
C for System Level Design

Guido Arnout
CoWare, Inc.

Abstract

Few people disagree with the fact that today about 80%
of a system is software running on a "platform" of gen-
eral purpose or custom processors (CPU and/or DSP)
tightly coupled with unique dedicated hardware. This
makes C (or C++) an obvious candidate for a system
level design language. Without good hardware/software
partitioning tools and support for C-based hardware
design, the software content may have to increase by
necessity. With the right hardware support a system
team has the flexibility to make cost, performance,
power trade-offs and decide later in the game how
much of the system is software and how much is hard-
ware. Another issue is legacy software and hardware.
Legacy C software is well understood but legacy hard-
ware is usually only available as RTL (Verilog or
VHDL) at best. Therefore the ideal system level design
language is C (or C++) based, accommodates hard-
ware design but also co-exists with the vast legacy of
Verilog and VHDL based re-usable hardware. CoWare
N2C is practical solution, used in real life design
around the world, that a) preserves the C software de-
velopment paradigm for software people, b) adds the
necessary clocking to C to enable hardware designers
to move C functionality into a hardware architecture,
and c) co-exists (for co-design and co-simulation) with
existing hardware in Verilog or VHDL.

Defining a system from a napkin

Q. What do system designers do first when they design
a new system or update an existing system ?

A. They start with a napkin sketch: an interconnected
set of functional blocks that represent the system they
want to build. Between this napkin and the first analysis
of the system are numerous chapters of ambiguous text,
often in English to facilitate system design with team
members across the globe, and numerous prototype
boards.

Q. What do system designers want to do when they de-
fine a system ?

A. They want to execute the system specification to
make sure that the system they specified behaves the
way they expect it to behave. Currently they have to
wait until part of the system, usually the hardware, is
fully designed and available as a prototype board.

CoWare N2C models a system as a number of inter-
connected functional blocks that can be simulated in
which each functional block is an autonomous process.
The system specification is driven by a testbench,
which is a model of the environment the system lives
in.

There is currently no lack of attempts to come up with
a new system level language that extends to the system
from the hardware up.

In contrast, CoWare took a top down approach that re-
uses existing languages as much as possible and only
adds the necessary ingredients. Instead of defining a
new language or extending the C or C++ language,
CoWare has defined a language independent layer to
specify interconnected autonomous functional proc-
esses. Each functional block can be specified in its ap-
propriate language that can change as it evolves in the
design process from system specification to fully im-
plemented system.

Re-using existing languages

In CoWare N2C, a functional block can contain:

• a C level system model, new or re-used, that af-
ter hardware/software partitioning either repre-
sents software or hardware

• a C level system model, new or re-used, that
represents a software function, a logic function
or an analog function

• a C level model, new or re-used, that represents
part of the environment the system to be de-
signed must live in

• a Verilog level model, new or re-used that by
the choice of language represents hardware



• a VHDL level model, new or re-used that by the
choice of language represents hardware

Adding multi-threading

Q. Since C is the dominant software language, Verilog
and VHDL evenly split the hardware world, and any
analog function can be written in C, can any system be
described re-using existing languages ?

A The language independent layer around intercon-
nected blocks defined in existing languages is insuffi-
cient since this does not include the notion of
concurrency. Only Verilog and VHDL model concur-
rent processes but in embedded systems, it is important
to be able to tell the real time operating system how
different software functions can be scheduled or in case
of multiple processors, which software functions should
be executed concurrently.

CoWare therefore added the ability to define inde-
pendent threads in a language independent way. This
is helpful for the software side and essential to model
hardware functions in C to be translated to RTL later.

Using C for hardware design

Q. How can I use C to describe hardware if I can only
define pure functional behavior ?

A What is missing is the ability to define clocks and to
add cycle information to C.

To enable a designer to define a hardware architecture
in C, CoWare added the ability to define multiple asyn-
chronous clocks in C and to add clock cycle informa-
tion as a wrapper around C functions or embedded in
the C code.

With the exception of timing at a finer granularity than
clock cycles, this makes it possible to write anything
that can be written in Verilog or VHDL at the C level
in CoWare N2C.

The main advantage of this is that it is now possible to
refine any C level function, that is targeted for hard-
ware implementation after hardware/software parti-
tioning, through the addition of clocking and clock cy-
cles, into a lower hardware-oriented C level that can be
translated directly into Verilog or VHDL.

The ability to write the equivalent of Verilog or VHDL
in C:

• enables designers to stay at C level for most of
the implementation cycle

• makes it possible to move certain functions that
now have to be implemented in hardware over
time to software as faster and faster processors
become available

• dramatically accelerates simulation time since C
code executes much faster than Verilog or
VHDL code.

CoWare Interface Synthesis™

The Atomium, Belgium’s contribution to the World
Fair of 1958, is a useful illustration to show that there is
more to a system than the sum of its parts.

Each sphere may have different content but there is
also content in the tubes that interconnect the spheres.
More importantly, the tubes give the system its overall
structure and its meaning beyond being merely nine
spheres. A system is, after all, an interconnected set of
functional blocks that may or may not be written in
different languages. This is a good way to look at the
CoWare N2C approach.

In CoWare N2C, the behavior of blocks is, as in the
Atomium, clearly separated from communication be-
tween the blocks. This makes a lot of sense. Imagine
that the escalators in the tubes that connect the exhibi-
tion halls in the spheres are embedded in the spheres.
The Atomimum would be a pile of balls and not be “re-
usable” as an exhibition hall and conference center to-
day.



This separation of behavior and communication also
enables the synthesis of the implementation of a com-
munication protocol into its low level software drivers
and the interface logic between software and hardware
components. It also enables hardware to hardware in-
terface synthesis.

This represents tremendous advantages:

• it allows a system designer to think system all
the time without being dragged down to the de-
tails of the processor(s) used in the system.

• it enables a much higher degree of IP re-use
since the communication details no longer need
to be blended in with the rest of the functionality
of the IP. In essence, it makes the IP independ-
ent of the processor or bus used in the system

• it eliminates a lot of the tedious and error prone
system level integration that, some analysts
claim, consumes as much as 40% of the design
time

• it empowers design teams to quickly repartition
a system to explore different architectures or to
take advantage of new IP in design derivatives

Conclusion

We live in a world full of talk of IP re-use. This phi-
losophy should not only apply to functional IP or proc-
essors but also to languages involved in the description
of functional behavior.

CoWare N2C has proven that a language independent
definition of interconnected functional blocks, which
re-uses existing popular languages for hardware and
software, enables efficient capture of today's complex
embedded systems. When combined with interface
synthesis and the necessary extensions to the C lan-
guage to enable hardware design in C, it can lead to a
dramatic reduction in time-to-market.

CoWare N2C enables true IP re-use. It implements the
strategy of the System Level Design Workgroup of
VSIA and offers a practical solution to what the System
Level Design Language committee (SLDL) attempts.


