
EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos

(Guest Editors)

Volume 25 (2006), Number 3

C-BDAM – Compressed Batched Dynamic Adaptive Meshes

for Terrain Rendering

E. Gobbetti1, F. Marton1, P. Cignoni2, M. Di Benedetto2, and F. Ganovelli2

1 Visual Computing Group, CRS4, Pula, Italy
2 Visual Computing Group, ISTI CNR, Pisa, Italy

Abstract

We describe a compressed multiresolution representation for supporting interactive rendering of very large planar

and spherical terrain surfaces. The technique, called Compressed Batched Dynamic Adaptive Meshes (C-BDAM),

is an extension of the BDAM and P-BDAM chunked level-of-detail hierarchy. In the C-BDAM approach, all patches

share the same regular triangulation connectivity and incrementally encode their vertex attributes using a quan-

tized representation of the difference with respect to values predicted from the coarser level. The structure provides

a number of benefits: simplicity of data structures, overall geometric continuity for planar and spherical domains,

support for variable resolution input data, management of multiple vertex attributes, efficient compression and fast

construction times, ability to support maximum-error metrics, real-time decompression and shaded rendering with

configurable variable level-of-detail extraction, and runtime detail synthesis. The efficiency of the approach and

the achieved compression rates are demonstrated on a number of test cases, including the interactive visualization

of a 29 gigasample reconstruction of the whole planet Earth created from high resolution SRTM data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture and Image Gen-

eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism.

1. Introduction

Real-time 3D exploration of digital elevation models is one

of the most important components in a number of prac-

tical applications. Nowadays, high accuracy datasets con-

tain billions of samples, exceeding memory size and graph-

ics processing capability of even the highest-end graph-

ics platforms. To cope with this problem, there has been

extensive research on output sensitive algorithms for ter-

rain rendering (see section 2). At present time, the most

successful techniques for efficiently processing and ren-

dering very large datasets are based on two approaches:

adaptive coarse grained refinement from out-of-core mul-

tiresolution data structures (e.g., BDAM [CGG∗03a], P-

BDAM [CGG∗03b], 4-8 tiling [HDJ05]) and in-core ren-

dering from aggressively compressed pyramidal structures

(e.g., Geometry Clipmaps [LH04]). The first set of methods

is very efficient in approximating a planar or spherical ter-

rain with the required accuracy and in incrementally com-

municating updates to the GPU as the viewer moves, but

multiresolution structure footprints typically require out-of-

core data management. The second approach, limited to pla-

nar domains, uses nested regular grids centered about the

viewer. This technique ignores local adaptivity, but is able to

exploit structure regularity to compress data so that it typ-

ically succeeds in fitting most if not all data structures en-

tirely in core memory, thereby avoiding the complexity of

out-of-core memory management for a large class of practi-

cal models.

Contribution. In this paper, we describe a compressed mul-

tiresolution representation for the management and interac-

tive rendering of very large planar and spherical terrain sur-

faces. The technique, called Compressed Batched Dynamic

Adaptive Meshes (C-BDAM), is an extension of the BDAM

and P-BDAM chunked level-of-detail hierarchy, and strives

to combine the generality and adaptivity of chunked bin-

tree multiresolution structures with the compression rates of

nested regular grid techniques. Similarly to BDAM, coarse

grain refinement operations are associated to regions in a

bintree hierarchy. Each region, called diamond, is formed

by two triangular patches that share their longest edge.

In BDAM, each patch is a general precomputed triangu-

lated surface region. In the C-BDAM approach, however,

all patches share the same regular triangulation connectivity

and incrementally encode their vertex attributes when de-

scending in the multiresolution hierarchy. The encoding fol-

lows a two-stage wavelet based near-lossless scheme. The

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell

Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,

MA 02148, USA.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

Figure 1: View of the Earth near Guadalajara. This 29G samples

sparse global dataset is compressed to 0.25bps. At run-time, de-

compression and normal computation are performed incrementally,

allowing interactive full-screen flights at video rates with pixel sized

triangles.

proposed approach supports both mean-square error and

maximum error metrics allowing to introduce a strict bound

on the maximum error introduced in the visualization pro-

cess. The scheme requires storage of two small square ma-

trices of residuals per diamond, which are maintained in a

repository. At run-time, a compact in-core multiresolution

structure is traversed, and incrementally refined or coarsened

on a diamond-by-diamond basis until screen space error cri-

teria are met. The data required for refining is either retrieved

from the repository or procedurally generated to support run-

time detail synthesis. At each frame, updates are communi-

cated to the GPU with a batched communication model.

Advantages. The structure provides a number of benefits:

overall geometric continuity for planar and spherical do-

mains, support for variable resolution input data, manage-

ment of multiple vertex attributes, efficient compression and

fast construction times, ability to support maximum-error

metrics, real-time decompression and shaded rendering with

configurable variable level-of-detail extraction, and runtime

detail synthesis. As highlighted in section 2, while other

techniques share some of these properties, they typically do

not match the capabilities of our method in all of the areas.

Limitations. The proposed method has also some limita-

tions. As for geometry clipmaps [LH04], the compression

method is lossy and assumes that the terrain has bounded

spectral density, which is the case for typical remote sens-

ing datasets. Moreover, as for all regular grid approaches,

the rendered mesh has a higher triangle count than in the

BDAM and P-BDAM schemes, which can exploit irregular

connectivity to follow terrain features.

Our approach adopts the philosophy of the BDAM breed

of techniques, that we summarize in section 3. The new ap-

proach for efficiently encoding planet sized datasets is de-

scribed in section 4. Section 5 illustrates the pre-processing

of digital elevation models, while section 6 is devoted to the

presentation of the run-time rendering algorithm. The effi-

ciency of the method has been successfully evaluated on a

number of test cases, including the interactive visualization

of the Earth created from 3 arcsec SRTM data (section 7).

