Λ of
elements affiliated with a C∗-algebra A almost uniformly converges to an element T η A,
if and only if the corresponding z-transforms zTλ

strictly converge to zT . Since A is
separable, the unit ball in M(A) equipped with the strict topology is metrizable. So
is Aη equipped with the topology of almost uniform convergence. If A is commutative,
then T, Tλ ∈ C(SpA) and Tλ −→ T almost uniformly if and only if Tλ −→ T uniformly
on any compact subset of SpA.

According to Proposition 2.1, the topology of almost uniform convergence restricted
to the multiplier algebra is weaker than the strict topology (the embedding M(A) →֒
Aη is continuous). The two topologies coincide on bounded subsets of the multiplier
algebra.

Let A and B be C∗-algebras. We endow Mor(A,B) with the weakest topology such
that for all a ∈ A the mappings

Mor(A,B) ∋ ϕ 7−→ ϕ(a) ∈M(B)

are strictly continuous. One can easily verify that a net (ϕλ)λ∈Λ of elements of Mor(A,B)
converges to a morphism ϕ ∈ Mor(A,B) if and only if for any a ∈ A and b ∈ B,
‖ϕλ(a)b− ϕ(a)b‖ −→ 0. Due to the separability of A and B, Mor(A,B) is metrizable.

Let A be a C∗-algebra and H be a Hilbert space. We know that Rep (A,H) =
Mor(A,CB(H)), where CB(H) is the C∗-algebra of all compact operators acting on H.
We endow Rep (A,H) with the topology coming from Mor(A,CB(H)). One can easily
verify that a net (πλ)λ∈Λ of elements of Rep (A,H) converges to π ∈ Rep (A,H) if and
only if

πλ(a)Ψ −→ π(a)Ψ

for any a ∈ A and Ψ ∈ H. It means that the topology of Rep (A,H) coincides with
the one introduced by Takesaki in [13] (except the fact that in [13] Rep (A,H) includes
also degenerate representations).

Let Λ be a locally compact space and A, B be C∗-algebras. For each λ ∈ Λ we
denote by ξλ ∈ Mor(C∞(Λ),C) the evaluation functional:

ξλ(a) = a(λ)

for any a ∈ C∞(Λ). Then ξλ ⊗ id ∈ Mor(C∞(Λ) ⊗ A,A). For any T η C∞(Λ) ⊗ A and
ϕ ∈ Mor(B,C∞(Λ) ⊗ A) we set

T̃ (λ) = (ξλ ⊗ id)T
ϕ̃(λ) = (ξλ ⊗ id)ϕ

11



Clearly T̃ (λ) η A and ϕ̃(λ) ∈ Mor(B,A). Since the family of morphisms (ξλ)λ∈Λ is
faithful, the element T η C∞(Λ)⊗A (ϕ ∈ Mor(B,C∞(Λ)⊗A) respectively) is uniquely
determined by the mapping T̃ : Λ → Aη (ϕ̃ : Λ → Mor(B,A) respectively). In what
follows we shall omit ‘tilde’ identifying T and ϕ with the corresponding mappings. With
this identification

C∞(Λ) ⊗ A = C∞(Λ, A) (2. 4)

M(C∞(Λ) ⊗ A) = Cbounded(Λ,M(A)) (2. 5)

(C∞(Λ) ⊗ A)η = C(Λ, Aη) (2. 6)

Mor(B,C∞(Λ) ⊗ A) = C(Λ,Mor(B,A)) (2. 7)

Mor(B,C∞(Λ) ⊗ CB(H)) = C(Λ,Rep (B,H)) (2. 8)

In these formulae C∞(Λ, A) is the set of all norm continuous A-valued functions
on Λ tending to zero at infinity; Cbounded(Λ,M(A)) is the set of all bounded strictly
continuous M(A)-valued functions on Λ and C(Λ, X) (where X = Aη, Mor(B,A) and
Rep (B,H) endowed with the natural topologies described above) is the set of all con-
tinuous mappings from Λ into X.

To prove formula (2. 4) we notice that (f⊗a)(λ) = f(λ)a for any f ∈ C∞(Λ), a ∈ A
and λ ∈ Λ. Therefore C∞(Λ) ⊗alg A ⊂ C∞(Λ, A) and remembering that C∞(Λ, A) is
complete we get C∞(Λ) ⊗ A ⊂ C∞(Λ, A).

To prove the converse inclusion we have to show that C∞(Λ) ⊗alg A is dense in
C∞(Λ, A). Let x ∈ C∞(Λ, A) and ǫ > 0. Then {x(λ) : λ ∈ Λ}∪{0} is a compact subset
of A and there exists finite sequence a0 = 0, a1, . . . , an ∈ A such that

Λ ⊂
n⋃

i=0

{λ ∈ Λ : ‖x(λ) − ai‖ < ǫ} . (2. 9)

Let
∑
fi(λ) = 1 (where fi are nonnegative continuous functions on Λ, i = 0, 1, . . . , n)

be the decomposition of unit subordinated to the covering (2. 9). We may assume that
f0(λ) → 1 for λ→ ∞. Then fi ∈ C∞(Λ) for i = 1, 2, . . . , n,

(x−
n∑

i=1

fi ⊗ ai)(λ) =
n∑

i=0

fi(λ)(x(λ) − ai)

for any λ ∈ Λ and

‖x−
n∑

i=1

fi ⊗ ai‖ = sup
λ∈Λ

‖
n∑

i=0

fi(λ)(x(λ) − ai)‖

≤ sup
λ∈Λ

n∑

i=0

fi(λ)‖(x(λ) − ai)‖ ≤ ǫ.

It shows that x belongs to the closure of C∞(Λ) ⊗alg A and formula (2. 4) follows.

Now we shall prove formula (2. 5). Let x ∈M(C∞(Λ)⊗A). Then x(λ) = (ξλ⊗id)x ∈
M(A) and ‖x(λ)‖ ≤ ‖x‖ for any λ ∈ Λ. It shows that x(·) is a bounded M(A)-valued
function on Λ. Let us fix f ∈ C∞(Λ) such that f > 0 on Λ. Then for any a ∈ A,
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(f ⊗ a)x and x(f ⊗ a) belong to C∞(Λ) ⊗ A = C∞(Λ, A). It means that f(λ)ax(λ)
and f(λ)x(λ)a are norm continuous with respect to λ. So are ax(λ) and x(λ)a. It
shows that x(·) is strictly continuous: x ∈ Cbounded(Λ,M(A)). This way we showed
that M(C∞(Λ) ⊗ A) ⊂ Cbounded(Λ,M(A)).

We shall prove the converse inclusion. Remembering that the mappings (2. 1)
and (2. 2) are continuous one can easily show that Cbounded(Λ,M(A)) is a C∗-algebra.
Clearly C∞(Λ, A) ⊂ Cbounded(Λ,M(A)). By virtue of the continuity of (2. 3) C∞(Λ, A)
is an ideal of Cbounded(Λ,M(A)). Let x be an element of Cbounded(Λ,M(A)) such that
xa = 0 for any a ∈ C∞(Λ, A). Then x = 0. Therefore C∞(Λ, A) is an essential ideal of
Cbounded(Λ,M(A)) and Cbounded(Λ,M(A)) ⊂M(C∞(Λ, A)) (cf [10, Proposition 3.12.8]).
This ends the proof of (2. 5).

By virtue of the Schur lemma any irreducible π ∈ Rep (C∞(Λ) ⊗ A,H) is of the
form: π = ξλ ⊗ π0, where λ ∈ Λ and π0 ∈ Rep (A,H). Therefore any pure state ω of
C∞(Λ)⊗A is of the form ω = ξλ ⊗ω0, where λ ∈ Λ and ω0 is a pure state on A. Using
now the characterization of the strict inequality in terms of pure states given in Section
1 we get:

(
x > 0 on

Sp (C∞(Λ) ⊗ A)

)
⇐⇒

(
x(λ) > 0 on SpA

for all λ ∈ Λ

)
(2. 10)

for any x ∈M(C∞(Λ) ⊗ A).

Now we can prove relation (2. 6). Let T η C∞(Λ) ⊗ A. Then zT ∈ M(C∞(Λ) ⊗ A)
and zT (λ) = (ξλ ⊗ id)zT = z(ξλ⊗id)T = zT (λ). By virtue of (2. 5), zT (λ) is strictly
continuous with respect to λ. Therefore T (λ) is almost uniformly continuous: T ∈
C(Λ, Aη). Conversely if T ∈ C(Λ, Aη), then zT (λ) is strictly continuous with respect
to λ and zT (λ)

∗zT (λ) < I on SpA for any λ ∈ Λ. By virtue of (2. 5), there exists
z ∈ M(C∞(Λ) ⊗ A) such that z(λ) = zT (λ) for all λ ∈ Λ. According to (2. 10),
z∗z < I on Sp (C∞(Λ) ⊗ A). Therefore z is a z-transform of an element T ′ affiliated
with C∞(Λ)⊗A. Now, for any λ ∈ Λ we have: zT ′(λ) = zT ′(λ) = z(λ) = zT (λ). It shows
that T = T ′ and T ∈ (C∞(Λ) ⊗ A)η. The formula (2. 6) is proved.

We shall prove (2. 7). Let ϕ̃ ∈ C(Λ,Mor(B,A)). Then for any b ∈ B, the mapping
Λ ∋ λ 7→ (ϕ̃(λ))(b) ∈ M(A) is strictly continuous and bounded. Therefore (cf (2.
5)) there exists ϕ(b) ∈ M(C∞(Λ) ⊗ A) such that (ϕ(b))(λ) = (ϕ̃(λ))(b). Clearly the
mapping ϕ : B →M(C∞(Λ)⊗A) introduced in this way is linear, multiplicative and ∗-
preserving. Moreover if b > 0 on SpB then by virtue of (1. 6) (ϕ(b))(λ) = (ϕ̃(λ))(b) > 0
on SpA and (cf (2. 10)) ϕ(b) > 0 on Sp (C∞(Λ) ⊗ A). Therefore ϕ(b)(C∞(Λ) ⊗ A) ⊂
ϕ(B)(C∞(Λ) ⊗ A) is dense in C∞(Λ) ⊗ A and ϕ ∈ Mor(B,C∞(Λ) ⊗ A). It shows that
C(Λ,Mor(B,A)) ⊂ Mor(B,C∞(Λ) ⊗ A).

