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C ∗-EXTREME POINTS IN THE GENERALISED

STATE SPACES OF A C ∗-ALGEBRA

DOUGLAS R. FARENICK AND PHILLIP B. MORENZ

Abstract. In this paper we study the space SH (A) of unital completely pos-
itive linear maps from a C∗-algebra A to the algebra B(H) of continuous
linear operators on a complex Hilbert space H. The state space of A, in this
notation, is SC(A). The main focus of our study concerns noncommutative
convexity. Specifically, we examine the C∗-extreme points of the C∗-convex
space SH (A). General properties of C∗-extreme points are discussed and a
complete description of the set of C∗-extreme points is given in each of the fol-
lowing cases: (i) the cases SC2(A), where A is arbitrary ; (ii) the cases SCr (A),
where A is commutative; (iii) the cases SCr (Mn), where Mn is the C∗-algebra
of n × n complex matrices. An analogue of the Krein-Milman theorem will
also be established.

Introduction

Since their introduction in the paper [16] of Stinespring, there has been contin-
ued interest in completely positive maps on C∗-algebras and their uses in the theory
of operator algebras and mathematical physics. In the seminal work [1] of Arve-
son, where a substantial development of the theory and applications of completely
positive maps is presented, considerable attention is paid to the affine structure
of the convex cone formed by these maps. The convexity properties of this cone
were studied even further in several subsequent papers [3], [6], [7], [11], [15], [18],
[19], and the present paper continues along these lines. We shall concentrate on
a particular set of completely positive maps and follow Smith and Ward [15] in
calling this set a “generalised state space.” Specifically, given a unital C∗-algebra
A and a fixed Hilbert space H , the generalised state space SH(A) of A is to be the
set of all unital completely positive maps of A into B(H), the algebra of bounded
linear operators on H . In this notation, the usual state space of A is denoted by
SC(A), and so it is appropriate to view the generalised state spaces of a C∗-algebra
as a “quantization” of its ordinary state space.

The term noncommutative convexity refers to any one of the various forms of con-
vexity in which operator-valued convex coefficients are assumed, and C∗-convexity
is one of these forms. Two recent and very closely related notions, both of which are
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1726 DOUGLAS R. FARENICK AND PHILLIP B. MORENZ

relevant to the present paper in connection with completely positive maps and du-
ality, are those of CP -convexity in generalised quasi-state spaces [9] and quantum-
convexity in matrix-ordered spaces [6]. In contrast to previous works [7], [8], [10],
[13], [14], where the study of C∗-convex sets has been carried out in the context of
C∗-algebras themselves rather than within their state spaces, the principal objec-
tive of the present paper is to describe the structure of those completely positive
maps that are C∗-extreme points among all elements in the generalised state space.

To begin with, let us establish what is meant by a C∗-convex space of completely
positive maps and by the C∗-extreme points of these spaces. Observe that any C∗-
convex combination of n completely positive maps ϕi : A → B(H), which by
definition is an operator-valued convex combination of the form

n∑
i=1

t∗iϕi(·)ti , where each ti ∈ B(H) and

n∑
i=1

t∗i ti = 1 ,

produces yet another a completely positive map A → B(H); moreover, if each ϕi
is unital, then so is

∑n
i=1 t

∗
iϕiti. Being closed under the formation of C∗-convex

combinations of their elements, generalised state spaces are, therefore, C∗-convex
sets. The natural topology on SH(A) is the bounded-weak-topology, and with
respect to this topology, SH(A) is a compact space [1]. A generalised state ϕ ∈
SH(A) is a (linear) extreme point of SH(A) if, whenever

ϕ =

n∑
i=1

λiϕi such that ϕi ∈ SH(A), λi ∈ (0, 1) ⊂ R for all i, and

n∑
i=1

λi = 1 ,

then ϕi = ϕ for all i. Following the ideas of Loebl and Paulsen [13], an element
ϕ ∈ SH(A) is a C∗-extreme point of SH(A) if, whenever

ϕ =

n∑
i=1

t∗iϕiti such that ϕi ∈ SH(A), t−1
i exists for all i, and

n∑
i=1

t∗i ti = 1 ,

then ϕi is unitarily equivalent to ϕ for all i. (What is meant by saying that ϕ
is unitarily equivalent to ψ is that there is a unitary u ∈ B(H) for which ϕ(·) =
u∗ψ(·)u; the unitary equivalence of two generalised states is denoted by ϕ ∼ ψ.)
A C∗-convex combination of completely positive maps for which every C∗-convex
coefficient ti is invertible will be called proper, in analogy to the usual notion of
a proper convex combination (where all the convex coefficients are nonzero). We
will denote the group of operators invertible in B(H) by GL(H) and the sets of
extreme and C∗-extreme points of SH(A) by extSH(A) and C∗-extSH(A).

With the 1-dimensional Hilbert space H = C, the C∗-extreme points of the state
space are exactly the same as the extreme points, because in this particular case
there is no difference in the notions “convexity” and “C∗-convexity.” With Hilbert
spaces of higher finite dimension, we will prove that every C∗-extreme point of
SH(A) is an extreme point as well. However we will demonstrate further that
the set of C∗-extreme points is smaller, has more structure, yet is still sufficiently
large to generate a C∗-convex subset that is dense in SH(A). When H is infinite-
dimensional, much less is known; it has not even been determined, for example,
whether C∗-extreme points are necessarily extreme.
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C∗-EXTREME POINTS 1727

In the course of this paper we will prove the following theorem, which illustrates
the sort of structure that C∗-extreme points enjoy. More detailed results will be
described in later sections of the paper.

Theorem. Suppose that H has finite dimension and that ϕ ∈ SH(A) is a C∗-
extreme point. Then ϕ is block-diagonal and the diagonal blocks are pure maps;
that is, there is a decomposition H = H1⊕ · · ·⊕Hk, pure unital completely positive
maps ϕi : A → B(Hi), and a unitary u ∈ B(H) such that with respect to this
decomposition of H, u∗ϕ(x)u = ϕ1(x) ⊕ ϕ2(x) ⊕ · · · ⊕ ϕk(x), for every x ∈ A.
Furthermore, if A is commutative, then ϕ is C∗-extreme in the generalised state
space SH(A) if and only if ϕ is a unital ∗-homomorphism.

It is worthwhile to remark on one aspect of the theorem above. If A is a commu-
tative C∗-algebra, it is known from the work of Arveson [1] that SH(A) has extreme
points that are not multiplicative; it is, therefore, rather striking how closely the
C∗-extreme points of SH(A) reflect the extremal states of A (given that the ex-
tremal states of A are the ∗-homomorphisms A → C). Thus, the theorem above
lends weight to the view that SH(A) really is a quantized state space, and that
C∗-extreme points are the appropriate extreme points for this space.

The organisation of this paper is as follows. Some sufficient conditions for a
completely positive map to be C∗-extreme are presented in §1. In §2 we make
a close study of SH(A) for finite-dimensional H , obtain the main decomposition
theorem, and apply this result to a number of special cases, including the case of
commutative C∗-algebras. A method for constructing C∗-extreme points from a
single pure completely positive map is developed in §3. This construction is the
basis for the proof of a generalised Krein-Milman theorem, which shows that there
are enough C∗-extreme points to determine SH(A), and for the classification of the
C∗-extremal generalised states on full matrix algebras given in §4. The final section
of this paper describes how our work stands in relation to the work of other authors
on this subject.

We would like to thank Sze-Kai Tsui and Hongding Zhou for very useful discus-
sions concerning the subject of this paper.

2. Extreme points and C∗-extreme points: some sufficient conditions

By the theorem of Stinespring [16], every completely positive map ϕ : A→ B(H)
has a decomposition of the form ϕ(·) = v∗π(·)v, where π is a ∗-representation of A
on a Hilbert space Hπ and v : H → Hπ is a bounded linear operator. (The operator
v is an isometry if ϕ is unital.) Moreover, all minimal decompositions, that is, those
decompositions for which the closed linear span [π(A)v(H)] of π(A)v(H) is dense
in Hπ , are unitarily equivalent.

There is a natural partial order on completely positive maps whereby ψ ≤ ϕ, for
a pair of completely positive maps ψ and ϕ, if ϕ − ψ is completely positive. The
notion of a pure completely positive map is suggested by that of a pure state: a
completely positive map ϕ is pure if the only completely positive maps ψ for which
ψ ≤ ϕ are those of the form ψ = λϕ for some λ ∈ [0, 1] ⊂ R. An important tool for
the analysis of completely positive maps is the following theorem of Arveson.

A Radon-Nikodym-type Theorem ([1, 1.4.2]). In the cone of completely pos-
itive maps A → B(H), suppose that ϕ has a minimal decomposition ϕ = v∗πv.
Then ψ ≤ ϕ if and only if there exists a (uniquely determined) positive contraction
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1728 DOUGLAS R. FARENICK AND PHILLIP B. MORENZ

h in the commutant π(A)′ of π(A) such that ψ(x) = v∗hπ(x)v for every x ∈ A.
Moreover, ϕ is pure if and only if π is irreducible.

A complicating factor is that, unlike the state space, generalised state spaces
need not possess pure elements. Take, for example, a commutative C∗-algebra A.
Irreducible representations of A take place on Hilbert spaces of dimension 1; if H is
of dimension greater than 1, then there are no isometric maps of H into the Hilbert
space on which the irreducible representation of A acts and therefore there are no
elements of SH(A) that are pure.

