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Background: In C. elegans there are two well-defined TGFf-like signaling pathways. The Sma/Mab
pathway affects body size morphogenesis, male tail development and spicule formation while the
Daf pathway regulates entry into and exit out of the dauer state. To identify additional factors that
modulate TGFp signaling in the Sma/Mab pathway, we have undertaken a genetic screen for small
animals and have identified kin-29.

Results: kin-29 encodes a protein with a cytoplasmic serine-threonine kinase and a novel C-
terminal domain. The kinase domain is a distantly related member of the EMK (ELKL motif kinase)
family, which interacts with microtubules. We show that the serine-threonine kinase domain has
in vitro activity. kin-29 mutations result in small animals, but do not affect male tail morphology as
do several of the Sma/Mab signal transducers. Adult worms are smaller than the wild-type, but also
develop more slowly. Rescue by kin-29 is achieved by expression in neurons or in the hypodermis.
Interaction with the dauer pathway is observed in double mutant combinations, which have been
seen with Sma/Mab pathway mutants. We show that kin-29 is epistatic to the ligand dbl-/, and lies
upstream of the Sma/Mab pathway target gene, lon-/.

Conclusion: kin-29 is a new modulator of the Sma/Mab pathway. It functions in neurons and in the
hypodermis to regulate body size, but does not affect all TGF[} outputs, such as tail morphogenesis.

Background mals [1-4]. The core of the signaling pathway has been
The transforming growth factor § (TGFfB) superfamily is  elucidated in the last few years and reveals a rather simple
involved in many developmental decisions from primi-  signaling cascade. These ligands transmit the TGFp signal
tive animals such as Cnidaria and sponges to higher ani- by binding transmembrane receptor serine-threonine
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kinases (RSKs). Once ligand is bound, the type II RSK
phosphorylates the type I RSK in a cytoplasmic region rich
in glycine and serine residues (GS domain). Phosphoryla-
tion activates the type I RSK and enables it to phosphor-
ylate downstream mediators referred to as the Smads.
Once the receptor-regulated Smads (R-Smads) are phos-
phorylated, they are able to physically interact with
another subset of Smads identified as the common Smads
(Co-Smads) and translocate to the nucleus where they
affect target gene transcription [3,5-7].

Of the five TGFf-like ligands in C. elegans, dbl-1 (dpp and
BMP-like) and daf-7 (dauer formation abnormal) are the
best characterized. dbl-1 transmits the Sma/Mab (small/
male tail abnormal) pathway signal while daf-7 regulates
formation of dauer, an alternative life stage entered in
response to low food or high population density [8-10].
These two pathways share a common type II RSK, daf-4.
daf-4 animals are small, exhibit fused male tail sensory
rays and constitutively form dauer larvae [11,12]. Mutants
of all other known components of the dauer pathway are
either dauer constitutive (daf-c) like daf-7 or dauer defec-
tive (daf-d) [3,13]. Based on the Sma/Mab phenotypes of
daf-4 mutants, sma-2, sma-3, sma-4 and sma-6 were identi-
fied and cloned. sma-2, sma-3 and sma-4 encode Smads
while sma-6 encodes a type I RSK [12,14]. The Sma/Mab
signal is transmitted upon binding of the ligand, DBL-1,
to the type Il and type I RSKs, DAF-4 and SMA-6 respec-
tively. Once stimulated, SMA-6 activates the Smads, SMA-
2, -3 and -4, causing them to affect target gene
transcription.

Although the core TGFp pathway is known, additional
components that may further refine signaling remain to
be identified. To address this issue, we previously con-
ducted a genetic screen for Sma animals and isolated sev-
eral new mutants, including kin-29 (also known as sma-
11) [15]. We find that kin-29 is able to suppress the long
mutant phenotype generated by animals over-expressing
the ligand dbl-1. Additionally, we observe that lon-1, a
Sma/Mab pathway target gene whose product shows
homology to proteins of the cysteine-rich secretory pro-
tein (CRISP) family, is up-regulated in kin-29(lf) mutant
animals in a similar manner to that seen in a sma-6 null
mutant background [16,17]. kin-29 mutant animals are
also developmentally delayed and this defect is partially
suppressed by loss of lon-1 function. These data suggest
that kin-29 genetically interacts with Sma/Mab pathway
signaling downstream of dbl-1 but upstream of lon-1.

Several of the Sma/Mab pathway components have been
shown to function in the hypodermis to regulate body
size morphogenesis. sma-3, sma-6 and lon-1, when specif-
ically expressed in the hypodermis, have been shown to
rescue the body size defects associated with each of these
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loss-of-function mutations [15-18]. The Sma/Mab ligand
DBL-1 is primarily expressed in neuronal tissues [8]. It is
likely that DBL-1 is secreted from these tissues and targets
the hypodermis in order to regulate body size formation.
We find that tissue-specific expression of kin-29(+) in the
hypodermis rescues the small body size phenotype of kin-
29(If) animals. In addition, we find that kin-29(+), when
expressed in the same tissues as dbl-1, also rescues the
small body size phenotype of kin-29(If) animals. There-
fore, kin-29 can function in both hypodermal and neuro-
nal tissues with known Sma/Mab pathway components to
regulate body size morphogenesis.

In order to understand how kin-29 functions in Sma/Mab
pathway signaling, we undertook the molecular character-
ization of kin-29. It is encoded by F58H12.1, which has an
N-terminal kinase domain and a novel C-terminal region.
Its kinase domain makes it a distant member of the EMK
kinase family, which modulates microtubule organiza-
tion. kin-29 has a role in olfaction [19], suggesting that the
ability to sense environmental signals influences body
size regulation.

