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    Introduction 

 The transition of immature Schwann cells to myelinating cells 

depends on promyelin gene regulatory proteins, including at 

least Krox-20, Nab1 and 2, Oct-6, Brn2, NF � B, and Sox-10 

( Topilko et al., 1994 ;  Bermingham et al., 1996 ;  Jaegle et al., 2003 ; 

 Nickols et al., 2003 ;  Le et al., 2005a ;  Ghislain and Charnay, 2006 ). 

Myelinating cells readily lose their myelin and can dedifferentiate 

to a phenotype that resembles the immature state, and this tran-

sition, like myelination, involves a complex and orderly cellular 

transformation ( Jessen and Mirsky, 2005 ). It is an important 

possibility that this reverse transition also requires distinct gene 

regulatory proteins that would function as negative regulators of 

the myelinated state and push myelinating cells back toward the 

immature phenotype. In this paper, we identify the basic leucine 

zipper protein c-Jun as a transcription factor that acts in this 

way in Schwann cells. 

 The ability of myelinating cells to dedifferentiate is seen 

when they are removed from axonal contact in injured nerves or 

in vitro and also in demyelinating neuropathies. Remarkably, 

dedifferentiated cells, even in adults, can remyelinate if they are 

allowed to associate with axons under appropriate conditions. 

Potentially, this choice between two alternative differentiation 

states is therefore open to Schwann cells throughout life. Stud-

ies of gene regulatory proteins that control the choice between 

two alternative fates have revealed the importance of cross-

antagonistic signaling systems where a major role in fate choice 

is played by the balance between two sets of transcription factors 

that both specify alternative fates and inhibit the expression or 

the activity of each other. Examples of this include the GATA-1/

c-Myb and GATA-1/PU.1 transcription factors in erythrocyte 

development and Scl(Tal1)/Olig2 in astrocyte development ( Cantor 

and Orkin, 2002 ;  Muroyama et al., 2005 ). 

 In Schwann cells, speci� cation of myelin differentiation 

is dependent on the zinc � nger transcription factor Krox-20 

(Egr2). It is activated by the axonal signals that induce myelina-

tion. Krox-20  � / �   Schwann cells fail to myelinate, although they 

enter the earliest stage of myelination, the promyelin state. 

Enforced expression of Krox-20 in Schwann cells is suf� cient 

to induce expression of myelin genes, remove cells from the cell 

cycle, and reduce susceptibility to apoptosis, all of which are 
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 This regulatory pro� le of the JNK – c-Jun pathway in vivo, i.e., 

down-regulation as immature cells myelinate and up-regulation 

in the proliferating cells of injured nerves, shows that c-Jun is 

present when Schwann cells proliferate, which is in agreement 

with a role for c-Jun in Schwann cell division ( Parkinson et al., 

2004 ). However, when proliferating Schwann cells are removed 

from perinatal nerves and made quiescent in vitro, they continue 

to express c-Jun, showing that c-Jun expression is not suf� cient 

developmental changes that normally take place when myelin-

ation begins. Expression of Krox-20 therefore sets in train and/

or ampli� es a set of changes associated with the adoption of a 

myelin fate ( Nagarajan et al., 2001 ;  Topilko and Meijer, 2001 ; 

 Parkinson et al., 2004 ). 

 The transcription factor c-Jun, which is studied here, is a 

key component of the AP-1 transcription factor complex and forms, 

with JunB and JunD, the Jun protein family ( Mechta-Grigoriou 

et al., 2001 ). Although the phosphorylation of c-Jun at NH 2 -

terminal Ser-63 and -73 residues by JNK is important for many 

of its functions, other actions of c-Jun are independent of c-Jun 

phosphorylation but dependent on the presence of the protein 

( Raivich and Behrens, 2006 ). c-Jun is present in immature 

Schwann cells, but its expression is repressed by Krox-20 

( Parkinson et al., 2004 ). Schwann cells therefore express low 

levels of c-Jun when they start myelinating. 

