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C∞ SCALING ASYMPTOTICS FOR THE SPECTRAL PROJECTOR

OF THE LAPLACIAN

YAIZA CANZANI AND BORIS HANIN

Abstract. This article concerns new off-diagonal estimates on the remainder and
its derivatives in the pointwise Weyl law on a compact n-dimensional Riemannian
manifold. As an application, we prove that near any non self-focal point, the scaling
limit of the spectral projector of the Laplacian onto frequency windows of constant
size is a normalized Bessel function depending only on n.

0. Introduction

Let (M, g) be a compact, smooth, Riemannian manifold without boundary. We
assume throughout that the dimension of M is n ≥ 2 and write ∆g for the non-negative
Laplace-Beltrami operator. Denote the spectrum of ∆g by

0 = λ2
0 < λ2

1 ≤ λ2
2 ≤ · · · ↗ ∞.

This article concerns the behavior of the Schwarz kernel of the projection operators

EI : L2(M) →
⊕

λj∈I

ker(∆g − λ2
j ),

where I ⊂ [0,∞). Given an orthonormal basis {ϕj}∞
j=1 of L2(M, g) consisting of

real-valued eigenfunctions,

∆gϕj = λ2
jϕj and ‖ϕj‖L2 = 1, (1)

the Schwarz kernel of EI is

EI(x, y) =
∑

λj∈I

ϕj(x)ϕj(y). (2)

The study of E[0,λ](x, y) as λ → ∞ has a long history, especially when x = y. For
instance, it has been studied notably in [7, 8, 9, 10] for its close relation to the asymp-
totics of the spectral counting function

#{j : λj ≤ λ} =

ˆ

M
E[0,λ](x, x)dvg(x), (3)

where dvg is the Riemannian volume form. An important result, going back to
Hörmander [8, Thm 4.4], is the pointwise Weyl law (see also [4, 18]), which says
that there exists ε > 0 so that if the Riemannian distance dg(x, y) between x and y is
less than ε, then

E[0,λ](x, y) =
1

(2π)n

ˆ

|ξ|gy
<λ
ei〈exp−1

y (x), ξ〉 dξ√
|gy|

+R(x, y, λ). (4)

1
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The integral in (4) is over the cotangent fiber T ∗
yM and the integration measure is the

quotient of the symplectic form dξ∧dy by the Riemannian volume form dvg =
√

|gy|dy.
In Hörmander’s original theorem, the phase function 〈exp−1

y (x), ξ〉 is replaced by any
so-called adapted phase function and one still obtains that

sup
dg(x,y)<ε

∣∣∣∇j
x∇k

yR(x, y, λ)
∣∣∣ = O(λn−1+j+k) (5)

as λ → ∞, where ∇ denotes covariant differentiation. The estimate (5) for j = k = 0
is already in [8, Thm 4.4], while the general case follows from the wave kernel method
(e.g. as in §4 of [16] see also [3, Thm 3.1]).

Our main technical result, Theorem 2, shows that the remainder estimate (5) for
R(x, y, λ) can be improved from O(λn−1+j+k) to o(λn−1+j+k) under the assumption
that x and y are near a non self-focal point (defined below). This paper is a continu-
ation of [4] where the authors proved Theorem 2 for j = k = 0. An application of our
improved remainder estimates is Theorem 1, which shows that we can compute the
scaling limit of E(λ,λ+1](x, y) and its derivatives near a non self-focal point as λ → ∞.

Definition 1. A point x ∈ M is non self-focal if the loopset

Lx := {ξ ∈ S∗
xM : ∃ t > 0 with expx(tξ) = x}

has measure 0 with respect to the natural measure on T ∗
xM induced by g. Note that

Lx can be dense in S∗
xM while still having measure 0 (e.g. for points on a flat torus).

Theorem 1. Let (M, g) be a compact, smooth, Riemannian manifold of dimension
n ≥ 2, with no boundary. Suppose x0 ∈ M is a non self-focal point and consider a
non-negative function rλ satisfying rλ = o(λ) as λ → ∞. Define the rescaled kernel

Ex0

(λ,λ+1] (u, v) := λ−(n−1)E(λ,λ+1]

(
expx0

(u
λ

)
, expx0

(v
λ

))
.