Arveson solved a number of extremal problems concerning the cone of completely
positive maps. In particular, for the compact convex subset SH(A) of this cone he
obtained a complete and very useful characterisation of the set extSH(A) of extreme
points of SH(A).

Extreme Point Theorem ([1, 1.4.6]). Suppose that ϕ ∈ SH(A) has a minimal
decomposition ϕ = v∗πv and let C : π(A)′ → B(v(H)) be the map C(z) = pz|v(H)

,

where p ∈ B(Hπ) is the projection with range v(H). Then ϕ is an extreme point of
SH(A) if and only if C is an injection.

The condition that C be injective (in the theorem above) is equivalent to saying
that “the range of v is a faithful subspace of the von Neumann algebra π(A)′” [1].

In the present paper, we shall make extensive use of the following consequence
of the Extreme Point Theorem: if H has finite dimension and if ϕ = v∗πv is
an extreme point of SH(A), then π(A)′ has finite dimension. In such cases, the
representation π has a decomposition as a direct sum of finitely many irreducible
representations of A.

The first proposition describes the manner in which extreme points and C∗-
extreme points are related. It is not known whether the conclusion of Proposition
1.1 remains true if H is taken to be a Hilbert space of infinite dimension.

Proposition 1.1. Suppose that ϕ is a C∗-extreme point of SH(A). Denote the
ideal of compact operators on H by K(H). If for some x ∈ A, ϕ(x) ∈ K(H) + C1
and is irreducible, or if ϕ(x) ∈ K(H) + C1 for every x ∈ A, then ϕ is an extreme
point of SH(A). In particular, if H has finite dimension, then C∗-extSH(A) ⊂
extSH(A).

Proof. We begin with the latter assertions. If ϕ(A) ⊂ K(H) + C1, then ϕ(x) is an
extreme point of the convex hull of its unitary orbit [12] for every x ∈ A. Thus, if the
C∗-extreme point ϕ is expressed as a proper convex combination ϕ = µψ+(1−µ)θ,
then ϕ ∼ ψ ∼ θ implies, pointwise, that ϕ(x) ∼ ψ(x) ∼ θ(x), and so ϕ(x) is a proper
convex combination of elements from its unitary orbit; hence, ϕ(x) = ψ(x) = θ(x),
for every x ∈ A. In the case that H has finite dimension, B(H) = K(H) and so
C∗-extSH(A) ⊂ extSH(A).

To establish the first assertion, assume that ϕ is a C∗-extreme point with the
property that ϕ(x) ∈ K(H) + C1 and is irreducible. Suppose that ϕ is expressed
as a proper convex combination ϕ = µψ+ (1− µ)θ with ψ, θ ∈ SH(A). Then there
exist unitaries u,w ∈ B(H) such that ψ = u∗ϕu and θ = w∗ϕw. Hence, ϕ(x) is
a convex combination of operators unitarily equivalent to it. By the arguments of
the first paragraph, we have that u∗ϕ(x)u = ϕ(x). Therefore, ϕ(x) commutes with
u and hence with the spectral projections for u. But ϕ(x) is irreducible and so u
must be a scalar multiple of the identity, whence ψ = ϕ and similarly θ = ϕ.
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C∗-EXTREME POINTS 1729

We continue now with some examples of C∗-extreme points. An “inflation” of a
pure state is a map A→ B(H) of the form x 7→ ψ(x)1, where ψ : A→ C is a pure
state. Condition (3) below is motivated by the idea of v(H) being faithful for π(A)′

in the Extreme Point Theorem; however “invariance” is a much stronger property.

Proposition 1.2. Each of the following conditions is sufficient for a unital com-
pletely positive map ϕ : A→ B(H) to be C∗-extreme and extreme in SH(A):

(1) that ϕ be the inflation of a pure state;
(2) that ϕ be multiplicative;
(3) that v(H) be invariant for the commutant π(A)′, where ϕ = v∗πv is a minimal

decomposition of ϕ;
(4) that ϕ be pure.

Moreover, it follows from condition (1) and from the existence of pure states that
every generalised state space has C∗-extreme points.

Proof. 1. Suppose that ψ is a pure state and let ϕ : A → B(H) be its inflation.

Suppose that ϕ =
∑k

i=1 t
∗
iϕiti is a representation of ϕ as a proper C∗-convex

combination of ϕi ∈ SH(A). Each unit vector ξ ∈ H induces k states ψξi on A via

the definition ψξi (x) = ||tiξ||−2(ϕi(x)tiξ, tiξ), and ψ is a proper convex combination

of the ψξi :

ψ(x) = (ϕ(x)ξ, ξ) =

k∑
i=1

||tiξ||2ψξi (x) , x ∈ A.

But as ψ is pure, we must have ψ = ψξi for every i. We will prove that ϕi = ϕ for
every i. Fix i and let x ∈ A be arbitrary. If η ∈ H is any unit vector, then there
exists a unit vector ξ ∈ H so that η = ||tiξ||−1tiξ. Hence

(ϕ(x)η, η) = ψ(x) = ψξi (x) = (ϕi(x)η, η).

As this is true for all unit vectors η ∈ H , we have ϕi(x) = ϕ(x). Thus, ϕ is
C∗-extreme and, evidently, extreme in SH(A).

2. Suppose that ϕ is multiplicative and that ϕ =
∑

i t
∗
iϕiti expresses ϕ as a

proper C∗-convex combination of elements of SH(A). Because ϕ is a representation
of A on H that is nondegenerate, the minimal Stinespring decomposition of ϕ
is trivial. Therefore, the inequality t∗iϕiti ≤ ϕ implies that there exist positive
contractions hi ∈ π(A)′ such that t∗iϕiti = hiϕ. Thus, 1 = ϕi(1) = ϕ(1) and

ϕi = (h
1
2

i t
−1
i )∗ϕ(h

1
2

i t
−1
i ) imply that ϕi ∼ ϕ for every i. It is already known that

multiplicative maps are extreme points [17].
3. Assume that ϕ satisfies condition (3) and that ϕ =

∑
i t
∗
iϕiti is a represen-

tation of ϕ as a proper C∗-convex combination of ϕi ∈ SH(A). From t∗iϕiti ≤ ϕ
and the Radon-Nikodym theorem, there exist positive contractions hi ∈ π(A)′ such

that t∗iϕiti = v∗hiπv. Let si = v∗h
1
2
i v. Because v(H) is invariant for π(A)′, the

projection vv∗ commutes with π(A)′. This means, in particular, that the operators

si satisfy vsi = h
1
2

i v. In addition,

si = (s2i )
1
2 = (v∗hiv)

1
2 = (t∗i ti)

1
2 ∈ GL(H).

Thus,

t∗iϕiti = v∗h
1
2

i πh
1
2

i v = s∗i v
∗πvsi = s∗iϕsi
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1730 DOUGLAS R. FARENICK AND PHILLIP B. MORENZ

and

ϕi = (sit
−1
i )∗ϕ(sit

−1
i ) , ϕ = (tis

−1
i )∗ϕi(tis−1

i ) .

All that remains to prove is that sit
−1
i is unitary. From 1 = ϕ(1) = ϕi(1) we have

that sit
−1
i is an isometry and that 1 = (tis

−1
i )∗(tis−1

i ). In passing to inverses in

this last equation we obtain (sit
−1
i )(sit

−1
i )∗ = 1 and therefore sit

−1
i is unitary.

To prove that ϕ is an extreme point of SH(A), we need only show that v(H) is a
faithful subspace for the commutant π(A)′ (i.e., to show that the compression map
C is injective — see the Extreme Point Theorem). Now since the range of v is cyclic
for π(A), it is also cyclic for the double commutant π(A)′′; hence, v(H) is separating
for π(A)′ (i.e., z ∈ π(A)′ is zero whenever the compression of z∗z to v(H) is zero).
To show that C is injective, assume that the compression of z ∈ π(A)′ to v(H) is
zero. Because v(H) reduces π(A)′, the compressions of z∗ and, consequently, z∗z
to v(H) are zero. Hence z = 0 from the fact that v(H) is separating for π(A)′ and
so C is injective.

4. If ϕ is pure and if the minimal decomposition of ϕ is given by ϕ = v∗πv, then
π is irreducible and [v(H)] is plainly invariant for π(A)′ ∼=∗ C. Thus, the pure map
ϕ fulfills condition (3) above.

Example 1. With two examples we demonstrate here, first of all, how a map as
in (3) in Proposition 1.2 arises and, secondly, how a direct sum of pure maps can
fail to be C∗-extreme.

On the full matrix algebra Mn, each of the n maps ϕi : Mn → C that sends
x ∈Mn to the i-th diagonal element xii of x is an extreme point of the state space
of Mn. In fact these states are vector states ϕi(x) = (xξi, ξi), where ξ1, ξ2, . . . , ξn
denote the canonical orthonormal basis vectors of Cn. Consider the C∗-algebra
A = M2 ⊕M1 and the generalised state ϕ : A→M2 given by

ϕ

((
x11 x12

x21 x22

)
⊕ (x33

))
=

1

2

(
x11 + x33 x11 − x33

x11 − x33 x11 + x33

)
.