Results

kin-29 encodes a serine threonine kinase

Mutations in members of the Sma/Mab TGF-like signal-
ing pathway result in animals that are phenotypically
smaller than wild-type. These Sma/Mab mutants are
approximately 70% the size of their wild-type counter-
parts [8,9,11,12,14]. Based on this small body size pheno-
type, we set out to isolate additional loci which when
mutated resulted in small animals. From an F2 EMS
screen of N2 wild-type animals, we identified kin-
29(wk61) [15]. kin-29(If) animals are small, like known
Sma/Mab pathway components (Table 1). However,
unlike the known pathway components, kin-29 does not
possess male tail ray fusions or crumpled spicules, sug-
gesting that kin-29 is involved in regulation of body size
morphogenesis but not male tail development.

kin-29 was mapped to linkage group X between unc-2 and
fax-1. Appropriate YACs, cosmids, and DNA fragments
were used to rescue the gene. The longest cDNA available,
y293c7 (Y. Kohara, National Institute of Genetics), span-
ning this open reading frame was obtained. Based on the
ORF sequenced from y293c7, a 10 kb region of genomic
DNA containing kin-29 was fused in frame with GFP. This
construct, kin-29p::kin-29 gfp, was then injected into kin-
29 mutant animals and conferred rescue (Table 3).

We searched for molecular lesions in kin-29(wk61).
Genomic DNA spanning the entire coding region of kin-
29 was isolated from kin-29(wk61) animals, sequenced
and compared to sequence obtained from EST y293c7.
Sequence analysis reveals kin-29 to consist of 16 exons

Page 2 of 15

(page number not for citation purposes)



BMC Developmental Biology 2005, 5:8

Table I: Body size measurements of kin-29 alleles

http://www.biomedcentral.com/1471-213X/5/8

Genotype* Perimeter (mm)** %N2 n
N2 2.60 £ 0.14 45
sma-6(wk7) 1.85 £ 0.20 71% 46
kin-29(wké1) 1.97 £ 0.19 76% 41
kin-29(oy38) 220+ 0.18 85% 4?2
kin-29(oy39) 1.98 £ 0.22 76% 38
lon-1(wk50) 272 £0.19 105% 48
lon-1(wk50);kin-29(wké 1) 249 £0.17 96% 35

* All animals were measured 48 hours after L4.
** Data are means * std.

In comparison to N2, all animals are significantly different in size (p < 0.0001).
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kin-29 encodes a serine-threonine kinase. Schematic of kin-29 exon/intron structure including 16 exons. The shaded
region at the N-terminus consists of the kinase domain with the Q-to-stop mutation of kin-29(wké 1) shown. The function of
the C-terminus has not yet been determined but it may act as a regulator of kinase activity.

that encode a protein of 822 amino acids in length (Fig.
1). A mutation found in the eighth exon of kin-29(wk61)
changes a single nucleotide from cytosine to thymine.
This change results in a premature termination codon and
a truncated protein of 273 amino acids. While this work
was in progress, kin-29 was cloned as a modifier of olfac-
tory gene expression [19]. Two alleles from that study, kin-
29(0y38) and kin-29(0y39), result from a 526 bp deletion,
which is replaced by sequence found on LG X, and a mis-
sense mutation in the kinase domain, respectively [19].

kin-29 encodes a predicted serine-threonine kinase.
Within its kinase domain, KIN-29 is homologous to
members of the ELKL motif kinase (EMK) family and salt-
induced kinase family (~66% identity)(Fig. 2A,2B). Mem-
bers of the EMK family include C. elegans PAR-1, Dro-
sophila PAR-1, S. pombe KIN-1, and mammalian MARK
(microtubule-affinity-regulating kinase) [20-23]. EMK
family members have been shown to affect cell polarity as

well as microtubule stability [20,22,23]. The kinase
domain of KIN-29 also shows significant homology salt-
induced kinases [24,25]. Salt induced kinases (SIK) were
cloned from subtractive libraries derived from genes
expressed in the adrenal glands after high salt diets in rat.
The biological function of these kinases is not clear. The
C-terminal domain of KIN-29 is more divergent and
shows little homology with domains in other kinases.

KIN-29 encodes a functional kinase

In order to assess whether KIN-29 acts as a functional
kinase, 293T cells were transfected with either C-terminal
FLAG-tagged full length kin-29 or various constructs,
which truncate the carboxy terminal region of the protein.
As controls, both the kinase active and kinase inactive
mammalian TGFJ type II RSK were also transfected.
Lysates were immuniprecipitated with anti-Flag antibody
and in vitro kinase assays performed. We observe that full
length KIN-29 is capable of autophophorylation (Fig. 3).
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Figure 2

Molecular analysis of the kinase domain. (A) Sequence alignment between the kinase domains of KIN-29 (~amino acids
16-267), rat salt-induced kinase (rSalt-Ind Kinase), Drosophila CG4290 (a salt-induced kinase member), and mouse EMK
(mEMK). Identical matches in three of the four sequences are indicated by white letters. (B) Dendrogram showing the relation-
ship between the kinase domain of KIN-29 (~amino acids 16-267), and several additional kinases.
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KIN-29 is a functional kinase. 293T cells were trans-
fected with C-terminal flag tagged kin-29 constructs (top
panel). KIN-29-KU contains amino acids 1-354, which
includes the kinase domain and UBA domain. KIN-29K con-
tains amino acids 1-300 which includes only the kinase
domain and KIN-29K(K45R) contains amino acids 1-300
with a point mutation at position 45 that changes a lysine to
an arginine. FLAG-tagged proteins were immunoprecipitated
using anti-Flag antibody and in vitro kinase assays performed.
Full length KIN-29 is capable of autophosphorylation similar
to mammalian T3 RIl (TGFf type Il RSK) (top panel). Trun-
cating the C-terminal domain of KIN-29 prevents
autophosphorylation.

However, when we truncate the C-terminal domain, we
find that the kinase domain, along with the ubiquitin-
associated domain (UBA) or the kinase domain (with or
without lysine 45 changed to arginine) are no longer capa-
ble of autophosphorylation. Lysine 45 is a conserved res-
idue essential for catalytic function in kinases. This
indicates that the C-terminal domain is required for auto-
phosphorylation. The C-terminal domain could be
required for kinase activity or it may simply be the sub-
strate for autophosphorylation. Lanjuin and colleagues
have previously shown that animals possessing a muta-
tion (0y39) in the kinase domain have a small body size

http://www.biomedcentral.com/1471-213X/5/8

[19], indicating that the kinase domain is required for
proper body size.

