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Abstract— Continuous clustering analysis over a data stream
reports clustering results incrementally as updates arrive. Such
analysis has a wide spectrum of applications, including traf-
fic monitoring and topic discovery on microblogs. A common
characteristic of streaming applications is that the amount of
workload fluctuates, often in an unpredictable manner. On the
other hand, most existing solutions for continuous clustering
assume either a central server, or a distributed setting with a
fixed number of dedicated servers. In other words, they are
not elastic, meaning that they cannot dynamically adapt to the
amount of computational resources to the fluctuating workload.
Consequently, they incur considerable waste of resources, as the
servers are under-utilized when the amount of workload is low.

This paper proposes C-Cube, the first elastic approach to
continuous streaming clustering. Similar to popular cloud-based
paradigms such as MapReduce, C-Cube routes each new record
to a processing unit, e.g., a virtual machine, based on its hash
value. Each processing unit performs the required computations,
and sends its results to a lightweight aggregator. This design
enables dynamic adding/removing processing units, as well as
replacing faulty ones and re-running their tasks. In addition to
elasticity, C-Cube is also effective (in that it provides quality
guarantees on the clustering results), efficient (it minimizes the
computational workload at all times), and generally applicable to
a large class of clustering criteria. We implemented C-Cube in a
real system based on Twitter Storm, and evaluated it using real
and synthetic datasets. Extensive experimental results confirm
our performance claims.

I. INTRODUCTION

Clustering is a fundamental problem in data management,
with numerous applications, e.g., in information retrieval [30],
network design [9], multimedia analysis [21], etc. In a nutshell,
clustering divides a set of unlabeled objects into groups that
are not pre-defined, such that objects in the same group are
similar to each other, and objects in different groups are
dissimilar. In many practical applications involving streaming
data, e.g., traffic jam monitoring and topic discovery on
microblogs, it is desirable to run clustering analysis con-
tinuously, and report results in real time. Meanwhile, as is
common in streaming applications, the amount of workload
may fluctuate in an unpredictable manner. For instance, there
can be a sudden surge of microblog posts when a major event
occurs, leading to significantly higher computational costs for
clustering the posts. Reporting results in real-time at such

peak workload may require a large amount of computational
resources, whereas resource demand at non-peak periods is
often significantly lower. These characteristics motivate an
elastic solution, which dynamically adjusts the amount of
computational resources based on the current workload. The
cloud platform fits these requirements well, as it provides high
efficiency, reliablity and elasticity. The goal of this work, thus,
is to design and implement an elastic algorithm for real-time,
continuous clustering analysis on top of the cloud platform.

Although both streaming clustering and elastic query pro-
cessing are well-studied in the literature, their combination,
i.e., elastic continuous clustering, remains a challenging prob-
lem, and we are not aware of any existing solution for this
purpose. As reviewed in Section 2, the majority of previous
streaming clustering methods are restricted to a centralized
server. Further, existing parallelized streaming clustering al-
gorithms are inherently inelastic, because they assume a fixed
number of computation nodes with complex internal states.
Consequently, changing the number of nodes incurs high mi-
gration overhead for rebuilding these states. Finally, previous
cloud-based clustering algorithms are limited to static datasets,
which are not suitable for streaming data. Rerunning such
a method at every timestamp is inefficient, since it typically
imposes a high initialization cost.

In this paper, we present C-Cube, a general and elastic
streaming framework to support a variety of clustering al-
gorithms. C-Cube follows a simple and yet powerful design
called elastic operator. Figure 1 shows an example of an
elastic operator, which performs the task of one logical op-
erator in the execution plan of a query. Internally, an elastic
operator contains a dispatcher, a set of processing units, and an
aggregator. All processing units share the same functionality,
i.e., the main function of the entire elastic operator. When
a new tuple arrives, the dispatcher routes it to one of the
processing units based on its hash value. The corresponding
processing unit then processes the tuple, and sends the results
to the aggregator. Finally, the aggregator produces the output
of the operator based on the results received from the pro-
cessing units. As we show in the paper, this design achieves
elasticity by dynamically adjusting the number of processing
units. Besides elasticity, this design also enables fault tolerance



(by replacing faulty processing units) and load balancing (by
modifying the routing strategy at the dispatcher). Further, since
an elastic operator is encapsulated as one logical operator,
it can be readily used in current data stream management
systems by replacing existing operator implementations.
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Fig. 1. Example elastic operator

Applying the elastic operator design to streaming clustering,
however, is difficult. The main challenge lies in that the
clustering results depend on all attributes of all objects, rather
than a subset of them. Meanwhile, since clustering is an NP-
hard problem, practical solutions often return approximate
answers. As we review in Section 2, methods with good result
quality are often difficult to parallelize. C-Cube tackles these
problems using a verification-reclustering scheme: it verifies
the clustering results computed at a previous timestamp, and
only re-runs the clustering algorithm when the verifier module
determines that the previous results no longer fit the current
data distribution. This architecture shifts a considerable portion
of the workload to the verification module, which is performed
by an elastic operator. Further, for a wide class of distance-
based clustering criteria, C-Cube guarantees that the quality
of outputs is within a user-specified constant factor to the
optimal clustering results. Finally, C-Cube handles efficiently
and effectively object insertions and deletions, as well as joins
and leaves of computational nodes. We have implemented
C-Cube on top of a real streaming cloud platform Twitter
Storm, and conducted extensive experiments with real data.
The results confirm that C-Cube works very well on large scale
datasets with a small amount of cloud computation resources.
To the best of our knowledge, this is the first implementation of
general clustering algorithm fully compatible with mainstream
cloud systems.

Our main contributions are summarized as follows.
1) We propose a general framework C-Cube for elastic ex-

ecution of continuous clustering on the cloud platform,
for a large class of distance-based clustering criteria.

2) We devise a verification-reclustering architecture in C-
Cube that only re-executes the clustering module when
the previous results no longer satisfies the user-specified
quality guarantee.

3) We derive the theory for analyzing the quality of past
clustering results on current data, which generally sup-
ports the insert/remove operators on both objects and
computing nodes.

4) We implement C-Cube on a real-time cloud-based an-
alytic platform, Twitter Storm, and conduct extensive

performance studies using real Twitter dataset. The
results demonstrate that C-Cube can handle large-scale
continuous clustering efficiently, with high result quality.

The remainder of the paper is organized as follows. Sec-
tion II reviews the existing studies on clustering algorithms,
especially on constant approximation algorithms, streaming
and distributed clustering techniques. Section III provides the
preliminaries on distance-based clustering algorithms. Section
IV analyzes the optimality of continuous clustering and elab-
orates on the verification theory behind our C-Cube frame-
work. Section V presents the details of C-Cube framework,
introducing the algorithms for all basic operations used in the
framework. Section VI covers the implementation details with
Twitter Storm and discusses the experimental results on both
synthetic and real datasets. Section VII concludes this paper
and addresses some future research directions.