2. Related Work

Adaptive rendering of huge terrain datasets has a long his-

tory, and a comprehensive overview of this subject is be-

yond the scope of this paper. In the following, we will

briefly discuss the approaches that are most closely related

with our work. Readers may refer to well established sur-

veys [LP02, Paj02] for further details.

The vast majority of the adaptive terrain render-

ing approaches have historically dealt with large trian-

gle meshes computed on the regularly distributed height

samples of the original data, using either irregular

(e.g., [DFMP97, Hop98]) or semi-regular adaptive triangu-

lations (e.g., [LKR∗96, DWS∗97, Paj98, LP01]). The main

objective of this kind of algorithms was to compute the min-

imum number of triangles to render each frame, so that the

graphic board was able to sustain the rendering. More re-

cently, the impressive improvement of the graphics hardware

both in term of computation (transformations per second, fill

rate) and communication speed (since the introduction of

AGP1x to the PCI-E) shifted the bottleneck of the process

from the GPU to the CPU. In other words, the approaches

which select the proper set of triangles to be rendered in

the CPU did not have a sufficient throughput to feed the

GPU at the top of its capability. For this reason many tech-

niques proposed to reduce per-triangle workload by com-

posing at run-time pre-assembled optimized surface patches,

making it possible to employ the retained-mode rendering

model instead of the less efficient direct rendering approach.

Tiled blocks techniques (e.g., [HM93, WMD∗04]), origi-

nally designed for external data management purposes, par-

tition the terrain into square patches tessellated at different

resolutions. The main challenge is to seamlessly stitch block

boundaries. The first methods capable to producing adaptive

conforming surfaces by composing precomputed patches

with a low CPU cost, were explicitly designed for terrain

rendering. RUSTIC [Pom00] and CABTT [Lev02] are ex-

tensions of the ROAM [DWS∗97] algorithm, in which sub-

trees of the ROAM bintree are cached and reused during ren-

dering. A similar technique is also presented in [DP02] for

generic meshes. BDAM [CGG∗03a, CGG∗03b] constructs

a forest of hierarchies of right triangles, where each node

is a general triangulation of a small surface region, and ex-

plicitates the rules required to obtain globally conforming

triangulations by composing precomputed patches. A simi-

lar approach, but described in terms of a 4-8 hierarchy, is de-

scribed in [HDJ05], which store textures and geometry using

the same technique.

Recently various authors have concentrated on combin-

ing data compression methods with multiresolution schemes

c© The Eurographics Association and Blackwell Publishing 2006.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

to reduce data transfer bandwidths and memory footprints.

Tiled block techniques typically use standard 2D com-

pressors to independently compress each tile. Geometry

clipmaps [LH04] organize the terrain height data in a pyra-

midal multiresolution scheme and the residual between lev-

els are compressed using an advanced image coder that sup-

ports fast access to image regions. Storing in a compressed

form just the heights and reconstructing at runtime both nor-

mal and color data (using a simple height color mapping)

provides a very compact representation that can be main-

tained in main memory even for large datasets. The pyrami-

dal scheme limits however adaptivity. In particular, as with

texture clipmap-based methods, the technique works best for

wide field of views and nearly planar geometry, and would

not apply to planetary reconstructions that would require

more than one nesting neighborhood for a given perspective.

In [HDJ05], the authors point out that, when using a 4-8 hier-

archy, the rectangular tiles associated to each diamond could

be also compressed using standard 2D image compression

methods. Our work proposes an efficient method for incor-

porating compression of height and texture information in

the BDAM framework.

We have to note that many other authors have explored

the problem of creating compressed representations for geo-

metric data, but in most of these cases the focus is on com-

pression ratio rather than on the real-time view-dependent

rendering from the compressed representation; for a recent

survey of this field we refer the reader to [AG05].

3. Batched Dynamic Adaptive Meshes

The BDAM approach is a specialization of the more general

Batched Multi-Triangulation framework [CGG∗05], and is

based on the idea of moving the grain of the multiresolution

surface model up from points or triangles to small contigu-

ous portions of mesh.

BDAM exploits the partitioning induced by a recursive

subdivision of the input domain in a hierarchy of right trian-

gles. The partitioning consists of a binary forest of triangu-

lar regions, whose roots cover the entire domain and whose

other nodes are generated by triangle bisection. This opera-

tion consists in replacing a triangular region σ with the two

triangular regions obtained by splitting σ at the midpoint of

its longest edge. To guarantee that a conforming mesh is al-

ways generated after a bisection, the (at most) two triangular

regions sharing σ’s longest edge are split at the same time.

These pairs of triangular regions are called diamonds and

cover a square. The dependency graph encoding the mul-

tiresolution structure is thus a DAG with at most two parents

and at most four children per node.

This structure has the important property that, by selec-

tively refining or coarsening it on a diamond by diamond

basis, it is possible to extract conforming variable resolution

mesh representations. BDAM exploits this property to con-

struct a coarse grained level-of-detail structure for the sur-

face of the input model. This is done by associating to each

triangle region a small tessellated patch, up to a given trian-

gle count, of the portion of the mesh contained in it. Each

patch is constructed so that vertices along the longest edge

of the region are kept fixed during a diamond coarsening op-

eration (or, equivalently, so that vertices along the shortest

edge are kept fixed when refining). In this way, it is ensured

that each collection of small patches arranged as a correct

hierarchy of triangular regions generates a globally correct

and conforming surface triangulation. These properties are

exploited in [CGG∗03b] to define an efficient parallel sim-

plification method in which patches composing diamonds

at levels of resolution matching the input data are sampled,

while coarser level patches contain TINs constructed by con-

strained edge-collapse simplification of child patches.

4. Compressing Batched Dynamic Adaptive Meshes

In order to construct a BDAM hierarchy, three operations are

required: original data sampling, diamond coarsening (sim-

plification), and its reciprocal, diamond refinement. At dia-

mond coarsening time, data is gathered from child patches

and simplified while keeping the diamond boundary fixed.