Placement of kin-29 in the SmalMab pathway

Epistasis between kin-29 and dbl-1 or lon-1 was examined
in order to determine the relationship between kin-29 and
Sma/Mab pathway signaling. Double mutant analysis
between several of the known pathway components and
lon-1 results in animals that are long (Lon) [16,17], mak-
ing it the most downstream gene in the pathway. We
examined lon-1(wk50); kin-29(wk61) double mutants to
determine whether kin-29 can be placed in a similar posi-
tion in the pathway as the current Sma/Mab components.
We find that double mutants are longer than the single
mutants of kin-29(wk61), suggesting that lon-1 suppresses
the Sma phenotype of kin-29 (Table 1).

Next, we examined the relationship between dbl-1 and
kin-29. Over-expression of dbl-1 results in Lon animals,
suggesting more ligand causes an increase in the TGFj sig-
nal output. When dbl-1 over-expressing animals are
crossed into sma-2, sma-3, sma-4, sma-6 or daf—4 mutant
backgrounds, the Lon phenotype is suppressed [8] and the
animals are Sma. This places the type I receptor and the
Smads downstream of the ligand, dbl-1. When dbl-1 is
over-expressed in a kin-29(wk61) background, the ani-
mals are also Sma (Table 2). Additionally, using a weak
allele of sma-6, we generated a sma-6(e1482)unc4(e120);
kin-29(wk61) double mutant and examined its body size.
We find that these animals are similar in size to that
observed for sma-6(e1482)unc4(e120) mutants alone sug-
gesting that sma-6 and kin-29 may not function in parallel
pathways (Table 2). This indicates that kin-29 behaves in
a manner consistent with known Sma/Mab pathway sign-
aling molecules and is likely to function within this sign-
aling cascade.

Since lon-1 is genetically downstream of the Sma/Mab
pathway signaling, we examined whether lon-1 mRNA lev-
els are altered in kin-29 mutants. We have previously
shown that lon-1 mRNA levels are up-regulated in sma-
6(wk7) mutants and down-regulated in animals that over-
express dbl-1 [16,17]. To test whether lon-1 mRNA is regu-
lated in kin-29 animals, we examined lon-1 mRNA levels
in a kin-29(wk61) background (Fig. 4). kin-29(wk61) ani-
mals show an increase in the expression level of the lon-1
transcript. This increase is comparable to that previously
observed in sma-6(wk?7) mutant animals [16].

kin-29 has been shown to affect the expression of a subset
of olfactory receptor genes [19]. Several olfactory recep-
tors expressed in AWB, ASH and ASK sensory neurons
were either reduced or up-regulated in the kin-29 mutant
background. Given that kin-29 affects mRNA levels of
these olfactory receptors, we asked whether kin-29 alters
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Table 2: kin-29 suppresses the dbl-1 over-expression phenotype
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Genotype* Perimeter (mm)** %N2 n
kin-29(wké1)1, 2) 1.90 £ 0.15 73% 42
ctls40 [pTG96(sur-5::gfp)]dbl-1(+)2  2.76 £ 0.12 106% 42
kin-29(wké 1); ctls40 [pTG96(sur- 1.84 +0.20 71% 51
5:gfp)] 1
sma-6(el482) unc-4(el20)3 1.47 £ 0.13 57% 37
sma-6(el482) unc-4(el20);kin- 1.48 £ 0.17 57% 38
29(wké61)3
* All animals were measured 48 hours after L4.
** Data are means = std.
I-Animals are not significantly different from each other (p > 0.05).
2-Animals are significantly different from each other (p < 0.0001)).
3-Animals are not significantly different from each other (p > 0.05).

Table 3: Rescue of kin-29(wké1) by promoter fusion constructs
Genotype* Perimeter (mm)** %N2 n
kin-29(wké1) 2.06 £0.13 79% 36
kin-29(wké | );kin-29p::kin-29:gfb 2.60 £0.12 99% 33
kin-29(wké | );elt-3p::kin-29:gfp 241 +£0.19 92% 35
(hypodermal)
kin-29(wké | );dbl-1 p::kin-29:gfp 247 £0.18 94% 35
(neuronal)

* All animals were measured 48 hours after L4.
** Data are means * std.

In comparison to kin-29(wké 1), all animals are significantly different in size from control (p < 0.0001).

the mRNA expression levels of the Sma/Mab components.
We examined sma-6 mRNA expression (the type I recep-
tor) in a kin-29 background and find no changes in expres-
sion levels of sma-6 mRNA. Because kin-29 and dbl-1
expression patterns overlap, we examined mRNA expres-
sion levels of dbl-1 in a kin-29 mutant background. We
find that kin-29 does not affect dbl-1 mRNA expression
levels (data not shown).

kin-29 expression is diverse and dynamic

In efforts to elucidate the function of kin-29 in TGFp sign-
aling, we examined its expression pattern. A construct
consisting of the kin-29 promoter and coding region fused
in frame to gfp was injected into kin-29(wk61) animals. As
described above, this construct was able to rescue the
small body size phenotype of kin-29(wk61) to wild-type
(Table 3). Upon examination of the expression pattern,
we observe KIN-29 to be localized to various tissue types
(Fig. 5). Most notably, KIN-29 is seen in several neuronal
cells in the head and tail throughout the course of devel-
opment. Several of the sensory neurons found in the head
express KIN-29, including ASH, AFD and ASI [19]. Addi-

tional neuronal staining is observed in both CAN cells
and the ventral nerve cord (Fig. 5A). We find expression
both in pharyngeal and body wall muscle (Fig. 5B). Dur-
ing the L1, L3 and L4 stages, we see expression throughout
the intestine both in the nuclei and to a lesser extent in the
cytoplasm (Fig. 5C) and in cells in the tail (Fig. 5D). This
intestinal expression is rarely seen in later stages of devel-
opment. Occasionally, expression is seen in vulval mus-
cles as well.