II. RELATED WORK

A. Clustering Algorithms

Clustering is a well studied topic in computer science. While
hundreds of different clustering algorithms were proposed in
the literature, we mainly focus on the most common class,
which consists of distance-based clustering methods.

In distance-based clustering, a distance function is employed
to measure the dissimilarity between any two objects in the
specific domain, e.g., Euclidean space. The goal of clustering
is to partition the objects into clusters, to minimize the sum
of distances from all objects in a cluster to the cluster center,
or (equivalently) the sum of pairwise distances between the
objects in every individual cluster. Methods in this category
often differ on the distance functions adopted. 𝐾-means clus-
tering [25], for example, uses Euclidean distance as its distance
function, and aims to minimize the aggregate distance between
each object and the geometric center of the corresponding
cluster. Due to the use of centroids as cluster centers, 𝑘-means
clustering is limited to datasets that lie in an Euclidean space
with finite dimensionality. In contrast, 𝑘-median clustering
eliminates this restriction by using data objects as cluster
center rather that the centroids; thus, 𝑘-median clustering
applies to datasets in any metric space. Both 𝑘-means and
𝑘-median are known to be hard problems, such that it takes
exponential time in terms of the number of objects to find the
global optimal clustering.

Due to the hardness, computer scientists resorted to approx-
imate schemes to distance-based clustering problems, looking
for algorithms always outputting clustering results with con-
stant approximation guarantee. Arora [4] designed the first
approximation algorithm to 𝑘-median problem in Euclidean
space. After that, a series of improvements were made to
improve the approximation bound, e.g., [6], [13], [12], [22].
Arya et al. [6] proposed a (5 + 2/𝑘)-approximate k-median
clustering in any metric space, using simple local search
heuristic. Kanungo et al. [22] applied the similar strategy
on 𝑘-means, and obtained similar constant approximation.
Arthor and Vassilvitskii [5] designed a randomized algorithm



to achieve 𝑂(ln 𝑘)-approximation in expectation. Note that C-
Cube framework does not rely on the underlying clustering
algorithm, which is therefore applicable with any of the
algorithms mentioned above.

B. Distributed Clustering

Continuous clustering over streaming data has also received
extensive research effort in the last decade. Guha et al. [19]
presented the first clustering algorithm on data streams. The
approach relies on the strategy of combining local clustering
results to ensemble the global clustering results. It is extensible
to a distributed environment where each node is responsible for
clustering partial data in the stream. However, this approach
requires that there are a fixed number of computational nodes.
In particular, since the local clustering cannot be further parti-
tioned, this approach does not support arbitrary adjustments on
computational resource on cloud platform. A similar strategy
was proposed by Zhang et al. [31] which summarizes local
samples using the concept of coreset. Their technique provides
an effective scheme on in-network sample generation and
aggregation, which is exploited to reduce the communication
cost within the network. Our problem formulation, however,
focuses on application with updates from external source of
cloud system, with goal of minimization on computation cost
and response time on continuous clustering. Zhang et al. [32]
presented a centralized solution for continuous clustering on
moving objects, following the framework of verification-and-
reclustering. This solution is difficult to extend to distributed
environment, because the complicated aggregation function
needs inputs from all updates. Cormode et al. [17] designed a
distributed clustering algorithm for 𝑘-center clustering, which
aims to minimize the maximal distance from the objects to
the representative centers. Our distance-based clustering uses
summation in the distance aggregation, which forbids the
direct employment of their scheme. Moreover, it is important
to emphasize that all of the algorithms above do not support
elasticity, i.e. re-scaling adaptive to the update workload.

C. Batch and Stream Processing in the Cloud

Since the original proposal of MapReduce [18] only sup-
ports batch-based data processing, some systems are built to
overcome this limitation. Haloop [11], for example, supports
loops of operations, meaning that the output of a previous map-
reduce task is fed into a subsequent map-reduce task as input.
Therefore, Haloop naturally supports batch-based iterative
clustering algorithms, such as the standard 𝑘-means algorithm.
Mahout [1] is a mature open-source machine learning library
adopting MapReduce as its underlying infrastructure. In the
machine learning community, Chu et al. [16] presented sys-
tematic studies on the possibility of implementing machine
learning methods on MapReduce, which include clustering
algorithms.

Traditional data stream management systems (DSMSs), e.g.,
Aurora [3], STREAM [7], NiagaraCQ [14], etc., generally
do not consider the unique properties of the cloud system,

such as elasticity. Similarly, methods proposed for tradition-
al DSMSs, e.g., adaptive query processing [8], just-in-time
scheduling [28], dynamic plan migration [33], [29], etc.,
cannot be applied directly for cloud-based systems. DEDUCE
[24] is an extension of IBM’s System S DSMS that allows
the user to write streaming processing jobs in MapReduce
style. It automatically translates the MapReduce program into
streaming processing language and deploys the computation
procedures on the distributed platform. However, users cannot
implement more complicated stream processing algorithm
using DEDUCE, if the algorithm is not fully consistent with
the MapReduce paradigm.

III. PRELIMINARIES

This section introduces the problem definition of continuous
clustering and covers the preliminaries for the clustering
verification theory that is to be presented in Section IV.
Assume that a dynamic object set 𝐷 contains 𝑛 objects, i.e.,
𝐷 = {𝑜1, 𝑜2, . . . , 𝑜𝑛}. For each object 𝑜𝑖, we use 𝑜(𝑡)𝑖 to denote
the location of 𝑜𝑖 at time 𝑡. 𝐷(𝑡) consists of the locations of
all objects at time 𝑡. A center set 𝐶 consists of 𝑘 centers,
i.e., 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑘}, each of which is in the same
domain of the objects. The goal of distance-based clustering
is to identify a cluster center set to minimize the aggregation
on distances from the centers and the objects. Specifically, a
distance function maps a pair of locations to a non-negative
real number, i.e. dist(⋅, ⋅), to measure the dissimilarity between
these two locations (usually those of a center and an object).
The cost of the clustering center set 𝐶 with respect to the
objects at time 𝑡 is thus cost(𝐷(𝑡), 𝐶), i.e.,

cost
(
𝐷(𝑡), 𝐶

)
=
∑
𝑜𝑖∈𝐷

min
𝑐𝑗∈𝐶

dist
(
𝑜
(𝑡)
𝑖 , 𝑐𝑗

)
(1)

Here,
∑

is an aggregation operator which sums up the
minimum distances from 𝑜

(𝑡)
𝑖 to the centers in 𝐶. Equation (1)

is a general model for a variety of distance-based clustering
problems when employing different distance functions as the
underlying measure criteria. In this paper, we investigate the
possibility of designing general streaming processing platform
to support any distance-based clustering algorithm, when the
distance function satisfies certain general property. In particu-
lar, we consider two common distance functions below, namely
squared Euclidean distance and general metric distance.

