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Abstract

Lactoferrin is a glycoprotein with two globular lobes, each having two domains. Since the discovery of its 

antimicrobial properties, efforts have been made to find peptides derived from this protein showing 

antimicrobial properties. Most peptides initially studied were derived from Lactoferricin B, obtained 

from the protein by digestion with pepsin. More recently, a new family of antimicrobial peptides (AMPs) 

derived from Lactoferrin was discovered by Bolcher et al, and named Lactoferrampin (LFampin). The 

original sequence of LFampin contained residues 268 – 284 from the N1 domain of Lactoferrin. From 

this peptide, the Bolscher’s group synthesized a collection of peptides obtained by extension and / or 

truncation at the C or N-terminal sides, in order to unravel the main structural features responsible for 

antimicrobial action. Here, we present results for three of these peptides, namely LFampin 265 – 284, 

LFampin 265 — 280, and LFampin 270 – 284. The peptides were tested against bacteria (E. coli and S. 

sanguinis), fungi (C. albicans), and model membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

(DMPC), 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG), and their mixtures at a ratio 

of 3 : 1 (DMPC : DMPG (3 : 1)). The ability to adopt a helical conformation was followed by a circular 

dichroism (CD), and the perturbation of the gel to the liquid-crystalline phase transition of the 

membrane was characterized by differential scanning calorimetry (DSC). Distinct behavior was observed 

in the three peptides, both from the microbiology and model membrane studies, with the biophysical 

results showing excellent correlation with the microbiology activity studies. LFampin 265 – 284 was the 

most active peptide toward the tested microorganisms, and in the biophysical studies it showed the 

highest ability to form an α-helix and the strongest interaction with model membranes, followed by 

LFampin 265 – 280. LFampin 270 – 284 was inactive, showing marginal secondary structure and no 

interaction with the pathogen model membranes.

Keywords: Activity assays, antimicrobial peptides, CD, DSC, lactoferrin derived peptides, peptide / 

membrane interaction

In recent years, a large number of studies have been directed to the evaluation of the action of 

antimicrobial peptide (AMP) on target pathogens, due to the huge increase in pathogenic 

microorganisms multiresistant to conventional antibiotics.[1–6] In this scenario, substantial efforts are 

being devoted to the discovery of new antibiotic resources and strategies, and antimicrobial peptides 

(AMPs) are receiving considerable attention as a new paradigm in antibiotic therapy. There is a general 

agreement that most peptides have the bacterial membrane as the main target of their antimicrobial 

action, which may proceed through different mechanisms, such as formation of stable pores (either barrel

-stave or toroidal pore’s type), membrane thinning (molecular electroporation or sinking rafts models) or 

micellization of the membrane (in a detergent-like action (carpet model).[7–13] Although most AMPs 

have a wide range of activity, subtle differences are found with regard to different spectra of activity, 
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which must derive from a combination of factors such as size, amino acid sequence, charge, secondary 

structure upon membrane interaction, hydrophobicity, hydrophobic moment, and amphipathicity. These 

parameters are interdependent and a change in one of them can alter the structure-activity relationship, 

thereby, influencing the ability of the peptide to interact with the pathogen.

Bovine Lactoferrin is a glycoprotein, composed of a polypeptide chain containing 703 amino acids folded 

into two globular lobes, called the C– (carboxy) and N– (amino) terminal regions, connected with an α-

helix. Each lobe consists of two domains: C1 and C2, and N1 and N2. Most of the antimicrobial activity is 

attributed to the N1 domain, and the first group of peptides studied derived from this domain of 

Lactoferrin, comprising of amino acids 17 – 41, and designated as Lactoferricin B (LFcin B).[14–18] Of 

late, another amino acid sequence, also located in the N1 domain was identified and studied in the 

Bolscher’s group,[19,20] by searching for key determinants for antimicrobial activity, such as, the 

presence of stretches with alternating positively charged and uncharged residues with the potential to 

form a positively charged amphipathic α-helix.[19] The initial sequence contained amino acids 268–284, 

and thereafter, several peptides were synthesized, and obtained by truncation / extension of the original 

sequence.[21]

Among these, we chose three peptides for the present study, namely LFampin 265 – 284, LFampin 265 – 

280, and LFampin 270 – 284. Taking LFampin 265 – 284 as the lead peptide, the two others were 

obtained by truncation on the C side (LFampin 265 – 280) and on the N side (LFampin 270 – 284), as 

these two shortenings mainly affected two different parameters — cutting on the C side reduced the 

charge, and on the N side the tendency to adopt a helical structure, as shown by van der Kraan et al,[21] 

In this manner, we attempted to discriminate the properties that were more important for antimicrobial 

potency and how the differences were reflected in the peptide’s interaction with the membrane. Some 

properties of these peptides are summarized in Table 1.