The minimal Stinespring decomposition of ϕ is ϕ(x) = v∗π(x)v, where π is the
inclusion identity π(x) = x of A→ B(C3) and where the isometry v : C2 → C3 is

v =
1√
2

1 1
0 0
1 −1

 .

A matrix calculation verifies that the projection p = vv∗ onto the range of v com-
mutes with the algebra π(A)′, which means that the range of v is invariant for
π(A)′ and so, by Proposition 1.2, ϕ is a C∗-extreme point of the generalised state
space SC2(A).

Consider now this same example from a second point of view. The range of ϕ is
a commutative manifold, unitarily equivalent to a 2-dimensional diagonal algebra.
More precisely, for every x ∈ A,

ϕ(x) =
1

2

(
x11 + x33 x11 − x33

x11 − x33 x11 + x33

)
= u∗

(
x11 0
0 x33

)
u ,

where u ∈ M2 is the unitary u = 1/
√

2

(
1 1
1 −1

)
. Thus, ϕ is (unitarily equivalent

to) a direct sum of two pure states on A, namely x 7→ x11 and x 7→ x33. What
makes such a direct sum C∗-extreme in the state space SC2(A) is that these two
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pure states arise as compressions of “nonequivalent” irreducible representations of

A, namely the irreducible representations π1(x) =

(
x11 x12

x21 x22

)
and π2(x) = x33

(which are clearly nonequivalent).
In general, however, a direct sum of pure maps or states need not be C∗-extreme

or even extreme. Consider, for example, the following direct sum of pure states:
the map ϕ : M2 →M2 defined by(

x11 x12

x21 x22

)
7−→

(
x11 0
0 x22

)
.

For every x ∈M2,

ϕ(x) =

(
x11 0
0 x22

)
=

1

2

(
x11 x12

x21 x22

)
+

1

2

(
x11 −x12

−x21 x22

)
=

1

2
id(x) +

1

2

(
1 0
0 −1

)
x

(
1 0
0 −1

)
=

1

2
id(x) +

1

2
θ(x) ,

where

θ(x) =

(
1 0
0 −1

)
x

(
1 0
0 −1

)
.

As ϕ is a nontrivial convex combination of id and θ, ϕ is neither extreme nor
C∗-extreme in the space SC2(M2). �

The example above motivates the following definition and the proposition that
follows. The proposition confirms that the simplest way to construct C∗-extreme
points as direct sums of individual pure maps is through the use of mutually disjoint
summands.

Definition. If ϕi ∈ SHi(A) is pure and has minimal decomposition ϕi = v∗i πivi
for 1 ≤ i ≤ k, then we say that ϕ1, . . . , ϕk are disjoint if the (irreducible) represen-
tations π1, . . . , πk of A are mutually nonequivalent.

Proposition 1.3. If ϕi ∈ SHi(A) is pure for 1 ≤ i ≤ k, and if ϕ1, . . . , ϕk are

disjoint, then ϕ1 ⊕ · · · ⊕ ϕk is a C∗-extreme point of SH(A), where H =
∑⊕

i Hi.

Proof. Let ϕ =
∑⊕

i ϕi so that ϕ ∈ SH(A). In B(H), let q1, . . . , qk denote the
projections qj : H → Hj . Suppose that ϕ = v∗i πivi denotes the minimal decompo-

sition of each pure map ϕi ∈ SHi(A) (so v∗i vi =identity on Hi). Let Hπ =
∑⊕

i Hπi

and let v : H → Hπ be the isometry defined by vξ =
∑⊕

i viqiξ, ξ ∈ H . Finally,
let π = π1 ⊕ · · · ⊕ πk, a representation of A on Hπ. Because the representations
π1, . . . , πk are mutually disjoint, the decomposition of ϕ as v∗πv is a minimal one
(for further details, see the proof of [1, 1.4.9]) and, moreover, π(A)′ ∼=∗ Ck. Clearly
v(H) is invariant for π(A)′ and so by Proposition 1.2 it follows that ϕ is a C∗-
extreme point of SH(A).

2. Structure of C∗-extreme points

We prove below that for finite-dimensional H the C∗-extreme points of SH(A)
have a block-diagonal structure.
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1732 DOUGLAS R. FARENICK AND PHILLIP B. MORENZ

Theorem 2.1. If H has finite dimension, and if ϕ is a C∗-extreme point of SH(A),
then ϕ is the direct sum of pure completely positive maps. Specifically, there exist
finitely many subspaces Hi ⊂ H and generalised states ϕi ∈ SHi(A) such that

(1) ϕi is pure for each i, and

(2) H =
∑⊕

i Hi and ϕ ∼∑⊕
i ϕi.

Proof. Because C∗-ext SH(A) ⊂ ext SH(A), it follows from the extreme point the-
orem that π has a finite decomposition: that is, there exist finitely many irreducible
representations π1, · · · , πk of A on subspaces Li ⊂ Hπ such that Hπ =

∑⊕
i Li and

π =
∑⊕

i πi. Let vi denote the operator that projects vξ into Li for every ξ ∈ H .
Express each vi in its polar form: vi = wiai for some positive operator ai ∈ B(H)
and partial isometry wi : H → Hπ such that wi(H) ⊂ Li and kerwi = ker ai. If
we set ψi = w∗i πiwi, then we may write ϕ as a C∗-convex combination of the pure
completely positive maps ψi via

ϕ =

k∑
i=1

aiψiai,

k∑
i=1

a2
i = 1 .

By the minimality of the decomposition ϕ = v∗πv, the integer k is the least possible
of all of the integers j for which ϕ can be expressed as a C∗-convex combination of
elements of {ψi : 1 ≤ i ≤ k} using j summands. At this point, we now adapt the
techniques of [8, 4.1] for manipulating matrix-valued C∗-convex coefficients to the
case at hand. That the arguments used in the proof of Theorem 4.1 of [8] apply here
is owing to the fact that the manipulations performed involve only the coefficients
ai — not the summands ψi — with the possible exception of an alteration of some
of the ψi by a unitary equivalence transformation, which we allow. The methods
used in [8, 4.1] and applied here show that for every real number λ ∈ [0, 1],

ϕ ∼ t(λ)∗θ′′t(λ) + s(λ)∗θλs(λ),

where

(i) θ′′, θλ ∈ SH(A),
(ii) t(λ)∗t(λ) + s(λ)∗s(λ) = 1,
(iii) t(λ), s(λ) ∈ GL(H) for every λ ∈ (0, 1),
(iv) θλ is a C∗-convex combination of ψ1 and ψ0, where ψ0 is a C∗-convex combi-

nation of the ψj , for j ≥ 2, and where the coefficients used to obtain θλ are
continuous functions of λ,

(v) θ1 = q1ψ1q1 +
∑

i≥2 s
∗
iψisi, where q∗1 = q1 = q21 , q1 +

∑
i≥2 s

∗
i si = 1, and

q1(H) ⊥ si(H) for all i ≥ 2.

Having expressed ϕ as a proper C∗-convex combination of θ′′ and θλ for those
λ ∈ (0, 1), it follows that there exist unitaries uλ ∈ B(H), indexed by λ ∈ (0, 1),
such that ϕ = u∗λθλuλ. Suppose now that ε > 0. Because θλ depends continuously
on λ, there exists λ ∈ (0, 1) such that ||θλ − θ1|| < ε. Hence, for every x ∈ A of
norm ||x|| ≤ 1,

||ϕ(x) − u∗λθ1(x)uλ|| = ||ϕ(x) − u∗λθλ(x)uλ + u∗λθλ(x)uλ − u∗λθ1(x)uλ||
= ||u∗λ(θλ(x) − θ1(x))uλ||
≤ ||θλ − θ1|| ||x|| < ε .
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Thus, ϕ = limλ→1 u
∗
λθ1uλ and so by the compactness of the unitary group, there

exists a unitary u ∈ B(H) satisfying ϕ = u∗θ1u. Consequently,

ϕ ∼ θ1 = q1ψ1q1 +
∑
i≥2

s∗iψisi.

As in the proof of Theorem 4.1 in [8], an exhaustion of this process leads to

ϕ ∼
k∑
i=1

qiψiqi,

where the qi’s are mutually orthogonal projections summing to the identity. This
gives a “block diagonal form” for ϕ: let Hi = qi(H), so that H =

∑⊕
i Hi, and

observe that from 1 = ϕ(1), the compressions qiψi(·)|Hi must also be unital. In

defining ϕi ∈ SHi(A) to be

ϕi(x) = qiw
∗
i πi(x)wi|Hi ,

we have that ϕi is pure – because πi is irreducible – and that ϕ ∼∑⊕
i ϕi.

At this point a few applications of Theorem 2.1 are within easy reach. Our first
use of the theorem gives a complete characterisation of the C∗-extreme points of
SH(A) in the case where A is abelian and H is finite-dimensional. The theorem
below includes, for the sake of comparison, Arveson’s description of the extreme
points of this particular space.

Proposition 2.2. Suppose that X is a compact Hausdorff space and that H has
finite dimension. Every extreme point ϕ of SH(C(X)) has the form

ϕ(f) =

k∑
j=1

f(xj)hj , f ∈ C(X) ,

where x1, ..., xn ∈ X are distinct, the operators hj ≥ 0 sum to 1, and {hj(H)}j is a
weakly independent family of subspaces. Every C∗-extreme point ϕ has the form of
an extreme point, but with the stronger property that the positive operators h1, ..., hn
are projections (with mutually orthogonal ranges); i.e., there exists a unitary u ∈
B(H) such that for all f ∈ C(X),

u∗ϕ(f)u =


f(x1)1n1

f(x2)1n2

. . .

f(xk)1nk

 .