Example 1: 𝑘-Means Clustering
Assume that every 𝑜

(𝑡)
𝑖 lies in a 𝑑-dimensional Euclidean

space. Let dist(⋅, ⋅) be squared Euclidean distance. The func-
tion in Equation (1) becomes the cost function for 𝑘-means
clustering.

Example 2: 𝑘-Median Clustering
Let dist(⋅, ⋅) be a metric distance defined for every 𝑜(𝑡)𝑖 in
certain metric space. The function in Equation (1) is then the
cost function for 𝑘-median clustering.

Given the object locations in 𝐷(𝑡) at time 𝑡 and a positive
integer 𝑘, a clustering center set 𝐶(𝑡)

∗ is optimal in terms of
𝐷(𝑡), if it is the minimizer in Equation (1). While the problem
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Fig. 2. An example of traffic monitoring on consecutive timestamps

of calculating the optimal clustering center set 𝐶(𝑡)
∗ is known

to be NP-hard in most cases, there exist several effective ap-
proximate schemes to find sub-optimal solutions with certain
relaxed optimality guarantee. Given an approximation factor
𝛼 > 1, a clustering center set 𝐶(𝑡) is 𝛼-approximate to the
optimal center set 𝐶(𝑡)

∗ , if

cost
(
𝐷(𝑡), 𝐶(𝑡)

)
cost

(
𝐷(𝑡), 𝐶

(𝑡)
∗
) ≤ 𝛼 (2)

Given a static dataset𝐷 and a cluster size parameter 𝑘, there
have been constant approximation algorithms for distance-
based clustering problems, e.g., 𝑂(log 𝑘)-approximate 𝑘-
means [5], (5 + 2/𝑘)-approximate 𝑘-median [6]. However,
the problem of continuous clustering on the objects in 𝐷 is
much more difficult. In this paper, we design a framework
to fully utilize existing constant approximate clustering al-
gorithms. Given an 𝛼-approximate clustering algorithm, we
target at continuously maintaining 𝛽-approximate clustering
center sets for every timestamp 𝑡, with new approximation
factor 𝛽 > 𝛼. A naive solution to the problem is retrieving
new location of every object 𝑜𝑖 on every timestamp and re-
running the 𝛼-approximate clustering algorithm on each 𝐷(𝑡)

independently. This method is unpractical on cloud platform,
due to the high overhead on the repeated clustering procedures
on each timestamp. Instead, our framework keeps collecting
the updates from the objects and invokes the re-clustering
only when the previous clustering result is no longer a 𝛽-
approximate optimal clustering to the current timestamp.

We use an example of traffic monitoring to explain the basic
principles behind our framework. In Figure 2, vehicles (shown
as red dots) are moving on a road network (black lines).
Given the 2-clustering result on time 𝑡, it is unnecessary to
recompute the clustering at 𝑡+1, because the data distribution
remains similar. At time 𝑙 (𝑙 > 𝑡+1), the optimal structure of
2-clustering changes significantly. To keep an update-to-date
clustering, the system must calculate a new 2-clustering result
based on the current locations of the vehicles.

Although the re-clustering could reuse the existing standard
clustering algorithm, it is more efficient to measure the quality
of the previous clustering result on the current data and
update the result incrementally only if it is necessary. In
this paper, we focus on designing an elastic cloud based

architecture that effectively estimates optimality of clusterings
in real time. Mathematically, given the 𝛼-approximate center
set 𝐶(𝑡) calculated at time 𝑡, and the current updates 𝐷(𝑙) from
the objects, the problem of clustering verification is how to
accurately evaluate the validity of the following inequality.

cost
(
𝐷(𝑙), 𝐶(𝑡)

)
cost

(
𝐷(𝑙), 𝐶

(𝑙)
∗
) ≤ 𝛽 (3)

To guarantee that our framework always maintains 𝛽-
approximate clustering, the evaluation on Inequality (3) should
only allow false positive but no false negative. In other words,

we are only allowed to overestimate
cost(𝐷(𝑙),𝐶(𝑡))
cost

(
𝐷(𝑙),𝐶

(𝑙)
∗

) so that the

system never misses clustering updates when necessary.
In the next section, we propose a theory for verifying

clustering results that are obtained from distance-based clus-
tering techniques. The theory is to be applied to our C-Cube
framework design in Section V.

IV. CLUSTERING VERIFICATION THEORY

A. Centralized Verification

To evaluate Inequality (3), the key is to estimate
cost(𝐷(𝑙), 𝐶(𝑡)) and cost(𝐷(𝑙), 𝐶

(𝑙)
∗ ) separately and accurate-

ly. When the system receives all updates from the objects
at every timestamp, it is pretty easy to exactly calculate
the cost cost(𝐷(𝑙), 𝐶(𝑡)) by aggregating the distances. The
denominator cost(𝐷(𝑙), 𝐶

(𝑙)
∗ ) is much more difficult for e-

valuation, mainly because it is impossible or too expensive
to compute the optimal clustering at each timestamp 𝑙. To
avoid any false negative in the inequality evaluation, an
alternative and more practical solution is deriving a lower
bound on cost(𝐷(𝑙), 𝐶

(𝑡)
∗ ), rendering an overestimation on

cost(𝐷(𝑙),𝐶(𝑡))

cost(𝐷(𝑙),𝐶
(𝑙)
∗ )

. To derive an inexpensive lower bound calcu-

lation scheme, we discuss certain general properties of the
distance function. First, the distance function dist(𝑥, 𝑦) must
satisfy the basic conditions of identifiability, positivity, and
symmetry, i.e., 1) dist(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 2)
∀𝑥, 𝑦 : dist(𝑥, 𝑦) ≥ 0; and 3) ∀𝑥, 𝑦 : dist(𝑥, 𝑦) = dist(𝑦, 𝑥).
Second, the distance function must follow the generalized
triangle inequality below.

Definition 1: Generalized Triangle Inequality
Given a positive constant 𝜏 ≤ 1, a distance function



dist(⋅, ⋅) satisfies 𝜏 -relaxed triangle inequality, if dist(𝑥, 𝑦) +
dist(𝑦, 𝑧) ≥ 𝜏 ⋅ dist(𝑥, 𝑧).

It is straightforward that any metric distance naturally
follows the relaxed triangle inequality with 𝜏 = 1. Squared
Euclidean distance, on the other hand, is not a metric distance
function, but remains consistent with the definition of the
general triangle inequality with 𝜏 = 0.5 [27].

For a positive integer 𝑛, a permutation 𝜎 is a one-to-one
mapping from integers in [1, . . . , 𝑛] to [1, . . . , 𝑛], i.e., every
integer 𝑖 corresponds to another integer 𝜎(𝑖). The following
theorem lays the foundation for our general evaluation theory,
using the concept of permutation.

