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C-CROC: Continuous and Convex Resolution of

Centroidal dynamic trajectories for legged robots in

multi-contact scenarios
Pierre Fernbach, Steve Tonneau, Olivier Stasse, Senior Member, IEEE, Justin Carpentier, Member, IEEE, and

Michel Taı̈x

Abstract—Synthesizing legged locomotion requires planning
one or several steps ahead (literally): when and where, and with
which effector should the next contact(s) be created between
the robot and the environment? Validating a contact candidate
implies a minima the resolution of a slow, non-linear optimization
problem, to demonstrate that a Center Of Mass (CoM) trajectory,
compatible with the contact transition constraints, exists.

We propose a conservative reformulation of this trajectory gen-
eration problem as a convex 3D linear program, CROC (Convex
Resolution Of Centroidal dynamic trajectories). It results from
the observation that if the CoM trajectory is a polynomial with
only one free variable coefficient, the non-linearity of the problem
disappears. This has two consequences. On the positive side, in
terms of computation times CROC outperforms the state of the
art by at least one order of magnitude, and allows to consider
interactive applications (with a planning time roughly equal to
the motion time). On the negative side, in our experiments our
approach finds a majority of the feasible trajectories found by a
non-linear solver, but not all of them. Still, we demonstrate that
the solution space covered by CROC is large enough to achieve
the automated planning of a large variety of locomotion tasks
for different robots, demonstrated in simulation and on the real
HRP-2 robot, several of which were rarely seen before.

Another significant contribution is the introduction of a Bezier
curve representation of the problem, which guarantees that the
constraints of the CoM trajectory are verified continuously, and
not only at discrete points as traditionally done. This formulation
is lossless, and results in more robust trajectories. It is not
restricted to CROC, but could rather be integrated with any
method from the state of the art.

Index Terms—Multi contact locomotion, centroidal dynamics,
Humanoid robots, legged robots, motion planning

I. INTRODUCTION

THIS paper considers the issue of planning multi-contact

motions for legged robots in human environments.

The term “multi-contact motion” has been proposed to

distinguish the problem from the gaited locomotion one [1],

[2]. Gaited motions result from the contact interactions created

and broken periodically between the end effectors and a flat

terrain. The multi-contact problem is more general as it can

include non horizontal contacts, and is not restricted to a cyclic

strategy. This results in a combinatorial problem in the choice

of the contacts being created. It also requires a more complex
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Fig. 1: An instance of the transition feasibility problem: can

we guarantee that the contact sequence shown in this picture

can be used to produce a feasible motion for the robot? To

address this issue in this example we need to account for 9

different contact phases (including phases where the effector

is flying, as displayed in the fourth image).

formulation of the dynamics that govern the motion. This non-

linear problem remains open to this date.

One key issue of multi-contact locomotion consists in

choosing contact locations such that the contacts can be broken

or created at a given time without violating dynamic or

geometric constraints. To tackle this issue one option is to

embrace the non-linearity of the problem and simultaneously

optimize the contact locations and the motion of the robot [3]–

[6]. While the validity of the generated motions remains to

be demonstrated on real robots, the motions generated in

simulation are among the most impressive achieved.

Alternatively the problem can be decomposed into a se-

quence of smaller ones [7]–[11]. In this case, the computation

of a contact plan (the discrete list of contact positions along

the motion) is achieved prior to the motion generation. This

simplifies the problem but introduces the question of the

validity (feasibility) of the contact plan.

To further simplify the problem, both families of approaches

propose contributions that rely on a model-based approach

called the centroidal model, which only considers the dy-

namics of total linear and angular momenta of the system
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expressed around the Center of Mass of the robot, rather

than considering the entire whole-body dynamics. While being

of smaller dimension, this model introduces approximations

regarding the geometric constraints that lie on the robot, and

also regarding the angular momentum variation induced by

the motions of the rigid bodies that compose the robot. The

centroidal model is widely adopted because it allows for a

reduction in the dimension of the problem. Unfortunately the

centroidal dynamics is also non-linear. Computing trajectories

that satisfy the centroidal dynamics thus remains challenging

and time consuming.

The key idea of our work is to improve the resolution

of problems based on the centroidal model, by introducing

a conservative but convex reformulation of the centroidal

dynamics equations. For this purpose, we only consider a

subset of all the feasible center of mass trajectories, but the

trade-off is that (i) we are able to compute a trajectory in this

subset one order of magnitude faster than any state-of-the-art

approaches, (ii) we will always find it, while (iii) not requiring

any initial guess.

To derive this formulation, rather than considering the

centroidal dynamics in the general context of trajectory opti-

mization, we focus on what we call the transition feasibility

problem: given two states of the robot, can we guarantee that

there exists (or not) a dynamically and kinematically consistent

motion that connects these two states (see Figure 1)?

This problem is first relevant for the multi-contact planning

problem, which is our main target application. Our strategy

is to handle the combinatorial problem by determining as

fast as possible whether a set of potential contact candidates

allows for a feasible motion. If not, we can then proceed to

evaluate the next candidate until we find a relevant contact.

The transition feasibility problem also addresses the N-step

capturability problem [12]–[14]: given the current state of the

robot, determine whether it will be able to come to a stop

without falling in at most N steps (N ≥ 0). This issue is

very important to guarantee the safety of the robot and its

surroundings.

Recent contributions have proposed centroidal trajectory

generation methods that could theoretically be used to an-

swer the transition feasibility problem [15]–[17]. However,

because of the combinatorial aspect of contact planning, the

computational time required by these methods is too large

to exploit them in a trial-and-error approach to verify the

feasibility. Caron et al. recently proposed a computationally

efficient method [18], but its application range is restricted to

single-contact to single-contact transitions.

The works that are the closest to the present paper propose

a convex relaxation of the CoM constraints [19], [20]. The

method proposed in this paper is conservative rather than

approximate while being more computationally efficient.

A. Contributions

The main contribution is the formulation of a transition

feasibility criterion called CROC (Convex Resolution Of

Centroidal dynamic trajectories). Thanks to a conservative and

convex reformulation of the problem, the criterion is computed

in a fraction of the computational cost required by standard

non-linear solvers of state of the art. CROC guarantees that

the linear dynamics of the Center of Mass (CoM) is always

fufilled. It also improves the state of the art by proposing

relevant kinematic constraints on the CoM, although they are

only approximate.

Considering two states separated by at most one contact

creation and one contact break, CROC is able to test if

there exists a kinematically and dynamically valid motion that

connects these two states.

CROC also outputs a CoM trajectory that can be used

as a valuable initial guess by a non-conservative non-linear

solver to converge towards an optimal solution. Noticeably,

this formulation is, along with [21], one of the few able

to continuously guarantee that the computed trajectories

respect the centroidal dynamics constraints of the problem,

when other approaches require to discretize the trajectory and

check punctually the constraints [15]–[17].

We demonstrate the interest of CROC in the context of

the multi-contact planning problem, both in simulation and

on the real HRP-2 robot. CROC is integrated within an

automated contact-planning framework. Our experiments em-

pirically demonstrate that using CROC within a multi-contact

planning framework [22] results in a drastic improvement of

the success rates of the planner, effectively increasing it by

more than 70% points in the most challenging scenarios.

This paper is organized as follows. In section II, we recall

the formal definition of the problem. The main contribution

of the paper is presented in section III. We then introduce

our contact-planning framework and present our experimental

results in section V.