Then, for all k, j ≥ 0,

sup
|u|,|v|≤rλ

∣∣∣∣∣∂
j
u∂

k
v

(
Ex0

(λ,λ+1] (u, v) − 1

(2π)n

ˆ

S∗

x0
M
ei〈u−v,ω〉dω

)∣∣∣∣∣ = o(1)

as λ → ∞. The inner product in the integral over the unit sphere S∗
x0
M is with respect

to the flat metric g(x0) and dω is the hypersurface measure on S∗
x0
M induced by g(x0).

Remark 1. Theorem 1 holds for Π(λ,λ+δ] with arbitrary fixed δ > 0. The difference is
that the limiting kernel is multiplied by δ and the rate of convergence in the o(1) term
depends on δ.

Remark 2. One can replace the shrinking ball B(x0, rλ) in Theorem 1 by a compact
set S ⊂ M in which for any x, y ∈ S the measure of the set of geodesics joining x and
y is zero (see Remark 3 after Theorem 2).

Theorem 1 follows from Theorem 2 by combining (9) with the relation E(λ,λ+1] =
E[0,λ+1] − E[0,λ]. In normal coordinates at x0, Theorem 1 shows that the scaling limit
of Ex0

(λ,λ+1] in the C∞ topology is

ER
n

1 (u, v) =
1

(2π)n

ˆ

Sn−1

ei〈u−v,ω〉dω,
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which is the kernel of the frequency 1 spectral projector for the flat Laplacian on R
n.

Theorem 1 can therefore be applied to studying the local behavior of random waves
on (M, g). More precisely, a frequency λ monochromatic random wave ϕλ on (M, g) is
a Gaussian random linear combination

ϕλ =
∑

λj∈(λ,λ+1]

ajϕj aj ∼ N(0, 1) i.i.d,

of eigenfunctions with frequencies in λj ∈ (λ, λ + 1]. In this context, random waves
were first introduced by Zelditch in [20]. Since the Gaussian field ϕλ is centered, its
law is determined by its covariance function, which is precisely E(λ,λ+1](x, y). In the
language of Nazarov-Sodin [11] (cf [6, 14]), the estimate (6) means that frenquency λ
monochromatic random waves on (M, g) have frequeny 1 random waves on R

n as their
translation invariant local limits at every non self-focal point. This point of view is
taken up in the forthcoming article [5].

Theorem 2. Let (M, g) be a compact, smooth, Riemannian manifold of dimension
n ≥ 2, with no boundary. Let K ⊆ M be the set of all non self-focal points in M. Then
for all k, j ≥ 0 and all ε > 0 there is a neighborhood U = U(ε, k, j) of K and constants
Λ = Λ(ε, k, j) and C = C(ε, k, j) for which

‖R(x, y, λ)‖
Ck

x(U)×Cj
y(U)

≤ ελn−1+j+k + Cλn−2+j+k (6)

for all λ > Λ. Hence, if x0 ∈ K and Uλ is any sequence of sets containing x0 with
diameter tending to 0 as λ → ∞, then

‖R(x, y, λ)‖
Ck

x(Uλ)×Cj
y(Uλ)

= o(λn−1+j+k). (7)

Remark 3. One can consider more generally any compact S ⊆ M such that all
x, y ∈ S are mutually non-focal, whic means

Lx,y := {ξ ∈ S∗
xM : ∃ t > 0 with expx(tξ) = y}

has measure zero. Then, combining [12, Thm 3.3] with Theorem 2, for every ε > 0,
there exists a neighborhood U = U(ε, j) of S and constants Λ = Λ(ε, j, S) and C =
C(ε, j, S) such that

sup
x,y∈S

∣∣∇j
x∇j

yR(x, y, λ)
∣∣ ≤ ελn−1+2j + Cλn−2+2j .