Theorem 1: If 𝐶(𝑡) is an 𝛼-approximate clustering upon
𝐷(𝑡), with any permutation 𝜎 of size 𝑛, the optimal clustering
cost on data 𝐷(𝑙) is lower bounded by

cost
(
𝐷(𝑙), 𝐶

(𝑙)
∗
)

≥
∑
𝑜𝑖

(
𝜏

𝛼
⋅ min
𝑐𝑗∈𝐶(𝑡)

dist
(
𝑜
(𝑡)
𝑖 , 𝑐𝑗

)
− dist

(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

))
Proof: First, 𝐶(𝑡) is an 𝛼-approximate clustering on𝐷(𝑡).

Thus, we have

1

𝛼
cost

(
𝐷(𝑡), 𝐶(𝑡)

)
≤ cost

(
𝐷(𝑡), 𝐶

(𝑡)
∗
)

(4)

Then, we derive the connection between the optimal clus-
terings 𝐶(𝑡)

∗ and 𝐶(𝑙)
∗ . We can show that

cost
(
𝐷(𝑡), 𝐶

(𝑡)
∗
)

≤ cost
(
𝐷(𝑡), 𝐶

(𝑙)
∗
)

=
∑
𝑜𝑖

min
𝑐
(𝑙)
𝑗 ∈𝐶

(𝑙)
∗

dist
(
𝑜
(𝑡)
𝑖 , 𝑐

(𝑙)
𝑗

)

≤ 1

𝜏

∑
𝑜𝑖

(
min

𝑐
(𝑙)
𝑗 ∈𝐶

(𝑙)
∗

dist
(
𝑜
(𝑙)
𝜎(𝑖), 𝑐

(𝑙)
𝑗

)
+ dist

(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

))

=
1

𝜏

(
cost

(
𝐷(𝑙), 𝐶

(𝑙)
∗
)
+
∑
𝑜𝑖

dist
(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

))
(5)

The first inequality is due to the optimality of 𝐶(𝑡)
∗ on 𝐷(𝑡).

The second inequality exploits the property of generalized
triangle inequality, i.e., 𝜏 ⋅ dist(𝑜(𝑡)𝑖 , 𝑐

(𝑙)
𝑗 ) ≤ dist(𝑜(𝑙)𝜎(𝑖), 𝑐

(𝑙)
𝑗 ) +

dist(𝑜(𝑡)𝑖 , 𝑜
(𝑙)
𝜎(𝑖)).

Given Theorem 1, we can rewrite a relaxed evaluation
condition for Inequality (3) as follows:

∑
𝑖 min𝑐𝑗∈𝐶(𝑡) dist

(
𝑜
(𝑙)
𝑖 , 𝑐𝑗

)
∑

𝑖

(
𝜏
𝛼 ⋅min𝑐𝑗∈𝐶(𝑡) dist

(
𝑜
(𝑡)
𝑖 , 𝑐𝑗

)
− dist

(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

)) ≤ 𝛽

(6)
To illustrate the meaning of Equation (6), we present an

example on the left side of Figure 3, where 2-dimensional
object locations are shown as white circles at time 𝑡 and
grey circles at time 𝑙. Given a permutation, as is indicated by

o riginal matching o n co mp lete d ata D

P artitioning Matching o n D1

Matching o n D2

Fig. 3. An example of permutation and matching in 2-dimensional space

directed arrows, we model the change of the distribution by the
pairwise distance between the matching object locations across
timestamps. When the distances between matching locations
are relatively small, i.e., it is significantly smaller than the
distance to the cluster center (shallow square), the distribution
is stable, implying the previous clustering remains accurate.
In particular, when dist

(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

)
= 0 for all 𝑖, the dataset

does not change at all, even if the permutation does not pair the
same object across the timestamps. This property is reflected
in the new Inequality (6), in which small pairwise distance on
the permutation leads to a smaller ratio.

B. Distributed Verification

While Inequality (6) is simple to evaluate, there remain
certain computational difficulties to overcome. To maximize
the denominator on the lefthand side, the system needs to
find a permutation to minimize

∑
𝑜𝑖

dist
(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

)
. This

is equivalent to the bipartite minimal matching problem,
when all the updates are received and processed by a single
server in the system. There are polynomial algorithms, e.g.,
the Hungarian algorithm [26], to solve the bipartite minimal
matching problem, incurring cubic complexity with respect to
the data size.

To extend the verification technique in a cloud environment
with high extensibility and elasticity, we further consider how
to distribute the evaluation on multiple computation nodes,
when each node only receives the updates from a small fraction
of objects. Assume the object set is arbitrarily partitioned into
𝑚 subsets, i.e. 𝐷 = 𝐷1∪𝐷2 . . .∪𝐷𝑚, such that 𝐷𝑖∩𝐷𝑗 = ∅
for every 𝑖 and 𝑗. Given such a partitioning, we define a special
class of permutations, called constrained permutation.

Definition 2: A permutation 𝜎 is a valid constrained per-
mutation with respect to the partitioning (𝐷1, . . . , 𝐷𝑚), if
𝑜𝜎(𝑖) ∈ 𝐷𝑟 for each 𝑜𝑖 ∈ 𝐷𝑟.

Based on the concept of constrained permutation, in-
stead of finding the global permutation that minimizes
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∑
𝑜𝑖

dist
(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

)
, we resort to the optimal con-

strained permutation with respect to the specific partitioning
(𝐷1, 𝐷2, . . . , 𝐷𝑚). In Figure 3, we partition the object set into
𝐷1 and 𝐷2. Generally speaking, the pairwise matching cost
increases, because the best matching pairs on the complete
data may not be assigned to the same partition. The right-top
object in 𝐷1, for examples, is matched to a grey point further
than its partner in complete data 𝐷. However, the increase on
the pairwise matching cost is limited. To validate this intuition,
we provide a formal analysis on the convergence property on
matching within constrained permutations.

Assume every object is identically and independently drawn
from a distribution. Every object 𝑜𝑖 is assigned to a data
partition 𝐷𝑟 uniformly, i.e. Pr(𝑜𝑖 ∈ 𝐷𝑟) = 1/𝑚 for every
1 ≤ 𝑟 ≤ 𝑚. In the following, we analyze the optimality of
pairwise matching distance sum

∑
𝑜𝑖

dist
(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

)
, when

every object satisfies the uniform assignment assumption.
Theorem 2: If 𝜎∗ is the optimal permutation from 𝐷(𝑡) to

𝐷(𝑙) and 𝜎 is the optimal constrained permutation from 𝐷(𝑡)

to 𝐷(𝑙) with respect to partitioning (𝐷1, 𝐷2, . . . , 𝐷𝑚) under
uniform assignment assumption, the following convergence
property holds:

lim
𝑛→∞

1

𝑛

∑
𝑜𝑖∈𝐷

(
dist

(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎∗(𝑖)

)
− dist

(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎(𝑖)

))
= 0

The theorem above implies that each partition 𝐷𝑟 is a sub-
sample set of the underlying data distributions at time 𝑡 and
time 𝑙. Therefore, each intra-partition pairwise matching partly
reflects the difference between the distributions, and each such
difference uniformly converges to the exact global value when
the sampling rate is large enough. Based on this observation,
we design the C-Cube framework in next section, which fully
exploits the distributed clustering verification theory.