Moreover, ϕ is a C∗-extreme point if and only if ϕ is a unital ∗-homomorphism.

Proof. The statement concerning the extreme points is taken from [1, 1.4.10] of
Arveson.

Unital ∗-homomorphisms A→ B(H) are C∗-extreme in SH(A), independent of
any specific assumptions on A or H (Proposition 2).

Conversely, if ϕ ∈ C∗-extSH(C(X)), then ϕ is unitarily equivalent to a direct
sum of pure completely positive unital maps ϕj . Because C(X) is commutative,
these pure maps must be characters on C(X) and so they have the form ϕj(f) =
f(xj) for some xj ∈ X . If some characters appear more than once, collect them
(i.e., inflate them) so that only distinct xj are left. The result is that ϕ has the
stated form. Plainly, ϕ is a unital ∗-homomorphism.
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With Theorem 2.2 in hand, the following example shows that Theorem 2.1 does
not hold if H has infinite dimension.

Example 2. There exists a commutative C∗-algebra A and an infinite-dimensional
Hilbert space H such that SH(A) has C∗-extreme points that are not multiplicative.
In particular, consider the commutative C∗-algebra C(T) of 2π-periodic continuous
functions R → C. If m denotes normalised Lebesgue measure on the unit circle
R/2πZ = T, then let π be the representation of C(T) on the Hilbert space L2(T,m)
that sends f ∈ C(T) to the operator Mf of multiplication by f . Let H = H2(T,m),
the Hardy space of T; so H is the closed subspace of L2(T,m) that is generated
by the analytic trigonometric polynomials (an analytic trigonmetric polynomial is
a linear combination of the functions fn(θ) = einθ for n ≥ 0). Now let v : H →
L2(T,m) be the inclusion map. The completely positive map ϕ : C(T) → B(H)
given by

ϕ(f) = pHMf |H ,

where pH is the projection L2(T,m) → H , has v∗πv as its minimal decomposition.
Arveson has shown in [1, p.164] that ϕ is an extreme point of SH(C(T)). We prove
here that ϕ is in fact a C∗-extreme point.

Suppose that ϕ is a proper C∗-convex combination of ϕi ∈ SH(C(T)). Let z
denote the function z(θ) = eiθ. Then ϕ(z) is the unilateral shift operator on the
Hardy space and is expressed as a proper C∗-convex combination of contractions
ϕi(z). But isometries are C∗-extreme points of the closed unit ball of operators
on Hilbert space [10] and so ϕi(z) ∼ ϕ(z) for each i. Each ϕi(z) is, therefore, an
isometry; hence,

ϕi(z
∗)ϕi(z) = 1 = ϕi(1) = ϕi(z

∗z) .

The above equation is a case of equality in the Schwarz inequality and thus from [4,
4.3] we have for each i that πi(z)vi = viϕi(z), where ϕi = v∗i πivi denotes a minimal
decomposition. Indeed it follows that πi(q)vi = viϕi(q) for every analytic trigono-
metric polynomial q. Therefore, if ui ∈ B(H) denotes the unitary that implements
the equivalence ϕi(z) ∼ ϕ(z), then for every i and every analytic trigonometric
polynomial q, ϕi(q) = u∗iϕ(q)ui. Finally, because the system {p + q∗ : p, q are
analytic trigonometric polynomials} is uniformly dense in C(T), by the Weierstrass
Approximation Theorem, we have that ϕi(f) = u∗iϕ(f)ui for each i and every
f ∈ C(T). That is, ϕ is a C∗-extreme point of SH(C(T)). That ϕ is not multiplica-
tive follows from the fact that Mz is unitary but the unilateral shift operator ϕ(z)
on the Hardy space is not. �

Theorem 2.1 leads also to a description of the C∗-extremal states in SC2(A).

Theorem 2.3. A unital completely positive map ϕ : A → M2 is a C∗-extreme
point of SC2(A) if and only if ϕ is

a. a pure map,
b. an inflated pure state, or
c. unitarily equivalent to the direct sum of two disjoint pure states.

Proof. Propositions 1.2 and 1.3 show that the three types of maps described are
all C∗-extreme points. Conversely, assume that ϕ is a C∗-extreme point of SC2(A)
but that ϕ is not one of a,b,c. Because statement (a) is not true of ϕ, then by
Theorem 2.1 above, ϕ ∼ ϕ1 ⊕ ϕ2 for some pure states ϕ1, ϕ2 on A. Because
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statement (c) is not true, ϕ1 and ϕ2 must be compressions of unitarily equivalent
representations; without loss of generality, we may assume that there is a single
irreducible representation π ofA on a Hilbert spaceHπ and unit vectors ξ1, ξ2 ∈ Hπ,
cyclic for π(A), such that, for each i, ϕi(x) = (π(x)ξi, ξi) for every x ∈ A. Because
(b) is not true, ξ1 and ξ2 must be linearly independent. Hence, the mappings
w1, w2 : C2 → Hπ given by

w1(α1e1 + α2e2) = 2−1/2(α1ξ1 + α2ξ2)

and

w2(α1e1 + α2e2) = 2−1/2(α1ξ1 − α2ξ2)

are one-to-one and satisfy w∗1πw1 + w∗2πw2 = ϕ1 ⊕ ϕ2. Let wi = viai be the polar
decomposition of each wi; here, vi is an isometry and ai ∈ M2 is positive and
invertible. From a2

1 + a2
2 = 1 and

2∑
i=1

ai(v
∗
i πvi)ai = ϕ1 ⊕ ϕ2

it follows, as ϕ1 ⊕ ϕ2 is a C∗-extreme point, that ϕ1 ⊕ ϕ2 ∼ v∗1πv1 ∼ v∗2πv2; that
is, ϕ1 ⊕ϕ2 is pure, which it is clearly not. In light of this contradiction, ϕ must be
one of a,b,c.

Example 3. SC2(M2). There is only one irreducible representation of M2 (up
to unitary equivalence) and so by Theorem 2.2 a unital completely positive map
ϕ : M2 → M2 is a C∗-extreme point of SC2(M2) if and only if ϕ is of the form
ϕ(x) = u∗xu, for some unitary u ∈M2, or is the inflation of a vector state on M2.
�
Example 4. SC2(K(H) + C1), where K(H) is the set of compact operators on a
separable infinite-dimensional Hilbert space H . For this C∗-algebra, there are only
two distinct (up to unitary equivalence) irreducible representations of A, and so it
is straightforward to determine the C∗-extreme points of ϕ ∈ SC2(A). They are,
by Theorem 2.2,

a. (pure maps): all compressions x 7→
(

(xξ, ξ) (xη, ξ)
(xξ, η) (xη, η)

)
, where ξ, η ∈ H are

orthogonal unit vectors;

b. (inflations of pure states): all maps x 7→
(

(xξ, ξ) 0
0 (xξ, ξ)

)
, where ξ ∈ H is

a unit vector, and the ∗-homomorphism α1 + k 7→ α12, where α ∈ C and
k ∈ K(H); and

c. (direct sums of disjoint pure maps): all maps α1 + k 7→
(
α 0
0 (xξ, ξ)

)
, where

ξ ∈ H is a unit vector and x = α1 + k.

�

3. The direct sum of nested pure maps

From Proposition 1.3 it is known that a direct sum of disjoint pure maps is one
way of constructing new C∗-extreme points. In this section we indicate a much
different way of obtaining C∗-extreme from pure maps, and from this construction
we will obtain a characterisation of C∗-extSCn(Mn) (carried out in Section 4) and
an analogue of the Krein-Milman theorem.
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Suppose that ν denotes either a positive integer, countable ∞, or some larger
cardinal number, and let l2(ν) denote the sequence space Cν if ν is a positive
integer, the space l2(N) if ν = ∞, and the space l2(Ω) if Ω is a set of cardinality ν
strictly larger than the cardinality of N. If π is an irreducible representation of A
on a Hilbert space Hπ, then we may assume (via unitary isomorphism) that Hπ is
the sequence space l2(ν) for some ν. Let {ej}νj=1 denote the standard orthonormal

basis of l2(ν) and let Mν denote the C∗-algebra of ν × ν matrices that represent
bounded operators on l2(ν) with respect to the standard orthonormal basis. For a
positive integer m ≤ ν, let τν,m : Mν → Mm be the generalised (pure) state that
sends each x ∈Mν to its leading m×m principal submatrix: explicitly, if x ∈Mν ,
then τν,m(x) = q∗ν,mxqν,m, where qν,m : Cm → l2(ν) is the isometry

qν,m =
(
e1, e2, . . . , em

)
and where again {ej}νj=1 denotes the standard orthonormal basis of l2(ν).

Now let A be a unital C∗-algebra and let π be a fixed irreducible representation
of A on the Hilbert space l2(ν). Suppose that ν ≥ n1 ≥ n2 ≥ · · · ≥ nk (n1, . . . , nk
are positive integers) and r = n1 + · · ·+ nk, and let ϕ : A→Mr be the generalised
state

ϕ(x) = τν,n1 ◦ π(x) ⊕ τν,n2 ◦ π(x) ⊕ · · · ⊕ τν,nk ◦ π(x) , for x ∈ A .