Materials and Methods

Microorganisms and culture conditions

Two strains — Streptococcus sanguinis SK4 and Escherichia coli K12 — were cultured aerobically at 37°C 

in brain heart infusion (BHI) medium from Difco (Becton Dickinson Microbiology). Yeast Candida 

albicans 315 was cultured aerobically at 30°C in Sabouraud dextrose broth source. The microorganisms 

were cultured overnight and subcultured for two-to-three hours to yield a mid-logarithmic growth culture 

at the time of harvesting.

Synthesis and purification of peptides

Bovine lactoferrin peptides [Table 1] from the LFampin domain were synthesized with a Milli-Gen 9050 

peptide synthesizer (MilliGen/Biosearch, Bedford, MA) according to the manufacturer’s procedures. 

Peptides were purified to a purity of at least 95% with semi-preparative RP-HPLC (Jasco, Tokyo, Japan) 

on a Vydac C18-column (218MS510, Vydac, Hesperia, CA). The authenticity of the peptides was 

confirmed by ion trap mass spectrometry with an LCQ Deca XP (Thermo Finigan, San Jose, CA) as 

described previously.[21]

Antimicrobial activity

Bactericidal and candidacidal activity of the peptides was determined by peptide-mediated membrane 

permeabilization, monitored by the fluorescence enhancement of propidium iodide (PI, Invitrogen, 

Breda, The Netherlands) in dead cells, as described previously.[22] Briefly, a mid-log phase culture of 

bacterial suspensions (approximately 2.5×10  CFU/mL) or C. albicans suspension (approximately 

1.5×10  CFU/mL) in 96-well U-bottom low affinity plates (Greiner Bio One) were supplemented with PI 

(final concentration 6 mM) and incubated with equal volumes of peptide solutions at final concentrations 

of 0.2-50 mM, at 37°C. Fluorescence was monitored at λ  544 nm and λ  620 nm using a fluorescence 

reader (Fluostar Galaxy, BMG Labtechnologies, Offenburg, Germany) with five minute time intervals till 

15 minutes followed by 15 minute intervals till one hour. LC  values (mM) were the concentrations of the 

peptides resulting in 50% killing. All experiments were repeated at least twice in duplicate.
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Circular dichroism 

Preparation of liposomes

Appropriate amounts of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-

glycero-3-[phospho-rac-(1-glycerol)] (DMPG) (Avanti Polar Lipids, Alabama, USA), and a DMPC:DMPG 

mixture at a molar ratio of 3 : 1 were dissolved in chloroform / methanol (3 : 1 v/v). The solution was 

dried under a slow nitrogen flow and the resulting lipid films were kept under vacuum for three hours to 

remove all traces of organic solvents. The lipid film was hydrated with 10 mM HEPES buffer (pH 7.4) 

containing 100 mM NaCl, at 10°C above the temperature of the gel, to liquid crystalline phase transition 

(T ). The resulting multilamellar vesicles (MLVs) were frozen in liquid nitrogen and thawed in a water 

bath at approximately 10°C above T  (five cycles). Large unilamellar vesicles (LUVs) were obtained from 

the MLVs by extrusion in a 10 mL stainless steel extruder (Lipex Biomembranes Inc., Vancouver, 

Canada) and thermostated at 10°C above T  . The samples were passed several times through 

polycarbonate filters (Whatman, Nucleopore, NJ, USA) of decreasing pore size (600, 200, and 100 nm; 5, 

5, and 10 times, respectively), under inert (N ) atmosphere. The phospholipid concentration was 

determined for each preparation by the phosphomolybdate method.[23]

Circular Dichroism (CD) experiments were carried out in a Jasco 720 

spectropolarimeter (Japan Spectroscopy Co., Tokyo) equipped with a rectangular cell, path length of 1 

mm.[24] Scans were performed between 175 – 250 nm, bandwidth 1.0 nm, and resolution of 100 mdeg. 

Measurements using pure buffer (2 mM HEPES, 100 mM NaCl, pH 7.4) were performed throughout, to 

test instrument reproducibility. Spectra of pure liposome preparations in the same solvent media at 

different concentrations were used in a blank experiment to be subtracted from the liposome / peptide 

spectra. The peptide concentration in buffer and in liposome / peptide mixtures was 36 μM. Liposome 

concentrations were: 6000 μM for DMPC (with 0.6% peptide), 1200 μM for DMPG (with 3% peptide), 

and 3000 μM DMPC : DMPG (3:1) (with 0.6% peptide), where peptide percentages were in mol / mol. 