We believe that this statement is true even when the number of derivatives in x, y is
not the same but do no take this issue up here.

Our proof of Theorem 2 relies heavily on the argument for Theorem 1 in [4], which
treated the case j = k = 0. That result was in turn was based on the work of Sogge-
Zelditch [18, 19], who studied j = k = 0 and x = y. This last situation was also studied
(independently and significantly before [4, 18, 19]) by Safarov in [12] (cf [13]) using a
somewhat different method. The case j = k = 1 and x = y is essentially Proposition
2.3 in [20]. We refer the reader to the introduction of [4] for more bground on estimates
like (6).
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1. Proof of Theorem 2

Let x0 be a non-self focal point. Let I, J be multi-indices and set

Ω := |I| + |J | .

We abbreviate

Eλ ≡ E[0,λ].

Using that
ˆ

Sn−1

ei〈u,w〉dw = (2π)n/2Jn−2

2

(|u|)|u|− n−2

2 (8)

for all u ∈ R
n, we have

1

(2π)n

ˆ

|ξ|gy
<λ
ei〈exp−1

y (x), ξ〉 dξ√
|gy|

=

ˆ λ

0

µn−1

(2π)
n
2

(
Jn−2

2

(µdg(x, y))

(µdg(x, y))
n−2

2

)
dµ. (9)

Choose coordinates around x0. We seek to show that there exists a constant c > 0 so
that for every ε > 0 there is an open neighborhood Uε of x0 and a constant cε so that
we have

sup
x,y∈Uε

∣∣∣∣∣∂
I
x∂

J
yEλ(x, y) −

ˆ λ

0

µn−1

(2π)
n
2

∂I
x∂

J
y

(
Jn−2

2

(µdg(x, y))

(µdg(x, y))
n−2

2

)
dµ

∣∣∣∣∣ ≤ c ελn−1+Ω+cελ
n−2+Ω.

(10)
Let ρ ∈ S(R) satisfy supp (ρ̂) ⊆ (− inj(M, g), inj(M, g)) and

ρ̂(t) = 1 for all |t| < 1
2 inj(M, g). (11)

We prove (10) by first showing that it holds for the convolved measure ρ∗∂I
x∂

J
yEλ(x, y)

and then estimating the difference
∣∣ρ ∗ ∂I

x∂
J
yEλ(x, y) − ∂I

x∂
J
yEλ(x, y)

∣∣ in the following
two propositions.

Proposition 3. Let x0 be a non-self focal point. Let I, J be multi-indices and set
Ω = |I| + |J | . There exists a constant c so that for every ε > 0 there exist an open
neighborhood Uε of x0 and a constant cε so that we have
∣∣∣∣∣ρ ∗ ∂I

x∂
J
yEλ(x, y) −

ˆ λ

0

µn−1

(2π)
n
2

∂I
x∂

J
y

(
Jn−2

2

(µdg(x, y))

(µdg(x, y))
n−2

2

)
dµ

∣∣∣∣∣ ≤ c ελn−1+Ω + cελ
n−2+Ω,

for all x, y ∈ Uε.

Proposition 4. Let x0 be a non-self focal point. There exists a constant c so that for
every ε > 0 there exist an open neighborhood Uε of x0 and a constant cε so that for all
multi-indices I, J we have

sup
x,y∈Uε

∣∣ρ ∗ ∂I
x∂

J
yEλ(x, y) − ∂I

x∂
J
yEλ(x, y)

∣∣ ≤ c ελn−1+Ω + cελ
n−2+Ω.