 In this paper, we report that c-Jun is an important regulator 

of Schwann cell differentiation because c-Jun acts as a potent 

suppressor of the myelin phenotype. This function is indepen-

dent of its role in proliferation and death. c-Jun blocks myelina-

tion in neuron – Schwann cell cocultures, opposes the function of 

Krox-20 and cAMP-related myelin signals, and drives the de-

differentiation of early myelinating cells back to the immature 

Schwann cell phenotype. This effect is seen in injured nerves 

both in vivo and in vitro, using mice with conditional inactiva-

tion of c-Jun in Schwann cells. Some of these effects of c-Jun 

are possibly channeled through Sox-2, a transcription factor that 

inhibits myelination ( Le et al., 2005b ). We also show that c-Jun 

inhibits Krox-20 expression, suggesting that these proteins are 

components of a cross-inhibitory switch to control two alterna-

tive gene programs: while Krox-20 drives the myelination pro-

gram, c-Jun is a negative regulator of myelination that promotes 

the opposite program of dedifferentiation. 

 Results 

 c-Jun and phosphorylated c-Jun are down-

regulated during myelin differentiation and 

rapidly up-regulated as myelin breaks down 

in injured nerves 

 In early postnatal Schwann cells, c-Jun protein is down-

regulated as proliferation decreases and myelination begins. 

When it is reexpressed when nerves are injured, Schwann cells 

reenter the cell cycle and dedifferentiate ( De Felipe and Hunt, 

1994 ;  Stewart, 1995 ;  Shy et al., 1996 ). We con� rmed this 

for c-Jun, phospho – c-Jun, JNK 1 and 2, and phospho-JNK1/2. 

Up-regulation of these components after nerve injury, particu-

larly of phospho-JNK1/2, was very rapid ( Fig. 1, A – C ). When 

puri� ed cultures of primary Schwann cells were exposed to 

dibutyryl cAMP (db-cAMP) to induce myelin differentiation, 

c-Jun and phospho – c-Jun were suppressed ( Fig. 1, D – H ), 

which is in line with the down-regulation of c-Jun during my-

elination in vivo ( Monuki et al., 1989 ;  Stewart, 1995 ;  Shy et al., 

1996 ). Unlike in vivo, activation of myelin differentiation in 

these experiments did not involve cell cycle exit because the 

cells were quiescent before and after addition of db-cAMP (un-

published data). 

 Figure 1.    Components of the c-Jun pathway are regulated during 
 development, Wallerian degeneration, and in vitro differentiation.  A – D show 
Western blots. (A) Down-regulation of phospho – c-Jun and c-Jun proteins in 
sciatic nerve from embryonic day (E) 18 to adult. (B) Rapid up-regulation 
of JNK – c-Jun pathway components at 20 min (20 ’ ) – 12 h after nerve cut 
when compared with contralateral control (Con). (C) Strong increase in 
phospho – c-Jun at 1, 2, and 3 d after transection (Cut) compared with the 
contralateral control (Con). (D) Activation of cAMP-related pathways (1 mM 
db-cAMP for 24 h) decreases c-Jun and phospho – c-Jun and increases the 
myelin proteins Krox-20 and periaxin, whereas phospho-ERK1/2 levels 
are unchanged. (E – H) Double immunolabeling of controls (E and F) and 
cells treated with 1 mM db-cAMP for 3 d (G and H), with phospho – c-Jun 
and P 0  antibodies. Note that cAMP induces P 0  and suppresses phospho – 
c-Jun levels in the P 0 -positive cells. Bar, 15  μ m.   
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 By gene transfection, we enforced expression of two differ-

ent c-Jun molecules: Jun(Asp), in which all potential N-terminal 

phosphorylation sites have been mutated to aspartic acid, which 

mimics phosphorylated c-Jun; and Jun(Ala), in which all poten-

tial N-terminal phosphorylation sites are mutated to alanine 

and therefore cannot be phosphorylated by JNK ( Papavassiliou 

et al., 1995 ;  Watson et al., 1998 ). Using cotransfection, we showed 

that both Jun(Asp) and Jun(Ala) expression strongly (P  <  0.001) 

inhibit the induction of both periaxin and P 0  protein and mRNA 

by Krox-20 ( Fig. 3, A – G ; and not depicted). Expression of 

for proliferation. Furthermore, when quiescent cells are induced 

by cAMP or enforced Krox-20 expression to adopt a myelin 

phenotype, c-Jun is down-regulated even when cell division is 

absent throughout the experiments ( Parkinson et al., 2004 ; pre-

vious paragraph). Therefore, both in vivo and in vitro, c-Jun ex-

pression is suppressed as Schwann cells myelinate. But only 

in vivo is this correlated with exit from the cell cycle. These obser-

vations led us to examine whether down-regulation of c-Jun is 

important for the activation of the myelination program itself in 

addition to, and irrespective of, the role of this factor in cell 

cycle control. 