B. Situation of the contribution with respect to the authors

previous work

The present paper is an extension of an IROS conference

paper [23], where we have introduced a convex optimization

method to solve the transition feasibility problem. Our pre-

vious formulation, as others in the community, is limited by

the necessity to use of the double description method [24],

an unstable mean to compute the linear constraints that apply

to the problem [15], which allows for fast computations. As

for all existing methods, it also requires a discretization of the

solution trajectory, such that the constraints of the problem are

only checked at specific instants. This behavior is unsafe as

the trajectory between each discretization point is unchecked

and may not respect the constraints.

In this paper, we propose a new formulation of the problem

that removes the need for discretization of the CoM trajectory,

thus guaranteeing that the constraints are respected contin-

uously along the whole trajectory. Contrary to our previous

work, this formulation applies even when contacts are created

or broken along the trajectory. We advocate for the adoption of

this formulation for any centroidal generation method, convex

or not.

C. Outline of the paper

Sections II and III present important similarities with respect

to [23]. The novelty appears from section III-D, where we
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present a continuous formulation able to deal with contact

switching during the trajectory.

The other sections of the paper are also novel. These

novelties include the completion of our experimental frame-

work, which enables us to validate our method on several

experiments on the real robot. We also provide an empirical

analysis of the performances of our method with respect to a

state-of-the-art nonlinear solver, in terms of success rate and

computation times.

II. PROBLEM DEFINITION

We define the transition feasibility problem as follows.

Given two configurations of a robot; given the contact loca-

tions associated to these two configurations; given the position,

velocity and acceleration of the Center Of Mass (CoM) of the

robot at these two configurations; can we guarantee that there

exists a feasible motion that connects the two configurations?

A feasible motion should respect the kinematic constraints

of the robot, as well as the dynamics expressed at its CoM.

Depending on the use case, some constraints may be removed

(for instance if the end configuration is unknown, or if the

problem is simply to put the robot to a stop).

Thus, in this work we define the transition feasibility

problem with respect to the centroidal dynamics of a robot, as

now commonly done in the legged robotics community [25],

[16], [15]. In this section we provide some formal definitions

that are used in the rest of the paper.

A. Contact sequence and state

A legged motion can be discretized into a sequence of

contact phases. Each contact phase defines a number of

active contacts, and their locations remain constant during

the phase. Thus, each contact phase constrains kinematically

and dynamically the motion of the robot. Within a contact

sequence, each adjacent contact phase differs by exactly one

contact creation or removal (for instance when walking, the

contact sequence is gaited and alternates simple and double

support phases). The considered contact surfaces are assumed

to be rectangular (4 extreme points on each foot) for humanoid

robots, and punctual for quadrupedal robots.

We define a state x = (c, ċ, c̈) ∈ R
3 × R

3 × R
3 as the

triplet describing the CoM position, velocity and acceleration.

To indicate that a state is compatible with the dynamic and

kinematic constraints associated with a contact phase p ∈ N,

we use the superscript notation x{p} = (c{p}, ċ{p}, c̈{p}).

Given two states x
{p}
s and x

{q}
g with q ≥ p, the transition

feasibility problem consists in determining whether there ex-

ists a feasible trajectory c(t), t ∈ R
+ of duration T ∈ R

+,

which connects exactly x
{p}
s and x

{q}
g .

B. Centroidal dynamic constraints on c(t)

For a contact phase {p} of duration T , for any t ∈ [0, T ] the

centroidal dynamic constraints are given by the Newton-Euler

equations. These constraints form a convex cone (or polytope),

which can be expressed under two different formulations, the-

oretically equivalent [26]–[28], but really different in practice.

In this paper we present and discuss both formulations.

1) Equality constraint representation (or force formula-

tion): The Newton-Euler equations are:

[
m(c̈− g)

mc× (c̈− g) + L̇

]

=

[
I3 ... I3
p̂1 ... p̂nc

]

f (1)

Where :

• m is the total mass of the robot;

• nc is the number of contact points;

• pi ∈ R
3, 1 ≤ i ≤ nc is the location of the i-th contact

point; 1

• f =
[
f1, f2, ..., fnc

]T
∈ R

3nc is the stacked vector of

contact forces applied at each contact point;

• g =
[
0 0 −9.81

]T
is the gravity vector;

• L̇ ∈ R
3 is the time derivative of the angular momentum

(expressed at c).

• p̂i denotes the skew-symmetric matrix of pi.

The contact forces are further constrained to lie in their so-

called friction cone, which we conservatively linearize with

four generating rays. Thus f has the form f = Vβ, where

V ∈ R
3nc×4nc is the matrix containing the diagonally stacked

generating rays of the friction cone of each contact point and

β ∈ R
4nc+ is a variable.

This formulation has the disadvantage of introducing a large

number of variables associated to the contact forces (one

vector β for each instant where the constraints are verified).

2) Inequality constraint representation (or Double Descrip-

tion formulation): Because the set of admissible contact forces

is a polytope, it is possible to use an equivalent “face represen-

tation” of the constraints that applies both to the center of mass

and the angular momentum quantities. With this formulation,

the force variables disappear:

H

[
m(c̈− g)

mc× (c̈− g) + L̇

]

︸ ︷︷ ︸

w

≤ h (2)

where H and h are respectively a matrix and a vector defined

by the position of the contact points, their normal and their

friction coefficients. As this matrix and vector are uniquely

defined for a contact phase, we note them with the superscript

{p} for a contact phase p.

With this formulation, the dimension of the problem is

greatly reduced. However, the computation of the matrices

H{p} and h{p} is a non-trivial operation called the double

description method [24]. It is computationally expensive, and

subject to occasional failures.

In the following theoretical sections, we will use the in-

equality formulation because we believe our contribution is

more intuitive with this representation. In terms of implemen-

tation the equality formulation is more reliable but slower.

However we show that under our formulation the computation

times remain in the same order of magnitude with both

formulations.

1As commonly done, in the case of rectangular contacts (like most robot’s
feet) we define a contact point at each vertex of the rectangle.
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3) The dynamic constraints are not convex: Because of the

cross product between c and c̈ in the equations (1) and (2),

the constraints are bi-linear, leading to a non-convex problem

to solve.

C. Centroidal kinematic constraints on c(t)

Each active contact also introduces a kinematic constraint

on c(t), depending of the placement of the end-effectors of the

robot. We use a linear constraint formulation to represent this

constraint depending on the 6D positions of each active contact

frames. They give us a necessary but not sufficient condition

for the kinematic feasibility. We refer the reader to [29] for

the computation of these constraints. For a given contact phase

{p} this constraint can be expressed as :

K{p}c ≤ k{p} (3)

III. CONVEX FORMULATION OF THE TRANSITION

PROBLEM

Fig. 2: Example of an invalid solution found by a discretized

method. The red lines represent the constraints, wile the black

curve is the solution and the green dots are the discretization

points. All the discretization points satisfy the constraints

while the curve clearly violates them.

As previously proposed [23], in order to determine the

existence of a valid centroidal trajectory c(t), we formulate

the problem as a convex one by getting rid of the non-linear

constraints induced by the cross product operation c × c̈. To

achieve this we impose a conservative condition on c(t).

However, a significant contribution with respect to [23] and

other contributions is a continuous reformulation of the prob-

lem, which guarantees that the resulting trajectory is always

valid. Indeed, traditionally the constraints are only verified at

specific points of the trajectory, using a discretization step

that must be carefully calibrated to avoid an explosion in

the number of variables and constraints, while guaranteeing

that the constraints will not be violated in between. Figure 2

illustrates the violation of the constraints.