The minimal Stinespring decomposition of ϕ has the form ϕ = w∗πkw, where πk is
the representation of A on l2(ν)⊗Ck given by πk(x) = π(x)⊕ · · ·⊕ π(x) (k-times),
and where w : Cr → l2(ν) ⊗ Ck is the isometry

w =


qν,n1

qν,n2

. . .

qν,nk

 .

The commutant πk(A)′ is ∗-isomorphic to Mk; however we shall need to be more
precise: if h ∈ πk(A)′, then h = (hij1ν)1≤i,j≤k, where each hij ∈ C.

(
In contrast,

an element of the commutant of M2 ⊕ u∗M2u, where u =

(
0 1
1 0

)
, is of the form(

α12 βu
γu δ12

)
.
)

As B(Hπk) is precisely Mν ⊗Mk, it will sometimes be convenient to

write elements h ∈ πk(A)′ as 1ν⊗h′, where h′ = (hij) ∈Mk. From our information
concerning the structure of w and πk(A)′, a straightforward matrix computation
shows that if h ∈ πk(A)′, then

w∗hw =
(
hijq

∗
ν,niqν,nj

)
1≤i,j≤k .

Observe that each q∗ν,niqν,nj is an ni×nj matrix with 1’s on the diagonal and zeros

elsewhere. The r × r matrix
(
q∗ν,niqν,nj )1≤i,j≤k is precisely Q∗Q, where Q is the

ν × r matrix

Q =
(
e1, e2, . . . , en1 , e1, e2, . . . , en2 , . . . , e1, e2, . . . , enk

)
.

For each 1 ≤ i ≤ ν, let ρi be the number of nonzero entries on row i of Q. The
nonnegative integers ρi satisfy k = ρ1 ≥ ρ2 ≥ · · · ≥ 0 and

∑
i ρi = r. Let ρ1, . . . , ρµ

be the positive integers in the chain ρ1, ρ2, . . . ; these will be called the commutant
compression-indices of ϕ. Observe that the commutant compression-indices of ϕ
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are determined from the compression-indices n1, . . . , nk of ϕ, and that there are
only a finite number of them.

Lastly, if σ is an element of the symmetric group Ξr of permutations on r letters,
and if L, K are linear subspaces of Mr, then the notation L ∼σ K is to mean that
K = {p∗σapσ : a ∈ L}, where pσ is the unitary in Mr that permutes the standard
orthonormal basis {ξ1, . . . , ξr} of Cr into the basis {ξσ(1), . . . , ξσ(r)}.
Lemma 3.1. With the notation established above, let ρ1, . . . , ρµ be the commutant
compression-indices of ϕ = w∗πkw. Then there is a permutation σ ∈ Ξr such that

w∗
(
πk(A)′

)
w ∼σ τk,ρ1 (Mk)⊕ τk,ρ2 (Mk)⊕ · · · ⊕ τk,ρµ(Mk)

= Mk ⊕ τk,ρ2 (Mk)⊕ · · · ⊕ τk,ρµ(Mk) .

Moreover, if h = 1n ⊗ h′ ∈ πk(A)′, then w∗hw ∼σ h
′ ⊕ τk,ρ2 (h

′)⊕ · · · ⊕ τk,ρµ(h′).

Proof. Let BG = (V , E) be the bipartite graph affiliated with the ν×r (0, 1)-matrix
Q. The vertex set V of BG is a disjoint union V = X ∪ Y, where X has µ vertices
αi (recall µ is the number of nonzero rows of Q) and Y has r vertices βj (as Q
has r nonzero columns), and there is an edge {αi, βj} ∈ E if and only if the (i, j)-
entry of Q is nonzero. So each βi is connected through αi to all the βj for which
the (i, j)-entry of Q is nonzero. As each column of Q has exactly one nonzero
entry, we therefore obtain a decomposition of BG into its connected components
BG1, . . . ,BGµ, where each BGi is a bipartite graph with vertices and edges {αi, βj}
and where the j’s are the column positions of the nonzero entries on row i of Q.
Hence, the degree of the vertex αi in BG is precisely the degree of αi in BGi and is
equal to ρi, the number of nonzero entries on row i of Q.

Given that Q is a (0, 1)-matrix with precisely one nonzero entry in each of its
columns, the connected components of BG correspond to connected components
of the graph G of the symmetric matrix Q∗Q. Because Q∗Q is an r × r matrix,
the graph G has r-vertices βj with the property that βl is connected to βm in G if
and only if βl is connected to βm (through some unique αi) in the bipartite graph
BG. Thus G has µ connected components G1, . . . ,Gµ, each with ρi vertices, and
so standard graph/matrix theory says that Q∗Q is permutationally-equivalent to a
direct sum of µ matrices, each of size ρi×ρi. The permutation σ ∈ Ξr is determined
as follows. The first ρ1 integers in {1, 2, . . . , r} are sent by σ to the indices of the
vertices βj connected to α1 in BG: to be precise, if 1 = j1 < j2 < · · · < jρ1 are
the indices of the vertices βj connected to α1 (i.e. the nonzero entries on row 1 of
Q occur in column positions j1, . . . , jρ1), then σ(m) = jm for 1 ≤ m ≤ ρ1. The
next ρ2 integers in {1, 2, . . . , r} are sent by σ, in a similar fashion, to the indices of
the vertices βj connected to α2 in BG. Continue in this manner until the final ρµ
integers in {1, 2, . . . , r} are sent by σ to the indices of the vertices βj connected to
αµ in BG.

Now if h ∈ πk(A)′, then the combinatorial structures (i.e. the graph structures)
of Q∗Q = (q∗ν,niqν,nj )1≤i,j≤k and w∗hw = (hijq

∗
ν,niqν,nj )1≤i,j≤k are the same, and

hence p∗σ(w∗hw)pσ, like p∗σQ∗Qpσ, is a direct sum of µ matrices, each summand
being a ρi × ρi matrix. Observe that along any row of w∗hw the entries are zero
together with the entries coming from h: namely, hm1, hm2, . . . , hmρi for some m
and ρi. By the definition of σ, the first connected component G1 of G has ρ1 = k
vertices and this component determines the first direct summand, a k×k matrix, in
p∗σ(w∗hw)pσ: take the k×k principal submatrix of w∗hw determined by the k rows
ofQ∗Q that have k nonzero entries, together with the corresponding k columns. The

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1738 DOUGLAS R. FARENICK AND PHILLIP B. MORENZ

relevant entries in each of these k rows are hm1, hm2, . . . , hmk, 1 ≤ m ≤ k. In other
words, the first summand is the k× k matrix h′. The second connected component
G2 of G has ρ2 vertices; the associated ρ2×ρ2 direct summand of p∗σ(w∗hw)pσ is the
ρ2 × ρ2 principal submatrix of w∗hw determined by the ρ2 rows of Q∗Q that have
ρ2 nonzero entries, together with the corresponding columns. The relevant entries
in each of these rows are hm1, hm2, . . . , hmρ2 , 1 ≤ m ≤ ρ2. Thus, the second direct
summand of p∗σ(w∗hw)pσ is τk,ρ2(h

′), the ρ2× ρ2 leading principal submatrix of h′.
By continuing with these arguments for each of the connected components of G, we
thereby have established the claim asserted in the statement of the lemma.

Lemma 3.1 is perhaps best understood by considering an example. Let A = M5

and suppose that ϕ : M5 →M8 is given by

x11 . . . x15

...
...

x51 . . . x55

 7→

x11 . . . x13

...
...

x31 . . . x33

⊕
(
x11 x12

x21 x22

)
⊕
(
x11 x12

x21 x22

)
⊕ (x11

)
.

That is, π is the identity and ϕ(x) = τ5,3(x) ⊕ τ5,2(x) ⊕ τ5,2(x) ⊕ τ5,1(x) for all
x ∈M5. In this case w : C8 → C20, π4(M5)

′ is ∗-isomorphic to M4, and Q is given
by

Q =
(
q5,3 q5,2 q5,2 q5,1

)
=


1 0 0 1 0 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 .

The bipartite graph of Q has 3 connected components (as Q has 3 nonzero rows)
and the permutation σ ∈ Ξ8 is determined from Q (or its graph):

σ =

(
1 2 3 4 5 6 7 8
1 4 6 8 2 5 7 3

)
.

The commutant compression-indices are also read off from Q: they are ρ1 = 4,
ρ2 = 3, and ρ3 = 1. Direct computation shows that for h′ ∈M4 and h = 15 ⊗ h′ ∈
π4(M5)

′,

w∗hw =



h11 h12 h13 h14

h11 h12 h13

h11

h21 h22 h23 h24

h21 h22 h22

h31 h32 h33 h34

h31 h32 h33

h41 h42 h43 h44



∼σ



h11 . . . h14

...
...

h41 . . . h44


h11 . . . h13

...
...

h31 . . . h33


(
h11

)


.
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From Lemma 3.1 it is evident that the range of the isometry w is faithful for
commutant πk(A)′, and so we have the following immediate consequence: the map
ϕ is an extreme point of SCr(A). It is a consequence of Theorem 3.3 that ϕ is
actually C∗-extreme in SCr(A).