The peptide / lipid ratio shown corresponded to the ones for which the best spectra definition was 

obtained (1:167 for the DMPC and for DMPC : DMPG; and 1:36 for DMPG). The desired amounts of 

peptide and liposome were mixed immediately prior to each measurement and incubated at 35°C for 30 

minutes before the measurements, and performed at the same temperature. Each spectrum was always 

the average of nine accumulations. After blank correction, the observed ellipticity was converted to a 

mean residue molar ellipticity (θ) (deg cm dmol ), based on the total amount of peptide present in the 

mixture.

Differential scanning calorimetry

Differential scanning calorimetry (DSC) was performed in a Micro-DSCIII microcalorimeter (SETARAM, 

Caluire, France) essentially as described previously.[24] Two successive up and down scans were 

performed for each sample, the up-scan at a scanning rate of 0.5°C/minute and the down-scan at 3°

C/minute, over the temperature range 10 – 35 °C. The sample mixtures were prepared immediately 

before the DSC run, by adding the desired amount of peptide (LFampin 265 – 284, LFampin 265 – 280 

or LFampin 270 – 284) stock solution to the LUVs suspension of DMPC, DMPG or DMPC : DMPG (3 : 1). 

Samples with 0.5, 0.75, 1.0, 2.0, and 3.0% (mol/mol) were used. All procedures regarding sample 

preparation and handling (lag time at low temperature, time between mixtures, and start of the 

experiment) were kept constant in all experiments, to ensure that all samples had the same thermal 

history. The instrument was electrically calibrated for temperature and the scan rate with the SETARAM 

Calibration Unit.[25] The Micro-DSCIII software was used for baseline subtraction (run with buffer 

solution on both cells (sample and reference)). The transition temperature Tm and the transition 

enthalpy change ( H) were calculated by integration of the heat capacity versus temperature curve 

(Cp versus Temperature). A linear baseline was used to calculate the integral areas under the curves.

[24,26,27]

Results and Discussion

Bactericidal and candidacidal activity of LFampin peptides

The lead antimicrobial peptide LFampin 265 – 284 comprises of a highly cationic C-terminal part and an 

α-helix facilitating N-terminal part.[21] To analyze the impact of either part on the antimicrobial activity 
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of the bovine lactoferrin antimicrobial peptide LFampin 265 – 284, its behavior was compared with two 

peptides truncated at either the N- or C-terminus of the LFampin 270 – 284 and LFampin 265 – 280, 

respectively. For representative target microorganisms, we used Gram-negative Escherichia coli, a rather 

harmless indigene of the lower intestine (although some strains could cause serious food poisoning in 

humans),[28] the Gram-positive Streptococcus sanguinis, which was a normal inhabitant of the healthy 

human mouth (although if it gained entrance into the bloodstream it was the most common cause of 

subacute bacterial endocarditis),[29] and the yeast Candida albicans which was an opportunistic 

pathogen and the causal agent of oral and genital infections in immunocompromised persons e.g., in 

AIDS, cancer chemotherapy, and transplantation patients.[30]

When compared with the leading and most active peptide LFampin 265 - 284, although LFampin 270 – 

284 was found to be completely inactive, LFampin 265 – 280 retained some activity toward the tested 

microorganisms. The levels of antimicrobial activities found with 50 μM of LFampin 265 – 280 were 

reached with less than 3 or 6 μM LFampin against C. albicans, E. coli, and S. sanguinis, respectively [

Figure 1]. Similar graphs were already found within 10 minutes of incubation and remained unchanged 

thereafter (not shown).

Secondary structure of LFampin 265 – 284, LFampin 265 – 280, and LFampin 270 – 284 peptides in 

buffer solution and in the presence of membranes, as studied by CD

Indication of secondary structures of the three peptides was obtained by CD spectra, Figures 2a–c. It can 

be seen that in Hepes buffer (2 mM and 100 mM NaCl) all peptides show a minimum, around 200 nm, 

characteristic of a random structure.

When in the presence of membranes, a different secondary structure is acquired, depending on the 

peptide and the nature of the model membrane. The CD spectrum of the lead peptide LFampin 265 – 

284, in the presence of DMPC, overlaps the one observed in the buffer, indicating no significant change of 

structure in the presence of liposomes for all concentrations tested (1200 – 6000 mM, results showed 

only to 6000 mM). The other two peptides, LFampin 265 – 280 and LFampin 270 – 284, show a slight 

shift from 200 nm to the right, indicating that a small change of structure could be present, but without 

formation of the a well-defined different secondary structure. It must be noted that the peptides LFampin 

265 – 280 and LFampin 270 – 284 in buffer do not present a CD spectra compatible with a pure random 

structure (as LFampin 265 – 284 does), indicating that a mixture of structures is present. Therefore, the 

small shift cannot be over-interpreted, and thus there are no significant changes of secondary structure 

for any of the three peptides in the presence of DMPC membranes.