 c-Jun inhibits myelin gene expression 

 As mentioned in the previous section, c-Jun is expressed consti-

tutively in quiescent cells maintained under basal conditions 

in vitro ( De Felipe and Hunt, 1994 ;  Stewart, 1995 ;  Shy et al., 

1996 ;  Parkinson et al., 2004 ; unpublished data). We took advan-

tage of this to test whether c-Jun inhibits myelin differentia-

tion by comparing Krox-20 – induced myelin gene expression 

( Parkinson et al., 2004 ) in normal c-Jun – expressing cells with 

that in c -Jun  – null cells. Cells were prepared from mice carrying 

a � oxed  c-Jun  allele ( Jun  � /�  ) and infected in vitro with adeno-

viruses expressing either CRE recombinase to remove  c-Jun  or 

GFP as a control. Western blotting and immunolabeling con-

� rmed that  c-Jun  was excised in essentially all cells after infec-

tion with CRE virus ( Fig. 2 A ). We found that Krox-20 – induced 

expression of the myelin proteins protein zero (P 0 ) and periaxin 

was strikingly facilitated in  c-Jun  – null cells ( Fig. 2, B – E ). DNA 

synthesis was essentially absent in both experimental condi-

tions (unpublished data). Similar differences between  c-Jun  –

 null and control cells were obtained when quiescent cells cultured 

in de� ned medium (DM) were induced to express myelin genes 

by db-cAMP/ �  – neuregulin-1 (NRG-1;  Fig. 2, F and G ). Never-

theless, inhibition of the c-Jun pathway was not suf� cient to 

trigger myelin differentiation. Without enforced Krox-20 ex-

pression or db-cAMP, neither genetic removal of  c-Jun  nor ap-

plication of JNK blockers elevated periaxin or P 0  ( Fig. 2 A  and 

not depicted). 

 These experiments indicate that c-Jun is a negative regula-

tor of myelin differentiation. They show that in normal cultured 

Schwann cells, constitutive c-Jun appears suf� cient to act as a 

break on the transition of quiescent immature Schwann cells to 

the myelin phenotype. The inhibitory effect of c-Jun does not 

depend on enforced overexpression of c-Jun nor is it contingent 

on the role of c-Jun in Schwann cell proliferation. 

 c-Jun inhibits myelin genes without 

N-terminal phosphorylation 

 The experiments discussed in the previous section showed that 

genetic removal of c-Jun ampli� ed Krox-20 –  or cAMP-induced 

myelin differentiation, despite the fact that both agents gradually 

suppress endogenous c-Jun and reduce it to very low levels by 

2 – 3 d ( Parkinson et al., 2004  and above). We then tested whether 

prevention of this down-regulation and maintenance of c-Jun ex-

pression would have the opposite effect and inhibit myelin gene 

activation because this would be the predicted outcome if c-Jun 

acts as a negative regulator of the myelin program. 