Conversely if ϕ ∈ Mor(B,C∞(Λ) ⊗ A), then for any b ∈ B, ϕ(b) ∈ M(C∞(Λ) ⊗ A)
and by virtue of (2. 5), (ϕ̃(λ))(b) = (ξλ ⊗ id)ϕ(b) = (ϕ(b))(λ) is strictly continu-
ous with respect to λ. Therefore ϕ̃ ∈ C(Λ,Mor(B,A)) and Mor(B,C∞(Λ) ⊗ A) ⊂
C(Λ,Mor(B,A)). Formula (2. 7) is proved.

Inserting in (2. 7) CB(H) instead of A we obtain (2. 8). This way the formulae (2.
4) – (2. 8) are proved.
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Let Λ be a locally compact space, Λ′ ⊂ Λ be a locally compact subspace and A
be a C∗-algebra. According to (2. 6), an element T η C∞(Λ′) ⊗ A is identified with a
continuous mapping T : Λ′ → Aη. Its restriction T |Λ : Λ → Aη is continuous and by
virtue of (2. 6), T |Λ η C∞(Λ) ⊗ A. One can easily verify that

T |Λ = (ξΛ ⊗ id)T,

where ξΛ ∈ Mor(C∞(Λ′), C∞(Λ)) is the restriction map: ξΛ(f) = f |Λ for any f ∈
C∞(Λ′).

Let B is a C∗-algebra. According to (2. 7), an element ϕ ∈ Mor(B,C∞(Λ′) ⊗ A is
identified with a continuous mapping ϕ : Λ′ → Mor(B,A). Its restriction ϕ|Λ : Λ →
Mor(B,A) is continuous and by virtue of (2. 7), ϕ|Λ ∈ Mor(B,C∞(Λ) ⊗ A). One can
easily verify that

ϕ|Λ = (ξΛ ⊗ id)ϕ.

Proposition 2.3 Let A,B be C∗-algebras. Then the evaluation map

Aη × Mor(A,B) ∋ (T, ϕ) 7−→ ϕ(T ) ∈ Bη

(where Aη and Bη are equipped with the almost uniform topology) is continuous.

Proof: Let (T (n))n=1,2,... be a sequence of elements affiliated with A converging almost
uniformly to T (∞) η A and (ϕ(n))n=1,2,... be a sequence of morphisms from A into B
converging to ϕ(∞) ∈ Mor(A,B). Then (ϕ(n))(T (n)) η B. We have to show that

(ϕ(n))(T (n)) −→ (ϕ(∞))(T (∞)) (2. 11)

almost uniformly for n→ ∞. Let Λ = {1, 2, . . . ,∞} be the one point compactification
of the set of natural numbers. Then T ∈ C(Λ, Aη) and ϕ ∈ C(Λ,Mor(A,B)). By
virtue of (2. 6) and (2. 7), T η C(Λ) ⊗ A and ϕ ∈ Mor(A,C(Λ) ⊗ B). Therefore
id ⊗ ϕ ∈ Mor(C(Λ) ⊗ A,C(Λ) ⊗ C(Λ) ⊗B) and (id ⊗ ϕ)T η C(Λ) ⊗ C(Λ) ⊗B.

It is well known that C(Λ)⊗C(Λ) may be identified with C(Λ2) in such a way that
ξn ⊗ ξm = ξ(n,m) for any (n,m) ∈ Λ2. Using the identification (2. 6) we see that

((id ⊗ ϕ)T )(n,m) = (ξn,m ⊗ id)(id ⊗ ϕ)T = (ξn ⊗ ξm ⊗ id)(id ⊗ ϕ)T
= ((ξm ⊗ id)ϕ)((ξn ⊗ id)T ) = (ϕ(m))(T (n))

depends continuously on (n,m) and (2. 11) follows.
Q.E.D.

Proposition 2.4 Let A,B,C be C∗-algebras. Then the composition map

Mor(A,B) × Mor(B,C) ∋ (ϕ, ψ) 7−→ ψϕ ∈ Mor(A,C)

is continuous.
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Proof: Let (ϕ(n))n=1,2,... ((ψ(n))n=1,2,... respectively) be a sequence of morphisms from
A into B (from B into C respectively) converging to ϕ(∞) ∈ Mor(A,B) (ψ(∞) ∈
Mor(B,C) respectively). Then (ψ(n))(ϕ(n)) ∈ Mor(A,C). We have to show that

(ψ(n))(ϕ(n)) −→ (ψ(∞))(ϕ(∞)) (2. 12)

for n → ∞. Let Λ be as in the previous proof. Then ϕ ∈ C(Λ,Mor(A,B)) and ψ ∈
C(Λ,Mor(B,C)). By virtue of (2. 7), ϕ ∈ Mor(A,C(Λ) ⊗B) and ψ ∈ Mor(B,C(Λ) ⊗
C). Therefore id⊗ψ ∈ Mor(C(Λ)⊗B,C(Λ2)⊗C) and (id⊗ψ)ϕ ∈ Mor(A,C(Λ2)⊗C).
Using the identification (2. 7) we see that

((id ⊗ ψ)ϕ)(n,m) = (ξn,m ⊗ id)(id ⊗ ψ)ϕ = (ξn ⊗ ξm ⊗ id)(id ⊗ ψ)ϕ
= ((ξm ⊗ id)ψ)((ξn ⊗ id)ϕ) = (ψ(m))(ϕ(n))

depends continuously on (n,m) and (2. 12) follows.
Q.E.D.

Proposition 2.5 Let A,B be C∗-algebras. Then the tensor product map

Aη ×Bη ∋ (T, S) 7−→ T ⊗ S ∈ (A⊗B)η

is continuous.

Proof: Let (S(n))n=1,2,... ((T (n))n=1,2,... respectively) be a sequence of elements affiliated
with A (with B respectively) converging to S(∞) η A (T (∞) η B respectively). Then
S(n) ⊗ T (n) η A⊗B. We have to show that

S(n) ⊗ T (n) −→ S(∞) ⊗ T (∞) (2. 13)

for n→ ∞. Let Λ be as in the previous proofs. Then S ∈ C(Λ, Aη) and T ∈ C(Λ, Bη).
By virtue of (2. 6), S η C(Λ) ⊗ A and T η C(Λ) ⊗ B. Therefore S ⊗ T η C(Λ) ⊗ A ⊗
C(Λ) ⊗ B. The latter algebra is canonically isomorphic to C(Λ2) ⊗ A ⊗ B. Using the
identification (2. 6) we see that

(S ⊗ T )(n,m) = (ξn ⊗ id ⊗ ξm ⊗ id)(S ⊗ T )
= (ξn ⊗ id)S ⊗ (ξm ⊗ id)T = S(m) ⊗ T (n)

depends continuously on (n,m) and (2. 13) follows.
Q.E.D.

Let A and B be C∗-algebras and ϕ ∈ Mor(A,B). By virtue of Proposition 2.3, the
extension

ϕ : Aη −→ Bη (2. 14)

is continuous. To make this remark more interesting we notice that A is dense in
Aη. Indeed if (en)n=1,2,... is an approximate unit of A, then for any a ∈ M(A), (ena)
converges strongly to a. It shows that A is dense in M(A). On the other hand if T η A

and λ ∈]0, π/2[, then Tλ = (cosλ)T (I + (sin2 λ)T ∗T )−
1

2 ∈ M(A), zTλ
= (cosλ)zT and
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zTλ
−→ zT for λ −→ 0. Therefore Tλ −→ T almost uniformly and M(A) is dense in

Aη.

Let B ∈ C∗(H). Then Mor(A,B) ⊂ Rep (A,H) and the topology of Mor(A,B) is
stronger than the one induced from Rep (A,H). Indeed, by virtue of Proposition 2.4
for any fixed ψ ∈ Rep (B,H) the mapping

Mor(A,B) ∋ ϕ 7−→ ψϕ ∈ Rep (A,H)

is continuous. In particular (for ψ = iB) the embedding Mor(A,B) →֒ Rep (A,H) is
continuous.

3 C∗-algebras generated by a finite set of affiliated

elements

Introducing the notion of an object generated by a set of elements one usually lists a
set of procedures that allow,

starting with given generators to construct step by step all elements of generated
object. Unfortunately this method does not work in our case. Instead we shall use
another approach:

Definition 3.1 Let A be a C∗-algebra and T1, T2, . . . , TN be elements affiliated with
A. We say, that A is generated by T1, T2, . . . , TN if for any Hilbert space H, any
B ∈ C∗(H) and any π ∈ Rep (A,H) we have:

(
π(Ti) η B for any
i = 1, 2, . . . , N

)
=⇒

(
π ∈ Mor(A,B)

)
(3. 1)

Proposition 3.2 Let A, B be C∗-algebras, j ∈ Mor(B,A), Si η B and Ti = j(Si) η A
(i = 1, 2, . . . , N). Assume that j is an injection and that T1, T2, . . . , TN generate A.
Then j is an isomorphism: j(B) = A.

Proof: We may assume that A ∈ C∗(H). Then j is a faithful representation of B and
identifying B with its j-image we have B ∈ C∗(H) and j = iB. Relation iB ∈ Mor(B,A)
means that

BA = A.

On the other hand Ti = iB(Si) = Si (i = 1, 2, . . . , N) are closed operators affiliated
with B and using (3. 1) with π replaced by iA we see that iA ∈ Mor(A,B). It means
that

AB = B.

Comparing this result with the previous one we get B = A.
Q.E.D.

Later (see example 1 of Section 4) we shall prove the following
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Theorem 3.3 Let A be a C∗-algebra and T1, T2, . . . , TN be elements affiliated with A.
The subset of M(A) composed of all elements of the form (I + Ti

∗Ti)
−1 and (I + TiTi

∗)−1

(i = 1, 2, . . . , N) will be denoted by Γ. Assume that
1. T1, T2, . . . , TN separate representations of A: if ϕ1, ϕ2 are different elements of

Rep (A,H) then ϕ1(Ti) 6= ϕ2(Ti) for some i = 1, 2, . . . , N .
2. There exist elements r1, r2, . . . , rk ∈ Γ such that the product r1r2 . . . rk ∈ A.

Then A is generated by T1, T2, . . . , TN .

Examples:

1. Let A be a unital C∗-algebra and T1, T2, . . . , TN ∈ A. Assume that A coincides
with the norm closure of the set of all algebraic combinations of I, T1, T2, . . . , TN .
Then one can immediately verify that the implication (3. 1) holds. In other words, A
is generated by T1, T2, . . . , TN in the sense of Definition 3.1.