The proof of Proposition 4 hinges on the fact that x0 is a non self-focal point.
Indeed, for each ε > 0, Lemma 15 in [4] (which is a generalization of Lemma 3.1 in
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[18]) yields the existence of a neighborhood Oε of x0, a function ψε ∈ C∞
c (M) and

operators Bε, Cε ∈ Ψ0(M) supported in Oε satisfying both:

• supp(ψε) ⊂ Oε and ψε = 1 on a neighborhood ofx0, (12)

•Bε + Cε = ψ2
ε . (13)

The operator Bε is built so that it is microlocally supported on the set of cotangent
directions that generate geodesic loops at x0. Since x0 is non self-focal, the construction
can be carried so that the principal symbol b0(x, ξ) satisfies ‖b0(x, ·)‖L2(B∗

xM) ≤ ε for
all x ∈ M . The operator Cε is built so that U(t)C∗

ε is a smoothing operator for
1
2 inj(M, g) < |t| < 1

ε . In addition, the principal symbols of Bε and Cε are real valued
and their sub-principal symbols vanish in a neighborhood of x0 (when regarded as
operators acting on half-densities).

In what follows we use the construction above to decompose Eλ, up to an O(λ−∞)
error, as

Eλ(x, y) = EλB
∗
ε (x, y) + EλC

∗
ε (x, y) (14)

for all x, y sufficiently close to x0. This decomposition is valid since ψε ≡ 1 near x0.

1.1. Proof of Proposition 3. The proof of Proposition 3 consists of writing

ρ ∗ ∂I
x∂

J
yEλ(x, y) =

ˆ λ

0
∂µ(ρ ∗ ∂I

x∂
J
yEµ(x, y)) dµ,

and on finding an estimate for ∂µ(ρ ∗ ∂I
x∂

J
yEµ(x, y)). Such an estimate is given in

Lemma 5, which is stated for the more general case ∂µ(ρ ∗ ∂I
x∂

J
yEµQ

∗(x, y)) with
Q ∈ {Id,Bε, Cε} that is needed in the proof of Proposition 4.

Lemma 5. Let (M, g) be a compact, smooth, Riemannian manifold of dimension

n ≥ 2, with no boundary. Let Q ∈ {Id,Bε, Cε} have principal symbol DQ
0 . Consider ρ

as in (11), and define

Ω = |I| + |J | .
Then, for all x, y ∈ M with dg(x, y) ≤ 1

2 inj(M, g), all multi-indices I, J, and all µ ≥ 1,
we have

∂µ(ρ ∗ ∂I
x∂

J
yEµQ

∗)(x, y)

=
µn−1

(2π)n
∂I

x∂
J
y

(
ˆ

S∗

yM
eiµ〈exp−1

y (x),ω〉gy

(
DQ

0 (y, ω) + µ−1DQ
−1(y, ω)

) dω√
|gy|

)

+WI,J(x, y, µ). (15)

Here, dω is the Euclidean surface measure on S∗
yM, and DQ

−1 is a homogeneous symbol
of order −1. The latter satisfy

DBε

−1(y, ·) +DCε

−1(y, ·) = 0 ∀ y ∈ Oε, (16)

where Oε is as in (12). Moreover, there exists C > 0 so that for every ε > 0

sup
x,y∈Oε

∣∣∣∣∣

ˆ

S∗

yM
ei〈exp−1

y (x),ω〉gyDQ
−1(y, ω)

dω√
|gy|

∣∣∣∣∣ ≤ C ε. (17)
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Finally, WI,J is a smooth function in (x, y) for which there exists C > 0 such that for

all x, y satisfying dg(x, y) ≤ 1
2 inj(M, g) and all µ > 0

|WI,J(x, y, µ)| ≤ Cµn−2+Ω
(
dg(x, y) + (1 + µ)−1

)
. (18)

Remark 4. Note that Lemma 5 does not assume that x, y are near an non self-focal
point.

Remark 5. We note that Lemma 5 is valid for more general operators Q. Indeed, if
Q ∈ Ψk(M) has vanishing subprincipal symbol (when regarded as an operator acting

on half-densities), then (15) holds with DQ
0 (y, ω) substituted by µkDQ

k (y, ω) and with

µ−1DQ
−1(y, ω) substituted by µk−1DQ

k−1(y, ω). Here, DQ
k is the principal symbol of Q

and DQ
k−1 is a homogeneous polynomial of degree k− 1. In this setting, the error term

satisfies |WI,J(x, y, µ)| ≤ Cµn+k−2+Ω
(
dg(x, y) + (1 + µ)−1

)
.