Definition. If ϕ : A → B(H) and ψ : A → B(K) are unital completely positive
maps, then we say that ψ is a compression of ϕ if there is an isometry w : K → H
for which ψ(x) = w∗ϕ(x)w for all x ∈ A.

Observe that if, in the definition above, ϕ is pure with Stinespring decomposition
ϕ = v∗πv, then ψ is also pure and of the form ψ = a∗πa, where a is an isometry
K → B(Hπ) whose range is included within the range of v (equivalently, aa∗ ≤ vv∗).
It is also easy to see that the sentence “ψ is unitarily equivalent to a compression
of ϕ” is equivalent to “ψ is a compression of ϕ.”

Lemma 3.2. Suppose that π is an irreducible representation of A on the Hilbert
space l2(ν) and that n1 ≥ n2 ≥ · · · ≥ nk are positive integers with ν ≥ n1. If
ϕi : A → Mni is a pure unital completely positive map for each i, and if ϕ1 is a
compression of π, then each ϕi+1 is a compression of ϕi if and only if there exist
unitaries u ∈Mν and ui ∈Mni such that ϕi(x) = u∗i τν,ni (u

∗π(x)u)ui for all i and
all x ∈ A.

Proof. Suppose that ϕi+1 is a compression of ϕi for all 1 ≤ i < n. Therefore
isometries wi : Cni+1 → Cni exist and satisfy ϕi+1 = w∗i ϕiwi for each i. As ϕ1 is a
compression of π, there is an isometry v : Cn1 → l2(ν) such that ϕ1 = v∗πv. Let
u ∈Mν be any unitary of the form u = [v ∗]; that is, u ∈Mν is any unitary whose
first n1 columns are given by the n1 columns of v. Hence ϕ1(x) = τν,n1(u

∗π(x)u)
for every x ∈ A. Starting with u1 = 1n1 , we construct the unitaries ui ∈ Mni

inductively. If ui has been constructed so as to satisfy ϕi(x) = u∗i τν,ni(u
∗π(x)u)ui

for all x ∈ A, then let ui+1 = q∗ni,ni+1
uiwi. For every x ∈ A,

u∗i+1τν,ni+1

(
u∗π(x)u

)
ui+1 = w∗i u

∗
i qni+1,niq

∗
ν,ni+1

(u∗π(x)u)qν,ni+1q
∗
ni,ni+1

uiwi

= w∗i u
∗
i q
∗
ν,ni(u

∗π(x)u)qν,niuiwi

= w∗i u
∗
i τν,ni(u

∗π(x)u)uiwi

= w∗i ϕi(x)wi

= ϕi+1(x) .

Conversely, if there exist unitaries u ∈ Mν , ui ∈ Mni such that for all i and all
x ∈ A we have ϕi(x) = u∗i τν,ni(u

∗π(x)u)ui, then we seek isometries wi : Cni+1 →
Cni that satisfy ϕi+1 = w∗i ϕiwi for all i. It is easily verified that the isometries
wi = u∗i qni,ni+1ui+1 have this property.

Theorem 3.3. Suppose that A is a unital C∗-algebra and that ϕi : A → Mni is
a pure unital completely positive map for each i = 1, 2, ..., k. Let r =

∑
i ni and

ϕ = ϕ1 ⊕ · · · ⊕ ϕk. If ϕi+1 is a compression of ϕi for each 1 ≤ i < k, then ϕ is
a C∗-extreme point of SCr (A). In particular the generalised state ϕ : Mn → Mr

given by ϕ = τn,n1 ⊕ τn,n2 ⊕ · · · ⊕ τn,nk is a C∗-extreme point of SCr (Mn).

Proof. The hypotheses that ϕ1 is pure and ϕi+1 is a compression of ϕi for each
1 ≤ i < k is to say that each ϕi has the form ϕi = v∗i πvi, where each vi : Cni → Hπ

is an isometry and the projections viv
∗
i satisfy viv

∗
i ≥ vi+1v

∗
i+1, i = 1, . . . , k. Here,

π is an irreducible representation of A on a Hilbert space Hπ = l2(ν). By Lemma
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3.2, there exist unitaries u ∈ Mν , ui ∈ Mni such that for all i and all x ∈ A we
have ϕi(x) = u∗i τν,ni (u

∗π(x)u)ui. Hence ϕ is unitarily equivalent, via the unitary∑⊕
i ui, to the map

x 7→ w∗


π(u∗xu)

π(u∗xu)
. . .

π(u∗xu)

w ∀ x ∈ A ,(†)

where w : Cr → l2(ν)⊗ Ck is the isometry

w =


qν,n1

qν,n2

. . .

qν,nk

 .

For simplicity, let us denote the map in (†) by ϕ once again. Likewise, we may
replace the irreducible representation π by the irreducible representation defined
by %(x) = π(u∗xu) for x ∈ A and then replace πk by %k. Because the commutants
%k(A)′ and πk(A)′ are exactly the same, we simply denote this new representation
% by π once again.

Suppose now that ϕ = t∗θ1t + s∗θ1s, where θ1, θ2 ∈ SCr (Mn) and s and t are
invertible C∗-convex coefficients. By passing to the polar decomposition of t and
s and then by absorbing the unitary parts of these decompositions into θ1 and θ2,
we may assume without loss of generality that t and s are positive and invertible.
As tθ1t ≤ ϕ = w∗πkw, Arveson’s Radon-Nikodym Theorem has tθ1t = w∗hπkw for
some unique positive contraction h ∈ πk(A)′. Thus,

θ1 = (h1/2wt−1)∗πk(h1/2wt−1)

and h1/2wt−1 is an isometry. To prove that ϕ is a C∗-extreme point, we shall find
a unitary v ∈ πk(A)′ and a unitary u ∈Mr satisfying

vw = h1/2wt−1u .(∗)
The relation above leads to

ϕ = w∗πkw = u∗(h1/2wt−1)∗v∗πkv(h1/2wt−1)u

= u∗(h1/2wt−1)∗πkv∗v(h1/2wt−1)u

= u∗(h1/2wt−1)∗πk(h1/2wt−1)u

= u∗θ1u

and θ1 ∼ ϕ. Similarly, θ2 ∼ ϕ, which proves that ϕ is a C∗-extreme point. The
remainder of the proof is devoted to finding the unitaries u and v satisfying equation
(∗).

It will be convenient to introduce a change of basis. Denote the standard or-
thonormal bases of Cr and l2(ν)⊗ Ck by

Br = {ξ1, . . . , ξr},
Bνk = {η1 ⊗ ψ1, η2 ⊗ ψ1, . . . ; η1 ⊗ ψ2, η2 ⊗ ψ2, . . . ; η1 ⊗ ψk, η2 ⊗ ψk, . . . } .

(Here, {ηi}νi=1 and {ψ1, . . . , ψk} are the standard orthonormal bases of l2(ν) and
Ck.) The representation of the operators w,h, and t thus far has been with respect
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to the standard bases Br and Bνk. Consider now the following orthonormal bases
(obtained from Br and Bνk by permuting the orderings):

B̃r = {ξσ(1), . . . , ξσ(r)},
B̃νk = {η1 ⊗ ψ1, η1 ⊗ ψ2, . . . , η1 ⊗ ψk, η2 ⊗ ψ1, . . . , η2 ⊗ ψk, η3 ⊗ ψ1, . . . },

where σ ∈ Ξr is the permutation determined by ϕ as described in Lemma 3.1. Let
pσ ∈Mr and z ∈Mν ⊗Mk be the (unitary) transition matrices from Br to B̃r and

from Bνk to B̃νk. With respect to the orthonormal bases B̃r and B̃νk, the isometry
h1/2wt−1 is represented by the matrix

z−1h1/2wt−1pσ ,

which in turn can be written as

z−1h1/2zz−1wpσp
−1
σ t−1pσ ,

where

z−1h1/2z =

ν∑
i

⊕h′ =


h′

h′

. . .

. . .

 ∈ B(l2(ν)⊗ Ck) ,

z−1wpσ =



1k
aρ2

. . .

aρµ
0 · · · · · · 0
...

...
0 · · · · · · 0


∈ B(Cr , l2(ν)⊗ Ck) ,

p−1
σ t−1pσ =


h′−

1
2

(a∗ρ2
h′aρ2)

− 1
2

. . .

(a∗ρµh
′aρµ)−

1
2

 ∈Mr .

Here, k = ρ1 ≥ ρ2 ≥ · · · ≥ ρµ > 0 are the commutant compression-indices and
each aρj is the canonical k × ρj isometry whose ρj columns are given by the first

ρj standard orthonormal basis vectors of Ck. The rows of zeros at the bottom of
the matrix z−1wpσ are ν − µ in number and appear only if µ 6= ν (which happens
most frequently). The product of z−1wpσ and p−1

σ t−1pσ produces the matrix
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h′−
1
2 (

(a∗ρ1
h′aρ1)

− 1
2

0

)
. . . 

(a∗ρµh
′aρµ)−

1
2

0
...
0


0 · · · · · · 0
...

...
0 · · · · · · 0


and therefore z−1h1/2zz−1wpσp

−1
σ t−1pσ is



h′
1
2

h′
1
2

h′
1
2

. . .

. . .





h′−
1
2 (

(a∗ρ1
h′aρ1)

− 1
2

0

)
. . . 