Conversely if A is a C∗-algebra generated by T1, T2, . . . , TN η A such that
‖Ti‖ < ∞ for all i = 1, 2, . . . , N , then A is unital, Ti ∈ A for all i = 1, 2, . . . , N
and A coincides with the norm closure of the set of all algebraic combinations of
I, T1, T2, . . . , TN .

Indeed Ti η A and ‖Ti‖ < ∞ imply that Ti ∈ M(A). Let B be the norm closure of
the set of all algebraic combinations of I, T1, T2, . . . , TN . Then B is a unital subalgebra
of M(A) and the embedding j : B →֒ M(A) belongs to Mor(B,A). Using Proposition
3.2 we get B = A.

2. Let Λ be a locally compact space and T1, T2, . . . , TN ∈ C(Λ). We claim that
C∞(Λ) is generated by T1, T2, . . . , TN if and only if the functions T1, T2, . . . , TN separate
points of Λ and

lim
λ→∞

N∑

i=1

|Ti(λ)|2 = +∞ (3. 2)

Clearly elements T1, T2, . . . , TN separate representations of C∞(Λ) if and only if
functions T1, T2, . . . , TN separate points of Λ. Let yi =(I + Ti

∗Ti)
−1. One can easily

verify that the relation (3. 2) is equivalent to

lim
λ→∞

N∏

i=1

(I + |Ti(λ)|2)
−1

= 0.

The latter means that the product y1y2 . . . yN belongs to C∞(Λ). Now, the ‘if’ part of
our statement follows immediately from Theorem 3.3.

To prove the ‘only if’ part we shall use Proposition 3.2. For any λ ∈ Λ we set
T (λ) = (T1(λ), T2(λ), . . . , TN(λ)). Then T : Λ → CN is a continuous map. Let Λ′

be the closure of its image: Λ′ = T (Λ). For any λ′ ∈ Λ′, Si(λ
′) will denote the ith

component of λ′. In particular
Si(T (λ)) = Ti(λ) (3. 3)

for all λ ∈ Λ. Clearly Si are continuous functions on Λ′: Si η C∞(Λ′). For any x ∈
C∞(Λ′) we set jx = xoT . Then jx ∈ Cbounded(Λ) and j ∈ Mor(C∞(Λ′), C∞(Λ)). We
know that T (Λ) is dense in Λ′. Therefore j is an injection. According to (3. 3),
j(Si) = Ti (i = 1, 2, . . . , N).
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Assume that C∞(Λ) is generated by T1, T2, . . . , TN . Using Proposition 3.2 we see
that j is an isomorphism. Therefore T : Λ → Λ′ is a homeomorphism. In particular
functions T1, T2, . . . , TN separate points of Λ (otherwise T would not be injective).
Moreover

lim
λ→∞

∑
|Ti(λ)|2 = lim

λ′→∞

∑
|Ti(T

−1(λ′))|
2

= lim
λ′→∞

∑
|Si(λ

′)|
2

= +∞

This ends the proof of the ‘only if’ part of our statement.

In Section 6 we shall prove a far reaching generalization of this result (cf Theorem
6.2).

3. Let G be a connected Lie group, Γ be the Lie algebra of G and T1, T2, . . . , TN

(where N = dimG) be a basis of Γ. According to [23], T1, T2, . . . , TN are skewadjoint
elements affiliated with C∗(G). We claim that C∗(G) is generated by T1, T2, . . . , TN .

By the representation theory, any non-degenerate representation of C∗(G) is deter-
mined by a unitary representation of G which in turn is determined by its infinitesimal
generators. It means that T1, T2, . . . , TN separate representations of C∗(G).

Let exp : Γ → G be the exponential map. For any s1, s2, . . . sN ∈ R we set

F (s1, s2, . . . sN) = exp(s1T1) exp(s2T2) . . . exp(sNTN)

Then
F : RN −→ G

is a real analytic mapping. The reader should notice that the Jacobi matrix of this
mapping at point s = 0 is of maximal rank N . Due to the analycity the same is
true for almost all s ∈ RN (all except a closed subset Z ⊂ RN of Lebesgue measure
zero). Therefore in a neighbourhood of any point of s ∈ RN\Z, the mapping F is a
diffeomorphism. Using this fact one can easily show that for any finite measure µ on
RN , absolutely continuous with respect to the Lebesgue measure, the image F (µ) is
absolutely continuous with respect to the Haar measure on G. In particular there exists
a function R ∈ L1(G) such that∫

G
f(g)R(g)dg =

1

2N

∫

RN

f(F (s1, s2, . . . sN)) exp(−
∑

|sk|)ds1ds2 . . . dsN (3. 4)

for any f ∈ Cbounded(G).

We shall use the canonical embedding G →֒ M(C∗(G)) (cf [23, Section 3]). Let
r =

∫
G gR(g)dg. Then, remembering that L1(G) ⊂ C∗(G) we obtain r ∈ C∗(G). On

the other hand using the formula (3. 4) we have:

r =
1

2N

∫

RN

F (s1, s2, . . . sN) exp(−
∑

|sk|)ds1ds2 . . . dsN

=
N∏

k=1

{
1

2

∫

R

exp(sTk)e
−|s|ds

}
= y1y2 . . . yN ,

where yk = (I + Tk
∗Tk)

−1. Using now Theorem 3.3 we see that C∗(G) is generated by
T1, T2, . . . , TN .
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4. Let p and q be the momentum and position operators of a quantum mechanical
system of one degree of freedom. In the Schrodinger representation H = L2(R, dx),
q is the multiplication operator by x and p = 1

i
d
dx

. Clearly p, q η CB(H) (any closed
operator is affiliated with the algebra of all compact operators).

Using the irreducibility of the Schrodinger representation one can easily show that
the pair (p, q) separates representations of CB(H). Moreover the operator r = (1 +
q2)−1(1 + p2)−1(1 + q2)−1 is an integral operator with the kernel

K(x, x′) =
1

2
(1 + x2)−1e−|x−x′|(1 + x′2)−1.

Let us notice that r ≥ 0 and that Tr r =
∫
K(x, x)dx = π

4
<∞. Therefore r ∈ CB(H)

and using Theorem 3.3 we see that CB(H) is generated by p and q.

5. The algebra A1 of all continuous functions vanishing at infinity on the quan-
tum E(2) introduced in Section 1 of [21] is generated by affiliated elements v and n
(cf Theorem 1.1.3 of that reference). Indeed one can easily check that v, n separate
representations of A1 and that (I + n∗n)−1 ∈ A1.

6. The algebra A2 of all continuous functions vanishing at infinity on the Pontryagin

dual Ê(2) of E(2) introduced in Section 3 of [21] is generated by affiliated elements N
and b (cf Theorem 3.1.3 of that reference). Indeed one can easily check that N , b
separate representations of A2 and that (I +N2)

−1
(I + b∗b)−1 ∈ A2.

7. Let G be the quantum Lorentz group introduced in [24]. Then A = A1 ⊗ A2 is
the algebra of all continuous functions vanishing at infinity on G introduced in Section
5 of that paper. It is generated by elements α, β, γ and δ affiliated with A (cf Theorem
5.1.3 of [24]). This fact follows easily from the quantum Gauss decomposition and
the above two examples. One can also verify independently that α, β, γ, δ separate
representations of A and that the element

r = (I + α∗α)−1(I + δ∗δ)−1(I + β∗β)−1(I + γ∗γ)−1

belongs to A. Indeed taking into account formulae (28) and (33) of [24] we see that

r = Fµ(z)∗(Ĩ + µÑ)
−1

Fµ(z)(Ĩ + µ−Ñ)
−1

(Ĩ + ñ∗ñµ−Ñ)
−1

(Ĩ + b̃∗b̃)
−1
,

where Ĩ = I1⊗I2 is the unit ofM(A) (Ii denotes the unit ofM(Ai), i = 1, 2), Ñ = I1⊗N ,

b̃ = I1 ⊗ b, ñ = n⊗ I2 and z = µnv∗ ⊗ µ−N

2 b. Using now the Fourier decomposition of
function Fµ and the commutation relation between N and Phase b (cf formula (22v) of
[24]) we get

r =
+∞∑

k=−∞

Fµ(z)∗fk(z)(Ĩ + µÑ−2k)
−1

(Ĩ + µ−Ñ)
−1

(Ĩ + ñ∗ñµ−Ñ)
−1

(Ĩ + b̃∗b̃)
−1
, (3. 5)

where fk are quantum Bessel functions introduced by the formula (58) of [22]. Each
term in (3. 5) belongs to A. Remembering that Ñ is a selfadjoint element with the
integer spectrum we obtain:

‖(Ĩ + µÑ−2k)
−1

(Ĩ + µ−Ñ)
−1

‖ <
1

1 + µ−k
.
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On the other hand, using the last estimate on page 650 of [22] we get

‖fk(z)‖ ≤ Cµ− k

2 ,

where C is a numerical constant. Combining the last two relations we see that the

norm of the kth term in (3. 5) is estimated by C(µ
k

2 + µ− k

2 )
−1

. Hence the series (3. 5)
is norm convergent and r ∈ A.

8. According to Example 1, the algebra Ac of all continuous functions on the quan-
tum SU(2) introduced in [11, 18] is generated by elements α, γ ∈ Ac.

9. Let Ad =
∑⊕B(Hs) be the algebra of all continuous functions vanishing at infinity

on the Pontryagin dual of quantum SU(2) considered in Section 5 of [11] and a, n η Ad

be distinguished elements introduced in that reference. By Theorem 5.1.3 of [11] a, n
separate representations of Ad. Moreover one can easily verify that a∗a, (a−1)

∗
a−1 and

n∗n mutually strongly commute. Therefore

(I + a∗a)(I + (a−1)
∗
a−1)(I + n∗n) ≥ µ2a∗a+ (a−1)

∗
a−1 + n∗n

and

r = (I + a∗a)−1(I + (a−1)
∗
a−1)

−1
(I + n∗n)−1 ≤ (µ2a∗a+ (a−1)

∗
a−1 + n∗n)

−1

On the other hand for any spin s = 0, 1
2
, 1, 11

2
, . . . the corresponding component of

(µ2a∗a+ (a−1)
∗
a−1 + n∗n)

−1
equals to (µ−2s + µ2s+2)

−1
I ∈ B(Hs) (cf [11, Corollary

5.2]) and tends to 0 for s→ ∞. It means that (µ2a∗a+ (a−1)
∗
a−1 + n∗n)

−1
belongs to

Ad. Therefore r ∈ Ad and using Theorem 3.3 we see that Ad is generated by affiliated
elements a, a−1, n.