A. Reformulation of c(t) as a Bezier curve

Let us assume that c(t) is described by an arbitrary polyno-

mial of degree n of unknown duration T . In such case, without

loss of generality, c(t) is equivalently defined as a constrained

Bezier curve of the same degree n:

c(t) =
n∑

i=0

Bn
i (t/T )Pi (4)

where the Bn
i are the Bernstein polynomials and the Pi are

the control points.

With this formulation we can easily constrain the initial

or final positions, velocity or any other derivatives by setting

the value of the control points. To exactly connect two states

xs = (cs, ċs, c̈s) and xg = (cg, ċg, c̈g), we thus need at least

6 control points to ensure that the following constraints are

verified:

• P0 = cs and Pn = cg guarantee that the trajectory starts

and ends at the desired locations;

• P1 = ċsT
n

+ P0 and Pn−1 = Pn −
ċgT

n
guarantee that

the trajectory initial and final velocities are respected;

• P2 = c̈sT
2

n(n−1) + 2P1 −P0 and

Pn−2 =
c̈gT

2

n(n−1) + 2Pn−1 −Pn guarantee that the initial

and final accelerations are respected.

Depending on the considered problem, some constraints

on the boundary positions, velocities or accelerations can be

removed, without changing the validity of our approach. For

instance, if the objective is simply to put the robot to a stop,

the end velocities and accelerations can be set to zero, while

the end position is left unconstrained. We can also extend this

to any degree and add constraints on initial or final jerk or

higher derivatives and automatically compute the position of

the control points with a symbolic calculus script such as the

one that we provide at the url 2. We only need to compute the

equation of the control points once and for all so we do not

need to compute them at runtime. In the following equations,

we use a curve of degree 6 with the constraints on initial and

final position, velocity and acceleration as described above,

and the same reasoning applies to all cases.

B. Conservative reformulation of the transition problem

We now constrain c(t) to be a Bezier curve of degree n = 6.

This is a conservative approximation of the transition problem

as it does not cover the whole solution space.

As we already need 6 control points to ensure that we

connect exactly the two states, this leaves a free control point

P3 = y:

c(t,y) =
∑

i∈{0,1,2,4,5,6}

B6
i (t/T )Pi +B6

3(t/T )y (5)

In this case, y and T are the only variables of the problem.

For the time being, we fix T to a constant value. We derive

twice to obtain c̈(t), and compute the cross product to get the

expression of w(t) :

w(t) =

[
m(c̈− g)

mc× (c̈− g) + L̇

]

(6)

2http://stevetonneau.fr/files/publications/iros18/derivate.py
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The non-convexity of the problem disappears, because the

cross product of y by itself is 0, and all other terms are

either constant or linear in y. w(t,y) is thus a six-dimensional

Bezier curve of degree 2n − 3 [30] (9 in this case) linearly

dependent of y:

w(t,y) =
∑

i∈{0..9}

B9
i (t/T )Pwi(y) + L̇(t) (7)

where Pwi(y) ∈ R
6 are the control points of w(t,y)

expressed as :

Pwi(y) = P
y
wiy +Ps

wi (8)

The P
y
wi ∈ R

6×3 and Ps
wi ∈ R

6 are constants that only

depend on the control points Pi of c(t,y) and of T .

In what follows, for the sake of simplicity, we assume

L̇(t) = 0. This is not a limitation: if we express L̇(t) as

a polynomial in the problem the following reasoning stands.

One way to include L̇(t) is to represent it as a Bezier curve

with one or more free variables. However guaranteeing that we

can generate a whole-body motion that tracks a variable L̇(t)
requires additional information on the whole-body motion,

which we leave as future work [16], [31], [32].

The existence of a valid trajectory c(t) can thus be

determined by solving a convex problem.

C. Application for a motion with no contact switch

We first consider the case where p = q = 1.

1) Discrete formulation: Using a discretization step ∆t, we

discretize c(t,y) and w(t,y) over T as follows:

c(j∆t,y) = c
y
jy + csj

w(j∆t,y) = w
y
jy +ws

j

(9)

Where c
y
j , csj , w

y
j and ws

j are constants given by

P{0,1,2,4,5,6}, the total duration T and the time step j∆t. j
belongs to the phase set J{p} : {j ∈ N : 0 ≤ j∆t ≤ T {p}}.

Given these expressions, we can replace w(t) in (2) by its

value at each discretization point j∆t:

H{p}w
y
jy ≤ h{p} −H{p}ws

j (10)

By proceeding similarly for the kinematic constraint (3), we

can formulate the following linear feasibility problem (FP) in

3 dimensions:

find y

s. t.

[
K{p}c

y
j

H{p}w
y
j

]

︸ ︷︷ ︸

E
{p}
j

y ≤

[
k{p} −K{p}csj
h{p} −H{p}ws

j

]

︸ ︷︷ ︸

e
{p}
j

∀j ∈ J{p}

(11)

With this discrete formulation the number of constraints in

the problem is proportional to the number of discretization

points. Moreover, the constraints are verified only at the

discretization points, which leaves a risk that a part of the

solution trajectory between two discretization points does not

satisfy the constraints of the problem (Figure 2). Choosing the

Fig. 3: A bezier curve is comprised in the convex hull of its

control points. In this abstract view, the red polygon represents

the 6D constraints on w(t). If the control points Pwi of w(t)
satisfy the constraints, then the complete curve satisfies the

constraints.

number of discretization steps is thus a compromise between

the computation time (which depends on the number of

constraints) and the risk of finding a solution partially invalid.

This is a well-known issue when relying on discretization

methods.

2) Continuous formulation: Alternatively, in [23] we pro-

posed a continuous formulation of this problem, only valid

for the case where no contact transition occurs. We recall

this formulation below as it is fundamental for the following

section.

Using the fact that a Bezier curve is comprised in the convex

hull of its control points, the main idea of this formulation is to

express the kinematic constraints (3) on the control points Pi

of c(t,y) and the dynamic constraints (2) on the control points

Pwi(y) of w(t,y) (see Figure 3). Constraining the control

points of w(t,y) to satisfy the constraints of the trajectory

is a priori a conservative approach that further constrains the

solution space (we will see that this limitation can be easily

overcome). However, this approach allows for a continuous

solution to the problem and guarantees that the trajectory is

entirely valid.

Assuming that the start and goal states are feasible (oth-

erwise the problem has no solution), for the kinematic con-

straints we only need to find a y that satisfies the constraints.

For the dynamic constraints all the control points Pwi(y)
must satisfy the equation (2), given the expression (8) we can

express the dynamic constraints as follow:

H{p}P
y
wiy ≤ h{p} −H{p}Ps

wi, ∀i ∈ [0, 2n− 3] (12)

Finally, we can reformulate the discretized Linear Feasibil-

ity Problem (11) in a continuous fashion:

find y

s. t. K{p}y ≤ k{p}

H{p}P
y
wiy ≤ h{p} −H{p}Ps

wi , ∀i

(13)

In this case, the whole trajectory necessarily satisfies the

constraints everywhere, as they form a convex set.
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D. Application to a motion with one contact switch

We now consider the case where q = p+1. In this case we

define T {p} and T {q} as the time spent in each phase, such

that T = T {p} + T {q}.

When a contact switch occurs during a motion, the con-

straints applied to the CoM trajectory change at the switching

time t = T {p}. When t < T {p}, the constraints of phase

{p} must be applied and conversely, the constraints of phase

{q} must be applied and when t > T {p}. At t = T {p}, the

constraints of both phases must be applied.