Diamond refinement has to undo the simplification opera-

tion, pushing new patches into child diamonds. As noted

elsewhere [LH04, HDJ04, CGG∗05], given current hard-

ware rendering rates, exceeding the hundreds of millions of

triangles per second, it is now possible to interactively ren-

der scenes with approximately one triangle/pixel thresholds.

At this point, controlling triangle shapes during simplifica-

tion to reduce triangle counts is no longer of primary impor-

tance, and it is possible to work on regular grids rather than

on irregular triangular networks, replacing mesh simplifica-

tion/refinement with digital signal processing operations.

(a) Coarsening and re-

finement

(b) Wavelet view (c) Near lossless

scheme

Figure 2: BDAM on a regular grid. We recast diamond processing

in the framework of wavelet update lifting In this framework, dia-

mond coarsening and refinement are associated to wavelet analysis

and synthesis.

Wavelet transformation. The structure of a BDAM mesh,

when operating on regular grids, is depicted in figure 2(a).

c© The Eurographics Association and Blackwell Publishing 2006.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

As we can see, the two patches that form a diamond have

vertices placed on a uniform square grid, while the vertices

of the refined patches are placed at the centers of the square

cells of the grid. To support compression, we recast dia-

mond processing in the framework of wavelet update lift-

ing [JDSB03], with the purpose of transforming data into a

domain with a sparser representation. In this framework, di-

amond coarsening is associated to wavelet analysis, while

diamond refinement corresponds to wavelet synthesis (see

figure 2(b)).

The analysis process for constructing a level l diamond
starts by gathering vertex data from child diamonds at level

l +1 (or from the input dataset) into a square matrix P(l+1),
which is then decomposed into two square matrices: a ma-

trix V (l+1) of vertex centered values, and a matrix C(l+1) of

cell centered values. A new set of vertex values P(l) and a
matrix of detail coefficients H(l) can then be computed by
the following low- and high-pass filtering operations:

P
(l)
i j = αi jV

(l+1)
i j + (1−αi j)P

(V )
i j (C

(l+1)
) (1)

H
(l)
i j = C

(l+1)
i j −P

(C)
i j (P

(l)
) (2)

Here, P
(A)
i j (B) are prediction operators that predict the value

at A(i, j) from the values in matrix B, and 0 < αi j ≤ 1

weights between smoothing and pure subsampling. To com-

ply with BDAM diamond boundary constraints, it is suf-

ficient to set αi j = 1 for all diamond boundary vertices.

Even though weighting could be data dependent (see, e.g.,

[PH01]), for this paper we assume for speed and simplicity

reason a constant weighting of αi j = 1

2
for all inner points.

For prediction, we use a order 4 Neville interpolating filter if

all support points fall inside the diamond, and a order 2 filter

otherwise [KS00]. These filters predict points by a weighted

sum of 12 (order 4) or 4 (order 2) coefficients, and are there-

fore very fast to compute (see figure 3).

Figure 3: Neville filters. The filters predict points by a weighted

sum of 12 (order 4) or 4 (order 2) coefficients.

By iterating the analysis process from leaf diamonds up
to the roots, all the input data gets filtered up to the coarsest
scale. The resulting wavelet representation is multiscale, as
it represents the original terrain dataset with a set of coars-
est scale coefficients associated to the root diamonds, plus
a set of detail coefficients with increasingly finer resolution.
During synthesis it is possible to produce variable resolution
representations by refining a diamond at a time, using a pro-
cess that simply reverses the analysis steps. At diamond re-
finement time, first vertex and face centered values are com-
puted from the diamond vertex values:

C
(l+1)
i j = H

(l)
i j +P

(C)
i j (P

(l)
) (3)

V
(l+1)
i j =

P
(l)
i j − (1−αi j)P

(V )
i j (C(l+1))

αi j

(4)

Then, this data is reassembled and scattered to child dia-

monds.

Lossy data compression. For typical terrain datasets, the

wavelet representation produces detail coefficients that de-

cay rapidly from coarse to fine scale, as most of the shape

is captured by the prediction operators. By entropy coding

the detail coefficients it is thus possible to efficiently com-

press the input dataset. The achievable lossless compression

ratio is however limited. More aggressive lossy compression

can be achieved by quantizing detail coefficients or discard-

ing small ones. Quantizing the wavelet coefficients to meet

a maximum error criterion is however a complex problem,

and while there are many excellent wavelet-based lossy com-

pression schemes under the L2 norm, none of them can offer

a tight bound on the maximum reconstruction error of each

value, since it is difficult to derive meaningful relations be-

tween distortions in the wavelet domains and in the signal

domain in the L∞ sense [YP04]. Using a L2 norm for gen-

eral terrain management applications is hardly acceptable,

since reconstruction errors are averaged over the entire do-

main and results suffer from high variance in the quality of

data approximation. Therefore, using a L2 norm can severely

bias reconstructions in favor of smooth regions, and does

not offer error guarantees for individual approximate an-

swers to variable resolution queries. In C-BDAM, we solve

the problem using a simple two-stage near-lossless scheme

that ensures that each diamond is within a given maximum

value from the original filtered data. In contrast to other two

stage schemes from the signal processing literature [YP04],

we thus keep under strict control each level’s error, and not

only the finest level reconstruction, in order to avoid view-

dependent rendering artifacts.

In our two-stage scheme, we first compute a full wavelet
representation fine to coarse. We then produce a quantized
compressed representation in a diamond-by-diamond coarse
to fine pass that, at each step corrects the data reconstructed
from quantized values by adding a quantized residual. For a
diamond at level l, the residuals required for refinement are
thus computed as follows:

∆C̃
(l+1)
i j = Quantε(P

(C)
i j (P

(l)
) + H

(l)
i j −P

(C)
i j (P̃

(l)
)) (5)

C̃
(l+1)
i j = P

(C)
i j (P̃

(l)
) + ∆C̃

(l+1)
i j (6)

∆Ṽ
(l+1)
i j = Quantε(

P
(l)
i j − P̃i j

(l) − (1−αi j)(P
(V )
i j (C(l+1))−P

(V )
i j (C̃(l+1)))

αi j

) (7)

Ṽ
(l+1)
i j =

P̃i j
(l) − (1−αi j)(P

(V )
i j (C̃(l+1)))

αi j

+ ∆Ṽ
(l+1)
i j (8)

where Quantε(x) is a uniform quantizer with step size 2ε.