(a∗ρµh
′aρµ)−

1
2

0
...
0


0 · · · · · · 0
...

...
0 · · · · · · 0



=



bρ1

bρ2

. . .

bρµ
0 0
...

...
0 0


,

where

bρj = h′1/2
(

(a∗ρjh
′aρj )−1/2

0

)
.

We now invoke Lemma 3.4 (stated and proved after the proof of the present the-
orem), whose results are as follows: each k × ρj matrix bρj is an isometry into Ck

and for every 1 ≤ j ≤ µ there are unitaries uρj ∈ Mρj satisfying bρjuρj = ukaρj .
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Thus,

v(z−1wpσ) =


uk

uk
. . .

. . .





1k
aρ2

. . .

aρµ
0 0
...

...
0 0



=



bρ1

bρ2

. . .

bρµ
0 0
...

...
0 0




uk

uρ2

. . .

uρµ



= (z−1wpσ)u ,

where u ∈ Mr and v ∈ πk(A)′ are the unitaries (with respect to the orthonormal

bases B̃r and B̃νk) given by

u =


uk

uρ2

. . .

uρµ

 and v =


uk

uk
. . .

. . .

 .

This completes the construction of the unitaries u ∈ Mr and v ∈ πk(A)′ satisfying
equation (∗).

Lemma 3.4. Let {e1, . . . , ek} denote the standard orthonormal basis of Ck, and
for each 1 ≤ i ≤ k, let gi : Ci → Ck be the isometry gi = (e1, e2, . . . , ei). Suppose
that h ∈Mk is a positive invertible contraction. Then

(1) hi = h
1
2

(
(g∗i hgi)

−1
2

0

)
is an isometry Ci → Ck ;

(2) there exist unitaries ui ∈Mi, for each 1 ≤ i < n, such that hiui = hi+1ui+1|rangi
for each i.

Proof. A straightforward matrix computation shows that each hi is an isometry.
To prove that unitaries ui ∈ Mi exist with the claimed properties, we will con-
struct each unitary in sequence, beginning with u1 = 1 ∈ M1. Suppose now that
such unitaries u1, . . . , um have been found; we indicate below how to obtain um+1

satisfying

hmum = hm+1um+1|rangm
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1744 DOUGLAS R. FARENICK AND PHILLIP B. MORENZ

The equation above is, in matricial form, simply

h
1
2

(
(g∗mhgm)

−1
2

0

)
um = h

1
2

(
(g∗m+1hgm+1)

−1
2

0

)
um+1|rangm

,

which is satisfied, because h is invertible, if and only if(
(g∗mhgm)

−1
2

0

)
um =

(
(g∗m+1hgm+1)

−1
2

0

)
um+1|rangm

.(†)

Now if (†) holds, then(
(g∗m+1hgm+1)

1
2 0

)((g∗mhgm)
−1
2

0

)
um = um+1|rangm

.(‡)

The left-hand side of (‡) is a k×m matrix, which is easily seen to be, moreover, an
isometry. So let um+1 be any unitary matrix that has its first i columns given by the
i columns on the left-hand side of (‡). All that remains is to verify that (†) is satisfied
with the choice of um+1. Well this is true because if pi ∈ Mk is the canonical
projection with range rangi, 1 ≤ i ≤ k, then pi = gig

∗
i ; so we see that equation (‡)

implies equation (†) by simply multiplying (‡) by
(
(g∗m+1hgm+1)

−1
2 0

)
to get (†).

Finally, observe that

uk = hkuk =
(
hk−1uk−1 ∗) =

(
hk−2uk−2 ∗ ∗) = · · · = (h1u1 ∗ ∗ . . . ∗) .

Thus, for every i the equation ukgi = hiui holds.

As an application of the construction in Theorem 3.3, we now prove an analogue,
for C∗-convexity in generalised state spaces, of the usual Krein-Milman theorem.
We shall need the following fact, which is a direct consequence of Theorem 3.3: if
ϕ : A → Mn is a pure unital completely positive map, and if ψ is a pure state on
A of the form ψ(x) = (ϕ(x)ξ, ξ) for some unit vector ξ ∈ Cn, then ϕ ⊕ ψ1k is a
C∗-extreme point of SCn+k(A) for every positive integer k.

Theorem 3.5. For every unital C∗-algebra A, the C∗-convex hull of the set of
C∗-extreme points of SCr (A) is a dense subset, with respect to the bounded-weak-
topology, of SCr(A).

Proof. By the Krein-Milman theorem, SH(A) is the BW-closure of the convex hull
of the extreme points of SH(A). Thus, we need only represent every extreme point
as a C∗-convex combination of C∗-extreme points.

Assume that ϕ is an extreme point of SH(A) and that ϕ = v∗πv is a minimal
decomposition of ϕ. If π is irreducible, then ϕ is pure and we are through; other-
wise, decompose π further so that it is a direct sum of irreducible representations
πj on Hilbert spaces Kj . Using that H is finite-dimensional and that ϕ is an ex-
treme point, the number of representations πj must be finite, by the Extreme Point
theorem. Thus, Hπ is a finite direct sum of the spaces Kj; the isometry v is a finite
sum of contractions vj = qjv, where qj is projection mapping Hπ onto the subspace
Kj; and ϕ itself is represented by the finite sum

∑
j v

∗
jπjvj .

In B(H), let aj = v∗j vj and let pj be the projection mapping H onto the range

of the positive operator aj . Let bj be the positive contraction that acts as a
− 1

2
j on

the range of aj and as 0 on the kernel of aj . Thus, the range of bj is that of aj and
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pj, and bjajbj = pj . Select any pure state θj on A that is a compression of the pure
generalised state bjv

∗
jπjvjbj. We now construct the following generalised state:

ωj(x) = bjv
∗
j πj(x)vjbj + θj(x)(1 − pj), for all x ∈ A .

So ωj, being the direct sum of a unital pure completely positive map and an inflation
of a pure state that is a compression of this map, is a C∗-extreme point of SH(A)
by Theorem 3.3. Finally, for every x ∈ A,

ϕ(x) =
∑
j

v∗j πj(x)vj =
∑
j

a
1
2

j ωj(x)a
1
2

j and
∑
j

aj = 1 ,

which completes the proof.

4. C∗-extremal generalised states on matrix algebras

An important special case in the theory of completely positive maps occurs with
maps between matrix algebras. In [5] M.-D. Choi obtained a useful and elegant
description of the extreme points in the generalised state spaces SCr(Mn), and his
methods make no recourse to Arveson’s extreme point theorem. In this section
we shall determine all of the C∗-extreme points of SCr (Mn). It is interesting to
note that our methods, in contrast to Choi’s, rely quite extensively on Arveson’s
approach to extreme points (in that the Radon-Nikodym Theorem is one of the
main constituents in the proof of Theorem 3.3).

Theorem 4.1. A unital completely positive map ϕ : Mn → Mr is a C∗-extreme
point of SCr (Mn) if and only if there exist positive integers n1 ≥ n2 ≥ · · · ≥ nk with
n ≥ n1 and

∑
i ni = r, and pure unital completely positive maps ϕi : Mn → Mni

such that

(1) ϕi+1 is a compression of ϕi for each 1 ≤ i < k, and

(2) ϕ is unitarily equivalent to the direct sum
∑⊕

i ϕi.

Proof. The sufficiency of the hypotheses is proved by Theorem 3.3; in this case we
note that every irreducible representation π of Mn is unitarily equivalent to the
identity map. We now prove that the stated conditions are necessary in order for ϕ
to be a C∗-extreme point. From Theorem 2.1 one knows that ϕ ∼∑⊕

i ϕi for some
sequence of pure generalised states ϕi : Mn →Mni with n ≥ n1 and

∑
i ni = r. In

fact we may reduce the proof to the case where k = 2 for the following reason: ϕ
is a C∗-extreme point only if ϕi ⊕ϕi+1 is a C∗-extreme point of SCni+ni+1 (Mn) for
each 1 ≤ i < k. So in the case k = 2, we argue below that ϕ1 ⊕ϕ2 is a C∗-extreme
point of SCr(Mn) only when ϕ2 is a compression of ϕ1.

Assume, on the contrary, that ϕ2 is not a compression of ϕ1. We shall prove that
this assumption leads to a contradiction of the fact that ϕ = ϕ1⊕ϕ2 is a C∗-extreme
point of SCr (Mn), where r = n1 +n2. Let vi : Cni → Cn be isometric and such that
ϕ(x) = v∗1xv1 ⊕ v∗2xv2 for every x ∈Mn. We now consider new orthonormal bases
of Cn, Cn1 , and Cn2 . Let E1 be an orthonormal basis for v1(Cn1) ∩ v2(Cn2). (We
allow for the possibility that v1(Cn1) ∩ v2(Cn2) is {0}; this causes no difficulties.)
Extend E1 by E2 so that E1 ∪ E2 is an orthonormal basis for v1(Cn1). Finally,
extend E1 ∪ E2 by E3 to obtain an orthonormal basis E = E1 ∪ E2 ∪ E3 for Cn.
In Cn1 , let F1 = v−1

1 (E1), F2 = v−1
1 (E2), and F = F1 ∪ F2, an orthonormal basis.