1) Discrete formulation: Adapting the discretized FP (11)

to this case is straightforward: the formulation remains the

same, with the only difference that the constraints that must

be verified at each discretized point change at t = T {p} and

t > T {p}. We thus have 3 sets of constraints in this case:

one for each of the two phases, plus one for the transition

time t = T {p} where the constraints of both phases apply. We

define J{q} : {j ∈ N, T {q−1} ≤ j∆t ≤ T {q}} and obtain the

following FP:

find y

s. t. E
{z}
j y ≤ e

{z}
j , ∀j ∈ J{z}, ∀z ∈ {p, q}

(14)

2) Continuous formulation: In this case, since w(t) spans

2 distinct sets of linear inequalities, the convex hull of its

control points is not guaranteed to lie in the constraint set.

The key idea, unlike Lengagne et al. [21], is to fall back

to the case where no contact switch occurs, by considering

two curves that continuously connect at the switching time

T {p}. A similar approach has been proposed before, in the

context of UAVs [33], with the difference that in our case the

continuity of the trajectory is guaranteed by the De Casteljau

decomposition algorithm. This algorithm divides the original

curve into two curves c(t,y), each curve being subject to the

constraints of their respective contact phase (see Figure 4).

The result is thus the expression of the control points of two

Bezier curves c{p}(t,y) and c{q}(t,y) with the same degree

as the original curve, such that :

{

c{p}(t,y) = c(t,y) ∀t ∈ [0;T {p}]

c{q}(t,y) = c(t,y) ∀t ∈ [T {p};T ]
(15)

The De Casteljau decomposition guarantees that

c{p}(T
{p},y) = c{q}(T

{p},y), and that the composition of

the curves in infinitely differentiable (C∞), as it is strictly

equivalent to c(t,y). The control points of the new curves

are linearly dependent on the control points of the original

un-split curve, and thus have the following form:

c{z}(t,y) =

n∑

i=0

Bn
i (t/T

{z})P
{z}
i (y) ∀z ∈ {p, q} (16)

where the P
{z}
i (y) have the form:

P
{z}
i (y) = P

y{z}
i y +P

s{z}
i (17)

with P
y{z}
i and P

s{z}
i constants.

Fig. 4: Example of curve decomposition with the De Casteljau

algorithm. The original curve comprises 3 control points

(black). It is decomposed into two curves comprising the same

number of control points each (3). We can then constrain the

control points of the first curve (red) to lie in the first set of

constraints, and similarly constrain the control points of the

second curve (green) to lie in the second set of constraints.

As a result, if the constraints can be satisfied, the connecting

control point of both curves satisfies both set of constraints,

and we obtain the guarantee that each sub-curve satisfies its

respective set of constraints. Interestingly, the control points

of the sub-curves are constrained to belong to their respective

cones, but those of the original curve can lie outside of the

constraints.

It follows that w{p}(t,y) and w{q}(t,y) are also linearly

dependent of y:

w{z}(t,y) =

2n−3∑

j=0

B2n−3
j (t/T {z})P

{z}
wj (y)

with P
{z}
wj (y) = P

y{z}
wj y +P

s{z}
wj , ∀z ∈ {p, q}

(18)

Finally the constraints of (13) can be rewritten to deal with

the contact switches. The kinematic constraints expressed at

each control points are written:

K{z}P
y{z}
i

︸ ︷︷ ︸

A
{z}
i

y ≤ k{z} +K{z}P
s{z}
i

︸ ︷︷ ︸

a
{z}
i

, ∀i, ∀z ∈ {p, q} (19)

and the dynamic constraints:

(H{z}P
y{z}
wj

︸ ︷︷ ︸

D
{z}
j

y ≤ h{z} −H{z}P
s{z}
wj

︸ ︷︷ ︸

d
{z}
j

,

∀j, ∀z ∈ {p, q}

(20)

We can then stack the constraints:
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A =














A
{p}
0
...

A
{p}
n

A
{q}
0
...

A
{q}
n














a =














a
{p}
0
...

a
{p}
n

a
{q}
0
...

a
{q}
n














D =














D
{p}
0
...

D
{p}
2n−3

D
{q}
0
...

D
{q}
2n−3














d =














d
{p}
0
...

d
{p}
2n−3

d
{q}
0
...

d
{q}
2n−3














(21)

We recall that in our case n = 6. Finally, we can rewrite

FP (13) with a contact switch as:

find y

s. t. Ay ≤ a

Dy ≤ d

(22)

This boils down to check if each control point of each split

curve satisfies the constraints of the current contact phase.

E. General case

In the general case, the same idea will apply. In the contin-

uous case, we use the De Casteljau algorithm to split c(t) into

as many curves as required, thus falling back to a formulation

with no contact switches. In the discrete case, we assign

the appropriate constraints for each discretized time step.

While these decompositions appear mathematically heavy,

from a programming point of view, they can be automatically

generated, and thus are in fact simple to implement.

In our experiments, we only consider three consecutive

phases (which correspond to one step), and solve a new

problem for each subsequent set of phases. We call one such

convex problem “CROC”, which stands for Convex Resolution

Of Centroidal dynamic trajectories.

F. Non-conservative continuous formulation

The presented continuous formulation is more conservative

than the discretized one. Constraining the control points to lie

inside the constraint set prevents from the generation of curves

such as the one illustrated in Figure 5.

However, by relying on the De Casteljau algorithm, it is

possible to continuously satisfy the constraints while consid-

ering control points outside of the constraint set. Indeed when

a curve is split, the constraints no longer apply to the control

points of the original curve, but to the control points of the

sub-curves. This is illustrated in Figure 4. If the curve is split

an infinite number of times, it is straightforward to see that

the original curve can span entirely its original definition set

as the position of the control points converge to the original

curve as the number of split increase.

The price to pay is that the number of constraints increases

with the number of curve splittings: a curve of degree s split

b times comprises (s + 1) ∗ (b + 1) constraints. The higher

the number of splits is, more the number of constraints to

address increases. A parallel can be made with the discretized

approach: the lower the discretization step is, the higher the

number of constraints is.

Fig. 5: The curve w(t) belongs entirely to the convex bound-

aries (red), while a control point Pw1 lies outside of them.

We believe that a deeper analysis of the pros and cons of

using a continuous formulation, not only in the case of CROC,

but with any other formulation of the problem, requires a

significant amount of research, and thus will be discussed in

a future work. In this paper, we only divide the curve at the

transition points, and we show in our experiments that this

is already sufficient to perform similarly to the discretized

approaches, while ensuring comparable time performances.

G. Cost function and additional constraints

As the transition feasibility problem is addressed by CROC,

a feasible CoM trajectory is computed. It is possible to

optimize this trajectory to minimize a given cost function l(y),
either linear or quadratic. In the latter case the FP problem (22)

then becomes a Quadratic Program (QP). One can for instance

minimize the integral of the squared acceleration norm or the

angular momentum. This cost function is irrelevant to solve

the transition feasibility problem, but it can be later used as a

reference CoM trajectory for a whole-body motion generator,

or as an initial guess for a nonlinear solver as discussed in

Section IV-F.