 Figure 2.    Genetic removal of c-Jun amplifi es Krox-20 or cAMP-induced 
myelin protein expression.  (A) Western blot showing that c-Jun is absent 
from  Jun  fl /fl   cells infected with CRE-expressing adenovirus. The blot also 
compares periaxin in control (Con) and  c-Jun  – null cells (CRE) infected with 
GFP control adenovirus (GFP) or a Krox-20/GFP virus (K20). Note high 
periaxin levels in Krox-20 – infected  c-Jun  – null cells (CRE). (B – E)  c-Jun  con-
trol ( cJun  con) and  c-Jun  – null mouse Schwann cells 2 d after infection with 
Krox-20/GFP adenovirus. Note that Krox-20 induces much higher levels 
of P 0  protein in  c-Jun  – null cells (D and E) than in control cells (B and C). 
The reason why P 0  levels in the Krox-20 – expressing control cells appear 
low in this picture (C) compared with other comparable experiments (e.g., 
 Fig. 4 I ) is that exposure had to be reduced (equally for C and E) to avoid 
overexposure in E. (F and G) P 0  protein expression in control cells P 0  ( cJun  
con) and c -Jun  – null mouse Schwann cells after 3 d of exposure to db-
cAMP/NRG-1. Note that cAMP/NRG-1 induces substantially higher P 0  
levels in cells without c-Jun. Bars, 15  μ m.   
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 MAPK kinase 7 (MKK7) inhibits myelin 

gene expression by elevating c-Jun 

 MKK7 speci� cally phosphorylates and activates JNK, which 

results in phosphorylation of c-Jun and sometimes in eleva-

tion of the levels of c-Jun protein. This cascade is thought to 

be an important activator of c-Jun signaling in several cell 

types. We therefore tested whether MKK7 would inhibit myelin 

differentiation. 

 By infecting cells with an MKK7-expressing adenovirus, 

we found that MKK7 was a powerful inhibitor of Krox-20 –  or 

db-cAMP – induced myelin gene expression ( Fig. 4, A and B ). 

Enforced MKK7 expression also activated c-Jun in the Krox-20 – 

expressing cells, in which c-Jun would normally be reduced 

to undetectable levels ( Fig. 4, C – F ). Similarly, MKK7 elevated 

c-Jun protein in cells in which c-Jun had been suppressed by 

db-cAMP (see  Fig. 8 C ). This suggested that MKK7 inhibited 

myelin genes by activating c-Jun. To demonstrate this, we com-

pared the effect of MKK7 in  c-Jun  – null cells with that in con-

trol cells. As expected from the Western blots ( Fig. 4, A and B ), 

MKK7 signi� cantly (P  <  0.001) reduced the number of control 

cells that expressed periaxin in response to Krox-20 ( Fig. 4 G ). 

Importantly, this inhibitory effect was abolished in  c-Jun  – null 

cells ( Fig. 4 G ). Therefore, MKK7-mediated inhibition of myelin 

gene expression depends on c-Jun. 

 We also showed that delayed activation of c-Jun could 

reverse P 0  expression, even in cells in which P 0  expression was 

already established by retroviral expression of Krox-20. We added 

MKK7 adenovirus to activate c-Jun expression in cells that 

were already expressing high levels of P 0 . We found that, de-

spite ongoing Krox-20 expression, MKK7 reversed the effects 

of Krox-20 and reduced P 0  protein levels ( Fig. 4, H – K ; and see 

Materials and methods). 

 In the two previous sections, we showed that basal consti-

tutive levels of c-Jun and enforced expression of Jun molecules 

suppress myelin genes. In this section, we revealed inhibition 

of myelin genes by MKK7/JNK-mediated activation of c-Jun. 

Therefore, all three ways of examining c-Jun signaling agree, 

showing that c-Jun has the potential to negatively regulate my-

elin differentiation. 

 c-Jun activation inhibits myelination 

in dorsal root ganglion (DRG)/Schwann 

cell cocultures 

 If c-Jun is a negative regulator of myelination, enforced acti-

vation of c-Jun in Schwann cells should inhibit myelination in 

DRG/Schwann cell cocultures. We veri� ed that myelination 

in these cultures was associated with c-Jun down-regulation, 

as seen both in vivo and in response to Krox-20 expression. 

Double immunolabeling of myelinating Schwann cell/DRG 

cultures with antibodies to periaxin and c-Jun con� rmed that 

 ≥ 90% of the periaxin-positive myelinating cells no longer ex-

pressed c-Jun ( Fig. 5, A – C ). The remaining periaxin-positive 

cells showed weak c-Jun labeling, perhaps re� ecting subopti-

mal conditions for myelination in vitro because c-Jun – positive 

nuclei are not seen in myelinating cells of normal nerves in vivo. 