In the presence of liposomes of DMPC : DMPG (3 : 1) (here used as model for pathogens) LFampin 265 – 

284 forms an α-helix structure, reflected in the two minima at wavelengths near 208 and 222 nm. 

LFampin 270 – 284 presents a spectra close to the one obtained in the buffer, whereas, for LFampin 265 

– 280 some indication of an α-helix is apparent, although to quite a small extent (note that the obtained 

signal is always a weighted mixture of all the structures present) [Figure 2].

In order to evaluate the importance of charge effects and to compare them with the results we previously 

obtained for LFampin 265 – 284 in pure DMPG membranes,[22] we did also study the truncated 

versions in the presence of this model membrane system. We could see [Figure 2] that LFampin 265 – 

284 also formed an α-helix in this membrane system [Figure 2a], perfectly super imposable with the 

spectra in DMPC : DMPG (3:1) discussed earlier, whereas, LFampin 265–280 clearly showed the 

presence of some α-helix structure (albeit to a smaller extent, for the same P:L ratio), and finally 

LFampin 270 – 284 showed a shift in minima, but no clear α-helix structure. The fact that a helix was 

found for LFampin 265 – 280 when the model membrane system was totally formed by the negatively 

charged DMPG, showed the importance of the membrane charge combined with the charge and 

amphipathic character of the peptide, as the presence of DMPC in the mixed membranes caused a charge 

distribution on the surface of the liposome, and thus a larger amount of peptide was necessary to induce 

the same amount of secondary structure for this peptide.

In order to quantify the amount of each structure present, we calculated the percentage of the α-helix, β 

sheet, and randomized structures for each peptide in the presence of the three membrane systems. The 

percentages of each structure were calculated by fitting a linear weighted sum of structures, as proposed 

by Chen,[31] to the mean molar ellipticity per amino acid residue, using the Solver facility in Excel 
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(Microsoft ). The reference values for the average ellipticity of each structure were those provided by 

Greenfield and Fastman[32] based on synthetic polypeptides. The Excel sheet for this calculation was 

developed by us based on the references and values referred to, as most available software for these 

calculations was developed for proteins, and we found that this approach provided much better 

estimates. The obtained values can be seen in Table 2. The results show, as expected from the spectra, 

that all peptides are still predominantly random in the presence of DMPC membranes, although LFampin 

270 – 284 presents a significant percentage of β sheet structure.

LFampin 265 – 284 and LFampin 265 – 280 show the highest percentage of α-helix (50 and 55%, 

respectively) in the presence of DMPG liposomes and that percentage is the same for LFampin 265 – 284, 

in the presence of DMPC : DMPG (3 : 1), whereas for LFampin 265 – 280 it is lower. This finding 

emphasizes the importance of using mixed membranes to simulate pathogen membranes (rather than 

purely negative membranes), as its use led us to differentiate between these two peptides’ effects. 

LFampin 270 – 284, on the other hand, still presents a higher percentage of random structure in all 

membrane systems studied.

Indeed the peptide to lipid ratio also affects the formation of a secondary structure, as the structure 

formation is dependent on partitioning, and the amount of peptide in the membrane changes with the P : 

L ratio. The spectra presented were obtained for the most suitable P : L ratio, to produce a good signal in 

the CD spectra. The observed differences for the three peptides reflect their change in structure, and their 

strength relates to the degree of partition. The removal of the amino acid lysine (K) and arginine (R) 

(positively charged) and asparagine (N) and serine (S) (both polar) of the C-terminus side (from LFampin 

265 – 284 to LFampin 265 – 280), decreased the peptide charge from + 4 to + 2, as well as its polarity, 

thus affecting the tendency to form an α-helix [Figure 3]. The absence of amino acids N, K, S, and R 

increased the hydrophobic moment (0.30 for LFampin 265 – 284 and 0.37 for LFampin 265 – 280) and 

increased the peptide hydrophobicity (- 0.337 for the LFampin 265 – 284 and - 0.186 for the LFampin 

265 – 280) [Table 1]. These values suggest a hydrophobic / hydrophilic balance more suitable for a good 

interaction between DMPG liposomes and the LFampin 265 – 284 peptide. Moreover, the truncation of 

the amino acids sequence on the N-terminal side (from LFampin265 – 284 to LFampin 270 – 284) [

Figure 3], with the removal of the amino acids aspartic acid (D) (residue 265, charged negatively), leucine 