Hypodermal and neuronal expression of kin-29 rescues
the small body size phenotype

In order to determine where kin-29 activity is required, we
examined the body size of kin-29(If) animals transformed
with constructs expressing kin-29 in specific tissues. elt-3
and rol-6 promoters drive expression in the hypodermis,
while dbl-1 drives expression in a subset of neurons. All
three promoters were fused to kin-29 genomic DNA
sequences. Each of these constructs was injected into kin-
29(wk61) animals and transgenic strains were analyzed
for body size. Several of the Sma/Mab pathway compo-
nents, sma-3, sma-6, and lon-1, when specifically expressed
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mRNA levels of the Sma/Mab target gene, lon-1, are
negatively regulated in kin-29(wké 1) animals. North-
ern blot showing lon-I mRNA expression observed in mixed
stage populations of N2, sma-6(wk7), sma-3(wk30), and kin-
29(wké 1) animals. Sma/Mab pathway mutants sma-6(wk7) and
sma-3(wk30) show an up-regulation of the lon-I transcript
(lanes 2 and 3). Similarly, kin-29(wké | ) also shows an increase
in lon-I mRNA (lane 4). Elongation factor-2 (eft-2) was used
to control for amounts of RNA loaded per lane. Levels of
mRNA were quantitated using a phosphorimager and
IQMacv .2 software. See Materials and Methods for details
on relative transcript level calculations.

in hypodermal tissues, rescue the body size defects associ-
ated with loss-of-function mutations in each of these
genes [16-18,26]. Using the rol-6 and elt-3 promoters to
drive hypodermal expression of the genomic region of
kin-29 results in rescue of the small body size phenotype
of kin-29(wk61). Since KIN-29 expression overlaps that of
the Sma/Mab pathway ligand DBL-1 in the amphid neu-
rons, ventral nerve cord, CAN cells and body wall muscle,
we reasoned that KIN-29 and DBL-1 may function
together in the same tissues to regulate body size morpho-
genesis [8,9]. We find that kin-29 under the control of the
dbl-1 promoter rescues the small body size phenotype of
kin-29(wk61) animals (Table 3). These data suggest that
KIN-29 functions in neuronal and hypodermal tissues to
regulate body size morphogenesis (Table 3 and data not
shown).

http://www.biomedcentral.com/1471-213X/5/8

Figure 5

Expression patterns of kin-29p:: kin-29:gfp rescuing
construct in wild-type animals. Animals shown are L4
stage photographed at 63x. kin-29 promoter fusion con-
structs are expressed throughout development: (A) in the
CAN neuron, (B) in body wall muscle, (C) in the intestine,
and (D) in cells in the tail.

kin-29 mutants are small, have delayed growth rates, and
reduced brood sizes

The growth properties of Sma/Mab animals differ from
other small animals. For example, mutants of the spectrin
gene, sma-1, which have been shown to affect embryonic
elongation but not thought to be involved in TGFp signal-
ing, are approximately 50% the size of wild-type animals
at hatching [27]. This is in contrast to the body size of L1
animals mutant in known Sma/Mab pathway compo-
nents. For example, sma-3, sma-6, dbl-1, and lon-1 are
indistinguishable in length from wild-type L1 animals at
hatching [26]. This suggests that the Sma/Mab pathway
components are defective in post-embryonic rather than
embryonic stages of development. Sma/Mab pathway
mutant animals grow at a slower rate as development
progresses through the later larval stages into adulthood
[26]. There is no defining switch during development that
regulates body growth. We tested whether kin-29 muta-
tions cause body size defects in a similar manner to Sma/
Mab pathway mutations or whether kin-29 possessed
embryonic defects. We examined the body size of kin-29
mutant animals in comparison to sma-6(wk7) and N2 ani-
mals at hatching and then at 24 hour intervals to 96
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The small body size phenotype of kin-29animals is a
result of defects in postembryonic development. N2,
sma-6(wk7), kin-29(wké 1), kin-29(oy38) and kin-29(oy39) were
hatched and synchronized as L| animals. L1 animals were
measured at time zero and then at 24-hour time points span-
ning a 96 hour period. kin-29 animals are developmentally
delayed and over time, kin-29(If) animals never reach a wild-
type body size. Perimeter measurements for at least 22 ani-
mals were averaged at each time point. Error bars represent
standard deviation values. Values for N2 and kin-29 mutants
are significantly different (p < 0.001).

hours. We find that all three alleles of kin-29 are similar in
length at the L1 stage to N2 animals. This is also what we
observe for sma-6(wk7) which suggests that kin-29 delays
growth post-embryonically, as do Sma/Mab pathway
components (Fig. 6). The Sma body size of kin-29 is there-
fore due to a delay in development in later larval stages.

In addition, we find that kin-29 grows more slowly than
N2 and Sma/Mab pathway mutants do. Animals hatched
and grown at 20°C were scored based on their develop-
mental stage after 72 hours. We find that 99% of wild-type
animals are adults at this time point, while only 2% of kin-
29(wk61) animals are adults (Table 4). Lanjuin and col-
leagues report a similar observation; 98% of wild-type
animals hatched and grown at 25 °C for 3 days were adults
in comparison to approximately 24% of kin-29(0y38) ani-
mals [19]. We asked if lon-1(If) could suppress the devel-
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Table 4: lon-1 partially suppresses the developmental defect of
kin-29(wké1)

% Adult animals % Adults 4 animals

Genotype 20°C 20°C

N2 99 (185) 99 (185)
lon-1(wk50) 64 (245) 80 (245)
kin-29(wké 1) 2 (475) 43 (475)

lon-1 (wk50);kin-29(wké 1) 40 (202) 63 (202)

Number of animals scored is shown in parentheses.