V. C-CUBE FRAMEWORK

A. Overview

The basic architecture of C-Cube is shown in Figure 4.
Each large rectangle denotes a computation node (i.e., virtual
machine), which is the minimum independent computation
unit on cloud platforms. Specifically, Message Dispatcher
works as a gateway of the system, responsible for handling

Algorithm 1 Verifiers’s Message Handler (new update 𝑜(𝑙)𝑖

from object 𝑜𝑖)

1: Update 𝑇𝑟 with 𝑜(𝑙)𝑖 for object 𝑜𝑖
2: Run Hungarian algorithm to update the mapping 𝜎𝑟
3: Evaluate 𝑆𝑟 by Equation (7)
4: Evaluate 𝐵𝑟 by Equation (8)
5: Send (𝑆𝑟, 𝐵𝑟) to the aggregator

Algorithm 2 Aggregator’s Message Handler ((𝑆𝑟, 𝐵𝑟) from
Verifier 𝑈𝑟)

1: Update 𝑆𝑟 and 𝐵𝑟 in its database
2: Calculate Ratio=

∑
𝑟 𝑆𝑟∑
𝑟 𝐵𝑟

3: if Ratio> 𝛽 then
4: Trigger the clustering component
5: end if

the update messages from the objects and distributing the
messages to other components in the system. The verifier
and the aggregator together form the core component of C-
Cube. They continuously verify the optimality of the current
clustering upon receiving updates from the message dispatcher.
Since most of the computation resource in C-Cube is spent
on clustering verification, the parallelism of this component is
the focus of our system design. Our verifier-aggregator scheme
works as follows. The updates from the objects are hashed onto
different verifiers in the system. Each verifier 𝑈𝑟 maintains
a permutation 𝜎𝑟 over the active objects attached with 𝑈𝑟.
Statistics are collected by 𝑈𝑟 and forwarded to the aggregator.
Based on the statistics from the verifiers, the aggregator makes
an overall evaluation on the quality of the clustering and
decides if it is necessary to trigger the clustering algorithm
in the clustering component.

In addition, the sampling component records every update
message from the objects and maintains samples of the
object locations based on a specified sampling rate. When
the clustering component receives the command to start a
new clustering, it kicks off a clustering thread on the current
samples available in the sampling component. Note that the
underlying clustering algorithm does not necessarily run on a
single virtual machine. Distributed clustering algorithm with
certain number of independent virtual machines is naturally
supported in the framework. After the clustering component
finishes re-clustering on the current samples, it updates the
current clustering information with the new clustering result.
The new clustering information is thus automatically pushed
to the verifiers to update the verification process.

B. Object Updates in C-Cube

There are three types of object updates in C-Cube, including
status update, object insertion and object deletion. In the
following, we describe the updating protocol with all these
operations in detail.

To handle status update, each verifier 𝑈𝑟 maintains four
data structures, including 1) an active object list 𝐷𝑟 ⊆ 𝐷; 2)



the location 𝐷(𝑡)
𝑟 for objects in 𝐷𝑟 updated at previous re-

clustering time 𝑡; 3) latest update statuses 𝑇𝑟 for objects in
𝐷𝑟; and 4) a local constrained permutation 𝜎𝑟 mapping from
statuses in 𝑇𝑟 to statuses in 𝐷(𝑡)

𝑟 . When object 𝑜𝑖 updates
its status by a message

(
𝑜𝑖, 𝑜

(𝑙)
𝑖

)
at time 𝑙, the verifier first

refreshes the corresponding entry in 𝑇𝑟, i.e. writing 𝑜(𝑙)𝑖 into
𝑇𝑟. The verifier then runs the Hungarian algorithm with the
current 𝜎𝑟 as the initial matching. Since there is one and
only one update in 𝑇𝑟, the Hungarian algorithm terminates
in 𝑂(∣𝐷𝑟∣2) time instead of 𝑂(∣𝐷𝑟∣3) time as a complete re-
execution of Hungarian algorithm takes. The new assignment,
i.e., a new permutation 𝜎′𝑟 is used to replace the previous
permutation 𝜎𝑟. Given the new permutation, the verifier is
capable of calculating the following two statistical measures:

𝑆𝑟 =
∑

𝑜𝑖∈𝐷𝑟

min
𝑐𝑗∈𝐶𝑡

dist
(
𝑜
(𝑙)
𝑖 , 𝑐𝑗

)
(7)

𝐵𝑟 =
∑

𝑜𝑖∈𝐷𝑟

(
𝜏

𝛼
min
𝑐𝑗∈𝐶𝑡

dist
(
𝑜
(𝑡)
𝑖 , 𝑐𝑗

)
− dist

(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎𝑟(𝑖)

))
(8)

The new 𝑆𝑟 and 𝐵𝑟 are sent to the aggregator for further
processing. The complete pseudo-code of verifier is summa-
rized in Algorithm 1. The total computation time for every
individual update is 𝑂(∣𝐷𝑟∣2), since the update of permutation
takes 𝑂(∣𝐷𝑟∣2) time and the calculation of 𝑆𝑟 and 𝐵𝑟 is
finished in 𝑂(∣𝐷𝑟∣) time.

On the aggregator node, it maintains the latest (𝑆𝑟, 𝐵𝑟) from
every verifier 𝑈𝑟. After receiving a message from 𝑈𝑟 with the
new (𝑆𝑟, 𝐵𝑟), the aggregator refreshes the record for 𝑈𝑟 in
its own database and evaluate Inequality (6) in an equivalent
way as ∑

𝑟 𝑆𝑟∑
𝑟 𝐵𝑟

≤ 𝛽 (9)

If the inequality above is no longer satisfied, the aggregator
sends a new message to the clustering component to trigger
a new round of re-clustering computation. The pseudo-code
of the aggregator is listed in Algorithm 2. If the statistical
information from the verifiers is kept in main memory, the
computation cost of the aggregator on each message is con-
stant. Therefore, the total computation cost on an object update
only depends on the number of objects maintained by the
verifier.

So far, we assume that there is no insertion or deletion on
the objects in 𝐷. In the following, we extend our discussion
to discard this assumption. In particular, we present insertion
and deletion mechanisms in C-Cube for volatile objects under
surveillance. Note that Inequality (6) provides guarantee on
clustering quality verification, when the number of objects
maintained by the system is fixed. Therefore, instead of dis-
cussing insertion/deletion operations separately, we consider
object set update on two cases, 1) when the object maintained
by 𝑈𝑟 at time 𝑙 is more than the number of objects at a previous

re-clustering time 𝑡, i.e., ∣𝐷(𝑙)
𝑟 ∣ > ∣𝐷(𝑡)

𝑟 ∣; and 2) when the
object maintained by 𝑈𝑟 at time 𝑙 is less, i.e., ∣𝐷(𝑙)

𝑟 ∣ < ∣𝐷(𝑡)
𝑟 ∣.