Proof of Lemma 5. We use that

∂µ(ρ ∗ EQ∗)(x, y, λ) =
1

2π

ˆ +∞

−∞
eitλρ̂(t)U(t)Q∗(x, y)dt, (19)

where Q ∈ Ψ(M) is any pseudo-differential operator and U(t) = e−it
√

∆g is the half-
wave propagator. The argument from here is identical to that of [4, Proposition 12],
which relies on a parametrix for the half-wave propagator for which the kernel can
be controlled to high accuracy when x and y are close to the diagonal. The main
corrections to the proof of [4, Proposition 12] are that ∂I

x∂
J
y gives an O(µn−3+Ω) error

in equations (54) and (60), and gives an O(µn−1) error in (59). We must also take into

account that ∂xΘ(x, y)1/2 and ∂yΘ(x, y)1/2 are both O(dg(x, y)). �

Proof of Proposition 3. Following the technique for proving [4, Proposition 7], we ob-
tain Proposition 3 by applying Lemma 5 to Q = Id (this gives DId

0 = 1 and DId
−1 = 0)

and integrating the expression in (15) from µ = 0 to µ = λ. One needs to choose

Uε so that its diameter is smaller than ε, since this makes
´ λ
0 WI,J(x, y, µ)dµ =

O(ελn−1+Ω +λn−2+Ω) as needed. One also uses identity (9) to obtain the exact state-
ment in Proposition 3. �

1.2. Proof of Proposition 4. As in (14),

Eλ(x, y) = EλB
∗
ε (x, y) + EλC

∗
ε (x, y) +O

(
λ−∞

)

for all x, y sufficiently close to x0. Proposition 4 therefore reduces to showing that there
exist a constant c independent of ε, a constant cε = cε(I, J, x0), and a neighborhood
Uε of x0 such that

sup
x,y∈Uε

∣∣∂I
x∂

J
yEλB

∗
ε (x, y) − ρ ∗ ∂I

x∂
J
yEλB

∗
ε (x, y)

∣∣ ≤ c ελn−1+Ω + cελ
n−2+Ω, (20)

and

sup
x,y∈Uε

∣∣∂I
x∂

J
yEλC

∗
ε (x, y) − ρ ∗ ∂I

x∂
J
yEλC

∗
ε (x, y)

∣∣ ≤ c ελn−1+Ω + cελ
n−2+Ω. (21)

Our proofs of (20) and (21) use that these estimates hold on diagonal when |I| =
|J | = 0 (i.e. no derivatives are involved). This is the content of the following result,
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which was proved in [18] for Q = Id. Its proof extends without modification to general
Q ∈ Ψ0(M).

Lemma 6 (Theorem 1.2 and Proposition 2.2 in [18]). Let Q ∈ Ψ0(M) have real-
valued principal symbol q. Fix a non-self focal point x0 ∈ M and write σsub(QQ

∗) for
the subprincipal symbol of QQ∗ (acting on half-densities). Then, there exists c > 0 so
that for every ε > 0 there exist a neighborhood Oε and a constant Cε making

QEλQ
∗(x, x) = (2π)−n

ˆ

|ξ|gx<λ

(
|q(x, ξ)|2 + σsub(QQ

∗)(x, ξ)
) dξ√

|gx|
+RQ(x, λ),

with
sup
x∈U

|RQ(x, λ)| ≤ c ελn−1 + Cελ
n−2

for all λ ≥ 1.

We prove relation (20) in Section 1.2.1 and relation (21) in Section 1.2.2.

1.2.1. Proof of relation (20). Define

gI,J(x, y, λ) := ∂I
x∂

J
yEλB

∗
ε (x, y) − ρ ∗ ∂I

x∂
J
yEλB

∗
ε (x, y).