Table 5: Brood size analysis of kin-29 alleles

Genotype % of wild-type brood size
N2 100 (270)
sma-6(wk7) 64 (172)
lon-1(wk50) 81 (219)
kin-29(wké61) 32 (86)
kin-29(oy38) 81 (218)
kin-29(oy39) 80 (217)

Number of eggs scored for each genotype is shown in parentheses.

opmental delay characteristic of kin-29(wk61) animals
(Table 4). lon-1(wk50) mutants on their own show a slight
delay in development, but which is distinguishable from
the Sma/Mab mutants. In the double mutant lon-
1(wk50);kin-29(wk61), we find that the developmental
defect of kin-29(wk61) can be partially suppressed by lon-
1(wk50). This result is consistent with our conclusion that
lon-1 is genetically downstream of kin-29.

We observed that Sma/Mab pathway mutants have a
reduced brood size. In addition to the developmental
defects, kin-29(wk61) also has a reduced brood size (Table
5). Like sma-6(If) and lon-1(if), kin-29(wk61) shows a
brood size approximately 30% the size of that seen in
wild-type animals. We find that sma-6(wk7) and lon-
1(wk50) along with kin-29(0y38) and kin-29(oy39) have a
reduction in brood size as well. Although brood size is
affected, embryonic survival rate appears to be normal.

kin-29 affects dauer pathway signaling

Several components of the Sma/Mab pathway have been
shown to genetically interact with members of the dauer
pathway [9,14]. The dauer-constitutive (Daf-c) phenotype
of the type I receptor daf-1 is enhanced by mutations in
sma-6. At 15°C, daf-1 mutant strains exhibit a very weak
dauer-constitutive phenotype. However, sma-6(wk7); daf-
1(m40) mutants show a 50% increase in the number of
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dauered animals at 15°C [14]. In addition, double
mutants between the ligand daf-7(e1372) and either dbl-
1(kk3) or sma-2(e502) also have been shown to enhance
the weak Daf-c phenotype of daf-7(e1372) at 20°C [9].
These data suggest that there is some crosstalk between
the Sma/Mab pathway and the TGFB-like daf-7 dauer
pathway.

Based on these findings, we examined the effects of the
kin-29 alleles on dauer formation. Double homozygotes
were made between daf-7(e1372) and each of the three
alleles of kin-29. Genetic interactions were analyzed at
15°C, 20°C and 25°C. For comparison, daf-7(e1372)
mutants raised at 25°C show almost 100% dauered ani-
mals compared to no dauered animals at 15°C or 20°C.
At 15°C and 20°C, kin-29(oy38) is able to enhance dauer
formation of daf-7(e1372) similar to the enhancement
observed in sma-6(wk7); daf-7(e1372) mutant animals
(Fig. 7A,B). We also see that kin-29(wk61) shows a weak
enhancement of dauer formation while the missense
mutant kin-29(0y39) shows no genetic interaction at all.
These results are consistent with genetic interactions pre-
viously observed between Sma/Mab and dauer pathway
components. However, at 25°C, we find that kin-29 can
also suppress the constitutive dauer formation of daf-
7(e1372). kin-29(wk61) and kin-29(oy39) are able to
suppress the Daf-c defects of daf-7(e1372) while kin-
29(0y38) does not (Fig. 7C).

Discussion

KIN-29 functions in hypodermal and neuronal tissues to
regulate body size

Expression of the Sma/Mab pathway components in the
hypodermis is sufficient to rescue the body size defects
seen in mutants. Specific expression of sma-3, sma-6 and
lon-1 in the hypodermal tissues has been shown to restore
body length in these respective mutant animals [16-
18,26]. This implies that body size is regulated largely via
hypodermal function. Our work presented here further
supports that C. elegans body size is regulated in hypoder-
mal tissues. When the genomic region of kin-29 is specifi-
cally expressed in the hypodermis, under the control of
the elt-3 and rol-6 promoters, we see that the small body
size phenotype of kin-29(wkG61) is partially rescued.
Although KIN-29 functions in the hypodermis to regulate
body size morphogenesis, we do not see KIN-29::GFP,
under the control of its own promoter, expressed in the
hypodermal tissues, suggesting that KIN-29 expression
levels are relatively low in these tissues.

DBL-1 is expressed primarily in neurons, which includes
several amphid and pharyngeal neurons, ventral nerve
cord, and CAN cells [8,17]. Since KIN-29 expression
closely parallels that seen for DBL-1, we also examined
whether the dbl-1 promoter driving kin-29 genomic
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sequences is capable of rescuing the body size defect of
kin-29(wk61). When kin-29 is expressed in the same tis-
sues as dbl-1, we observe partial rescue of the small body
size defect seen in kin-29(If) animals. It has been demon-
strated that kin-29 under the control of the unc-14 and odr-
4 promoters is able to rescue the body size defect of kin-29
mutant animals [19]. unc-14 is expressed in all neuronal
cells while odr-4 is expressed in a subset of the sensory
neurons including the AFD neurons where DBL-1 and
KIN-29 are also expressed [28,29]. This suggests that neu-
ronal expression of KIN-29 is also sufficient to regulate
body size morphogenesis. Determining how this occurs
will require further study.

kin-29 is a tissue specific factor that affects the Sma/Mab
pathway

Mutations in the ligand dbl-1, the receptors sma-6 and daf-
4, and Smads sma-2, sma-3 and sma-4, result in animals
that are approximately 70% the size of wild-type animals
[8,9,11,12,14]. Additional defects are seen as male tail ray
fusions and crumpled spicules. However, the negatively
regulated Sma/Mab target gene lon-1, suppresses the small
body size phenotype of sma-2, sma-3, sma-4 and sma-6 but
not the male tail defects observed in each of these loss-of-
function mutants [16,17]. This implies that Sma/Mab
pathway signaling may branch downstream of the Smads
to regulate a subset of genes that control body size
morphogenesis while others specifically affect male tail
development. We find that kin-29(If) animals do not pos-
ses ray fusions or crumpled spicules and may exert its
effects upstream of this branch point in the signaling
pathway. In addition, we see that lon-1 is genetically
downstream of kin-29 and that kin-29 suppresses the Lon
phenotype associated with over expression of dbl-1. Taken
together, this data suggests that kin-29 may function in tis-
sues with Sma/Mab pathway components to regulate
body size but not male tail formation.