This scheme requires storage of two small square matrices of

residuals per diamond, which are maintained in a data repos-

itory indexed by diamond id. For a diamond of N2 vertices,

matrix ∆C̃ is of size (N − 1)2, while matrix ∆Ṽ is of size

(N − 2)2, since, due to BDAM diamond graph constraints,

c© The Eurographics Association and Blackwell Publishing 2006.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

all boundary values are kept constant (we use a point sam-

pling filter), and corrections are therefore implicitly null.

5. Out-of-core Construction of Massive Variable

Resolution Terrain Datasets

The off-line component of our method constructs a multires-

olution structure starting from a collection of input terrain

datasets, a required diamond size, and a required maximum

error tolerance.

Diamond graph construction. The first construction phase

– graph construction – generates a diamond DAG, whose

roots partition the input domain and whose leaves sample the

dataset at a finer or equal density to that of the input dataset.

The graph is constructed coarse to fine, by refining the di-

amond graph a diamond at a time until sample spacing is

sufficiently fine. This process makes it possible to efficiently

process variable resolution terrain datasets (see figure 4). In

our current implementation, the input dataset is described

by a hierarchy of layers, ordered by resolution, where each

layer contains a number of tiles. For graph construction, each

diamond provides the input dataset with the range of coor-

dinates it covers, and receives as a result the sample spacing

of the finest resolution tile contained in it. If this number is

smaller than the diamond’s sample spacing, the diamond is

refined.

Figure 4: Variable resolution input. Diamond graph roots partition

the input domain, while leaves leaves sample the dataset at a finer or

equal density to that of the input dataset. In this simple example of a

sparse input dataset covering emerged land, leafs are denser where

data exists (terrain area) and rapidly decrease density where there is

no data (blue area).

Fine to coarse filtering. Once the graph is constructed, it is

traversed fine to coarse to construct a filtered representation

by wavelet analysis (equations 1 and 2). For each filtered

diamond, we store in a out-of-core repository both the fil-

tered data P(l) and the detail coefficients H(l). Storing both

matrices per diamond allows us to locally have all the in-

formation required to compute the reference values in the

compression step. When sampling variable resolution input

datasets at leaf diamonds, a value is always returned from

the higher resolution tile that contains the query coordinate.

A null value (typically 0) is returned when data is missing.

An alternative approach would be to define transition areas

and return weighted averages in case of overlapping tiles.

Fine to coarse compression. Once the filtered data repos-

itory is created, the root diamond values are copied to the

output repository, and the diamond graph is then traversed

coarse to fine to generate the final compressed representa-

tion of residuals. At each visited diamond, the reconstructed

values of its parent diamonds are retrieved from a auxiliary

repository updated while compressing, while the filtered val-

ues are retrieved from the repository generated in the first

pass. Equations 5 to 8 are used to determine from this data

the reconstructed vertex values for the diamond, as well as

the residual matrices required to generate children. The rel-

evant temporary and output repository are then updated, and

the process continues until all diamonds are visited.

Boundary management. For non-global datasets, some of

the diamonds fall on a boundary and are therefore incom-

plete. This would lead, in general, to deal, during both filter-

ing and compression, not only with square coefficients ma-

trices, but also with triangular ones. To simplify processing,

we choose instead the approach of synthetically generating

missing data by a symmetric extension (mirroring along the

boundary). This data is only virtual, and will never be used

for rendering, since no patches will be generated for fully

out-of-bounds children.

Compressed data representation. The compression pro-

cess generates a set of square matrices of integer coefficients

that have to be compactly stored in the repository. These ma-

trices are expected to be sparse and mostly composed of very

small numbers. A number of efficient entropy coding meth-

ods for such matrices have been presented in the image com-

pression literature. For our work, we have adopted a very

simple storage scheme that, even though it is far from being

optimal, it has the advantage of being straightforward to im-

plement and extremely fast to decompress. In this scheme,

the matrix is interpreted as a quadtree and recursively tra-

versed in depth first order until a sub-matrix contains only

zeros or is smaller than 2×2 in size. A single bit per split is

used to encode the quadtree structure. At non-empty leaves,

the coefficients are mapped to positive integers and encoded

using a simple Elias gamma code [Eli75], in which a posi-

tive integer x is represented by: 1+⌊log
2

x⌋ in unary (that is,

⌊log
2

x⌋ 0-bits followed by a 1-bit), followed by the binary

representation of x without its most significant bit.

Out-of-core parallel construction. The whole construc-

tion process is inherently parallel, because the grain of the

individual diamond processing tasks is very fine and syn-

chronization is required only at the completion of each level.

In this solution, the main memory required for each worker

is that required for processing a single diamond, while the

coordinator simply needs to reserve enough memory for

holding out-of-sync requests in addition to the memory re-

quired to store the structure of the diamond graph, which is

orders of magnitude smaller than the input data, since each

diamond represents thousands of samples.

c© The Eurographics Association and Blackwell Publishing 2006.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

Managing multiple vertex attributes. Quite often, other

vertex attributes need to be mapped over geometry. In our

framework, we interpret these attributes as separate layers,

and assume that different repositories are created indepen-

dently for each of the attributes. For the moment, we just

support elevation, represented as a scalar value, and color,

represented in input as a RGB triple. For color compres-

sion, we map colors to the YCoCg-R color space [MS03]

to reduce correlation among components, and then compress

each component separately. Normals are neither stored in the

repository nor passed to the GPU, but directly computed on

demand by finite differences from elevation data.