Note that gI,J(x, y, ·) is a piecewise continuous function. We aim to find c, cε and Uε

so that x0 ∈ Uε and

sup
x,y∈Uε

|gI,J(x, y, λ)| ≤ c ελn−1+Ω + cελ
n−2+Ω. (22)

By [4, Lemma 17], which is a Tauberian Theorem for non-monotone functions, relation
(22) reduces to checking the following two conditions:

• Fλ→t(gI,J)(x, y, t) = 0 for all |t| < 1

2
inj(M, g), (23)

• sup
x,y∈Uε

sup
s∈[0,1]

|gI,J(x, y, λ+ s) − gI,J(x, y, λ)| ≤ c ελn−1+Ω + cελ
n−2+Ω. (24)

By construction, Fλ→t(∂λgI,J)(x, y, t) = (1 − ρ̂(t))∂I
x∂

J
y U(t)B∗

ε (x, y) = 0 for all |t| <
1
2 inj(M, g). Hence, since Fλ→t(gI,J) is continuous at t = 0, we have (23). To prove
(24) we write

sup
s∈[0,1]

|gI,J(x, y, λ+ s) − gI,J(x, y, λ)|

≤ sup
s∈[0,1]

∣∣∂I
x∂

J
yE(λ,λ+s]B

∗
ε (x, y)

∣∣+ sup
s∈[0,1]

∣∣ρ ∗ ∂I
x∂

J
yE(λ,λ+s]B

∗
ε (x, y)

∣∣ . (25)

The second term in (25) is bounded above by the right hand side of (24) by Lemma
5. To bound the first term, use Cauchy-Schwartz to get

sup
s∈[0,1]

∣∣∂I
x∂

J
y [E(λ,λ+s]B

∗
ε (x, y)]

∣∣ = sup
s∈[0,1]

∣∣∣
∑

λj∈(λ,λ+1]

∂I
xϕj(x) · ∂J

yBεϕj(y)
∣∣∣

≤
∑

λj∈(λ,λ+1]

∣∣[(Bε∂
J
y + [∂J

y , Bε]
)
ϕj(y)

]∣∣ ·
∣∣∂I

xϕj(x)
∣∣ .

Write b0 for the principal symbol of Bε. By construction, for all y in a neighborhood
of x0, we have ∂yb0(y, ξ) = 0. Therefore, σ|J |−1

(
[∂J

y , Bε]
)

= i|J |{ξJ , b0(y, ξ)} = 0 and
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we conclude that [∂J
y , Bε] ∈ Ψ|J |−2. Thus, by the usual pointwise Weyl Law (e.g. [19,

Equation (2.31)]),

sup
s∈[0,1]

∣∣∂I
x∂

J
y [E(λ,λ+s]B

∗
ε (x, y)]

∣∣ ≤
∑

λj∈(λ,λ+1]

∣∣Bε∂
J
y ϕj(y)

∣∣ ·
∣∣∂I

xϕj(x)
∣∣+O(λn−3+Ω)

Next, define for each multi-index K ∈ N
n the order zero pseudo-differential operator

PK := ∂K∆−|K|/2
g .

Using Cauchy-Schwarz and that ∂Kϕj = λ
|K|
j PKϕj , we find

∑

λj∈(λ,λ+1]

∣∣Bε∂
J
y ϕj(y)

∣∣ ·
∣∣∂I

xϕj(x)
∣∣

≤ (λ+ 1)Ω[(BεPJ)E(λ,λ+1](BεPJ)∗(y, y)]
1

2 [PIE(λ,λ+1]P
∗
I (x, x)]

1

2 .

Again using the pointwise Weyl Law (see [19, Equation (2.31)]), we have [PIE(λ,λ+1]P
∗
I (x, x)]

1

2

is O(λ
n−1

2 ). Next, since according to the construction of Bε we have

sup
x∈Uε

‖b0(x, ·)‖L2(B∗

xM) ≤ ε

and ∂xb0(x, ξ) = 0 for x in a neighborhood Uε of x0, we conclude that

sup
x∈Uε

‖σsub(BεPJ(BεPJ)∗)(x, ·)‖L2(B∗

xM) ≤ ε2.