The EMK kinase family and kin-29

Members of the EMK family have been shown to affect cell
polarity and microtubule stability. Mammalian MARK
phosphorylates microtubule associated proteins and has
been shown to destabilize microtubules when over
expressed in CHO cells [23]. Drosophila PAR-1 influences
the cytoskeletal organization of the oocyte [21]. In wild-
type Drosophila oocytes, the microtubules are arranged in
an anterior to posterior gradient with no microtubules
observed at the most posterior region of the oocyte.
Microtubules in Drosophila par-1 mutants, however, are
organized around the cortex of the oocyte. In this reorgan-
ization, microtubules are now observed in the most pos-
terior region of the oocyte. In addition, posterior
localization of Drosophila oskar is dependent on microtu-
bule polarity. oskar is mislocalized in dpar-1 mutants, fur-
ther supporting the involvement of dpar-1 in regulating
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Figure 7

Interaction between kin-29 and the daf-7 TGFf-like pathway. N2 or dauered animals are not seen at 15°C or 20°C (A,
B). daf-7(el372) mutant animals form constitutive dauers at 25°C (C). kin-29 mutants can both suppress and enhance the dauer
constitutive phenotype of daf-7(e1372). At 25°C, daf-7(el372); kin-29(wké 1) and daf-7(e372); kin-29(oy39) mutants show sup-
pression of the Daf-c phenotype while daf-7(e372); kin-29(oy38) mutants do not (C). At 15°C and 20°C, daf-7(el372); kin-
29(oy38) mutants show an enhancement in dauer formation similar to that observed in sma-6(wk?7); daf-7(el372) animals(A, B).
Additionally, daf-7(e372); kin-29(wké ) mutants show a mild enhancement of the Daf-c daf-7 phenotype (A, B).

Page 10 of 15

(page number not for citation purposes)



BMC Developmental Biology 2005, 5:8

microtubule dynamics. C. elegans PAR-1 regulates the
early asymmetrical cell divisions of the embryo but has
not been shown to have any affects on the microtubule
network [20]. KIN-29 only shows homology to the EMK
family members within its N-terminal kinase domain,
indicating that KIN-29 is a more distantly related member
of the EMK family. However, lack of homology between
the C-termini of KIN-29 and EMK family proteins suggests
that KIN-29 activity may diverge from that observed for
members of this family.

How does kin-29 function?

We have observed that KIN-29 functions in both neuronal
and hypodermal tissues. How kin-29 functions in each of
these tissues to regulate body size morphogenesis is
unclear. Since kin-29 encodes a kinase it might act to reg-
ulate the activities of a variety of molecules that affect
Sma/Mab pathway signaling. Recently, it has been shown
that several olfactory receptors are misexpressed in kin-
29(lf) animals, suggesting that KIN-29 may regulate
proper expression levels of various genes [19]. One model
is that KIN-29 phosphorylates a transcription factor and/
or co-factor, which leads to the transcriptional mis-regula-
tion of some component important for Sma/Mab path-
way signaling. We have examined the expression levels of
the Sma/Mab ligand dbl-1 and the type I RSK sma-6 and do
not see any alteration in their levels of expression. How-
ever, this does not rule out that other genes that impinge
on pathway signaling might be affected at the transcrip-
tional level in neurons and hypodermal cells. Alterna-
tively, KIN-29 may function in microtubule dynamics as
described above [21,23]. kin-29 might therefore influence
microtubule (MT) organization in both neuronal and
hypodermal tissues and affect Sma/Mab pathway signal-
ing in each of these cell types.

Dauer interactions show that kin-29(If) mutants may not

sense external cues properly

We have shown that KIN-29 helps to promote dauer for-
mation at 25°C and to suppress dauer formation at 15°C.
ttx-3, a LIM homeobox gene, shows a similar genetic inter-
action with daf-7 [30]. Like kin-29, ttx-3 single mutants do
not affect dauer formation. daf-7(e1372); ttx-3(ks5) dou-
ble mutant animals show an enhanced Daf-c phenotype
of daf-7 at 15° C while suppressing it at 25 °C. In wild-type
animals, high temperatures contribute to dauer forma-
tion, while lower temperatures suppress dauer formation.
ttx-3 decouples both hot and cold inputs from the dauer
pathway, and kin-29 may act similarly [30]. tph-1, a tryp-
tophan hydroxylase involved in the synthesis of serot-
onin, has been shown to form 10-15 % dauers in the
presence of food and this defect is not dependent on
temperature which implicates serotonergic signaling in
modulating temperature sensitive dauer arrest [31]. tph-1
is also able to enhance the constitutive dauer phenotype

http://www.biomedcentral.com/1471-213X/5/8

of daf-7 mutants at 15°C similar to the enhancement
observed for kin-29 [31]. Sze and colleagues did not exam-
ine the affects of tph-1 mutants on daf-7 at 25°C. They did
show, however, that over-expression of tph-1 in a daf-7
background at 25°C suppresses the Daf-c phenotype of
daf-7. This is opposite to what we observe for kin-29.
Although there are some similarities between tph-1 and
kin-29, tph-1(mg280); kin-29(oy38) double mutants are
synthetic-daf at 20°C and 25°C suggesting that kin-29
may not function in a linear pathway with tph-1 but rather
parallel to tph-1 [19]. tph-1 has also been shown to regu-
late the expression of daf-7 while kin-29 does not, suggest-
ing that kin-29 functions downstream or in parallel to daf-
7 production to affect TGFp signaling outputs [19,31]. kin-
29 may partly influence dauer formation through a serot-
onin mediated pathway and a non-serotonin mediated
pathway such as the Sma/Mab pathway. The Sma/Mab
pathway has been shown to influence dauer formation in
combination with the TGFf-like daf-7 pathway [9,14].