6. Rendering a C-BDAM

Our adaptive rendering algorithm works on a standard PC,

and preprocessed data is assumed to be either locally stored

(in memory or on a secondary storage unit directly visible to

the rendering engine) or remotely stored on a network server

(see figure 5).

Figure 5: The rendering pipeline. The renderer accesses com-

pressed data through a data access layer that hides whether data is

local or remote.

Data layout and data access. The result of pre-processing

is stored in repositories that contain root diamond values

and residual matrices for each diamond. We assume that a

main repository contains elevation values, while an optional

secondary repository contain color values. The repositories

are required to cover the same domain and to use the same

diamond patch granularity but can be, and generally will

be, of different depth, as the original data is typically pro-

vided at different resolutions. Access to a data repository

is made through a data access layer, that hides from the

renderer whether data is local or remote. This layer inter-

nally uses memory mapping primitives for local data, and

a TCP/IP protocol for remote data. It makes it possible to

asynchronously move in-core a diamond’s associated data

by fetching it from the repository, to test whether a dia-

mond’s data is immediately available, and to move available

data to RAM.

Refinement algorithm. For the sake of interactivity the

multiresolution extraction process should be able to sup-

port a constant high frame rate, given the available time and

memory resources. This means that the algorithm must be

able to fulfill its task within a predetermined budget of time

and memory resources, always ending with a consistent re-

sult, or in other words, it must be interruptible. Our extrac-

tion method uses a time-critical variation of the dual-queue

refinement approach [DWS∗97] to maintain a current cut in

the diamond DAG by means of refinement and coarsening

operations. For this purpose we store the set of operations

that are feasible given the available budget and compatible

with the current cut, in two heaps: the CoarseningHeap and

the RefinementHeap, with a priority dictated by the screen

space error. The heaps are reinitialized at each frame, given

the current cut and the current view parameters. When ini-

tializing the refinement heap, only operations for which data

is immediately available are considered. In case of miss-

ing data, an asynchronous request is posted to the data ac-

cess layer, which will be responsible of fetching the needed

patches without blocking the extraction thread. The renderer

maintains in-core all nodes of the diamond graph above the

current cut, in a streamlined format suitable for communi-

cating with the GPU and for quickly evaluating visibility and

screen space error.

For each node, we maintain an object space error, the di-

amond corner information, links to parents and children, an

oriented bounding rectangle, and one set of fixed size ver-

tex arrays for each of its two patches. Each time a refine-

ment or coarsening operation is performed, the current cut

is updated. For coarsening, this simply amounts to freeing

the unreferenced memory, while for refinement children data

must be constructed, starting from current vertex data and

detail coefficients retrieved from the repositories, or, option-

ally, procedurally generated (see figure 6). In our current im-

plementation, all the decompression steps are performed on

the CPU. The fact that we are able to rapidly generate de-

tails is exploited to render scenes where color and elevation

are not available at the same resolution in the repository. In

that case, data is fetched from repository where available,

and generated otherwise. Moreover, the fact that coarsening

operations are basically no cost, is exploited to support non-

monotonic error metrics in a time-critical setting. To that

end, the extraction algorithm performs refinement operations

until the graph is locally optimal or a time-out occurs, while

coarsening has the role of a garbage collector and is per-

formed only once in a while to remove unneeded detail.

Elevation, colors, and normals When constructing a given

node, data is required for elevation, and optionally for color

and normals. Since our target is to render very small (pixel

sized) triangles, texture maps offer limited benefits, since

no attribute interpolation would be employed anyway. In

the most simple implementation, we have thus the option of

managing everything using per-vertex attributes. In addition,

since vertices are tightly packed, the normals required for

shading can be effectively computed at refinement time from

vertex elevation rather than managed in an external reposi-

tory. Consistently with BDAM diamond constraints, bound-

ary normals are kept fixed, while the others are computed by

central differences from elevation data. Communication with

c© The Eurographics Association and Blackwell Publishing 2006.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

Figure 6: Procedural Detail Synthesis. On the left, refinement

stops when no more data is available in the repository, i.e., when

reaching the input datasets original sampling density; on the right,

artificial detail is synthesized by generating procedural detail coeffi-

cients (in this case, simply a zero-centered uniform random number

less than 30% of triangle edge length for ∆V , and 0 for ∆C.

the GPU is made exclusively through a retained mode inter-

face, which reduces bus traffic by managing a least-recently-

used cache of patches maintained on-board as OpenGL Ver-

tex Buffer Object. GPU memory and bandwidth costs are fur-

ther reduced by compactly coding vertex data, and using ver-

tex shaders to perform decompression. All data is specified

in local (u,v) patch coordinates. Since we are using regu-

lar grids, (u,v) locations as well as triangle strip indices are

shared among all patches and stored only once in GPU mem-

ory. A single per patch 3-component vector stores elevation

h(u,v) and its derivatives dh/du and dh/du, from which po-

sitions and normals are computed on the GPU. In a texture-

less approach, a second optional vertex array stores color in

RGB8 format. A texture-based approach can provide a bet-

ter anisotropic filtering at the cost of higher implementation

complexity.

Figure 7: View-space error control. A distance based error met-

ric (left) is less efficient in distributing detail than a data dependent

measure based on projected diamond size (right).

View space and object space errors. As for other graph

based methods, the presented technique is not limited to us-

ing distance based LODs, but can employ configurable data-

dependent metrics. In the examples presented in this paper,

we use oriented bounding boxes as bounding volume primi-

tives, and we simply use the average triangle areas as a mea-

sure of object space error. Thanks to the computation of the

Linf error during compression, and, given the relatively mod-

est size of the diamond graph, the use of elaborate metrics at

run-time does not slow down the rendering process. Bound-

ing boxes are computed on-the-fly each time a diamond is

updated with a new patch during a refine. View space er-

rors are estimated by dividing the projected size of the box

on the screen by the number of triangles contained in a di-

amond. Using a such a data depended measures provides

higher quality results than the simple distance based tech-

niques that have to be employed in pyramidal schemes (see

figure 7).