(L) (residue 266, nonpolar), isoleucine (I) (residue 267, nonpolar), tryptophan (W) (268 residue, polar), 

and lysine (K) (269 residue, charged positively) did not change the charge of the peptide (+ 4), but 

decreased the hydrophobic moment (from 0.30 to 0.28 for LFampin 265 – 284 and LFampin 270 – 284, 

respectively) and decreased the hydrophobicity (from - 0.337 to - 0.437 for LFampin 265 – 284 and 

LFampin 270 – 284, respectively), which was reflected in an almost nonexistent tendency in LFampin 

270 – 284 to form the α-helix and partition into the membranes. Furthermore, the lack of tryptophan in 

LFampin 270 – 284 was also important in the reduction of the partition, as this amino acid was often 

considered to have an important role in ‘anchoring’ the peptide in the membrane.[13,33]

The CD results for the studied peptides are consistent with the literature results. NMR studies using 

negatively charged SDS micelles (sodium dodecyl sulfate) and zwitterionic DPC (dodecylphosphocholine) 

liposomes with the LFampin 268 – 284 peptide (the original sequence of LFampin), showed that the 

peptide formed an α-helix involving only residues 1 – 11 and the final six C-terminal residues remained 

relatively unstructured.[34] We observed a well-defined α-helix for the LFampin 265 – 284 in DMPG and 

DMPC : DMPG liposomes, confirming the influence of the amino acids aspartic acid (D), leucine (L), and 

isoleucine (I) in the formation of the secondary structure.

The secondary structures of LFampin 265 – 284, LFampin 265–280, and LFampin 270–284 were 

determined in the presence of trifluoroethanol / water (TFE / water) by van der Kraan et al,[21] In this 

study the authors found that the three peptides were able to form an α-helix, but to a different extent: 

LFampin 265 – 284 showed the highest tendency to form an α-helix, followed by LFampin 265 – 280, 

and finally LFampin 270 – 284. The residual tendency of LFampin 270 – 284 to form an α-helix in helix-

inducing solvents was not apparent in the presence of membranes (at the P:L ratios used), and this 

reinforced the need for these studies to be performed with membranes, when a biological correlation was 

aimed at. Moreover, studies with mimetic membrane allowed the differentiation of the secondary 

structures formed and their dependence on the composition of the membrane, which was a fundamental 

aspect in the possible biological implications.

TM
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Interaction of the peptides with liposomes as studied by differential scanning calorimetry

The thermodynamic characterization of peptide / liposome interactions by DSC is based on the changes 

in the thermal profile and in the thermodynamic parameters characterizing the thermally induced 

transitions in liposome systems (T  and H), due to the presence of the peptides.

The DSC curves of pure DMPC liposomes (LUVs) and peptide / lipid mixtures at different P : L ratios are 

shown in Figure 4. The derived phase transition temperature values T  and change in transition enthalpy 

H are reported in Table 3. In all cases, we see that the peptide affects neither the thermal profile nor 

the derived thermodynamic parameters for the gel to liquid-crystalline transition of DMPC liposomes [

Figure 4]. We can thus conclude that for the studied P : L ratios, none of the peptides partition to the 

zwitterionic membranes. The pre-transition is observed when MLVs are used (temperatures between 16 

and 17.5°C)[35,36] are usually not so clear with LUVs, as it appears superimposed with the main 

transtition.[37] Its change is not discriminatory, as it disappears in the presence of most added drugs,

[35,38–41] hence, we have not deconvoluted the two transitions and will not address it here.

The DSC curves obtained in the presence of DMPG liposomes at different P : L ratios are shown in the 

Figure 5 and the respective thermodynamic parameters are reported in Table 3. In this case the peptides 

alter both the profiles, the T  and the H(at the highest P : L ratios). Also here, the largest changes 

are observed for LFampin 265 – 284[22] and LFampin 265 – 280, and the smallest for LFampin 270 – 

284. At the highest percentage of peptide, 2 mol% (P : L = 1 : 46) and 3 mol% (P : L = 1:29), the H 

decreased for the first two peptides, whereas, the parameters were the same (within uncertainty limits) 

for the later one. Furthermore, a broadening of the curves (decrease in cooperativity) and the appearance 

of a shoulder at higher temperatures was also observed in all the cases. Finally, it should be noted that for 

LFampin 265–284 and LFampin 265–280 the transition was totally distorted at the highest ratios, 

whereas, LFampin 270–284 still presented a transition curve, again showing that this peptide had the 

weakest interaction.