Starved animals are smaller than animals grown with
abundant food supplies, indicating that environmental
conditions influence body size morphogenesis [13]. Dro-
sophila S6 kinase mutants are smaller in body size due to
decreased cell size, which is similar to the body size defect
observed in nutrient deprived flies [32,33]. It is thought
that S6 kinase alters cell growth in response to nutrients
and growth factors by regulating the efficiency of the
translational apparatus [34]. Recently, it has been shown
that a deletion found within the C. elegans homolog of S6
kinase (sv31) also results in a reduced body size in the
adult stage (J. Friberg and S, Tuck, personal
communication). S6 kinase (sv31) and kin-29(If) animals
also show other similar phenotypes, including reduced
brood size and slow growth defects. In addition, fat accu-
mulation is also observed in S6 kinase (s¥31) animals
similar to that observed in dauered animals. Previously, it
has been demonstrated that animals that show pherom-
one hypersensitivity are unable to sense food or tempera-
ture signals properly [35-39]. Recently, kin-29 mutants
have been shown to be hypersensitive to pheromone [19].
In addition, kin-29 mutants also possess hyperforaging
activity in the presence of abundant food supplies [19].
Hyperforaging is normally observed in animals that have
been deprived of food. These defects suggest that kin-
29(If) mutant animals may not sense food or temperature
signals properly and this may influence body size regula-
tion. Taken together, this evidence supports an
environmental role in regulation of body size. kin-29 may
function to transmit these environmental cues to the Sma/
Mab TGFp signaling pathway, thereby affecting proper
body size morphogenesis.
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Conclusion

In this study, kin-29 was identified in a genetic screen
designed to identify modifiers of body size in C. elegans.
Mutants in kin-29 result in small animals, and we show
that kin-29 affects the dbl-1 signaling pathway in C. ele-
gans. kin-29 also modifies phenotypes from a second
TGFp pathway in C. elegans, the dauer pathway. Further,
we show that KIN-29 does contain kinase activity, and
that it is capable of phosphorylating itself. KIN-29
functions in neurons and in the hypodermis to control
aspects of body size.

Methods

Strains

C. elegans strains were grown using standard methods
[40]. kin-29(wk61) was used for body size rescue experi-
ments. N2, sma-6(wk7), kin-29(wk61), kin-29(oy38) and
kin-29(0y39) were used in generating growth curves [19].
Interactions between kin-29 and the dauer pathway were
examined using daf-7(e1372). Total RNA used for north-
ern blot analysis was isolated from N2, sma-6(wk7), sma-
3(wk30), and kin-29(wk61) animals. Epistasis was deter-
mined using kin-29(wk61), lon-1(wk50), dbl-1 over
expressing strain ctls40 [pTG96 (sur-5::gfp)], and lon-
1(wk50); kin-29(wk61) mutant animals.

Isolation of kin-29(wké61)

kin-29(wk61) was generated from an EMS F2 screen
designed to isolate small body size mutants [15]. kin-
29(0y38) and kin-29(oy39) were obtained from P. Sen-

gupta [19].

Cloning of kin-29

kin-29(wk61) was mapped to a small region on the X chro-
mosome between unc-2 and fax-1 using genetic markers
and deficiencies. The YAC clone Y76F7 from this interval
was purified from total yeast DNA using pulse field gel
electrophoresis. Injection of YAC Y76F7 into kin-
29(wk61) rescued the small body size phenotype. Next
DNA from cosmids contained within the region of Y76F7
was isolated and transgenic lines were generated. Cosmid
F58H12, with one predicted open reading frame (ORF),
conferred rescue. ESTs spanning this region were obtained
from the C. elegans cDNA project (Y. Kohara, National
Institute of Genetics). The longest EST, y293c7, was
sequenced and shows minor differences from the Gene-
finder prediction. A 10 kb genomic region fused in frame
to GFP, which contained the corresponding sequence
from y293c7, was generated by PCR as described below.
This kin-29p::kin-29:gfp fusion construct rescued the small
body size of kin-29(wk61). Genomic DNA from
homozygous kin-29(wk61) animals was sequenced. Two
independent PCR amplifications were generated for each
of the three regions spanning the kin-29 coding region
using the following primer sets:
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CGCTGCGGCCGCITCAGGCGCCGCCACACCAA/
CGCCGCTGCAGCCGCCGGCAACGAGAATGTA; CGCT-
GCGGCCGCCCAAGCCAACGTTGCAGGTA/ CGCCGCT-
GCAGGATAACATGCTCCACTGGCTA;
CGCTGCGGCCGCCACCGCACGGGCTAGATATT/
CGCCGCTGCAGCCATTCACTCCGAGCTCCAG.  Each
PCR product was digested with Not I and Pst I, subcloned
into pBluescript SK+, and sequenced.

GFP fusion and tissue-specific expression constructs

kin-29p::kin-29 gfp contains the 10 kb genomic region of
kin-29 fused in frame to gfp. This construct was generated
using the primers CGCGCTGCAGCAGACCATGGACGT
GTTTITAATG and CCGGGGATCCTCCGAGCTCCAGCTT-
GGATCA, digesting with Pst I and BamH I, and inserting
the PCR product into the promoterless vector pPD95.75.
kin-29p::gfp was generated by cloning 1.4 kb upstream of
the predicted kin-29 ATG into the Hind III and Xba I sites
of the GFP insertion vector pPD95.69 (A. Fire, Stanford
University). The 1.4 kb piece was generated by PCR using
primers CCGGAAGCTTCAGACCATGGACGTGTTT-
TAATG and
CGCGTCTAGATGCAGTGTITGGTGTGGCGGC.  Fluores-
cent GFP expression patterns were examined in larval and
adult animals using a Zeiss compound microscope.