Growing Case: When
∣∣∣𝐷(𝑙)

𝑟

∣∣∣ > ∣∣∣𝐷(𝑡)
𝑟

∣∣∣, there does not exist a
one-to-one mapping 𝜎𝑟. Fortunately, the lower bound on the
optimal clustering remains valid, even when some objects at
time 𝑙 do not have a matching counterpart at time 𝑡. This
is because the optimal distance-based clustering on a subset
of objects always renders a lower cost [19]. Based on this
property, we slightly change Inequality (6) by calculating the
lower bound only on objects with a good mapping. This leads
us to the new computation formula 𝐵𝑟, such that

𝐵′
𝑟 =

∑
𝑜
(𝑡)

𝜎𝑟(𝑖)
∈𝐷

(𝑡)
𝑟

(
𝜏

𝛼
min
𝑐𝑗∈𝐶𝑡

dist
(
𝑜
(𝑡)
𝑖 , 𝑐𝑗

)
− dist

(
𝑜
(𝑡)
𝑖 , 𝑜

(𝑙)
𝜎𝑟(𝑖)

))

The rest of the algorithms for both the verifiers and the
aggregator remain the same. We therefore skip the details of
the algorithms.

Shrinking Case: When
∣∣∣𝐷(𝑙)

𝑟

∣∣∣ < ∣∣∣𝐷(𝑡)
𝑟

∣∣∣, the problem of object
insertion/deletion is more complicated, since the previous low-
er bound estimation is no longer valid. To resolve this issue in
practice, we make a general assumption on the disappearance
ratio of the objects and design a simple mechanism for the
shrinking case.

Assumption 1: At any time 𝑙, the number of objects is no
less than the number of objects at another time 𝑡 by scaling
factor 𝛾, i.e., ∣𝐷(𝑙)∣ ≥ 𝛾∣𝐷(𝑡)∣ for a constant 0 < 𝛾 ≤ 1.

Based on the above assumption and the Chernoff bound
[20], the number of objects maintained by any verifier 𝑈𝑟 at
time 𝑙 is no less than (𝛾−√−2𝛾 ln 𝛿)∣𝐷(𝑡)

𝑙 ∣ with probability at
least 1−𝛿. It means that the number of objects at each verifier
is lower bounded by a constant ratio with high probability.
This observation helps us transform the problem of shrinking
to the problem of growing, if the system maintains another
clustering and sample set under sampling rate 𝛾−√−2𝛾 ln 𝛿.

Specifically, the system keeps another sample set on the
objects at time 𝑡, i.e., the clustering re-computation time. There
are thus two approximate clustering results maintained by the
system. Whenever an verifier finds the number of objects
it maintains is shrinking, it automatically switches to the
clustering on the smaller sample set. By sharing the sampling
random seed with every verifier, each verifier is capable of
identifying which location in 𝐷(𝑡)

𝑟 is included in the sample
set. This enables the verifier to use the right subset of 𝐷(𝑡)

𝑟

for permutation computation, when a shrinking case happens.
The overhead of this scheme is small. Each verifier only

needs to keep track of the objects in the sample set, with a
simple binary label on each object in the local database. The
clustering component calculates two clusterings at full size and
at a lower sampling rate respectively. However, when 𝛾 is close
to 1, i.e., the object number does not change dramatically,
these two clusterings are similar to each other. In such cases,
it is sufficient for the clustering component to calculate only
one clustering center set for both of them.



The aforementioned technique alleviates the problem when
the above assumption holds. We have a simple solution when
this assumption does not hold. For each verifier, a counter
is used to track the number of active objects. When the
counter implies that there are less than 𝛾∣𝐷(𝑡)

𝑟 ∣ objects alive, it
immediately sends a message to the aggregator to request a re-
clustering. This helps every verifier refresh its matching base
from 𝐷

(𝑡)
𝑟 to 𝐷(𝑙)

𝑟 , since the new clustering is for the latest
object updates. This only causes a very small number of re-
clustering operations, unless the number of objects fluctuates
rapidly, which is rare in practice.

C. Elasticity, Load Balancing and Fault Tolerance

C-Cube achieves elasticity, load balancing, and fault toler-
ance mainly through the elastic operator design. Elasticity is
achieved by dynamically adjusting the number of processing
units. Load balancing is reflected by the fact that the dispatcher
routes the objects randomly to processing units, based on their
hash values. Fault tolerance is performed by simply replacing
a faulty processing unit, and re-execute it. Specifically, each
processing unit regularly reports its performance statistics to a
performance monitor of the elastic operator. When the monitor
detects that the number of processing units is insufficient to
handle the current workload, it dynamically allocates new
computational nodes as additional processing units in the
operator. Conversely, if the processing units are under-utilized,
the operator removes a portion of processing units, so that
the computation power of the operator matches the current
workload.

When the processing unit changes, the dispatcher updates
the routing protocol based on the current number of processing
units. The dispatcher modifies the hash function for assigning
objects to processing units. To migrate the local information
for each object 𝑜𝑖, including status of 𝑜𝑖 on previous re-
clustering time 𝑡 and the latest status update 𝑜(𝑙)𝑖 on time 𝑙, the
dispatcher sends the new hash function to each processing unit.
In the verification module, for instance, the verifier 𝑈𝑟 sends
local information with each 𝑜𝑖 ∈ 𝐷𝑟 to the corresponding
new verifier for 𝑜𝑖. To minimize the migration cost, we adopt
consistent hashing [23] for this purpose, which minimizes the
number of objects migrated from one verifier to another.

In C-Cube, the verification module is realized through the
elastic operator design, but the clustering component still
applies existing algorithms. To achieve elasticity, one approach
is to dynamically adjust the the sampling rate in the sampling
component, which changes the expected workload of the
clustering component. Implementing the clustering component
is hard, and remains an open problem. Nevertheless, as our
experiments demonstrate, in C-Cube the majority of the work-
load is performed by the elastic verification module.