The shoulder at higher temperatures can be interpreted as reflecting the electrostatic attraction between 

the peptide and the lipid head, leading to a stabilization of the gel phase. Precipitation / aggregation was 

observed for the three peptides at the highest P : L ratios (2 and 3%).

Finally the results for DMPC : DMPG (3 : 1) can be seen in Figure 6. For the studied P : L ratios, neither 

LFampin 265 – 280 nor LFampin 270 – 284 show significant changes in the DSC profile or parameters. 

The thermotropic behavior shown with LFampin 265 – 284 is intermediate between the one observed for 

the zwitterionic DMPC and the anionic DMPG liposomes, and both Tm and H decrease gradually as 

the P : L ratio increases Table 3. At the highest P : L ratio a shoulder at higher temperatures is apparent, 

which is a strong indication of lipid segregation within the membrane, due to the preferential interaction 

of the peptide with the negatively charged lipid DMPG. Prenner et al,[42] also observed a more strong 

interaction with anionic DMPG than zwitterionic DMPC or DMPE phospholipid bilayers, with the 

cationic peptide gramicidin S (GS), due to electrostatic effects. At higher peptide concentrations, 

gramicidin S (GS) reduced the temperature, enthalpy, and cooperativity of the main phase transition in 

the DMPG bilayers. Furthermore, a decrease in cooperativity in the phase transition is observed when 

DMPG liposomes are involved, further substantiating a better interaction and higher disturbance of 

membrane patches, richer in DMPG when the mixed DMPC / DMPG system is used. The decrease in the 

transition enthalpy at higher P : L ratios is compatible with the partial insertion of the peptide in the lipid 

bilayer, which causes a change in the packaging of carbon chains, by disruption of the van der Waals inter

- and intrα-molecular interactions.[24]

The analysis of the thermotropic profile of liposomes of different compositions in the presence of 

peptides, allows us to conclude that the interaction between antimicrobial peptides and lipid bilayers 

involves factors related to the characteristics of the peptide and also to the lipid composition of the 

membrane. The DSC data reflect the low affinity of these peptides to DMPC liposomes, and this is 

confirmed by our CD results where the peptides remain unstructured in the presence of this membrane 

system. Finally, the results obtained by DSC confirm that the presence of anionic lipid boosts the action 

of the peptide by the initial electrostatic interactions, facilitating peptide insertion and membrane 

destabilization.
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The characteristics of the peptides responsible for the distinct behavior include: the peptide charge, the 

tendency to form α-helix in the presence of the membrane, and the amphipathicity of the helix formed. 

The three peptides are capable of electrostatic interactions with the negatively charged membranes 

because all have a positive charge. LFampin 265 – 284 and LFampin 270 – 284 have the same nominal 

charge (+4) and LFampin 265 – 280 has the lowest (+2), but nevertheless it disturbs DMPG to a much 

larger extent than LFampin 270 – 284. This confirms that the charge alone is not the key factor in 

differentiating the effect of peptides on membranes and our results show that the secondary structure 

formed in their presence is a more important factor for a larger partition and consequently a more 

effective interaction. CD results [Figure 2] show that the LFampin 265 – 284 forms the highest 

percentage of α-helix, followed by LFampin265 – 280. In Figure 3 it can be seen that LFampin 265 – 284 

has a helical structure, with the positive charges more clustered on one side of the helix, thus forming a 

more amphipathic α-helix, more suited to interact with the polar heads of the lipid bilayer. Thus, 

although both effects (charge and secondary structure) are important, the results indicate that the 

absolute charge is less significant in an effective interaction with the membranes, than the ability to form 

a well-defined secondary structure.

The interaction of the original sequence of the LFampin peptide (residues 268 – 284) with the 

multilamellar liposomes (MLVs) of DPPC and DPPG was studied by DSC, by Vogel and colleagues.[34] 

The results of this study showed that the peptide did not affect the thermotropic profile of zwitterionic 

liposomes (DPPC) across the range of the studied P : L ratios. In anionic liposomes (DPPG) the authors 

did not observe any significant change in the phase transition up to the highest P : L ratio studied. Our 

results for LFampin 265 – 284, LFampin 265 – 280, and LFampin 270 – 284 peptides with DMPC 

liposomes led to similar conclusions, whereas, for charged liposomes they showed that an interaction 

occurred in the DMPG and DMPC / DMPG (3 : 1) membranes. The lack of change in the thermotropic 

profile of DPPG was explained by Vogel et al,[34] as being due to the fact that the LFampin 268 – 284 

peptide (charge + 5) could form electrostatic interactions only at the polar head level, without 

significantly altering the packing of the chains. A reasonable explanation for the differences between the 

two studies could be found in the membrane composition (DMPC vs. DPPC). DPPC had a much higher 

transition temperature (around 44°C) than the DMPC and the phase transition gel to liquid-crystalline 

was much more cooperative (particularly in the MLVs), due to the higher hydrocarbon chain length of the 

DPPC, which led to additional van der Waals interactions. This had to be responsible for a lower partition 

of the peptide to this model membrane system.