kin-29 genomic DNA was ectopically expressed in specific
tissues using the promoters rol-6, elt-3 and dbl-1 [8,41,42].
The rol-6 and elt-3 promoters express in the hypodermis,
while the dbl-1 promoter expresses primarily in neuronal
tissues. PCR fragments containing the elt-3, rol-6 and dbl-
1 promoters were generated using the primer sets
CCGGAAGCTTGTGACACGITGTITCACGGTCAT/
CCGGCTGCAGGAAGTTTGAAATACCAGGTAGCCGA,
CCGGCTGCAGCITCGTATTAGATCTCAGCAGC/
CGCGCGTCGACAGTTAGATCTAAAGATATATCCAG, and
CCGGCTGCAGCCCGGAAATCACGACCAAATGGGTC/
CGCGCGTCGACAGTITGAGTTGGGCGCATCAGGCAG
respectively. elt-3 PCR products were digested with Hind
I1I and Pst I while rol-6 and dbl-1 products were digested
with Pst I and Sal I. 7.7 kb PCR fragments comprising kin-
29 genomic DNA were generated using the primer sets
CCCGGGTCGACATGGCTGCGCCACGGCGGCGTAT/
CCGGGGATCCTC CGAGCTCCAGCITGGATCA  and
CGCGCTGCAGCAGACCATGGACGTGIT TTAATG/
CCGGGGATCCTCCGAGCTCCAGCITGGATCA and
digested with either Sal I and Bam HI or Pst I and Bam HI
respectively. Fragments were inserted in frame into the
promoterless gfp insertion vector pPD95.75. All constructs
were injected into kin-29(wk61) and transformants were
analyzed for body size rescue.

Analysis of body size, brood size and growth rates
For body size measurements, animals were photographed
48 hours after the L4 stage using a Nikon SMZ-U dissect-
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ing microscope set at 3.5x magnification and software
from Strata Video Shop (Strata Inc.). Screen dimensions
were 680 X 460 pixels. Perimeter analysis was done using
Image Pro Plus (Mediacybernetics).

For brood size analyses, single L4 animals were picked to
individual plates. Every 12 hours, animals were trans-
ferred to new plates to continue egg laying. All eggs were
counted. 24 hours later, hatchlings were scored.

For growth rate analyses, animals were synchronized.
Gravid animals were treated with a hypochlorite/NaOH
solution in order to isolate eggs. The eggs were allowed to
hatch in M9 for at least 24 hours. Approximately 30 L1
animals were placed onto plates seeded with OP50. Ani-
mals were initially measured at the L1 stage (time zero)
and then at 24 hour intervals thereafter. The final time
point was taken 96 hours after the L1 stage. Images were
obtained and perimeter analyses were performed as
described above.

Genetic interactions with daf-7(el372)

Double mutants were generated between daf-7(e1372)
and the following mutants: sma-6(wk?), kin-29(wk61),
kin-29(0y38), and kin-29(oy39). Gravid animals were
placed onto plates well seeded with OP50 and allowed to
lay eggs at room temperature. Animals were removed
from plates after approximately 30 - 50 eggs were laid.
Eggs were allowed to hatch at 15°C, 20°C and 25°C. The
number of dauered animals was counted and graphed.

Northern blot analysis

Total RNA from L4 animals was isolated from N2, sma-
6(wk7), sma-3(wk30) and kin-29(wk61) as described pre-
viously (previously described in [16]. Equal amounts
(20-30 ug) of total RNA were loaded per lane onto a 1.2%
agarose/6.6% formaldehyde gel and resolved by electro-
phoresis. Samples were transferred to nitrocellulose
(Osmonics Inc.) and baked at 80°C for 2 hours. The lon-1
and dbl-1 probes were generated by digesting both the lon-
1 cDNA B1.11 and the dbl-1 cDNA with Eco RI. The sma-6
probe was generated by PCR using the primer set:
GCCGCCTCGAGATGAACATCACCITTATATITATTCTC/
GCCGCGGATCCITAAGATTGATTGGTGGCTGAC. Elon-
gation factor-2 and o-tubulin were used as controls to
indicate the amount of total RNA loaded per lane. Before
probes were added, the nitrocellulose blots were prehy-
bridized with 1 mM EDTA, 0.5 M NaPO4, pH7.2, 7%
SDS, and 1% BSA fraction V (Sigma) for at least 30
minutes. Probes were labeled using the Prime It II kit
(Stratagene), added to the prehybridization solution, and
incubated overnight at 65°C. Blots were washed (1 mM
Na,EDTA, 40 mM NaPO,, pH 7.2, and 1% SDS) at least
three times at 65°C for 15 minutes. Each blot was placed
onto a phosphorimager screen for at least 48 hours and
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analyzed using a Molecular Dynamics Phosphorimager
(Amersham Pharmacia Biotech) and IQMacv1.2 software.
For each band, intensity levels were corrected for back-
ground and normalized according to the loading control
(eft-2 mRNA). Relative transcript levels of the mutants
were normalized to the intensity ratio of lon-1/eft-2 of N2.

Kinase assays

C-terminally tagged Flag kin-29 constructs were generated
in the mammalian vector pRK5. KIN-29-KU contains
amino acids 1-354 which includes the kinase domain
and UBA domain. KIN-29K contains amino acids 1-300
which includes only the kinase domain and KIN-
29K(K45R) contains amino acids 1-300 with a point
mutation at position 45 that changes a lysine to an
arginine. Cell transfection, immunoprecipitation and
kinase assays were carried out as previously described
[41]. Human 293T cells at 30% confluency were trans-
fected with each construct (2 pugin 100 mm plates) using
LipofectAMINE (Life Technologies, Inc.). Forty eight h
after transfection, cells were lysed in the lysis buffer (25
mM Tris-HCI, 300 mM NaCl, and 1% Triton X-100).
Lysates were immunoprecipitated using anti-Flag anti-
body M2 (Sigma), washed 3 times in the same buffer and
a final wash in the kinase buffer (10 mM HEPES-KOH, pH
7.5, 5 mM MgCl,, and 5 mM CaCl,). For in vitro kinase
assays, the immunoprecipitated protein samples were
divided into two aliquots. One aliquot was analyzed by
anti-Flag western blotting. The second aliquot was sub-
jected to a kinase autophosphorylation assay at room
temperature for 30 min in the kinase buffer containing 5
uCi of 32P-ATP (5000 puCi/mmol). The reaction was termi-
nated by adding an equal volume of 2 x SDS sample
buffer (80 mM Tris, pH 6.8, 3.2% SDS, 16% glycerol, 200
mM dithiothreitol, 0.02% bromphenol blue), then sub-
jected to SDS-PAGE and visualized by autoradiography.
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