10. Let G be the quantum Lorentz group introduced in [11]. Then A = Ac ⊗ Ad is
the algebra of all continuous functions vanishing at infinity on G introduced in Section 5
of that paper. It is generated by matrix elements α, β, γ, δ η A of the fundamental two-
dimensional representation of G. This fact follows easily from the quantum Iwasawa
decomposition and the above two examples.

4 C∗-algebras generated by a quantum family of af-

filiated elements

As it was pointed out in Section 1, a sequence T = (T1, T2, . . . , TN) of elements affiliated
with A may be considered as an element affiliated with CN⊗A: T ηCN⊗A. This remark
leads to the following generalization of Definition 3.1:

Definition 4.1 Let A and C be C∗-algebras and T be an element affiliated with C⊗A.
We say, that A is generated by T if for any Hilbert space H, any B ∈ C∗(H) and any
π ∈ Rep (A,H) we have:


 ((id⊗π)T ) η (C⊗B)


 =⇒


 π ∈ Mor(A,B)


 (4. 1)
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If C = C∞(Λ), where Λ is a locally compact space, then T is a continuous family of
elements affiliated with A labeled by an index running over Λ (cf (2. 6)). In the general
case, using the language introduced in [16] one may say that T is a quantum family
(pseudo-family) of unbounded elements affiliated with A labeled by an index running
over the quantum space (pseudo-space) SpC.

Let H be a Hilbert space, C be a C∗-algebra and T η C⊗CB(H). Then there exists
at most one A ∈ C∗(H) such that T η C ⊗ A and A is generated by T . Indeed assume
that T η C ⊗ A1 and T η C ⊗ A2, where A1 and A2 are generated by T . Inserting in
(4. 1) A = A1, π = iA1

and B = A2 we see that iA1
∈ Mor(A1, A2). It means that

A1A2 = A2. In the same way one shows that A2A1 = A1 and the equality A1 = A2

follows.

Remark: The existence of A ∈ C∗(H) generated by an element T η C ⊗CB(H) is not
guaranteed.

Conditions (3. 1) and (4. 1) are very powerful. As a result it is not obvious how
to verify them in concrete cases. The theorem presented below is in many situations
helpful for this purpose.

Theorem 4.2 Let A and C be C∗-algebras and T η C ⊗ A. Assume that
I. T separates representations of A: if ϕ1, ϕ2 are different elements of Rep (A,H)

then (id ⊗ ϕ1)(T ) 6= (id ⊗ ϕ2)(T ).
II. There exist a C∗-algebra F and an element r ∈M(F⊗A) satisfying the following

two condtions:

1. For any Hilbert space H, any B ∈ C∗(H) and any π ∈ Rep (A,H) we
have: 

 (id⊗π)T η C⊗B


 =⇒




(id⊗π)r ∈M(F⊗B)
and [(id⊗π)r](F⊗B)

is dense in F⊗B


 (4. 2)

2. There exists a nonzero continuous linear functional ω on F such that

(ω ⊗ id){r(f ⊗ I)} ∈ A. (4. 3)

for any f ∈ F .

Then A is generated by T .

Proof: Let H be a Hilbert space, π ∈ Rep (A,H), B ∈ C∗(H) and (id ⊗ π)T η C ⊗B.
We have to show that

π ∈ Mor(A,B) (4. 4)

By virtue of (4. 2), [(id⊗π)r](F⊗B) is dense in F⊗B. Let f be an element of F
such that ω(f) = 1 and b ∈ B. Then for any ǫ > 0 there exist f1, f2, . . . , fn ∈ F and
b1, b2, . . . , bn ∈ B such that

‖f ⊗ b−
n∑

m=1

(id ⊗ π)(r)(fm ⊗ bm)‖ < ǫ (4. 5)
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Let F ′ be the set of all continuous linear functionals defined on F . Any ω ∈ F ′ is
a linear combination of four states. On the other hand if ω is a state, then ω ⊗ id is
a normalised completely positive map acting from F ⊗ B into B and ‖ω ⊗ id‖ = 1.
Combining the two informations we see that ‖ω ⊗ id‖ <∞ for any ω ∈ F ′.

Taking into account (4. 5) we obtain:

‖b− (ω ⊗ id)

{
n∑

m=1

(id ⊗ π)(r)(fm ⊗ bm)

}
‖ < ǫ‖ω ⊗ id‖

and

‖b−
n∑

m=1

π(am)bm‖ < ǫ‖ω ⊗ id‖, (4. 6)

where
am = (ω ⊗ id) {r(fm ⊗ I)}

for m = 1, 2, . . . , n.
According to (4. 3), am ∈ A and (4. 6) shows that b belongs to the norm closure of

π(A)B. This way we proved that
B ⊂ π(A)B. (4. 7)

We have to prove the converse inclusion. Let

Q = {x ∈M(A) : π(x) ∈M(B)}

Clearly Q is a unital ∗-subalgebra of M(A). We shall prove that Q is closed with
respect to the strict topology. Let (xn)n=1,2,... be a strictly converging sequence of
elements of Q: strict-lim xn = x ∈ M(A). Then for any a ∈ A and b ∈ B the sequence
π(xn)π(a)b = π(xna)b converges in norm to π(xa)b = π(x)π(a)b. Taking into account
(4. 7) we see that norm-limπ(xn)b = π(x)b for any b ∈ B. Remembering that xn ∈ Q
we obtain π(xn)b ∈ B and π(x)b ∈ B. Passing to the hermitian conjugate operators we
obtain bπ(x) ∈ B. It shows that π(x) ∈M(B) and x ∈ Q. It shows that Q is a strictly
closed subset of M(A).

We assumed (cf the first line of this proof) that (id ⊗ π)T η C ⊗ B. Therefore
(id ⊗ π)zT ∈ M(C ⊗ B), π(χ ⊗ id)zT ∈ M(B) and (χ ⊗ id)zT ∈ Q for any continuous
linear functional χ defined on C. It shows that for any ϕ ∈ Rep (A,H), (id ⊗ ϕ)zT is
determined by ϕ|Q. So is (id ⊗ ϕ)T . Taking into account Assumption I we see that Q
separates representations of A. By virtue of Proposition 2.2 we have A ⊂ Q. Therefore
π(A)B ⊂ B. Combining this result with (4. 7) we get π(A)B = B and (4. 4) holds.

Q.E.D.

In concrete applications of Theorem 4.2 we have to show that an element
r ∈ M(F ⊗ A) satisfies the assumption II.1. To this end we shall use the following
obvious

Remark 4.3 For any C∗-algebra F , the set of all elements r ∈ M(F ⊗ A) satisfying
the condition 1 of the assumption II of Theorem 4.2 will be denoted by RF . Then

1. (I + T ∗T )−1/2, (I + TT ∗)−1/2 ∈ RC .
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2. If r is an invertible element of the smallest unital C∗-subalgebra of M(C ⊗ A)
containing the z-transform of T , then r ∈ RC .

3. If r ∈ RF and Φ ∈ Mor(F, F1) (where F1 is another C∗-algebra) then (Φ⊗ id)r ∈
RF1

.
4. If r ∈ RF and IF1

is the unit of M(F1) then IF1
⊗ r ∈ RF1⊗F .

5. If r ∈ RMN⊗F and r ≥ 0, then all diagonal matrix elements of r belong to RF .

6. If

(
p , q
q∗ , s

)
∈ RM2⊗F and

(
p , q
q∗ , s

)
≥ 0 then p − qs−1q∗ ∈ RF . This point

follows easily from Proposition 1.2
7. RF is closed under multiplication: r1r2 ∈ RF for any r1, r2 ∈ RF .
8. If r is an invertible element of the smallest unital C∗-subalgebra of M(F ⊗ A)

containing F ⊗ IA and RF , then r ∈ RF .

Remark 4.4 In the simplest case F = C the condition 2 of assumption II of Theorem
4.2 means that r ∈ A. Therefore the assumption II is satisfied if the intersection RC∩A
is not empty.

Examples:

1. Let A be a C∗-algebra, T ηMN ⊗A and Γ be the set of diagonal matrix elements
of (I + T ∗T )−1 and (I + TT ∗)−1. Assume that T separates representations of A and
that there exist elements r1, r2, . . . , rk ∈ Γ such that the product r = r1r2 . . . rk ∈ A.
Then according to Remark 4.3 points 1,5 and 7, r ∈ RC, the intersection RC ∩ A is
not empty and Theorem 4.2 shows that A is generated by T . The reader should notice
that this result contains Theorem 3.3.

2. Let A be a unital C∗-algebra and T ∈ MN ⊗ A. Assume that A coincides with
the norm closure of the set of all algebraic combinations of I and matrix elements of T .
Then one can immediately verify that the implication (4. 1) holds. In other words, A
is generated by T in the sense of Definition 4.1.

Conversely if A is a C∗-algebra generated by T ηMN ⊗A such that ‖T‖ <∞ then A
is unital, T ∈MN ⊗A and A coincides with the norm closure of the set of all algebraic
combinations of I and matrix elements of T . The proof uses Proposition 4.5 formulated
at the end of this Section. Details are left to the reader.

The above statements remain valid if MN is replaced by any finite-dimensional C∗-
algebra C: any such algebra is a subalgebra of MN . The finite-dimensionality of C is
essential, more generally C must be of ‘discret type’ (cf Example 8).

3. Let Λ be a locally compact space, C be a C∗-algebra and T : Λ → Cη (where Cη

is endowed with the topology of almost uniform convergence) be a continuous mapping.
Then (cf (2. 6)) T η C ⊗ C∞(Λ). We claim that C∞(Λ) is generated by T if and only
if T (Λ) is a closed subset of Cη and T : Λ → T (Λ) is a homeomorphism (cf Theorem
6.2).