The formulation also allows to add inequality constraints

on c and any of its derivatives by rewriting the expression of

the control points of the desired curve as done in equation

(17). Here again, these constraints can either be verified con-

tinuously on the concerned control points, or in a discretized

fashion. In any case, they take the form:

Oy ≤ o (23)

We use such constraints to impose bounds on the velocity

and acceleration of the center of mass or on the angular

momentum variation. The most generic form of our continuous

problem is thus the following QP:

find y

min l(y)

s. t. Ay ≤ a

Dy ≤ d

Oy ≤ o

(24)

In our experiments we set constraints on the acceleration

and velocity and minimize the squared acceleration norm as

a cost l. In the remainder of the paper “CROC” refers to

this generic QP. If nothing is specified, by default CROC
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refers to the continuous formulation and with the inequalities

representation of the dynamic constraints, as in the QP (24).

H. Time sampling

In the previous sections, in order to remain convex when

computing w(t) (equation (6)) we assumed that the duration

of each phase T {p}, T {p+1} and T {p+2} was given.

Time can be reintroduced in the problem using a bi-level

optimization approach [34]. However, in this work we choose a

more pragmatic offline-sampling approach to compute relevant

timing candidates, which turns out to be lossless among all of

our experiment set.

To achieve this, we consider a large variety of instances

of the transition problem. We first consider all the scenarios

demonstrated in Section V-C (for HRP-2 and HyQ), from

which we extract instances of the transition problem. We

secondly generate random scenarios (Figure 7). We randomly

allocate initial and end velocities for the center of mass along

the direction of motion, between 0 and 1.5 m.s−1.

For a total of 10 000 instances of the transition problem, we

sample various combinations of times, solve the corresponding

QPs and check whether a solution is found. In theory, this

would mean that we need to sample an infinity of time com-

binations in order to be complete. However, we pragmatically

reduce this number and give up on the completeness while

maintaining a high success rate as follows: we sampled a time

for each duration phase T {z} by choosing a value between

0.1 and 2 seconds for phases without end-effector motion

and between 0.5 and 2 seconds for phases with end-effector

motion, with increments of 50ms. For a sequence of three

phases with one phase with end-effector motion, this gives a

total of 43320 possible combinations. We tested CROC with all

these combinations on various problems : with HRP-2 or HyQ

robots on flat and non-coplanar surfaces, for several thousands

of states.

Upon analysis of the results of the convergence of the

QPs, we found out that we can use a small list of timings

combinations (5 in our case, shown in table I) that covers

100% of the success cases for all the robots and scenarios

tested. We thus solve a maximum of 5 QPs for each validation.

Figure 6 shows the evolution of the success rate according to

the number of timings combinations used. We observe that 3

combinations are enough to reach 99% of success but that two

additional combinations are required to reach exactly 100%.

The number 100% may appear large. Intuitively however, it

seems to highlight the fact that the accuracy of the transition

times are not that important for the considered feasibility

problem. Indeed T {p} constrains the CoM trajectory to lie

in the intersection of two contact phase constraints at this

precise time. However this intersection is in general of a

significant volume. As a result the CoM trajectory will belong

to the intersection for a large time window, which results in a

significant slack in the selection of time.

We recall that here, we are only concerned in finding

feasible times. For instance, typical double support times when

walking on flat ground are closer to 0.2 seconds than 1 second

for T {p} in dynamical cases. However 0.2 seconds is not

Fig. 6: Evolution of the success rate of CROC according to

the number of timings combinations used. Tested on various

scenarios with coplanar and non-coplanar contacts and with a

bipedal and a quadrupedal robots.

feasible when starting from a null velocity. In both cases the

interval between 0.8 and 1.2 seconds is almost always feasible

in our experiments, which explains why such timings were

selected for T {p}. As such, table I should not be considered

as a table giving optimal contact time durations, but rather one

maximizing feasibility over our set of problems.

timings (s)
Success rate (%)

T
{p}

T
{p+1}

T
{p+2}

1 0.8 0.8 91.2
1 0.75 0.9 89.2

0.8 0.8 0.9 88.3
0.7 0.5 0.85 77.7
1.2 0.6 1.1 70.8

TABLE I: Success rate with the five used timings combina-

tions.

IV. PERFORMANCES OF CROC

A. CROC vs a nonlinear solver

Computing the success rate of our method is a hard task

because we do not have any way to determine the “ground

truth” feasibility of a transition (ie. there does not exist any

method able to determine in finite time whether there exists a

valid centroidal trajectory between the two states). We choose

to compare the relative success rate of CROC with respect to

a state-of-the-art non-linear formulation of the same problem

[15], which is reported to give similar results to the one from

Ponton et al. [19].

Both approaches share similar formulations in terms of

kinematic constraints. Conversely the nonlinear solver does

not use the conservative formulation of CROC that makes the

problem convex, and thus is able to explore a larger part of

the solution space, and thus to find a “more optimal” solution

of a given locomotion problem.

B. Comparison benchmarks

The scenarios used in our benchmarks consist of randomly

generated sequences of 3 contact phases such that:

• both initial and final contact phases are in static equilib-

rium
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• both initial and final contact phases have the same effec-

tors in contact, between two and four

• there is exactly one contact repositioning between both

initial and final contact phases and no other contact

variation

• the intermediate contact phase is not required to be in

static equilibrium.

These benchmarks thus consider the case of a “reposition-

ing” of an end-effector, which encompasses the only two other

possible cases, creating a contact or breaking a contact (section

III-E).

For this benchmark we considered two kind of scenarios.

In the first case, we only sample contact phases with coplanar

contacts. In the second case, we sample truly random contacts,

which lead to contact phases with non-coplanar contacts and

contact sequences that require complex motions. Examples of

randomly generated scenarios are shown in Figure 7.

All the benchmarks were run on a single core of an Intel

Xeon CPU E5-1630 v3 at 3.7Ghz. The QP problems are solved

with QuadProg, and the FP problems with GLPK [35].

(a) Unfeasible (b) Feasible (c) Feasible (d) Feasible

Fig. 7: Examples of random contact transitions used for

benchmarking. Top row: initial configuration, bottom row:

final configuration. (a) and (b) only have both feet in contact,

(c) and (d) have both feet and the left hand in contact. All

the displayed configurations are in static equilibrium, but the

intermediate configuration with one less contact (not shown)

is not constrained to be in static equilibrium. None of the

methods found a solution for the transition (a), the other

transitions were successfully solved.

The first benchmark compares four different methods: both

discrete3 and continuous formulation of CROC presented in

this paper (using the inequality representation of the con-

straints), the nonlinear resolution proposed in [15] and the

same nonlinear method but initialized with the solution found

by CROC when available. As we compare the relative success

rate between the methods, we only consider the scenarios

where at least one of the method finds a solution when

computing the percentage of success. The results are shown

in table II.

3with 7 discretization points per contact phases, which corresponds to a
time step of approximately 100ms.

Method
Coplanar

success (%)
Non-coplanar

success (%)
Total
time (ms)

CROC (discrete) 89.7 60.6 3.89
CROC (continuous) 88.4 57.2 3.93

Non-linear 100 94.1 ≃ 150
N-L with init guess 100 100 ≃ 130

TABLE II: Comparison between CROC and a non linear solver

for randomly generated contact sequences of three contact

phases. The two first methods are the ones presented in this

paper, with either the discrete3 or continuous formulation and

using the inequality representation of the dynamic constraints.

These methods are compared with the non linear solver

presented in [15], either with their naive initial guess (Non-

linear) or with the solution found by CROC as an initial guess

when available (N-L with init guess). The percentages on the

”success” columns only consider the scenario where at least

one method found a solution.