Proposition 6 therefore shows that there exists c > 0 making

sup
x,y∈Uε

∣∣(BεPJ)E(λ,λ+1](BεPJ)∗(y, y)
∣∣ 12 ≤ cελ

n−1

2 . (26)

This proves (24), which together with (23) allows us to conclude (22).

1.2.2. Proof of relation (21). Write

∂I
x∂

J
yEλC

∗
ε (x, y) =

∑

λj≤λ

λΩ
j (PIϕj(x)) · (CεPJϕj(y)) +

∑

λj≤λ

λ
|I|
j (PIϕj(x)) ·

(
[∂J , Cε]ϕj(y)

)
.

(27)

As before, [∂J , Cε] ∈ Ψ|J |−2. Hence, by the usual pointwise Weyl law, the second term
in (27) and its convolution with ρ are both O(λn−2+Ω). Hence,

sup
x,y∈Uε

∣∣∂I
x∂

J
yEλC

∗
ε (x, y) − ρ ∗ ∂I

x∂
J
yEλC

∗
ε (x, y)

∣∣ = sup
x,y∈Uε

|V (x, y, λ) − ρ ∗ V (x, y, λ)|

+O
(
λn+Ω−2

)
,

where we have set

V (x, y, λ) := ∂IEλ(Cε∂
J)∗(x, y) =

∑

λj≤λ

λΩ
j (PIϕj(x)) · (CεPJϕj(y)) .
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Define

αI,J(x, y, λ) := V (x, y, λ) +
1

2

∑

λj≤λ

λΩ
j

(∣∣PIϕλj
(x)
∣∣2 +

∣∣CεPJϕλj
(y)
∣∣2
)

(28)

βI,J(x, y, λ) := ρ ∗ V (x, y, λ) +
1

2

∑

λj≤λ

λΩ
j

(∣∣PIϕλj
(x)
∣∣2 +

∣∣CεPJϕλj
(y)
∣∣2
)
. (29)

By construction, αI,J(x, y, ·) is a monotone function of λ for x, y fixed, and αI,J(x, y, λ)−
βI,J(x, y, λ) = V (x, y, λ) − ρ ∗ V (x, y, λ). So we aim to show that

sup
x,y∈Uε

|αI,J(x, y, λ) − βI,J(x, y, λ)| ≤ c ελn−1+Ω + cελ
n−2+Ω. (30)

We control the difference in (30) applying a Tauberian theorem for monotone functions
[4, Lemma 16]. To apply it we need to show the following:

• There exists c > 0 and cε > 0 making
ˆ λ+ε

λ−ε
|∂µβI,J(x, y, µ)| dµ ≤ cελn−1+Ω + cελ

n−2+Ω. (31)

• For all N there exists Mε,N so that for all λ > 0

|∂λ (αI,J(x, y, ·) − βI,J(x, y, ·)) ∗ φε(µ)| ≤ Mε,N (1 + |λ|)−N . (32)

In equation (32) we have set φε(λ) := 1
εφ
(

λ
ε

)
for some φ ∈ S(R) chosen so that

supp φ̂ ⊆ (−1, 1) and φ̂(0) = 1.
Relation (31) follows after applying Lemma 6 to the piece of the integral correspond-

ing to the second term in (29) and from applying Lemma 5 together with Remark 5
to ρ ∗ V = ρ ∗ ∂IEλQ

∗, where Q := Cε∂
J has vanishing subprincipal symbol.

To verify (32) note that supp(1 − ρ̂) ⊆ {t : |t| ≥ inj(M, g)/2} and supp(φ̂ε) ⊆ {t :
|t| ≤ 1

ε}. Observe that

∂λ

(
αI,J(x, y, ·)−βI,J(x, y, ·)

)
∗φε (λ) = F−1

t→λ

(
(1− ρ̂(t)) φ̂ε(t)∂

IU(t)(∂JCε)
∗(x, y)

)
(λ).

By construction U(t)C∗
ε is a smoothing operator for 1

2 inj(M, g) < |t| < 1
ε . Thus, so is

∂IU(t)
(
∂JCε

)∗
which implies (32). This concludes the proof of relation (21). �
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