7. Implementation and Results

An experimental software library and a rendering applica-

tion supporting the C-BDAM technique have been imple-

mented on Linux using C++ with OpenGL and NVIDIA

Cg. We have extensively tested our system with a number

of large terrain datasets. In this paper, we discuss the results

obtained on three terrain datasets with different characteris-

tics.

The main dataset is a the global reconstruction of

the planet Earth from SRTM data at 3 arcsec resolution

(one point every 90m at the Equator. Source: CGIAR

Consortium for Spatial Information. srtm.csi.cgiar.org).

The dataset is very large (29 billion samples) and provides

an example of variable resolution planetary data, as it

is described by a sparse set of tiles providing data only

for emerged land in the 66S-66N latitude range. The

two other models are local terrain datasets. The first one,

is the standard 265 million samples Puget Sound 10m

DTM dataset presented here for the sake of comparison

with previous work (source: USGS and Peter Lindstrom.

www.cc.gatech.edu/projects/large_models/ps.html). The

second one is a 67 million samples dataset covering the city

of Paris at 1sample/m, textured with an high resolution

872 million samples ortho-photo (source: ISTAR CityView

database. www.istar.com). The Paris elevation dataset is a

worst case situation, as it is a model derived by sampling

at 1m spacing a vector representation of building outlines,

and, as such contains lots of discontinuities. The texture is a

typical city-scale high resolution photograph, and is here to

demonstrate the ability to handle color information within

our framework.

Preprocessing. All the preprocessing tests were executed

on a single PC running Linux 2.6.15 with two Dual Core

AMD Opteron 1.8 GHz processors, 2 GB of RAM, SATA

10000 rpm 150 GB hard drive.

7EQTPI�� <=�7XIT 8SPIVERGI 8MQI 3YXTYX�7M^I FTW 6EXI

4YKIX�7SYRH ����1 ���Q ��Q�617 ���Q ����1& ���� ����

4YKIX�7SYRH ����1 ���Q ��Q�%1%< ���Q �����1& ���� ����

)EVXL�7681 ���+ ���Q ���Q�%1%< ���L����Q ������1& ���� ����

4EVMW ���1 ��Q ����Q�%1%< ��Q �����1& ���� ���

4EVMW�GSPSV ����1 �����Q�������%1%< ��L����Q ������1& ���� ����

Table 1: Numerical results for terrain preprocessing. Preprocess-

ing results for tests datasets.

Table 1 lists numerical results for our out-of-core prepro-

cessing method for the Puget Sound and the Earth datasets.

c© The Eurographics Association and Blackwell Publishing 2006.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

(a) SRTM 3arcsec Earth (Elevation: 29G samples (sparse); Color: 2D lookup-table indexed by latitude and elevation)

(b) Puget Sound 10m resolution (Elevation: 265M samples); Color: 1D lookup-table indexed by elevation)

(c) Paris (Elevation 67M samples; Color 872M samples)

Figure 8: Inspection sequences: selected frames. All images were recorded live on a AMD 1.8 GHz PC with 2 GB RAM and PCI Xpress

NVIDIA Geforce 7800GT graphics using pixel sized triangles.

We constructed all multiresolution structures with a pre-

scribed diamond dimension of 64 × 64 vertex side which

gives a good granularity for the multiresolution structure.

Each triangular patch is composed by 4K triangles. Prepro-

cessing time is quite equally subdivided into the filtering

and the encoding phases. In all the results here presented

we make use of four threads (one per CPU core), with a

speed-up of 3X with respect to the sequential version. The

sub-linear speed-up is due to the fact that time is domi-

nated by I/O operations on the input, temporary and out-

put files. We expect a performance increase when distribut-

ing them on multiple disks. Processing speed ranges from

260K to 450K input samples per second, more than 7 time

faster than P-BDAM [CGG∗03b]. This is because regular

grid filtering and compression is faster than general mesh

simplification. Still, processing speed is about 4 times slower

than 4-8 hierarchies[HDJ05], which, however, does not per-

form compression, and about 2 times slower than Geometry

Clipmaps [LH04], which, however, generates half the num-

ber of resolution levels.

Compression rates. The compression rates are presented in

table 1. The tolerances used for compressing were chosen to

provide near-lossless results. In the Puget Sound and in the

Paris dataset the chosen tolerances correspond to 1% percent

of the sample spacing, while in the Earth dataset the toler-

ance is 16m, which corresponds to the vertical accuracy of

the input dataset. For the color dataset, we imposed a max-

imum error tolerance of 10/255 per component, which is

comparable with the error introduced by the S3TC compres-

sion algorithm, commonly used in terrain rendering applica-

tions (see, e.g, [CGG∗03a]).

The three datasets have been preprocessed using maxi-

mum absolute error tolerance to drive the compression. For

the sake of comparison with previous work based on Geom-

etry Clipmaps [LH04], we also compressed the Puget Sound

dataset using RMS error control. In this case, our result of

0.28bps is comparable with a Geometry Clipmap [LH04]

representation of the same dataset (0.26bps), especially

since we provide the double of resolution levels. It is inter-

c© The Eurographics Association and Blackwell Publishing 2006.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

esting to note that the maximum error in this case goes up to

18m, showing the inherent lack of local control when using

a L2 norm to drive compression. When using a maximum er-

ror tolerance, the bit rate increases to 0.61bps, but all points

are guaranteed to be within 1m from the original.

The bit rate for planet Earth is even better (0.25bps), even

though compression rates are given considering the whole

amount of memory occupied by the stored dataset versus the

number of samples present in the leaves. The Earth dataset

is sampled in the poles area and over the sea, where there

is no input data, at the minimum resolution imposed by the

continuity constraints of the multiresolution structure. Sam-

pling rate in this variable resolution input test case varies

from 53m to 23Km, since our graph adapts to the sparseness

of the input grid. This way, compression rates appear worse

than what they would be when using a full resolution input

of constant elevation for flat areas.