4. Let A1 be the algebra of all continuous functions vanishing at infinity on the
quantum E(2)-group, v, n be distinguished elements affiliated with A1 (cf Example 5
in the previous Section) and C = M2. Then
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T =

(
v , n
0 , v∗

)

is the fundamental representation of Eµ(2). Using [23, Theorem 6.1] and [20, Example

1, page 412] one can easily show that T =

(
0 , 1
0 , 0

)
⊗ n +

(
v , 0
0 , v∗

)
is affiliated

with C ⊗ A1. Clearly T separates representations of A1. Moreover, by elementary
computations

(I + T ∗T )−1 =




2I + µ−2n∗n

4I + µ−2n∗n
, −v∗

n

4I + n∗n

−
n∗

4I + n∗n
v ,

2I

4I + n∗n



.

The right lower corner (diagonal) element of this matrix belongs to A1 (cf the
definition of A1 = A given in [21, Section 1]). Taking into account Example 1 we
conclude that A1 is generated by T .

5. Let A2 be the algebra of all continuous functions vanishing at infinity on the

Pontryagin dual ̂Eµ(2) of Eµ(2), N , b be distinguished elements affiliated with A2 (cf
Example 6 in the previous Section) and C = M2. Then

T =

(
µN/2 , 0

b , µ−N/2

)

is the fundamental representation of ̂Eµ(2). We shall prove that

T η C ⊗ A2 (4. 8)

and that
A2 is generated by T. (4. 9)

For any real numbers x > 0 and y ≥ 0, we denote by z11(x, y), z12(x, y), z21(x, y) and

z22(x, y) the matrix elements of the z-transform of the matrix

(
x , 0
y , (µx)−1

)
. Clearly

zij(x, y) (i, j = 1, 2) are bounded continuous functions of (x, y). The z-transform of a
diagonal matrix is diagonal. Therefore

z12(x, 0) = z21(x, 0) = 0 (4. 10)

for any y ∈ ]0,∞[. With the notation introduced above

zT =




z11(µ
N

2 , |b|) , (Phase b)∗z12(µ
N

2
−1, |b|)

(Phase b)z21(µ
N

2 , |b|) , z22(µ
N

2
−1, |b|)


 . (4. 11)
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The reader should notice that the diagonal matrix elements of zT belong to M(A2).
Due to (4. 10) the same holds for off diagonal elements (cf the definition of A2 = B
given in [21, Section 3]). Therefore zT ∈M(C ⊗A2). Let y = (I + T ∗T )−1 = I − z∗T zT .
By simple (but rather boring) computations

y =




I + µ−N−2I

I + µ−2I + µN + µ−N−2I + b∗b
, b∗

−µ−N

2

I + µ−2I + µN−2I + µ−N + b∗b

b
−µ−N

2
−I

I + µ−2I + µN + µ−N−2I + b∗b
,

I + µN−2I + b∗b

I + µ−2I + µN−2I + µ−N + b∗b




(4. 12)

and

y




µ
N

2 , 0

b
µ−1

I + µN + b∗b
, I


 = m, (4. 13)

where m is an element of M(C ⊗ A2) given by

m =




µ
N

2

I + µN + b∗b
, −b∗

µ−N

2

I + µ−2I + µN−2I + µ−N + b∗b

0 ,
I + µN−2I + b∗b

I + µ−2I + µN−2I + µ−N + b∗b



.

The matrix m is triangular and its diagonal elements are strictly positive on SpA2.
Therefore m(C ⊗ A2) is dense in C ⊗ A2 and by virtue of (4. 13), y(C ⊗ A2) is dense
in C ⊗ A2. It shows that y > 0, z∗T zT < I on Sp (C ⊗ A2) and (4. 8) follows.

To prove (4. 9) it is sufficient to notice that the product of diagonal elements of (4.
12) belongs to A2 (cf Example 1).

6. Let Ad be the algebra of all continuous functions vanishing at infinity on the

Pontryagin dual ̂SµU(2) of SµU(2), a, n be distinguished elements affiliated with Ad (cf
Example 9 in the previous Section) and C = M2. Then

T =

(
a , n
0 , a−1

)

is the fundamental representation of ̂SµU(2). Remembering that Ad is a direct sum
of unital C∗ algebras one can easily show that T η C ⊗ Ad. Clearly T separates the
representations of Ad. By simple (but rather boring) computations we get

(I + T ∗T )−1 =




I −
µ2I + a2

M
, −

an

M

−
n∗a

M
,
I + µ2a2

M


 , (4. 14)
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where M = (1 + µ2)I + µ2a2 + a−2 + n∗n is a central element affiliated with Ad (one
can easily verify that M commutes with all elements of Ad). Denoting by p, q, q∗ and s
the matrix elements of (4. 14) we obtain

p− qs−1q∗ = (I + a2)
−1
.

Therefore I+µ2a2

M
, (I + a2)

−1
∈ RC and I+µ2a2

M(I+a2)
∈ RC (cf Remark 4.3 points 1,5,6 and

7). On the other hand I+µ2a2

M(I+a2)
≤ M−1 and M−1 ∈ Ad. Therefore I+µ2a2

M(I+a2)
∈ Ad and

RC ∩ Ad is not empty. Combining Theorem 4.2 and Remark 4.4 we see that Ad is
generated by T .

7. Let A be the algebra of all continuous functions vanishing at infinity on the
quantum Lorentz group G introduced in [11] and

T =

(
α , β
γ , δ

)

be the fundamental two-dimensional (spinor) representation of G. According to [11,
Theorem 5.4.4] T separates representations of A. We know (cf Example 10 in the
previous Section) that A = Ac ⊗ Ad. Since Ac is unital, Ad is in a natural way a
subalgebra of A. By virtue of the quantum Iwasawa decomposition, formula (4. 14)
holds in the present case and repeating the arguments presented in the previous Example
we see that A is generated by T .

8. Let G be a commutative, locally compact group, Ĝ be the Pontryagin dual of
G and T (ĝ, g) be the value of the character ĝ ∈ Ĝ at the point g ∈ G. Then T is a
unitary element affiliated with C ⊗ A, where C = C∞(Ĝ) and A = C∞(G). We call it
the universal bicharacter associated with the pair (Ĝ, G).

We shall use Theorem 4.2. It is known that characters separate points of G. There-
fore T separates representations of A and assumption I holds. To verify assumption
II we set F = C, r = T and ω = ch, where h is the Haar measure on Ĝ and c is a
non-negative element of C such that h(c) <∞. Inserting these data to condition 1 we
get an obvious tautology (due to the unitarity of r = T , [(id⊗π)r](C⊗B) = C⊗B for
any B such that (id ⊗ π)r ∈M(C ⊗B); the latter is equivalent to (id⊗ π)T η C ⊗B).
The left hand side of (4. 3) is the Fourier transform of fc ∈ L1(Ĝ). By the famous
Lebesgue-Riemann lemma, the Fourier transform of any L1-function is continuous and
vanishes at infinity. Therefore the relation (4. 3) is fulfilled. This way we showed that
A is generated by T .

This example shows that a non-unital C∗-algebra A may be generated by a bounded
element T η C⊗A. In such a case dimC = ∞ (more precisely C must be of ‘continuous
type’).

The group G may be replaced by any topological (locally compact) quantum group
for which the Lebesgue-Riemann lemma holds. The class of these groups includes
all locally compact topological groups, the compact quantum groups (in this case A
is unital and (4. 3) is obviously fulfilled), duals of compact quantum groups (cf the
theory of Fourier transform presented in [11, Section 2]), quantum E(2) group and its
Pontryagin dual (cf next point).
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9. With the notation used in Examples 4 and 5 (and Examples 5, 6 and 7 of Sec-

tion 3), the universal bicharacter associated with the pair (Ê(2), E(2)) is given by the
formula (cf [21, formula (25)]):

T = Fµ(µN/2b⊗ vn)(I ⊗ v)N⊗I . (4. 15)

Let ω1 and ω2 be states on A1 and A2 respectively, introduced by the formulae:

ω1(v
kf(n)) =





0 for k 6= 0,

1

2π

∫ 2π

0
f(eiθ)dθ for k = 0,

ω2((Phase b)kg(N, |b|)) =





0 for k 6= 0,

g(0, 1) for k = 0.

Then for any a1 ∈ A1 and a2 ∈ A2:

(ω2 ⊗ id){T (a2 ⊗ I)} ∈ A1

(id ⊗ ω1){T (I ⊗ a1)} ∈ A2

In other words the Riemann-Lebesgue lemma holds for E(2) and Ê(2).

10. Let C and A be C∗-algebras, T be an invertible element of M(C ⊗ A), H be a
Hilbert space and ωφ(x) = (φ|xφ) for any φ ∈ H and x ∈ B(H). Then ωφ is a positive
linear functional on any C∗-algebra belonging to C∗(H). Assume that C ∈ C∗(H),
(ωφ ⊗ id)T ∈ A for any φ ∈ H and that A is the smallest C∗-algebra containing
(ωφ ⊗ id)T for all φ ∈ H. Inserting in Theorem 4.2 F = C, r = T and ω = ωφ (where φ
is a fixed non-zero vector of H) one can easily verify the assumptions I and II. Therefore
A is generated by T .

In particular using the terminology introduced in [4], if V is a regular multiplicative
unitary operator, then (cf [4, Proposition 3.6]) V ∈M(Ŝ ⊗ S) (where S and Ŝ are the
reduced algebra and dual reduced algebra of V ) and S is generated by V .

There exists the close relation with the examples considered in Point 8. Universal
bicharacters become multiplicative unitary operators, if the function algebras of G and
Ĝ are represented on the same Hilbert space in the suitable way (cf [12, Section 1b]).
In most cases we obtain regular multiplicative unitary operators. It is known however
that (4. 15) leads to a non regular multiplicative unitary operator [1, 2].

We end this Section with the following (free of Hilbert space) version of Definition
4.1:

Proposition 4.5 Let A,C,D,D′ be C∗-algebras, T η C⊗A, S ′ η C⊗D′, π∈Mor(A,D)
and j ∈ Mor(D′, D). Assume that A is generated by T , j is an injection and

(id ⊗ π)T = (id ⊗ j)S ′. (4. 16)

Then there exists π′ ∈ Mor(A,D′) such that

π = jπ′. (4. 17)
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Proof: We may assume that D ∈ C∗(H). Then j(D′) ∈ C∗(H), π ∈ Rep (A,H) and

(id ⊗ π)T = (id ⊗ j)S ′ η C ⊗ j(D′).

By virtue of Definition 4.1, π ∈ Mor(A, j(D′)). We assumed that j is an injection.
Let j−1 ∈ Mor(j(D′), D′) be the inverse map. Then π′ = j−1π ∈ Mor(A,D′) and (4.
17) follows.

Q.E.D.