VI. EXPERIMENTS

A. Experiment Setup

In the experiments, we test C-Cube with two different
clustering criteria, namely 𝑘-means clustering and 𝑘-median
clustering. For 𝑘-means clustering, we employ 𝑘-means++ [5]

as the underlying clustering algorithm, which outputs 𝑂(ln 𝑘)-
approximate clustering results by expectation. For 𝑘-median
clustering, we use the local search algorithm [6], which outputs
(5+2/𝑘)-approximate results. The continuous clustering algo-
rithms are applied on two very different problem domains, i.e.
𝑘-means clustering on Moving Object Analysis and 𝑘-median
clustering on Microblog Analysis. In the following, we give
detailed descriptions of the datasets in these two domains.
Moving Object Analysis: Clustering on moving objects is
an important topic for traffic analysis and location-based
services. Given the continuous clusterings results reported
by the system, the user can identify potential traffic jams
in the road network and understand the dynamics of traffic
jams by watching the trends of the clusterings in consecutive
timestamps. In our experiments, we use the popular synthetic
moving object trajectory generator developed by Brinkhoff
[10]. The generated dataset contains trajectories in 100 times-
tamps. We initialize 100,000 moving objects under slow speed
on the map of Oldenburg. At each timestamp, the simulator
generates 500 new moving objects. When an object terminates
its journey, its location is set to (−1,−1), and the object is
removed at the following timestamp. Every object reports its
location to the system at every timestamp. These locations
are fed into our cloud-based system for 𝑘-means clustering
analysis.
Microblog Analysis: Microblog systems, e.g., Twitter, have
recently attracted extensive attentions in both academia and
industry, because they greatly accelerate the information flow-
ing among people. Clustering techniques can be used to
capture the fresh and popular topics upon the arrivals of the
tweets. In our experiments, we test C-Cube using the real
data previously used [15]. This dataset records 28,688,584
tweets from 2,168,939 twitter users, from October 2006 to
November 2009. After removing stop words and numbers, we
picked 1,000 most popular words as keywords and transfer
every tweet to a vector of size 1,000. The vector record-
s the number of keywords appearing in the corresponding
tweets. After removing all tweets without any keyword, there
remain 22,613,449 tweet vectors with 3.75 non-zero entries
on average. To analyze the trend of the topics discussed on
Twitter, we continuously calculate the 𝑘-median clustering
with 𝐿1 distance on the tweet vectors, over a sliding window
of consecutive 100,000 tweets.
Implementation: We run our experiments on a cluster with
9 PCs running Ubuntu system of version 10.0.4. Each PC
is equipped with up to 2GB main memory, and a 1.8 GHz
Intel dual core CPU. All PCs are connected through a regular
network router. We implemented C-Cube on top of Twitter
Storm 0.6.2. One of the PCs acts as the Zookeeper server,
which is responsible for clustering resource maintenance.
Another two PCs run as the Nimbus nodes for the cluster
and the Kestrel message queue server respectively. The rest of
the PCs in the cluster are supervisor nodes controlled by the
Nimbus server.

Some details of our implementation and configurations on
the C-Cube framework are given as follows. Following the



Cluster ID Important keywords

Cluster 566

C1: kids, school C2: program, gotta,
affiliate, power

C3: money, save C4: studio, posted,
video

C5: live, music, party,
hotel

C6: sleep, night, hour C7: facebook, excited C8: long, weekend,
ready

C9: webinar, global,
food

C10: google, voice,
search

C11: read, dark, book C12: nice, app, list C13: spring C14: snow, weather,
rain

C15: idea, hard, crazy

C16: ebay, check, s-
tore

C17: whats, area, fa-
vorite

C18: isnt, working,
people

Cluster 567

C1: view, paul, latest,
click

C2: meet, service C3: kids, song, train-
ing

C4: working, website,
hard

C5: article, magazine,
read, interesting

C6: enjoying, friend,
weekend

C7: spring, finished C8: iphone C9: radio, guest C10: wedding, lives,
post, people

C11: interesting, read,
article

C12: sharing, article,
business

C13: fans, music,
facebook

C14: worst, world,
home

C15: health, care

C16: morning, work C17: snow, rain,
weather

C18: gonna, gotta, y-
oure

C19: forget, feel, y-
oure

Cluster 568

C1: weekly, updated C2: talking, idea C3: havent, heard,
years

C4: tips, find, google C5: phone, cell, call

C6: read, sell, book C7: beautiful, out!,
website

C8: gave, night, start C9: problems, twit-
ter!, finding

C10: games, watch, y-
outube

C11: luck, pretty, stuff C12: spring, finished C13: real, estate C14: updated, work,
email

C15: gotta, hear,
watching

TABLE I

CONTINUOUS CLUSTERING RESULTS ON Twitter DATASET

architecture shown in Figure 4, the Kestrel message queue
server works as the message dispatcher. In Twitter Storm,
each continuous analytic job is called a topology, consisting
of two types of nodes, i.e. spout nodes and bolt nodes. We
map C-Cube to a topology, in which the message dispatcher
and verifiers run as spout nodes, and the aggregator is a bolt
node. Clustering component is run as an independent bolt
node, which receives a copy of every update message and
samples them at 1% sampling rate. The clustering component
maintains a sample pool of fixed size, 1% of the number
of estimated active objects. Twitter Storm allows the user to
manually specify the maximal number of nodes running at the
same time. Unless specified otherwise, we set the parallelis-
m parameters as follows: maximum 2 message dispatchers,
maximum 100 verifiers and 1 aggregator. More details on the
meanings of these parameters are available in Twitter Storm’s
documentation [2].

One implementation difficulty with Twitter Storm is to
add new virtual machines into the cloud system when other
nodes are still working. To circumvent this problem, our
implementation on Twitter Storm first starts a maximal number
of virtual machines at the beginning of the analytic process.
Nevertheless, C-Cube only uses a fraction of the virtual
machines and keeps other virtual machines in idle. Based
on the workload, particularly when the system throughput is
below the update arrival rate, C-Cube automatically changes
the hashing function, and includes more virtual machines into
the computation. This scheme incurs little overhead, since the
idle virtual machines spend negligible computation resources
of the cloud platform.

B. Clustering Results

In this section, we present continuous clustering results on
Twitter dataset to illustrate the usefulness of C-Cube on topic
analysis. While more complicated models have been developed

for advanced information retrieval and natural language pro-
cessing, we show that 𝑘-median clustering on popular words in
tweets is sufficient to extract interesting patterns and trends of
the topics. These clustering results are calculated by employing
𝑘 = 20 on a sliding window of 100,000 tweets. In Table I, we
list the clustering results continuously reported by the C-Cube
framework. For each cluster, we identify the most frequent
keywords from the tweets in the corresponding cluster. Some
small clusters that contain no more than 20 tweets are excluded
in the table, leading to the number of clusters less than 20.

From Table I, we observe a variety of popular topics lasting
for a long period of time. In the following, we use C𝑥-
𝑦 to denote the 𝑥’th cluster of clustering at timestamp #𝑦.
Topics related to mobile phones include C12-566 (on mobile
phone applications), C8-567 (about the iPhone) and C6-568
(on phone calls). Google is another well covered topic, which
is included in C10-566 (on Google Voice) and C4-568 (tips
on using Google Search). Spring is another topic commonly
discussed in the tweets, which appears in clusterings C13-
566, C7-567 and C12-568. Weather is also a hot topic in the
discussion as it appears in C14-566 and C17-567.

Some other topics last only for a short period of time. For
example, C6-566 covers words “sleep” and “night” because
these tweets are sent at late night. Words “morning” and
“work” start to appear in C16-567 when the users go to work
in the morning. Similar observations can be found on words
such as “weekend”.