To test the performance in an extreme case, we applied

our compressor to the Paris elevation dataset. The bit rate in-

creases to 1.80bps, which illustrates that the method works

much better for terrains which are locally smooth. Com-

pression results for the texture are similar, since texture in

this case is also dominated by very sharp boundaries, due

to buildings and their shadows. Nonetheless, the bit rate for

the Paris dataset is still considerably better than what re-

ported for uncompressed terrain representations, which are

typically at least one order of magnitude larger [LH04]. Han-

dling discontinuities, e.g., through adaptive lifting [PH01] or

a geometric bandelet approach [PM05], is a promising av-

enue of future work.

Adaptive rendering. The rendering tests were executed on

a medium end single PC running Linux 2.6.15 with single

AMD 1.8 GHz CPU, 2 GB of RAM, SATA 10000 RPM 150

GB hard drive and PCI Xpress NVIDIA Geforce 7800GT

graphics. These tests were performed with a window size of

1280x1024 and a target of pixel-sized triangles.

We evaluated the rendering performance of the technique

on a number of flythrough sequences on all the terrain

datasets, with a window size of 1280x1024 and a target

of pixel-sized triangles. The qualitative performance of our

adaptive renderer is illustrated in an accompanying video

that shows live recordings of flythrough sequence. The video

was recorded at 800x600 windows size due to recording

equipment constraints. The sessions were designed to be rep-

resentative of typical flythrough and to heavily stress the sys-

tem, and include abrupt rotations and rapid changes from

overall views to extreme close-ups. In addition to shading

the terrain, we apply a color, coming from an explicit color

channel (Paris dataset), a 1D look-up table indexed by ele-

vation (Puget Sound), or a 2D look-up table indexed by ele-

vation and latitude (Earth).

The average frame rates is around 90Hz, while the mini-

mum frame rate never goes below 60Hz using a 1280x1024

window. For all planar datasets, the average triangle through-

put is 130M∆/s, and its peak performance is 156M∆/s. In

the flythrough of planet Earth, we achieve a average per-

formance of 100M∆/s and a peak of 125M∆/s. The differ-

ence in performance between planar and spherical datasets

is due to the different complexity in vertex shaders, which

transforming the height information in a vertex position, and

compute also the normal values starting from tangent infor-

mation. These operations are simpler in the planar shader,

than in the spherical shader. Normal computation is the

most costly operation. With a simpler shader which com-

putes only position and no shading information the maxi-

mum reachable performance is 190M∆/s in both cases. This

increase in performance demonstrates that the technique is

GPU bound. Even in the current implementation, the triangle

rate is high enough to render over 4M∆/ f rame at interactive

rates. It is thus possible to use very small pixel thresholds,

effectively using pixel sized triangles, virtually eliminating

popping artifacts without the need to resort to geomorphing

techniques.

Network streaming. Some network tests have been per-

formed on all test models, on a ADSL 1.2Mbps connection

using the TCP/IP protocol to access the data. As illustrated

by the accompanying video, the rendering rate remains the

same as the local file version, only the asynchronous updates

arrive with increased latency due to the network connections.

Since only few diamonds per frame needs update, and dia-

mond data is extremely compressed, the flythrough quality

remains excellent.

8. Conclusions

We have described a compressed multiresolution represen-

tation for the management and interactive rendering of very

large planar and spherical terrain surfaces. Similarly to

BDAM, coarse grain refinement operations are associated to

regions in a bintree hierarchy. In the C-BDAM approach,

all patches share the same regular triangulation connectiv-

ity and incrementally encode their vertex attributes using

a quantized representation of the difference with respect to

values predicted from the coarser level. As illustrated by our

experimental result, the structure provides a number of prac-

tical benefits: overall geometric continuity for planar and

spherical domains, support for variable resolution inputdata,

management of multiple vertex attributes, efficient compres-

sion and reasonably fast construction times, ability to sup-

port maximum-error metrics, real-time decompression and

shaded rendering with configurable variable level-of-detail

extraction, as well as runtime detail synthesis.

The main take home message of this paper is that it is pos-

sible to combine the generality and adaptivity of batched dy-

namic adaptive meshes with the compression rates of nested

regular grid techniques. Although the current implementa-

tion already gives satisfactory results, which are state-of-

the-art both in terms of compression rates and of rendering

speed, there are still open issues that need to be investigated,

c© The Eurographics Association and Blackwell Publishing 2006.



Gobbetti, Marton, Cignoni, Di Benedetto, Ganovelli / C-BDAM

besides incremental improvements to the various filtering

and compression components, which have been chosen here

mostly because of simplicity. A first important avenue of

research is to determine whether it is possible to obtain in

practice a max-error approximation directly in a one-stage

wavelet approximation. A second important future work is

to improve treatment of discontinuities, verifying whether

current state-of-the-art adaptive techniques are fast enough

to be employed in a real-time application.

Acknowledgments. This research is partially supported by the

European projects CRIMSON (RTD contract SEC4-PR-011500)

and Epoch (NoE contract IST-2002- 507382).