C. How conservative is CROC?

Because of its conservative reformulation, CROC does not

cover the whole solution space. As expected, our method

finds less solutions than the nonlinear solver. In the coplanar

case, CROC almost finds 90% of the solutions. In the non-

coplanar case, the centroidal trajectory may be required to

present several inflexion points and/or to be really close of

the constraints, which cannot be represented using a single

variable control point for the trajectory. This explains the

difference of success rates between the two cases. However,

even in such complex cases CROC still finds around 60% of

the solutions.

While 60% might appear as a low number, it is important

to consider that it corresponds to truly random scenarios. The

question of determining how interesting are the remaining 40%
of solutions is left for future work. An important take-away

message is that in the realistic scenarios considered in this

paper (such as stair climbing or uneven terrains), CROC covers

enough of the solution space to allow to find a solution.

D. Computation time

As claimed in the introduction, CROC is about two order of

magnitude faster than a state-of-the art nonlinear solver for the

centroidal motion generation. For the inequality representation

with the double description method, the computation time

allocated to solve the QP of equation (24) is extremely fast

with 50µs on average. The computation time of CROC, which

comprises the time required to solve the QP and the time

required to compute all the constraints matrices of equation

(21) is around 400µs. The total time in table II also includes

the time required by the double description method. However,

in some cases the same contact phases may be used several

times and the double description method only needs to be

computed once per contact phase, thus the time required for

the double description may be factorized.

1) Comparison with the equality representation: Table III

shows the difference in computation time between the in-

equality and equality formulation, with a varying number of

contacts.
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Formulation Metric Number of contacts
2 3 4

Double-
Description

DD time (ms)
Total time (ms)

3.52 14.88 28.16
3.93 16.18 37.41

Force Total time (ms) 13.01 25.28 49.65

TABLE III: Comparison between the computation times re-

quired to generate and solve the FP4 defined by CROC using

either the Double Description (DD) or the Force formulation.

The major difference between the two representations lies

in the dimension of the variables and the constraints of the

problem, which is greater in the case of the force formulation.

As shown in Table III the computation times between the

double description and the force formulations remain in the

same order of magnitude for 2 to 4 contacts, with an advantage

for the double description. However this advantage reduces as

the number of contacts increase. Indeed, while the computation

time for the force formulation doubles at each additional

contact, the time grows cubicly with the Double Description

(DD) formulation.

E. Comparing the continuous and discretized formulations

The results of Table II confirm that the continuous formu-

lation presented in section III-C2 is conservative with respect

to the discrete formulation. However, these results show only

a marginal difference of success rate between the discrete and

continuous formulation of CROC (1 − 4%). This can first be

explained by the fact that the De Casteljau decomposition

allows for the control point y to lie outside of the constraints

(Figure 4), thus making the method less restrictive. We propose

a second explanation, which is only intuitive (thus not a claim):

the remaining missing solutions are necessarily those that will

result in the curve lying close to the constraint boundaries.

The discretized approach will theoretically find them, but

the chances of finding a trajectory partially outside of the

constraint sets are much higher in this case (Figure 2).

Moreover, in section III-D2 we proposed to only split the

trajectory in one curve for each contact phases but it is possible

to split the trajectory in an arbitrary number of curves, as long

as each curve is entirely contained in one contact phases, as

detailed in section III-F. By increasing the number of split

curves, we can further reduce the loss of solutions.

1) Invalid solutions of the discretized methods: Again, the

major drawback of a discretized approach is that the portions

of the curve in-between two discretization points are never

checked and could violate the constraints (Figure 2).

In order to measure this risk four variants of CROC were

compared with the same randomly generated contact sequence

as before: the discretized version with three different values of

number of discretization points per phases and the continuous

version presented in this paper. The four variants use the

inequality representation of the dynamic constraints. Then, for

each centroidal trajectory found as a solution, the dynamic

4QP and FP give similar times for the DD formulation, while the FP is
much more efficient in the Force formulation. This is only an implementation
problem, since GLPK exploits the sparsity of the problem while QuadProg
does not.

constraints were verified with a really small discretization step.

If the constraints were not satisfied for at least one point of

the trajectory, we count this solution as ”invalid”.

Method
Invalid solutions (%) Computation

time (ms)Coplanar Non-coplanar

Discrete (3 pts) 10.6 19.7 0.20
Discrete (7 pts) 6.7 9.3 0.37
Discrete (15 pts) 4.2 6.9 0.75

Continuous 0 0 0.41

TABLE IV: Comparison between the method CROC with the

discrete formulation, with varying number of discretization

points, and the continuous formulation presented in this paper.

Table IV shows that the percentage of invalid solutions

found by the discrete methods is non negligible. Obviously,

as the number of discretization points increase this percentage

decreases. As shown in equation (11) the number of constraints

in the discretized LP problem is proportional to the number of

discretization points. Thus the number of discretization points

used is a complex parameter to tune, as it is a compromise

between the computation time and the risk of finding invalid

solutions. This issue is common to all methods that rely on

discretization. It emphasizes the fact that we need a continuous

method, able to check exactly whether the whole trajectory is

valid with a fixed number of constraints in the problem.

2) Computational advantage of the continuous formulation:

Depending on the discretization, the continuous formulation

can be slower or faster to compute. However, to reach less

than 5 % of false positive trajectories with the discretized

approach, table IV shows that the continuous formulation is

actually faster.

F. Using CROC to initialize a non linear solver

Choosing an initial guess for the nonlinear solver of a tra-

jectory generation method is essential but may be challenging

for multi-contact motions. The quality of this initial guess has

a significant influence on the convergence of the nonlinear

solver. For the nonlinear method considered in this section

[15] proposed a naive initial guess of the centroidal trajectory

based solely on the position of the contact points.

Interestingly, Table II suggests that the solution set spanned

by CROC is not strictly included in the one spanned by

this nonlinear solver with this naive initial guess. Using the

solution of CROC to initialize the nonlinear solver can thus

help it to converge and increase its success rate. As shown

in Table II, this improvement only appears for the non-

coplanar case because the naive initial guess used is always

close to a valid solution in the coplanar case. We expect that

the importance of the initial guess will grow if the contact

sequences do not allow static equilibrium configurations at the

contact phases, and will check this hypothesis in the future.

Moreover, by using the solution of CROC to initialize the

nonlinear solver we measured a reduction of the number of

iterations required to converge of 20% on average, reducing

the total computation time (ie. it is faster to use CROC and

then the non-linear solver than using the non-linear solver

directly).
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Fig. 8: Complete experimental framework.

V. EXPERIMENTAL RESULTS

A. Application to multi-contact planning

We test CROC in the context of multi-contact locomotion

and evaluate its impact on the success rate of a previously

published multi-contact planner. This planner follows the

decoupled approach, where the issue of planning the contact

locations is decoupled from the generation of a motion [36].

The decomposition results into four sub-problems solved se-

quentially, under a “divide and conquer” strategy:

• P1 the planning of a trajectory for the root of the robot,

• P2 the generation of a discrete contact sequence along

the root’s trajectory,

• P3 the optimization of the centroidal trajectory of the

robot over the whole contact sequence,

• P4 the generation of a whole-body motion from this

contact sequence and centroidal trajectory.