We shall use the above Proposition in the following context:
Let D = C∞(N)⊗CB(H) and D′ = C(Λ)⊗CB(H), where N is the set of natural

numbers (with discrete topology), Λ = N ∪ {∞} is the one point compactification of
N and H is a separable, infinite dimensional Hilbert space. Denote by j ∈ Mor(D′, D)
the restriction map. Clearly j is injective (N is dense in Λ). Let (π(n))n=1.2,... be a
sequence of elements of Rep (A,H). According to (2. 8) the sequence (π(n))n=1.2,... is
determined by a morphism π ∈ Mor(A,D). If the sequence ((id ⊗ π(n))T )n=1.2,... is
converging, then setting

S ′(n) =

{
(id ⊗ π(n))T for n = 1, 2, . . .

lim(id ⊗ π(n))T for n = ∞

and using (2. 6) we introduce S ′ η C⊗D′ satisfying formula (4. 16). On the other hand
formula (4. 17) means that the sequence (π(n))n=1.2,... is converging. This way we get

Corollary 4.6 Let A, C be C∗-algebras, T η C ⊗ A, H be a Hilbert space and π(n) ∈
Rep (A,H) for n = 1, 2, . . .. Assume that A is generated by T . Then

(
Sequence ((id ⊗ π(n))T )n=1,2,...

is converging in (C ⊗ CB(H))η

)
=⇒

(
Sequence (π(n))n=1,2,... is
converging in Rep (A,H)

)
.

5 Topological W∗-categories

This Section is devoted to the duality in the C∗-algebra theory in the spirit of [13, 9, 17].
An object dual to a C∗-algebra A is by definition the W∗-category Rep (A,H). Then
elements affiliated with A may be identified with continuous operator functions on the
dual object.

The notion of a topological W∗-category is introduced in [17]. We refer to this paper
for the more complete outlook of the theory. In this Section we present a simplified
approach. Firstly, we fix an infinite-dimensional separable Hilbert space H; all consid-
ered objects will be related to H. In particular working with subobjects (direct sums of
objects respectively) we have to use unitary operators acting from H onto a subspace
of H (a direct sum of a number of copies of H respectively). Secondly, isometries will
be the only morphisms that we shall consider. Thirdly we shall deal exclusively with
topological W∗-categories of the form Rep (A,H) and (C ⊗ CB(H))η where A and C
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are C∗-algebras. Therefore we need not to give general definitions; all the notions in-
troduced in this Section will be directly related to Rep (A,H) or (C ⊗ CB(H))η. On
the other hand this Section is selfconsistent, even more, it contains the proofs of some
theorems anounced in [17] ([17] contains only definitions and statements, no proof is
included).

We start with a short discussion of the adjoint action of isometries. Let V be an
isometry acting on H: V ∈ B(H) and V ∗V = I. Then V V ∗ is an orthogonal projection
and

DV = {x ∈ CB(H) : xV V ∗ = V V ∗x}

is a C∗-algebra: DV ∈ C∗(H). For any x ∈ DV we set

adV (x) = V ∗xV

Then adV ∈ Rep (DV , H).

Let C be a C∗-algebra and S η C ⊗ CB(H). We say that S is compatible with V if
S η C ⊗DV . In such a case

(id ⊗ adV )S η C ⊗ CB(H).

To simplify the notation we shall write adV S instead of (id⊗ adV )S (the trivial action
on C is understood by itself). The reader should notice that adV S makes sense only
if S is compatible with V . However if V is unitary, then DV = CB(H) and any S is
compatible with V .

Let V be an isometry acting on H and UV = I − 2V V ∗. Then UV is unitary and
for any S η C ⊗ CB(H) we have

(
S is compa-
tible with V

)
⇐⇒ (adUV

S = S) . (5. 1)

Let Λ be a denumerable set,
V :

∑

λ∈Λ

⊕
H −→ H (5. 2)

be a unitary operator (V acts from the direct sum of a number of copies of H onto H)
and Vλ be the restriction of V to the λth-component of the direct sum. Then (Vλ)λ∈Λ

is a family of isometries acting on H such that

∑

λ∈Λ

VλVλ
∗ = I.

One can easily verify that for any family (Sλ)λ∈Λ of elements affiliated with C⊗CB(H)
there exists unique S η C⊗CB(H) compatible with all Vλ such that adVλ

S = Sλ for all
λ ∈ Λ. We say that S is a direct sum of the family (Sλ)λ∈Λ:

S =
∑

λ∈Λ

⊕
Sλ.
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Clearly the above decomposition implicitely refers to the unitary (5. 2).

Let R be a subset of (C ⊗CB(H))η. We say that R is complete if it is closed under
the adjoint action of isometries and the direct sums. More precisely, R is complete if

(
Sλ ∈ R for
all λ ∈ Λ

)
=⇒


∑

λ∈Λ

⊕
Sλ ∈ R




and 


S is an element of R
compatible with an isometry

V acting on H


 =⇒

(

adV S ∈ R

)

In particular R is invariant under unitary transformations acting on H.

Let C and C ′ be C∗-algebras, R and R′ be complete subsets of (C ⊗ CB(H))η and
(C ′ ⊗ CB(H))η respectively and F : R → R′ be a mapping. We say that F commutes
with the adjoint action of isometries if for any isometry V ∈ B(H) and any S ∈ R
compatible with V , F (S) is compatible with V and

F (adV S) = adV F (S).

Then F maps direct sums into direct sums.
The case C ′ = C is particularly interesting. For any complete R ⊂ (C ⊗ CB(H))η,

the set of all mappings R → CB(H)η commuting with the adjoint action of isometries
will be denoted by F(R). Elements of F(R) are called operator functions. This is very
important concept. It appeared in [13] under the name admissible operator fields and
in [8] under the name decomposable functions. The name operator functions was used
in [15, 9, 17]

An operator function F ∈ F(R) is called bounded if F (S) ∈ B(H) for any S ∈ R.
If F is bounded, then (cf [9])

‖F‖ = sup
S∈R

‖F (S)‖ <∞. (5. 3)

The set of all bounded operator functions onR will be denoted by Fbounded(R). Fbounded(R)
carries a natural ∗-algebra structure: for any F, F ′ ∈ Fbounded(R), t ∈ C and S ∈ R we
set:

(tF )(S) = tF (S)
(F + F ′)(S) = F (S) + F ′(S)

(FF ′)(S) = F (S)F ′(S)
F ∗(S) = F (S)∗

Using the von Neumann double commutant theorem one can easily show that
Fbounded(R) endowed with the algebraic operations introduced above and with the norm
(5. 3) is a W∗-algebra.

So much about (C ⊗CB(H))η. We shall relate the same concepts with Rep (A,H).
Let A be a C∗-algebra, π ∈ Rep (A,H) and V be an isometry acting on H. We say
that π is compatible with V if π ∈ Mor(A,DV ). In such a case

adV π ∈ Rep (A,H).
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The reader should notice that adV π makes sense only if π is compatible with V . However
if V is unitary, then DV = CB(H) and any π is compatible with V . We also have

(
π is compa-
tible with V

)
⇐⇒ (adUV

π = π) . (5. 4)

Now repeating the definitions given above one can easily introduce the notion of
direct sum of elements of Rep (A,H), the notion of complete subset of Rep (A,H), the
notion of mapping commuting with the adjoint action of isometries (clearly one may also
consider mappings acting between Rep (A,H) and complete subsets of
(C ⊗ CB(H))η) and the notion of (bounded) operator function. In particular
F(Rep (A,H)) will denote the set of all operator functions on Rep (A,H) and
Fbounded(Rep (A,H)) is the subset of bounded functions.

Let A, B and C be C∗-algebras, T η C ⊗ A and ϕ ∈ Mor(A,B). One can easily
verify that the mappings

Rep (A,H) ∋ π 7−→ (id ⊗ π)T ∈ (C ⊗ CB(H))η

Rep (B,H) ∋ π 7−→ πϕ ∈ Rep (A,H)

commute with the adjoint action of isometries.
We shall use the following very nontrivial result:

Theorem 5.1 Let A be a separable C∗-algebra and R be a closed complete subset of
Rep (A,H). Assume that R contains a faithful representation. Then R = Rep (A,H).

Proof: Let ρ ∈ R be a faithful representation and ρ∞ be a direct sum of countable
number of copies of ρ. Clearly ρ∞ ∈ R.

For any π ∈ Rep (A,H), both representations ρ∞ and ρ∞ ⊕ π are infinite in the
following sense: zero is the only element of A that is represented by a compact operator.
Using the Voiculescu theorem ([14, Theorem 1.5]) we see3 that there exists a sequence
of unitaries (Un)n=1,2,... such that

ρ∞ ⊕ π = lim
n→∞

adUn
(ρ∞).

Therefore ρ∞ ⊕ π ∈ R and consequently π ∈ R.
Q.E.D.

The reader easily obtain

Corollary 5.2 If A is a separable C∗-algebra and R is a closed complete subset of
Rep (A,H), then R = Rep (A/J,H), where J =

⋂

π∈R

kerπ.

3if A is not unital then we apply the Voiculescu theorem to the one-dimensional unital extension of
A
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Let A be a C∗-algebra, A′′ be the von Neumann enveloping algebra of A and x ∈ A′′.
For any π ∈ Rep (A,H) we set

Fx(π) = π′′(x), (5. 5)

where π′′ is the normal extension of π. Then Fx is a bounded operator function defined
on Rep (A,H): Fx ∈ Fbounded(Rep (A,H)). Using the von Neumann double commutant
theorem one can easily show that any bounded operator function is of this form. In
short

A′′ = Fbounded(Rep (A,H)). (5. 6)

The reader should notice that with this identification the W∗-algebra structures of A′′

and Fbounded(Rep (A,H)) coincide.