In Cn2 , let G1 = v−1
2 (E1) and extend this by G2 to a basis G. Note that G2 6= φ

because ϕ2 is not a compression of ϕ1.
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With respect to the bases E = (E1, E2, E3) for Cn and (F,G) = (F1, F2, G1, G2)
of Cr = Cn1 ⊕ Cn2 , we find that the isometries have the representations

v1 =

1 0 0 0
0 1 0 0
0 0 0 0

 , v2 =

0 0 1 0
0 0 0 q1
0 0 0 q2

 ,

where q∗1q1+q∗2q2 = 1 and where q2 is one-to-one (because v2(G2)∩v1(F ) is empty).
Thus 1− q∗1q1 = q∗2q2 is invertible, and hence so are

Q1 =


1

1 q1
1

q∗1 1

 and Q2 =


1

1 −q1
1

−q∗1 1

 ∈Mr.

Let

w1 =

1 0 1 0
0 1 0 q1
0 0 0 q2

 and w2 =

1 0 −1 0
0 1 0 q1
0 0 0 q2

 ,

and let ψ1(·) = (Q
− 1

2
1 /

√
2)(w∗1(·)w1 + w∗2(·)w2)(Q

− 1
2

1 /
√

2). Similarly, let

w3 =

1 0 1 0
0 1 0 −q1
0 0 0 −q2

 and w4 =

1 0 −1 0
0 1 0 −q1
0 0 0 −q2

 ,

and let ψ2(·) = (Q
− 1

2
2 /

√
2)(w∗3(·)w3 + w∗4(·)w4)(Q

− 1
2

2 /
√

2).
Now ψ1, ψ2 ∈ SCr (Mn), and

ϕ(·) = (Q
1
2
1 /
√

2)∗ψ1(·)(Q
1
2
1 /
√

2) + (Q
1
2
2 /
√

2)∗ψ2(·)(Q
1
2
2 /
√

2)

expresses ϕ as a proper C∗-convex combination of ψ1 and ψ2 (because Q
1
2
1 /
√

2 and

Q
1
2
2 /
√

2 are invertible and (Q1 +Q2)/2 = 1). Since ϕ is C∗-extreme, we must have

ϕ ∼ ψ1 ∼ ψ2. We can see that this fails, however, by choosing x =

0 0 0
0 0 a
0 0 0

 6=

0 ∈ Mn. Thus ϕ cannot be C∗-extreme and this contradiction completes the
proof.

A Markov map on Mn is a trace preserving unital completely positive map
Mn →Mn. Markov maps have been studied recently in [3] and [11]. The results of
these papers demonstrate that there are many (nonequivalent) Markov maps that
are extreme points of SCn(Mn). However, by Theorem 4.1, a Markov map ϕ is a
C∗-extreme point of SCn(Mn) if and only if ϕ is unitarily equivalent to the identity
map on Mn.

5. Remarks

This paper represents a natural continuation of our study of C∗-convex sets in
matrix algebras [7], [8], [14]. One reason for considering C∗-convexity and complete
positivity together is that the operation of forming C∗-convex combinations in a
C∗-algebra is a completely positive operation. Our use here of noncommutative
convexity in describing properties of spaces of completely positive maps is somewhat
related to the earlier works [9] and [15]. In [15], Smith and Ward describe the faces
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of SH(A) in the cases where H has finite dimension. Their result, briefly, is that all
faces of SCn(A) are determined, not necessarily uniquely, by projections in A′′⊗Mn,
where A′′ denotes the enveloping von Neumann algebra of A; the faces F of SCn(A)
that are C∗-convex are in a one-to-one correspondence with the projections of
A′′ (and the faces of S(A)). However from the point of view of noncommutative
convexity, the “C∗-convex faces” of [15] are a hybrid of two different notions: they
are faces in the usual sense and convex in the general sense (i.e. C∗-convex). In
independent works, Fujimoto and the second author have introduced notions of a
face for noncommutative convexity. The idea of [14] is more aptly suited to the
theme of the present paper, for it is based on C∗-convexity rather than Fujimoto’s
CP -convexity, which is different. Following [14], a C∗-face F of SH(A) is a subset
having the property that if ϕ ∈ F and if ϕ is expressed as a proper C∗-convex
combination of ϕj ∈ SH(A), then necessarily each ϕj ∈ F . Although C∗-faces
need not be convex (so they are not true faces), they do lend themselves well to
standard arguments based on Zorn’s Lemma, as in [14]. The C∗-faces of SH(A)
have not yet been seriously studied. Through personal correspondence, we have
learned from I. Fujimoto of his notions of extreme point and faces in the context
of CP -convexity. These notions are substantially different from the corresponding
ones in C∗-convexity. Indeed, the main results of the present paper appear to
have no analogue in Fujimoto’s program of CP -convexity for at least one reason:
the (usually large) dimensions of the Hilbert spaces required by CP -convexity are
dictated by the particular C∗-algebra A at hand, whereas in our work here we allow
the Hilbert spaces to have arbitrary dimension (often small). More recently, Effros
and Winkler [6] have put forth some very interesting ideas concerning a quantization
of the geometric form of the classical Hahn-Banach extension theorem. In [6], the
generalised state spaces SCr(Mn) appear as a matrix-convex system.

In another direction, Tsui [18] has studied how well Kadison’s characterisation
of pure states extends to more general settings. Recall that the left-kernel of a
completely positive map ϕ is the set Lϕ = {x ∈ A : ϕ(x∗x) = 0}. If ϕ is a state on
A, then Kadison showed that ϕ is pure if and only if the kernel of ϕ is Lϕ + L∗ϕ.
Tsui has proved the following.

Theorem (Tsui [18, 2.2]). If H has finite dimension and if ϕ ∈ SH(A) is pure,
then Lϕ + L∗ϕ = kerϕ. The converse is false.

From the results in this paper, we see that, in case H is finite-dimensional and
A = Mn, that Kadison’s left kernel property is satisfied by every C∗-extreme point.
In fact, even when A is arbitrary, all the C∗-extreme points we have found so far also
satisfy this property. The obvious question, then, is whether this characterises the
set of C∗-extreme points. The answer is no: with the non-C∗-extreme generalised
state ϕ : Mn → Mn defined by ϕ(x) = 1

2diag(x) + 1
2x, one has that kerϕ = Lϕ =

{0}.

References

1. W.B. Arveson, Subalgebras of C∗-algebras, Acta Math. 123 (1969), 141–224. MR 40:6274
2. W.B. Arveson, Subalgebras of C∗-algebras,II, Acta Math. 128 (1972), 271–308. MR 52:15035

3. R. Bhat, V. Pati, and V.S. Sunder, On some convex sets and their extreme points, Math.
Ann. 296 (1993), 637–648. MR 94f:46076

4. J. Bunce and N. Salinas, Completely positive maps on C∗-algebras and the left matricial
spectra of an operator, Duke Math. J. 43 (1976), 747–777. MR 55:3798

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1748 DOUGLAS R. FARENICK AND PHILLIP B. MORENZ

5. M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10
(1975), 285-290. MR 51:12901

6. E.G. Effros and S. Winkler, Matrix convexity: operator analogues of the bipolar and Hahn-
Banach theorems, preprint, 1995.

7. D.R. Farenick, C∗-convexity and matricial ranges, Canad. J. Math 44 (1992), 280–297. MR
93j:46060

8. D.R. Farenick and P.B. Morenz, C∗-extreme points of some compact C∗-convex sets, Proc.
Amer. Math. Soc. 118 (1993), 765–775. MR 93i:46096

9. I. Fujimoto, CP-duality for C∗- and W ∗-algebras, J. Operator Theory 30 (1993), 201–216.
MR 96b:46076

10. A. Hopenwasser, R.L. Moore, and V.I. Paulsen, C∗-extreme points, Trans. Amer. Math. Soc.
266 (1981), 291–307. MR 82f:46065

11. L.J. Landau and R.F. Streater, On Birkhoff’s theorem for doubly stochastic completely positive
maps of matrix algebras, Linear Algebra Appl. 193 (1993), 107–127. MR 95c:47041

12. R.I. Loebl, A remark on unitary orbits, Bull. Instit. Math. Acad. Sinica 7 (1979), 401–407.
MR 80m:47035

13. R.I. Loebl and V.I. Paulsen, Some remarks on C∗-convexity, Linear Algebra Appl. 35 (1981),
63–78. MR 82b:46077

14. P.B. Morenz, The structure of C∗-convex sets, Canad. J. Math. 46 (1994), 1007–1026. MR
95k:46095

15. R.R. Smith and J.D. Ward, The geometric structure of generalized state spaces, J. Funct.
Anal. 40 (1981), 170–184. MR 82i:46094

16. W.F. Stinespring, Positive functions on C∗-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–
216. MR 16:1033b

17. E. Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233–278. MR
27:6145

18. S.-K. Tsui, Extreme n-positive linear maps, Proc. Edin. Math. Soc. 36 (1993), 123–131. MR
94b:46088

19. S.-K. Tsui, Completely positive module maps and completely positive extreme maps, Proc.
Amer. Math. Soc. 124 (1996), 437–445. MR 96d:46074

Department of Mathematics and Statistics, University of Regina, Regina, Saskatch-

ewan S4S 0A2, Canada

E-mail address: farenick@math.uregina.ca

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L

3G1, Canada

Current address: Citadel Investment Group, 225 West Washington, Chicago, Illinois 60606
E-mail address: pmorenz@wfg.com

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