Ladokhin and White[43] studied the interaction profiles of melittin with zwitterionic and anionic model 

membranes. The authors suggested that, unlike with PC membranes, melittin should not adopt a trans-

membrane configuration when interacting with anionic liposomes (PG), and that the permeabilization of 

these later membranes by melittin was possibly due to a mechanism of ‘leaky fusion’. These authors also 

showed that the mechanism of permeabilization of the membrane was not an inherent characteristic of 

the peptide, but strongly depended on the nature of the lipid bilayer. Epand et al, had proposed that 

cationic peptides (α/β peptides) and polymers that mimic antimicrobial peptides could segregate the 

anionic lipids from mixed membranes, forming rich negative lipid / peptide domains, causing defects in 

the membrane with consequent loss of internal content.[44–46] The observation of domain formation 

between the cationic peptide and negative lipid membrane had been proposed earlier by McLaughin and 

colleagues.[47] They studied the interaction between MARCKS and pp60  (mimetic peptides from the 

charged region of the protein as phospholipase C and kinase C) with mixed phospholipid membranes of 

PC / PG and PC / PS, and found that the strength of the interaction was influenced by the cationic amino 

acid residues content and by the anionic lipid fraction in the membrane. Furthermore, they reported that 

for the peptides studied, the electrostatic interaction was independent of the nature of the anionic lipid 

(PS or PG) and of the cationic amino acid residue (lysine or arginine). The authors interpreted the 

sigmoid shape of their binding curves as a function of the negative lipid fraction in the membrane, and as 

resulting from the peptide-induced formation of domains rich in negative lipid. The formation of 

domains with negative lipids was also reported by Lohner et al,[48] for the peptide PGLa.

Our results for the biophysical characterization of the interaction of peptides with model membrane 

systems were also in very good agreement with the ones we obtained for antimicrobial activity (against E. 

coli, S. sanguinis, and C. albicans), even considering the simplicity of the model membranes used, where 

Src
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we only introduced the lipid DMPG for modeling the pathogens, as it was well known to be one of their 

major components. The peptide with the highest antimicrobial activity was LFampin 265 – 284, followed 

by LFampin 265 – 280, whereas, LFampin 270 – 284 proved to be inactive against the tested 

microorganisms [Figure 2]. Our CD results indicated that LFampin 265 – 284 had the highest percentage 

of α-helix in the presence of negatively charged membranes, followed by LFampin 265 – 280, whereas, 

LFampin 270 – 284 remained unstructured in the presence of all the studied membranes. This confirmed 

the importance of a secondary structure on the antimicrobial activity, due to different interactions with 

the bacterial membrane. The amino acid composition also had a strong reflection in the interactions with 

membranes. The differences found for LFampin 265 – 284 and LFampin 265 – 280 peptides confirmed 

that the presence of some amino acids altered the structural arrangement of the peptide and influenced 

their behavior in the presence of membranes, as well their antimicrobial activity. Furthermore, as 

discussed earlier, both these peptides were capable of forming an α-helix in the presence of negatively 

charged membranes, albeit to a different extent. This was reflected in the microbiological results, in the 

much higher dose needed for LFampin 265 – 280 to produce the same effect as LFampin 265 – 284. The 

initial peptide / liposomes interaction was caused by the electrostatic attraction between the negative 

lipid and positively charged peptide, but the degree of interaction was differentiated by secondary 

structure propensities and by the amphipathicity of the peptide. As such, the secondary structure seemed 

to be more important than the peptide charge on peptide / pathogen (as well as peptide / membrane) 

interactions. Nevertheless, there was an optimum balance between charge and secondary structure 

(LFampin 265 – 284 vs. LFampin 265 – 280).

It should be stressed that the excellent correlation obtained between the results derived from studies with 

mimetic membranes and the ones obtained in vitro against different pathogens and erythrocytes[21] 

confirmed that biophysical experiments could be used in the initial screening of new peptides, helping in 

the design of new and more active drugs.
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Table 1

Properties of synthetic LFampin peptides

Peptide Sequence #AA M Charge <μ> <H>

LFampin 265 – 284 DLIWKLLSKAQEKFGKNKSR 20 2389 4 + 0.30 - 0.337

LFampin 265 – 280 DLIWKLLSKAQEKFGK 16 1904 2 + 0.37 - 0.186

LFampin 270 – 284 LLSKAQEKFGKNKSR 15 1733 4 + 0.28 - 0.437

#AA= number of amino acids in the amino acids sequence.