For any C∗-algebra A we set

QM(A) = {x ∈ A′′ : a1xa2 ∈ A for any a1, a2 ∈ A}

LM(A) = {x ∈ A′′ : xa ∈ A for any a ∈ A}

RM(A) = {x ∈ A′′ : ax ∈ A for any a ∈ A}

Elements of QM(A) (LM(A) and RM(A) respectively) are called quasimultipliers
(left and right multipliers respectively). Clearly QM(A) is a ∗-invariant vector subspace
of A′′, LM(A) and RM(A) are subalgebras, LM(A)∗ = RM(A), LM(A) and RM(A)
are subsets of QM(A) and LM(A) ∩RM(A) = M(A). We shall use the following

Proposition 5.3 Let A be a C∗-algebra. Then

LM(A) = {x ∈ QM(A) : x∗x ∈ QM(A)}

Proof:

We have to show that
LM(A) ⊃ {x ∈ QM(A) : x∗x ∈ QM(A)}, (5. 7)

the converse inclusion is trivial.
Let c ∈ A, 0 < c ≤ I on SpA and en = c

1

n (n = 1, 2, . . .). Then (en)n=1,2,... and
(en

2)n=1,2,... are approximate units for A and both sequences are increasing. We denote
by S the set of positive functionals on A of norm ≤ 1. Clearly S is a compact set (with
respect to the weak topology).

Let x be an element of QM(A) such that x∗x ∈ QM(A). Then for any a ∈ A the
products a∗x∗xa, enxa, a

∗x∗enxa and a∗x∗en
2xa belong to A. We shall prove that

norm - lim
n−→∞

a∗x∗enxa = a∗x∗xa. (5. 8)

By virtue of the Dini theorem ([5, Theorem 7.2.2]) it is sufficient to show that for any
ω ∈ S we have

lim
n→∞

ω(a∗x∗enxa) = ω(a∗x∗xa). (5. 9)
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By the GNS construction one can find π ∈ Rep (A,H) and Ω ∈ H such that
ω(a′) = (Ω|π(a′)Ω) for any a′ ∈ A. One can easily show that π(en) converges weakly to
I. Therefore

ω(a∗x∗enxa) = (Ω|π(a∗x∗enxa)Ω)
= (π′′(xa)Ω|π(en)π′′(xa)Ω) −→ (π′′(xa)Ω|π′′(xa)Ω)

= (Ω|π(a∗x∗xa)Ω) = ω(a∗x∗xa)

and (5. 9) follows. The proof of (5. 8) is complete. Inserting in (5. 8) en
2 instead of en

we get
norm - lim a∗x∗en

2xa = a∗x∗xa. (5. 10)

Now, using (5. 8) and (5. 10) one can easily verify that

norm - lim (enxa− xa)∗(enxa− xa) = 0.

Therefore
norm - lim enxa = xa.

and xa ∈ A. This relation holds for any a ∈ A. Therefore x ∈ LM(A) and (5. 7)
follows.

Q.E.D.

Operator functions related (via formula (5. 5)) to elements of different classes of
multipliers have different continuity property (cf [17, Theorem 7]):

Theorem 5.4 Let A be a C∗-algebra and R = Rep (A,H). Then using the identifica-
tion (5. 6) we have:

QM(A) =




F ∈ Fbounded(R) :

For any φ, φ′ ∈ H, the map
R ∋ π 7−→ (φ|F (π)φ′) ∈ C

is continuous




, (5. 11)

LM(A) =




F ∈ Fbounded(R) :

For any φ ∈ H, the map
R ∋ π 7−→ F (π)φ ∈ H

is continuous




, (5. 12)

RM(A) =




F ∈ Fbounded(R) :

For any φ ∈ H, the map
R ∋ π 7−→ F (π)∗φ ∈ H

is continuous




, (5. 13)

M(A) = Cbounded(R) =

{
F ∈ Fbounded(R) :

F : R −→ B(H)
is a continuous map

}
, (5. 14)

Aη = C(R) =

{
F ∈ F(R) :

F : R −→ CB(H)η

is a continuous map

}
, (5. 15)

where B(H) = M(CB(H)) in (5. 14) is endowed with the strict topology (the one of
∗-strong convergence in B(H)) and CB(H)η in (5. 15) is endowed with the topology of
almost uniform convergence.
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Proof: One can easily show that for any B(H)-valued function F on any topological
space R we have the equivalence:

(
F is strongly
continuous

)
⇐⇒

(
F and F ∗F are

weakly continuous

)

Using this simple observation and Proposition 5.3 we see that (5. 11) implies (5. 12).
We know that RM(A) = LM(A)∗. Therefore (5. 13) is equivalent to (5. 12). (5.
14) follows immediately from (5. 12) and (5. 13). Finally using the obvious formula
zF (π) = (zF )(π) we see that (5. 14) implies (5. 15). Summing up, it is sufficient to
prove (5. 11).

Let x ∈ QM(A). Then for any a belonging to A, a∗xa ∈ A. Recalling the defi-
nition of the topology of Rep (A,H) we see that for any φ, φ′ ∈ H, (φ|π(a∗xa)φ′) =
(π(a)φ|π′′(x)π(a)φ′) depends continuously on π ∈ Rep (A,H). We know that the uni-
form limit of a sequence of continuous functions is a continuous function. Setting
a = en (where (en)n=1,2,... is an approximate unit) and letting n → ∞ we see that
(φ|Fxφ

′) = (φ|π′′(x)φ′) is continuous with respect to π. It shows that the left hand side
of (5. 11) is contained in the right one. To prove the converse inclusion we shall use
the following

Proposition 5.5 Let A be a C∗-algebra, (en)n=1,2,... be an approximate unit for a C∗-
algebra A and x ∈ A′′. Assume that the operator function Fx ( related to x via formula
(5. 5)) is weakly continuous and that

‖enx− x‖ −→ 0
‖xen − x‖ −→ 0

}
(5. 16)

for n→ ∞. Then x ∈ A.

Let x ∈ A′′. Assume that Fx is weakly continuous. Then for any a1, a2 ∈ A the
product x′ = a1xa2 satisfies the assumption of Proposition 5.5. Therefore a1xa2 ∈ A
and x ∈ QM(A). This way we showed that the left hand side of (5. 11) contains the
right one.

Q.E.D.

Proof of Proposition 5.5: We may assume that A ∈ C∗(H). Let B be the smallest
C∗-algebra containing A and x. Due to (5. 16), (en)n=1,2,... is an approximate unit for
B. Therefore the embedding A →֒ B belongs to Mor(A,B) and for any π ∈ Rep (B,H)
the restriction π|A ∈ Rep (A,H). We claim that

π(x) = Fx(π|A). (5. 17)

Indeed one can easily verify that the set of all π ∈ Rep (B,H) satisfying the above
relation is complete and (we assumed that Fx is weakly continuous) closed. Moreover
this set contains iB (the right hand side of (5. 17) equals to (π|A)′′(x)). Using Theorem
5.1 we see that this set coincides with Rep (B,H). In other words (5. 17) holds for all
π ∈ Rep (B,H).

Now we repeat the argument used in the proof of Proposition 2.2. Assume for the
moment that x∈/ A. Then there exists a continuous linear functional ω on B such that

34



ω|A = 0 and ω(x) 6= 0. By the GNS construction one can find π ∈ Rep (B,H) and a
trace-class operator ρ ∈ B(H) such that

ω(b) = Tr ρπ(b)

for all b ∈ B. In particular Tr ρπ(a) = 0 for all a ∈ A and Tr ρπ(x) 6= 0. It shows
that π(x) does not belong to the weak closure of π(A). Using the von Neumann double
commutant theorem one can find unitary U ∈ π(A)′ such that [U, π(x)] 6= 0. Let
π′ = adUπ. Then π′|A = π|A and π′(x) 6= π(x) and we get a contradiction with (5. 17).
It shows that x ∈ A.

Q.E.D.

Theorem 5.6 Let A and B be C∗-algebras and

f : Rep (B,H) −→ Rep (A,H) (5. 18)

be a continuous mapping commuting with the adjoint action of isometries. Then there
exists unique ϕ ∈ Mor(A,B) such that

f(π) = πϕ

for any π ∈ Rep (B,H).

Proof: Let a ∈ A. Then the mapping

Rep (B,H) ∋ π 7−→ (f(π))(a) ∈ B(H)

is a bounded continuous operator function defined on Rep (B,H). By virtue of (5. 14),
there exists unique element ϕ(a) ∈M(B) such that

(f(π))(a) = π(ϕ(a))

for all π ∈ Rep (B,H). Clearly the mapping ϕ : A → M(B), introduced in this way
is a ∗-algebra homomorphism. We have to show that ϕ ∈ Mor(A,B). Assume that
this is not the case. Then the closure of ϕ(A)B is a proper right ideal in B and (cf [6,
Theorem 2.9.5]) there exists a pure state ω on B such that

ω(ϕ(a)) = 0

for all a ∈ A. By the GNS-construction there exists π ∈ Rep (B,H) and Ω ∈ H such
that

ω(b) = (Ω|π(b)Ω)

for all b ∈ B. Combining the last three formulae we see that (Ω|(f(π))(a)Ω) = 0
for all a ∈ A. On the other hand, since f(π) is a nondegenerate representation of
A, (f(π))(en) (where (en)n=1,2,... is an approximate unit of A) tends strongly to I and
(Ω|(f(π))(en)Ω) > 0 for sufficiently large n. The contradiction that we have got shows
that ϕ ∈ Mor(A,B).

Q.E.D.
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Theorem 5.6 shows that any C∗-algebra A is determined by Rep (A,H) equipped
with the topology and the adjoint action of isometries. The same conclusion follows
from (5. 14) combined with Proposition 1.1. Another way of reconstructing A from
Rep (A,H) is proposed in [17].

Let R be a complete closed subset of Rep (A,H) or (C ⊗ CB(H))η and Cbounded(R)
be the set of all continuous bounded operator functions defined on R. Then Cbounded(R)
is a (non-separable) unital C∗-algebra. For any S ∈ R and any F ∈ Cbounded(R) we set

πS(F ) = F (S).

Clearly πS is a representation of Cbounded(R).
Let ρ be a representation of Cbounded(R) acting on a (not necessarily separable)

Hilbert space K. We say that ρ is singular if it is disjoint with πS for all S ∈ R. Let

C∞(R) =

{
F ∈ Cbounded(R) :

ρ(F ) = 0 for any sin-
gular representation ρ

}
.

Clearly C∞(R) is a closed ideal in Cbounded(R). In general C∞(R) may be very small.
However if R is ‘locally compact’ [17] then representations πS restricted to C∞(R) are
non-degenerate for all S ∈ R and the mapping

R ∋ S −→ πS|C∞(R) ∈ Rep (C∞(R))

is a homeomorphism.

With this notation, for any separable C∗-algebra A, Rep (A,H) is ‘locally compact’
and

A = C∞(Rep (A,H)). (5. 19)

Indeed one can easily show that a representation ρ of Cbounded(Rep (A,H)) = M(A)
is singular if and only if ker ρ ⊃ A. On the other hand there exists a representation
ρ of M(A) such that ker ρ = A (it comes from a faithful representation of the Calkin

algebra M(A)/A) and (5. 19) follows.