Figure 8 shows the complete architecture used for our

experiments, implemented in the Humanoid Path Planner

[37] framework. The inputs are an initial (respectively goal)

position and orientation for the root of the robot, as well as a

set of bounds on the velocities and acceleration applying to the

CoM and the end-effector, and a complete representation of the

3D environment. The output is a dynamically consistent and

collision free whole-body motion which can be executed by a

real robot as shown in section V-C. This framework is open-

source and we refer the interested reader to its documentation
5 for more details.

The decoupling between each sub-problem allows to break

the complexity, but comes with a cost that is the introduction

of a feasibility problem: each sub-problem must be solved in

the feasibility domain of the next sub-problems: ie. there must

exist a sequence of contacts (problem P2) that can follow the

root’s trajectory found (solution of P1), and similarly there

must exist a feasible whole-body motion (problem P3) from

the computed contact sequence (solution of P2). The latter

5https://github.com/loco-3d/multicontact-locomotion-planning

Fig. 9: Example of centroidal trajectories generated with

CROC and a nonlinear solver (bird eye view), in a case

of bipedal walking. The red and green circles represent the

contact positions of the (respectively) left and right feet centers

over time. The red and yellow (respectively related to single

and double support phases) curve is the curve obtained through

the concatenation of curves computed with CROC. The blue

and green (respectively related to single and double support

phases) curve is obtained through optimization of the latter

curve with a nonlinear solver. The orange circles represent the

constrained COM positions resulting from the contact planning

phase, which are ignored by the nonlinear solver to produce

smoother motions.

problem is an instance of the transition feasibility problem

addressed in this paper (the former was considered in [22]).

B. CROC as a feasibility criterion during contact planning

In this paper, we only modify the contact generation method

by adding CROC as a feasibility criterion, as shown in the

green block of Figure 8. It is important to observe that in this

context, establishing the transition feasibility as fast as possible

is crucial: P2 is a combinatorial problem, which implies that

many contact sequences (thousands) must possibly be tried

before finding a feasible contact sequence.

CROC can be efficiently used as a feasibility criterion

during the contact planning phase with a trial-and-error ap-

proach. More precisely it is used as a filter to determine
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which transitions are unfeasible and discard them during the

planning in order to produce contact sequence containing only

feasible transitions. CROC will thus be called for each contact

transition considered by the contact generator (x
{p}
i and x

{q}
i+1

in Figure 8) and output the feasibility of the given contact

transition.

A byproduct of the feasibility test made with CROC is a

feasible CoM trajectory between each adjacent contact phases

(x(t)initGuess). The composition of all these trajectories is

given as an initial guess for a non-linear solver tackling the

P3 sub-problem as discussed in section IV-F. The P3 solver

refines the global trajectory by optimizing over the whole

contact sequence (Figure 9). As expected, when provided with

such an initial guess the non linear solver converges 100% of

the time, while we don’t have guarantees that the solution to

P3 defines a feasible P4.

C. Experimental scenarios

The complete experimental framework was tested on several

locomotion scenarios in semi structured environments, each

scenario showing specific features or difficulties. We insist that

the only manual inputs given to our framework were an initial

and a goal position for the root of the robot. Most of the

obtained motions are demonstrated in the companion video.

They were validated either in a dynamics simulator or on the

real robot.

1) Inclined platform crossing: This scenario requires the

robot to go from one flat platform to the other by taking a step

on an inclined platform (Figure 10). The scenario is designed

such that no quasi-static solution exists to the problem, and is

truly multi-contact for two reasons: firstly part of the motion

occurs entirely on non-flat ground; secondly the problem is

unfeasible if the right foot is the one selected to go first on the

platform. CROC then allows to invalidate unfeasible contact

sequences that would involve directly taking a step on the final

platform, or take a step with the right foot first (Figure 11). It

rather allows to find a solution where the left foot is used to

step on the inclined platform (Figure 10). A feasible whole-

body motion is demonstrated in the companion video.

Additionally, CROC also ensures that the left foot is posi-

tioned in such a way that the problem becomes feasible, which

is not trivial considering the size of the solution space for the

chosen step position (Figure 12(a)).

Fig. 10: Platform crossing scenario: no quasi-static solution

exists for the flying phase where the left foot is on the inclined

platform.

Fig. 11: Unfeasible stepping strategies invalidated by CROC.

a)

b)

c)

Fig. 12: Examples of centroidal trajectories found by our

method. Green polytopes : valid position of y that verifies the

constraints of the problem (24), red sphere : solution found

for y for a given cost function (minimum of the squared

acceleration norm). The red part of the trajectory is for the

phase with nc − 1 active contacts. The next contact is shown

in transparency.

2) 10 cm high steps: This experimental setup is an indus-

trial set of stairs shown in Figure 13 and 16(a). It consists of

six 10 cm high and 30 cm long steps. This experiment was

done with the HRP-2 robot. All the valid contact sequences

produced contain at least 13 contact phases as the robot is

kinematically constrained to put both feet on each step.

The complete motion is shown in the companion video. The

crouching walk seen is required to avoid singularities in the

knee of the extending leg, which are not tolerated by the low-

level controller.

An example of unfeasible contact sequence filtered out by
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Fig. 13: Snapshots of the motion for the 10cm stairs, the complete motion is shown in the companion video.

our feasibility criterion is depicted on Figure 14. All three

configurations in this sequence are valid (ie. respect kinematics

and dynamics constraints) but there is no valid centroidal

trajectory between the last two configurations. Our feasibility

criterion will filter out this kind of contact transitions during

contact planning.

Fig. 14: Exemple of unfeasible contact transition detected by

CROC and rejected during contact planning

3) 15 cm high steps with handrail: This other set of stairs

is composed of four 15 cm high steps and equipped with

a handrail. The contact sequence is shown in Figure 16(b)

and snapshots of the motion are shown in Figure 15. This is

a typical multi-contact problem, showing an acyclic contact

sequence with non co-planar contact surfaces. The problem

was already solved in a previous work [38], but the input

contact sequence and effector trajectories had to be manually

selected from a large number of trials. In this paper, the only

input is a root goal position at the top of the stairs.

A example of centroidal trajectory found by CROC for one

contact transition in this scenario is shown in Figure 12(b).

Fig. 15: A feasible multi-contact sequence for a stair climb-

ing with handrail support on the HRP-2 robot automatically

computed with our contact planner and CROC.

4) Uneven platforms: This setup consists of 30 cm long

and 20 cm wide platforms, oriented of 15◦around either the x
or y axis. This scenario is particularly difficult for the contact

planner because of all the possible collisions generated by the

feet. We recall that the feet of HRP-2 are 24 cm long for 14

cm wide, which means that the platforms of this setup are only

a few centimeters bigger than the feet of the robot. Because of

(a) (b)

(c)

Fig. 16: Examples of contact sequences found with our frame-

work. The color patches represent the planned contact location:

green for right foot, red for left foot, blue for right hand.

Fig. 17: Examples of unfeasible contact sequences filtered out

by CROC. There does not exist any valid centroidal trajectory

for the contact transitions encircled in black.

this, there are only few collision free candidates positions for

the feet. The probability of finding a contact position which

leads to a collision-free configuration while maintaining the

equilibrium is extremely small for this setup.

The contact sequence found is shown in Figure 16(c),

snapshots of the motion are shown in Figure 1 and a motion for

this scenario is shown in the companion video. These motions

have been validated on the real robot.
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The Figure 17 shows two examples of unfeasible contact

sequences filtered out by CROC in this scenario.

5) Quadrupedal between inclined planes: The quadrupedal

robot HyQ navigates between two planes inclined at 45◦.