Finally, there is an emerging topic found in C9-568, which
shows that a large number of users are complaining about
certain problems with Twitter. This implies that real-time
clustering information can be helpful for system administrators
to quickly pinpoint possible problems based on the users’
tweets.
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C. System Performance

In this part of the section, we focus on the empirical
studies on the system performance of C-Cube. To the best of
our knowledge, there is no existing system which is capable
of running real-time continuous clustering algorithms on the
cloud platform. To validate the usefulness of C-Cube, we
included a baseline approach (referred to as Baseline in the
rest of the section) in our experiments. Specifically, Baseline
is also implemented on top of Twitter Storm, in which the
system maintains a pool of bolts, and assigns an idle bolt
at each timestamp to handle all object updates and perform
re-clustering, i.e., re-computing the clustering results from
scratch for each timestamp. We measure the performance of
the systems in terms of re-clustering rate, cluster cost, system
throughput and maximal response time. The re-clustering
rate is the ratio of timestamps that the underlying clustering
algorithm performs re-clustering. For instance, Baseline’s re-
clustering rate is always 1 as it does this at every timestamp.
The cluster quality is the average cost according to the
clustering criterion, e.g., the sum of object-center distances
in 𝑘-means and 𝑘-median clustering. The system throughput
is the average number of updates the system processes every
second (wall clock time). In the rest of this section, we analyze
the effects of (1) number of clusters 𝑘, (2) approximation
factor 𝛽, (3) number of verifiers used in C-Cube, (4) workload
change rate, and (5) number of machines in the cluster. The
default values for these parameters are 𝑘 = 20, 𝛽 = 8 and
250 verifiers.

We first report the impact of the number of clusters 𝑘 on
Moving Object and Twitter in Figures 5 and 6, respectively.
The experiments on both datasets show C-Cube achieves

a dramatic reduction on the re-clustering rate. Referring to
Figure 5 (a), C-Cube only recalculates the clusterings on less
than 10% of the timestamps for 𝑘 = 20 on Moving Object. The
re-clustering rate on Moving Object grows with the number of
clusters 𝑘, whereas the trend is reversed on Twitter as shown in
Figure 6 (a). This is because of the unstable clusters when the
system forcefully partitions them into more groups/clusters.
Twitter, in contrast, consists of a large number of tweets that
address a variety of different topics, leading to more stable
clusterings and less re-clusterings with large 𝑘. Meanwhile,
the difference in result quality between C-Cube and Baseline
is negligible on both datasets, which is verified by the results
shown in Figures 5(b) and 6(b).

The average throughput of C-Cube is about 5 times higher
than that of the Baseline on both datasets, according to the
results shown in Figures 5(c) and 6(c). This shows the C-Cube
is significantly better on handling large numbers of updates
from the objects. When increasing the number of clusters,
the throughput of both approaches declines. This is expected,
since the cost of re-clustering increases with 𝑘. Nevertheless,
we always observe considerable performance gap between C-
Cube and Baseline, when 𝑘 is larger than 2.

We report the results on varying the approximation param-
eter 𝛽 in Figures 7 and 8. Note that in practice, 𝛽 should
be set with a higher value than the approximation factor of
the underlying clustering algorithm. We use smaller values
in our experiments anyway, in order to show how C-Cube
performs even in such extreme cases. Referring to Figures 7(a)
and 8(a), the re-clustering rates of C-Cube on Moving Object
and Twitter are 0.8 and 1 respectively when 𝛽 = 2, meaning
that C-Cube needs to re-compute the clustering results at
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almost every timestamp. Consequently, the throughput of C-
Cube degenerates to that of Baseline, referring to the results
when 𝛽 = 2 in Figures 7(c) and 8(c). On the other hand,
as shown in Figures 7(b) and 8(b), such a small value of
𝛽 does not improve the clustering quality significantly; the
quality score is almost constant with all values of 𝛽, except
when 𝛽 = 10, where we observe a slight cost increase on the
Moving Object data. This result suggests that a moderate 𝛽 is
sufficient in practice.
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The previous experiments focus on the parameters con-
trolling the clustering procedure. Next, we test the impact
of cloud system settings, particularly the number of verifiers
(i.e., virtual machines) available to C-Cube. Note that Baseline
uses exactly one virtual machine, i.e. bolt node, for every
timestamp. In Figure 9, we present the results of average
throughput of C-Cube, on Moving Object. It shows that adding
more numbers of virtual machines, which is significantly larger
than the actual cores in the physical cluster, improves the
system throughput. This is due to the computational time
saved on the bipartite matching procedure when each verifier

is responsible for matching less objects. It implies that most of
the CPU cycles in C-Cube are spent on the bipartite matching
in the verification instead of the re-clustering computation.
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We also test the effect of workload change rate using the
Twitter dataset. In particular, we control the number of active
objects at every timestamp by adjusting the sliding window
size on tweets. On the first timestamp, the clustering results
are computed using the first 50,000 tweets; in each of the
the following timestamps, we uniformly select the number of
tweets within 1±𝑥% of the previous timestamp, where 𝑥 is the
workload change rate under our investigation. We vary 𝑥 from
2 to 10, while the other parameters are fixed at their defaults.
Figure 10 presents the results on re-clustering rate and average
system throughput. It is seen that C-Cube remains robust when
the workload changes slowly. When 𝑥 reaches 10%, the re-
clustering rate of C-Cube grows to 0.6; nonetheless, C-Cube’s
throughput at 𝑥 = 10% is still about 3 times as high as that
of Baseline.

Finally, we evaluate C-Cube by varying the number of
machines in the cluster, while the number of virtual machines
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is fixed to 250. Figure 11 presents the results on system
average throughput and the maximal response time. Here,
maximal response time is the longest time period between the
timestamp when an object update is issued that triggers the
re-clustering procedure and the time when the new clustering
result is output by the system. The results in Figure 11 show
that the average throughput of C-Cube scales linearly to the
number of physical machines. Again, this confirms that most
of the computation in C-Cube is on clustering verification,
which can be effectively accelerated when more verifiers are
available. When there are more than 5 machines used in
the cluster, C-Cube is able to produce the response within
1 minute, which is often sufficient for daily traffic monitoring
applications.

VII. CONCLUSION

In this paper, we present C-Cube, a general framework for
real-time clustering on a cloud platform. C-Cube supports
a variety of clustering criteria, e.g., 𝑘-means and 𝑘-median
clustering. It provides robust guarantees on the quality of the
clustering results, as well as elasticity in the presence of chang-
ing workload. C-Cube can be easily implemented on a general-
purpose cloud platform, e.g., Twitter Storm. Empirical studies
validate the superiority of C-Cube on both high effectiveness in
identifying meaningful clusters and considerable performance
gains compared to alternatives. It shows that C-Cube achieves
generality, elasticity, quality and efficiency at the same time.
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