6 Topological characterization

This Section contains the main result of our paper. We shall use the following simple
lemma:

Lemma 6.1 Let X and Y be metric spaces and f : X −→ Y be a continuous map.
Assume that for any sequence (xn)n=1,2,... of elements of X, we have:

(
Sequence (f(xn))n=1,2,...

is converging in Y

)
=⇒

(
Sequence (xn)n=1,2,...

is converging in X

)
. (6. 1)

Then f(X) is a closed subset of Y and f is a homeomorphism of X onto f(X).
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Proof:

At first we notice that f is an injection. Indeed if f(x) = f(x′) for some x, x′ ∈ X,
then the sequence (f(x), f(x′), f(x), f(x′), f(x), . . .) is converging in Y . By virtue of
(6. 1), the sequence (x, x′, x, x′, x, . . .) is converging in X and x = x′. The closedness
of f(X) and the continuity of the inverse follows immediately from (6. 1).

Q.E.D.

Theorem 6.2 Let A, C be C∗-algebras, T η C ⊗ A, H be a infinite-dimensional sepa-
rable Hilbert space and

R = {(id ⊗ π)T : π ∈ Rep (A,H)} . (6. 2)

Then the following two statements are equivalent:
I. A is generated by T .

II. R is a closed subset of (C ⊗ CB(H))η and the mapping

Rep (A,H) ∋ π 7−→ (id ⊗ π)T ∈ R (6. 3)

is a homeomorphism (bijective, continuous with the continuous inverse).

Proof:

Assume that the statement II holds. The mapping (6. 3) commutes with the adjoint
action of isometries. In particular it maps direct sums into direct sums and consequently
any direct sum of elements of R belongs to R. If S = (id ⊗ π)T is an element of R
compatible with an isometry V , then (cf (5. 1)) adUV

S = S and (id ⊗ adUV
π)T =

(id ⊗ π)T . Using the injectivity of (6. 3) we see that adUV
π = π. By virtue of (5. 4),

π is compatible with V , adV π ∈ Rep (A,H) and adV S = (id ⊗ adV π)T ∈ R. This way
we showed that R is a complete subset of (C ⊗ CB(H))η.

Now, let π ∈ Rep (A,H) and B ∈ C∗(H) such that S = (id ⊗ π)T η C ⊗ B. We
claim that the image of the mapping

Rep (B,H) ∋ ρ 7−→ (id ⊗ ρ)S η C ⊗ CB(H) (6. 4)

is contained in R. Indeed, remembering that R is complete and closed one can easily
verify that the set {ρ ∈ Rep (B,H) : (id ⊗ ρ)S ∈ R} is also complete and closed.
Moreover this set contains iB. Using Theorem 5.1 we see that this set coincides with
Rep (B,H).

Composing (6. 4) with the inverse of (6. 3) we obtain a mapping f : Rep (B,H) →
Rep (A,H) satisfying all the assumptions of Theorem 5.6. Therefore there exists unique
ϕ ∈ Mor(A,B) such that

f(ρ) = ρϕ

for any ρ ∈ Rep (B,H). Clearly (6. 3) - image of π and (6. 4) - image of iB coincide
(both are equal to S). Therefore f(iB) = π and using the last formula we get π = ϕ and
finally π ∈ Mor(A,B). Taking into account Definition 4.1 we see that A is generated
by T . This way we showed that Statement I follows from Statement II.

We shall prove the converse implication. Assume that A is generated by T . We
have to show that R is closed and that (6. 3) is a homeomorphism. The continuity of
(6. 3) follows immediately from Proposition 2.3. Combining Lemma 6.1 with Corollary
4.6 we get the desired statement

Q.E.D.
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7 Presentations of C∗-algebras

Let C be a C∗-algebra and R be a complete closed subset of (C ⊗ CB(H))η. We say
that R is manageable if there exists a separable C∗-algebra A and T η C ⊗A such that
A is generated by T and R coincides with the set (6. 2). If this is the case, then R is
called a presentation of the pair (A, T ).

Let us notice that the pair (A, T ) is determined uniquely (up to an isomorphism) by
R. Indeed if A and A′ are C∗-algebras generated by elements T η C⊗A and T ′ η C⊗A′

respectively and

{(id ⊗ π)T : π ∈ Rep (A,H)} = {(id ⊗ π′)T ′ : π′ ∈ Rep (A′, H)},

then according to Theorem 6.2, the relation

(id ⊗ π)T = (id ⊗ π′)T ′ (7. 1)

defines 1 – 1 correspondence between elements π ∈ Rep (A,H) and π′ ∈ Rep (A′, H).
This correspondence is a homeomorphism and commutes with the adjoint action of
isometries. By virtue of Theorem 5.6 there exists an isomorphism ϕ ∈ Mor(A,A′) such
that (7. 1) is equivalent to π = π′ϕ. Therefore (id ⊗ π′ϕ)T = (id ⊗ π′)T ′ and choosing
π′ to be faithful we see that (id ⊗ ϕ)T = T ′.

Let us also notice that there exists a canonical choice of A: A = C∞(R) (cf Theorem
6.2 and formula (5. 19)).

The examples presented below should make clear the relations between the concept
of presentation known from the abstract algebra theory and the one used in this Section.
In the abstract algebra theory a presentation is a list of generators and relations imposed
on the generators. In our approach we use a C∗-algebra C to organize the generators
into a single object T η C ⊗ A. The relations describe the desired properties of T . At
this moment the algebra A is not fixed; the relations should be significant for any C∗-
algebra A. In particular one may consider the set R of all T η C ⊗ CB(H) satisfying
the relations. The set R is a presentation in the sense of this Section.

Examples:

1. Let

R =





(
α , β
γ , δ

)
:

α, β, γ, δ are strongly commuting
normal operators acting on H such that

αδ − βγ = I




.

Then R is a manageable subset of (M2⊗CB(H))η and C∞(R) coincides with the algebra
of all continuous functions vanishing at infinity on the classical SL(2,C) (cf Example
3 of Section 4).

2. Let G be a connected, simply connected Lie group, cikl (i, k, l = 1.2. . . . , N :
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N = dimG) be the structure constants of the Lie algebra of G and

R =





(T1, T2, . . . , TN) :

T1, T2, . . . , TN are skew-adjoint
operators acting on H such that

on a dense invariant domain

[Tk, Tl] =
∑

i

ciklTi

and
∑

i

Ti
2 is essentially

selfadjoint on the same domain





.

Then R is a manageable subset of (CN ⊗ CB(H))η and C∞(R) coincides with C∗(G)
(cf Example 3 of Section 3).

3. Let µ be a real number in the interval ]0, 1[ and

R =




u :

u is a unitary matrix of the form(
α , −µγ∗

γ , α∗

)
, where α, γ ∈ B(H)




.

Then R is a manageable subset of (M2⊗CB(H))η and C∞(R) coincides with the algebra
Ac of all continuous functions on the quantum SU(2) (cf Example 8 of Section 3 and
Example 2 of Section 4).

4. Let

R =





(v, n) :
v, n are operators acting on H,
n is normal, Sp (|n|) ⊂ µZ ∪ {0},
v is unitary and vnv∗ = µn




.

Then R is a manageable subset of (C2⊗CB(H))η and C∞(R) coincides with the algebra
A1 of all continuous functions vanishing at infinity on the quantum E(2) (cf Example
5 of Section 3).

5. Let

R =





(N, b) :

N, b are normal operators on H,
N and |b| strongly commute,

the joint spectrum of (N, |b|) is
contained in the closure of the set

{(s, µr) : s, r − s
2
∈ Z},

N(Phase b) = (Phase b)(N + 2I)





.

Then R is a manageable subset of (C2 ⊗ CB(H))η and C∞(R) coincides with the

algebra A2 of all continuous functions vanishing at infinity on the Pontryagin dual Ê(2)
of quantum E(2) (cf Example 6 of Section 3).

6. At this point we present a quantum version of Example 1. Let

R0 =

{(
α , β
γ , δ

)
:

α, β, γ, δ are bounded operators acting on H
satisfying the 17 relations (1.9) – (1.25) of [11]

}
.

and R be the smallest complete subset of (M2 ⊗ CB(H))η containing R0. Elements of
R are direct sums of a (finite or denumerable) number of elements of R0. Then R is
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manageable and C∞(R) coincides with the algebra of all continuous functions vanishing
at infinity on the quantum Lorentz group introduced in [11] (cf Example 7 of Section
4).

7. In this point G is a commutative, locally compact group, C = C∞(G) and
∆ ∈ Mor(C,C ⊗ C) is the corresponding comultiplication: ∆(c)(g, g′) = c(gg′) for any
c ∈ C and g, g′ ∈ G. We shall use the leg numbering notation [11]. Let

R =

{
u ∈M(C ⊗ CB(H)) :

u is unitary and
(∆ ⊗ id)u = u13u23

}
.

Then R is a manageable subset of (C ⊗ CB(H))η and C∞(R) coincides with the alge-
bra of all continuous functions vanishing at infinity on the Pontryagin dual of G. (cf
Example 8 of Section 4).

The group G may be replaced by a number of topological (locally compact) quantum
groups. The class of these groups includes all locally compact topological groups (in
this case C∞(R) coincides with C∗(G)), the compact quantum groups, duals of compact
quantum groups, quantum E(2) group and its Pontryagin dual.

8. It is an open question, whether every complete closed subset R of (C⊗CB(H))η

is manageable. In particular, is the set CB(H)η of all closed operators acting on H
manageable? We belive that the answer is negative: There is no C∗-algebra A generated
by a single element T η A such that any closed operator on H is of the form π(T ), where
π ∈ Rep (A,H). It seems that C∞(CB(H)η) = {0}.

The reader should notice that the set R = CB(H)η considered in this example
corresponds to the presentation (in the sense of abstract algebra theory) with the list
of generators containing one item and the empty list of relations: one generator, no
relations.
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les C∗-modules hilbertiens, C. R. Acad. Sci. Paris, Série I, 296 (1983) 875–878, see
also S. Baaj: Multiplicateur non bornés , Thése 3éme Cycle, Université Paris VI,
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488.

40



[5] J. Dieudonné: Foundations of modern analysis, Academic Press, New York and
London 1960.
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