Figure 12(c) shows the the centroidal trajectory found by

CROC in this scenario for one contact transition. This scenario

highlights that CROC is suited for any type of legged robot.

D. Benchmarks of the complete framework

In order to quantify the improvement of our contact planner

from the use of CROC as a feasibility criterion, we used the

following test procedure: for each scenario (we also considered

a flat ground scenario with no obstacles), we tried to solve the

problem using the complete framework presented in section

V-A with and without using CROC as a feasibility criterion

during the contact planning. We recall that this framework

takes as input an initial and goal position for the geometric

root of the robot and produces as output a whole body motion.

We then measured the success rate and the computation

time of the complete framework in both cases, the results are

shown in Table V.

Scenario Method
Motion

duration (s)
Total

time (s)
Success

(%)

Walk
(3 steps)

Without CROC 7.7 4.48 98
With CROC 4.43 100

Stairs
Without CROC 16.23 12.90 47

With CROC 12.56 90.5

Stairs
(handrail)

Without CROC 23.13 18.38 27.3
With CROC 18.09 88.05

Uneven
platforms

Without CROC 14.94 15.22 12.5
With CROC 17.83 83.5

TABLE V: Performance analysis of the complete motion plan-

ning framework presented in section V-A, with and without

using CROC as a feasibility criterion during contact planning.

Motion duration is the average duration of the solution, total

time is the average computation time required to compute

the motion, without the time required to compute the end-

effector trajectories. Success is the success rate of the complete

framework, ie. whether the framework was able to produce a

valid motion reaching the goal.

1) Success rate: In the walking on flat ground scenario,

CROC brings only a marginal improvement to the success

rate because the heuristics previously used by the contact

planner were sufficient in this case to provide a feasible

contact plan most of the time. However, in all the other cases

the results empirically prove one claim of this paper: using

CROC as a feasibility criterion during the contact generation

greatly increases the success rate of the multi-contact planning

framework.

We observe that when using CROC the success rate is

close to 100% except for complex scenarios where it is still

above 80% in the worst case. From this result, we show that

the integration of CROC to our pipeline provides additional

guarantees that the computed contact sequence will lead to a

valid CoM trajectory and thus that the centroı̈dal dynamics

solver will converge with this contact sequence as input.

The only remaining cause of failure in our framework is

the sub-problem P4. Some cases of failure come from the

method used to solve this sub-problem as this method is not

complete and may fail to produce a valid solution for a feasible

P4 sub-problem. But other cases of failure comes from the

fact that the feasibility of P4 is not accurately formulated.

Indeed, the methods used to solve P3 and the method CROC

used in P2 approximate the whole-body kinematic constraints,

which may lead to unfeasible solutions given as input to P4.

Additionally the feasibility of the end-effector motion between

two contact locations is not verified, neither in P2 or P3.

This issue is shared with all the centroidal approaches, and

does not penalize CROC with respect to them. The kinematic

constraints described in the present paper could be made more

conservative to always guarantee kinematic feasibility. In the

context of our framework however, we prefer to sacrifice

accuracy for a larger exploration of the solution space.

2) Computation time: Concerning the computation time, in

most of the cases we achieve interactive performances (ie. the

computation time is smaller than the motion duration). In the

worst case the computation time is greater than the motion

duration, but only by a small margin.

When using CROC during the contact planning, the com-

putation time required by the contact planning sub-problem

increase. This is explained partly by the addition of the time

required to run CROC for each candidates, but mostly by the

fact than we need to evaluate a lot more candidates before we

find a valid one (ie. which leads to a feasible transition).

However, thanks to the initial guess of the centroidal tra-

jectory provided by CROC, the sub-problem P3 can be solved

faster as explained in the section IV-F.

Depending on the scenario, these two aspects nearly balance

themselves. In the end, the results of the Table V shows that

we can use CROC as a feasibility criterion during contact

planning without increasing too much the total computation

time required, even though we have to run hundreds of

instances of CROC.

VI. CONCLUSION

In this paper we introduce an efficient formulation of the

centroidal dynamics of a legged robot, named CROC. Our

method can compute CoM trajectories that do not require dis-

cretization, nor use approximation or relaxation of the dynamic

constraints. This formulation is convex yet conservative, but

not limited to quasi-static motions. To our knowledge, this is

the first method to combine all these properties.

Thanks to the computational efficiency of our method,

requiring only a few milliseconds to solve the centroidal

dynamic problem with three contact phases, we can use

CROC as a feasibility criterion during contact planning. The

interest of this feasibility criterion has been demonstrated both

qualitatively and empirically.

Moreover, the centroidal trajectory produced by CROC can

be used to provide a relevant initial guess to a non linear

solver, resulting in the improvement on the convergence rate

and computation time of the non linear solver by comparison

to the naive initial guess previously used.

This paper also proposes a continuous formulation of the

centroidal dynamics, not restricted to CROC. It allows to verify
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continuously the constraints of the CoM, by opposition to the

discretized methods of the state of the art that only guarantee

that the discretized points of the trajectory are valid. We

showed that the discretization may lead to a non negligible

amount of invalid solutions where the trajectory is invalid

between two valid discretization points, which emphasizes

the interest of a continuous formulation. We believe that this

continuous formulation of the constraints on the centroidal tra-

jectory may be useful for all state-of-the-art methods, convex

or non-linear. We leave the study of the feasibility and the

interest of this application to a future work.

Finally, the feasibility criterion proposed in this paper

permits us to complete our locomotion planning framework

[36]. In this paper we showed that our framework is able

to produce indifferently simple walking motions and multi-

contact motions (ie. with non coplanar contacts and acyclic

behaviors). These motions were validated in simulation or

on the robot HRP-2. We also showed empirically that our

framework presents a success rate close to 100% and present

interactive computation times (the time required to compute

a motion is smaller than the duration of this motion) in the

studied scenarios, except for the most complex scenario where

the computation time is approximately 20% greater than the

duration of the motion, but still remain in the same order

of magnitude. We believe that with an optimization of the

implementation, interactive performances could be achieved

even in the worst cases.

For future work we would like to try more complex motions

on the real robotic platform, but we are currently limited by

the capabilities of our low level controller.

A. Handling whole-body approximations and uncertainties

The remaining source of approximation is shared with all

centroidal-based methods, and comes from the whole-body

constraints (joint limits, angular momentum and torques),

which are only approximated or ignored in the current for-

mulation. One solution to address the other limitations of the

centroidal model could be to alternate centroidal optimization

with whole-body optimization as other approaches do [16],

however for the transition feasibility problem, this approach

would result in an increased computational burden that is not

compatible with the combinatorial aspect of the search. One

way to improve the quality of this approximation is to integrate

torque constraints [39], [40]. Expressing such constraints at

the CoM level is considered for future work.

B. Application to 0 and 1 step capturability

The N-Step capturability problem consists in determining

the ability of a robot (in a given state) to come to a stop

(ie. null velocity and acceleration) without falling by taking at

most N steps. It is used to detect and prevent fall.

We can easily change the constraints on c(t) defined in

subsection III-A to remove the constraint on cg and constrain

(ċg = 0, c̈g = 0). With this set of constraints, the feasibility

of FP (13) determines the 0-Step capturability. Similarly, FP

(22) determines the 1-Step capturability.

For future work we would like to empirically determine the

accuracy of our method with respect to this problem, using a

framework similar to [14].

SOURCE CODE

Code available (C++/python) under a BSD-2 license:
https://github.com/humanoid-path-planner/hpp-bezier-com-traj
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