M  = molar mass (kDa).

Net positive charge at neutral pH

<μ>; mean hydrophobic moment in a α-helical conformation.[41].

<H>; mean hydrophobicity[49]
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Figure 1

Antimicrobial activity of LFampin peptides. Microorganisms were incubated with two-fold serially 

diluted peptides. Graphs represent fluorescence uptake after 1h of incubation
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Figure 2

CD spectra of LFampin 265-284 (a), LFampin 265-280 (b) and LFampin 270–284 (c) Buffer (36 μM 

peptide) (black stars); 6000 μM DPMC and 0.6% peptide (light gray squares); 1200 μM DMPG and 3% 

peptide (black triangles); in 3000 μM DMPC:DMPG (3:1) and 0.6% peptide (light gray circles)
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Table 2

Contribution (in %) of each secondary structure, α-helix, β-sheet, and random structure, to the total CD 

signal, calculated for each peptide by fitting procedures as described in the text

Peptides DMPC DMPG DMPC:DMPG (3:1)

α β random α β random α β random

LFampin 265 – 284 25 20 55 50 10 40 50 25 25

LFampin 265 – 280 32 4 64 55 0 45 40 0 60

LFampin 270 – 284 5 43 52 19 22 59 9 37 54

* The estimated uncertainties from the fittings in the reported values are ± 2
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Figure 3

Helical wheel presentation of LFampin peptides, showings their amphipatic character. Neutral amino 

acids: light grey circles; positively charged amino acids: dark grey and negatively charged amino acids: 

white
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Table 3

Transition temperature) Tm and transition enthalpy change transH values for the three peptides in the 

three model membrane systems studies, DMPC, DMPG, and DMPC : DMPG (3 : 1) liposomes. The results 

are presented as a function of peptide % (or P : L ratio)

T  (°C) / H (kJ mol )

% Peptide (P:L) DMPC DMPG DMPC:DMPG (3:1)

265-284 265-280 270-284 265-284 265-280 270-284 265-284 265-280 270-284

0 0 24.5/19 24.3/20 24.4/21 23.4/23 23.9/23 23.3/24 25.0/21 24.9/22 24.8/22

0 0 24.5/19 24.3/20 24.4/21 23.4/23 23.9/23 23.3/24 25.0/21 24.9/22 24.8/22

0.50 1:196 24.5/21 24.3/21 24.4/20 23.1/25 23.4/21 23.2/24 24.9/21 24.8/20 24.9/22

0.75 1:129 24.5/21 24.3/19 24.4/20 23.0/21 23.3/20 23.1/24 24.9/19 24.8/19 24.8/21

1.0 1:96 24.5/19 24.3/19 24.4/20 23.0/20 22.9/17 22.9/24 24.8/19 24.9/21 24.8/21

2.0 1:46 24.5/18 24.3/20 24.4/19 21.0/17 25.4/20 22.4/22 24.4/20 24.8/22 24.8/21

3.0 1:29 24.4/18 24.3/20 24.4/19 - 25.5/17 21.9/22 23.9/18 24.6/22 24.8/20

Estimated uncertainties: within sample is ± 0.1°C for T  and ± 0.5 kJ mol  for H; and between 

samples is ± 0.3°C for T  and ± 3 kJ mol  for transH

m trans
-1

m
-1

trans

m
-1
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Figure 4
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DSC curves for DMPC liposomes and the studied peptides at different peptide molar ratios. Black: pure 

DMPC; light gray: 0.5 mol% peptide; dark gray: 0.75 mol% peptide; gray: 1.0 mol% peptide; dash black: 

2.0 mol% peptide; dash light gray: 3.0 mol% peptide. Lipid concentration was in all cases 3 mM
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Figure 5
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DSC curves for DMPG liposomes and the studied peptides at different peptide molar ratios. Black: pure 

DMPG; light gray: 0.5 mol% peptide; dark gray: 0.75 mol% peptide; gray: 1.0 mol% peptide; dash black: 

2.0 mol% peptide; dash light gray: 3.0 mol% peptide. Lipid concentration was in all cases 3 mM
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Figure 6
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DSC curves for DMPC:DMPG (3:1) liposomes and the studied peptides at different peptide molar ratios. 

Black: pure DMPC:DMPG; light gray: with 0.5 mol% peptide; dark gray: with 0.75 mol% peptide; gray: 

with 1.0 mol% peptide; dash black: with 2.0 mol% peptide; dash light gray: with 3.0 mol% peptide. Lipid 

concentration was in all cases 3 mM
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