References

[AG05] ALLIEZ P., GOTSMAN C.: Recent advances in compres-

sion of 3d meshes. In Advances in Multiresolution for Geomet-

ric Modelling (2005), N.A. Dodgson M.S. Floater M. S., (Ed.),

Springer. 3

[CGG∗03a] CIGNONI P., GANOVELLI F., GOBBETTI E.,

F.MARTON, PONCHIO F., SCOPIGNO R.: BDAM: Batched dy-

namic adaptive meshes for high performance terrain visualiza-

tion. Computer Graphics Forum 22, 3 (Sept. 2003), 505–514. 1,

2, 8

[CGG∗03b] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-

TON F., PONCHIO F., SCOPIGNO R.: Planet-sized batched

dynamic adaptive meshes (P-BDAM). In IEEE Visualization

(2003), pp. 147–154. 1, 2, 3, 8

[CGG∗05] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-

TON F., PONCHIO F., SCOPIGNO R.: Batched multi triangula-

tion. In Proceedings IEEE Visualization (October 2005), IEEE

Computer Society Press, pp. 207–214. 3

[DFMP97] DE FLORIANI L., MAGILLO P., PUPPO E.: Build-

ing and traversing a surface at variable resolution. In Proceed-

ings IEEE Visualization 97 (Phoenix, AZ (USA), October 1997),

pp. 103–110. 2

[DP02] DECORO C., PAJAROLA R.: Xfastmesh: fast view-

dependent meshing from external memory. In VIS ’02: Proceed-

ings of the conference on Visualization ’02 (Washington, DC,

USA, 2002), IEEE Computer Society, pp. 363–370. 2

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI D.,

MILLER M., ALDRICH C., MINEEV-WEINSTEIN M.: ROAM-

ing terrain: Real-time optimally adapting meshes. In Proceedings

IEEE Visualization ’97 (Oct. 1997), IEEE, pp. 81–88. 2, 6

[Eli75] ELIAS P.: Universal codeword sets and representations

of the integers. IEEE Trans. Inform. Theory 21, 2 (Mar. 1975),

194–203. 5

[HDJ04] HWA L. M., DUCHAINEAU M. A., JOY K. I.: Adaptive

4-8 texture hierarchies. In Proceedings of IEEE Visualization

2004 (Los Alamitos, CA, Oct. 2004), IEEE, Computer Society

Press, pp. 219–226. 3

[HDJ05] HWA L. M., DUCHAINEAU M. A., JOY K. I.: Real-

time optimal adaptation for planetary geometry and texture: 4-8

tile hierarchies. IEEE Transactions on Visualization and Com-

puter Graphics 11, 4 (2005), 355–368. 1, 2, 3, 8

[HM93] HITCHNER L. E., MCGREEVY M. W.: Methods for

user-based reduction of model complexity for virtual planetary

exploration. In Proc SPIE (1993), vol. 1913, pp. 622–636. 2

[Hop98] HOPPE H.: Smooth view-dependent level-of-detail con-

trol and its aplications to terrain rendering. In IEEE Visualization

’98 Conf. (1998), pp. 35–42. 2

[JDSB03] JR. R. L. C., DAVIS G. M., SWELDENS W., BARA-

NIUK R. G.: Nonlinear wavelet transforms for image coding via

lifting. IEEE Transactions on Image Processing 12, 12 (2003),

1449–1459. 4

[KS00] KOVACEVIC J., SWELDENS W.: Wavelet families of in-

creasing order in arbitrary dimensions. IEEE Transactions on

Image Processing 9, 3 (2000), 480–496. 4

[Lev02] LEVENBERG J.: Fast view-dependent level-of-detail ren-

dering using cached geometry. In Proceedings IEEE Visualiza-

tion ’02 (Oct 2002), IEEE, pp. 259–266. 2

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps: terrain

rendering using nested regular grids. ACM Trans. Graph 23, 3

(2004), 769–776. 1, 2, 3, 8, 9

[LKR∗96] LINDSTROM P., KOLLER D., RIBARSKY W.,

HODGES L., FAUST N., TURNER G.: Real-time, continuous

level of detail rendering of height fields. In Comp. Graph. Proc.,

Annual Conf. Series (SIGGRAPH 96), ACM Press (New Orleans,

LA, USA, Aug. 6-8 1996), pp. 109–118. 2

[LP01] LINDSTROM P., PASCUCCI V.: Visualization of large ter-

rains made easy. In Proc. IEEE Visualization 2001 (Oct. 2001),

IEEE Press, pp. 363–370, 574. 2

[LP02] LINDSTROM P., PASCUCCI V.: Terrain simplification

simplified: A general framework for view-dependent out-of-core

visualization. IEEE Transaction on Visualization and Computer

Graphics 8, 3 (2002), 239–254. 2

[MS03] MALAVAR H., SULLIVAN G.: YCoCg-R: A color space

with RGB reversibility and low dynamic range. In JVT ISO/IEC

MPEG ITU-T VCEG, no. JVT-I014r3. JVT, 2003. 6

[Paj98] PAJAROLA R.: Large scale terrain visualization using the

restricted quadtree triangulation. In Proceedings of Visualization

‘98 (1998), D. Elbert H. Hagen H. R., (Ed.), pp. 19–26. 2

[Paj02] PAJAROLA R.: Overview of Quadtree based Terrain tri-

angulation and Visualization. Tech. Rep. UCI-ICS TR 02-01,

Department of Information, Computer Science University of Cal-

ifornia, Irvine, Jan 2002. 2

[PH01] PIELLA G., HEIJMANS H. J. A. M.: An adaptive update

lifting scheme with perfect reconstruction. In ICIP (3) (2001),

pp. 190–193. 4, 9

[PM05] PEYRÉ G., MALLAT S.: Surface compression with ge-

ometric bandelets. ACM Trans. Graph 24, 3 (2005), 601–608.

9

[Pom00] POMERANZ A. A.: ROAM Using Surface Triangle Clus-

ters (RUSTiC). Master’s thesis, University of California at Davis,

2000. 2

[WMD∗04] WAHL R., MASSING M., DEGENER P., GUTHE M.,

KLEIN R.: Scalable compression and rendering of textured ter-

rain data. In Journal of WSCG (Plzen, Czech Republic, Feb.

2004), vol. 12, UNION Agency/Science Press. 2

[YP04] YEA S., PEARLMAN W. A.: A wavelet-based two-stage

near-lossless coder. In Proc. ICIP (2004), pp. 2503–2506. 4

c© The Eurographics Association and Blackwell Publishing 2006.