To determine whether enforced c-Jun expression inhibits mye-

lination, Schwann cells were retrovirally infected with either 

exogenous Jun proteins from both constructs was fully main-

tained in spite of cotransfection with Krox-20 (unpublished data). 

 This shows that effective induction of myelin genes by 

Krox-20 depends on Krox-20 simultaneously suppressing c-Jun. 

If this is prevented by enforcing sustained expression of Jun 

molecules, myelin gene expression is blocked or severely reduced. 

Notably, this inhibition of myelin genes does not appear to 

depend on phosphorylation of c-Jun. 

 Figure 3.    Persistent expression of c-Jun inhibits Krox-20 – induced myelin 
protein expression.  (A and B) Cotransfection of Krox-20/GFP with Jun(Asp) 
or with Jun(Ala) inhibits Krox-20 – mediated induction of periaxin and P 0 . 
K20/EV represents cells cotransfected with Krox-20 and control vector. 
(C – F) P 0  in situ experiment showing that cotransfection of Krox-20/GFP 
with Jun(Ala) inhibits Krox-20 – mediated induction of  P 0   mRNA. C and D 
are controls, and the arrows show a cell coexpressing Krox-20 and a con-
trol vector where Krox-20 has induced P 0  mRNA. Arrows in E and F show 
a cell coexpressing Krox-20 and Jun(Ala) where Jun(Ala) has inhibited 
Krox-induced  P 0   expression. Bar, 15  μ m. (G) Percentages of GFP-positive 
cells that also express  P 0   mRNA in cells cotransfected with the constructs 
indicated. Error bars show one standard deviation of the mean.   



629 C -J UN  REPRESSES MYELINATION  •  Parkinson et al.

empty vector (BP2) or vector expressing a c-Jun – estrogen re-

ceptor fusion protein (BP2/cJunER), in which the transcrip-

tional activity of c-Jun can be activated by the addition of 

4-hydroxytamoxifen ( Bossy-Wetzel et al., 1997 ). 2 wk after 

seeding puri� ed neurons with either control (BP2) or cJunER-

expressing (BP2/cJunER) cells, the cocultures were induced 

to myelinate by addition of ascorbate in the presence of 10  � 7  

M 4-hydroxytamoxifen to activate the cJunER protein. 2 wk 

later, the cultures were immunolabeled for myelin basic pro-

tein (MBP) to identify myelinating cells, and the total number 

of myelinating Schwann cells per coverslip was counted. We 

found that activation of c-Jun signi� cantly (P  <  0.01) inhibited 

myelination ( Fig. 5 D ). In related experiments, we also in-

duced c-Jun in DRG/c-JunER Schwann cell cocultures with 

tamoxifen, 2 wk after ascorbate had been added to induce my-

elination. In this case too there was a substantial reduction in 

the number of myelin segments relative to that seen in control 

cultures without tamoxifen, indicating that induction of c-Jun 

 Figure 4.    MKK7 inhibits myelin gene expression in a c-Jun – dependent way.  
(A) Western blot showing that MKK7, presumably by activating JNK, 
inhibits Krox-20 – induced myelin protein expression. The cells were co-
infected with adenoviruses expressing the constructs indicated. (B) Western 
blot of cells infected with adenoviruses expressing control LacZ or activated 
MKK7 to activate JNK. Note that periaxin induced by 2 d of exposure to 
1 mM of db-cAMP in LacZ control cells is inhibited by MKK7 expression. 
(C – F) MKK7 activates c-Jun even in the presence of Krox-20. C and E show 
that Krox-20 coinfected with a control LacZ-expressing adenovirus sup-
presses c-Jun levels. D and F show that when Krox-20 is coexpressed with 
MKK7, high c-Jun levels are maintained. (G) MKK7-mediated suppression 
of myelin gene expression depends on c-Jun. In normal cells ( cJun  con), 
Krox-20 – induced periaxin expression (K20/LacZ) is suppressed by MKK7 
(K20/MKK7). This suppression does not occur when this experiment is re-
peated in cells without c-Jun ( cJun  null). Error bars show one standard devi-
ation of the mean. (H – K) Reactivation of JNK/c-Jun in Krox-20 – expressing 
cells that already synthesize P 0  abolishes P 0  protein expression. Retrovirally 
infected cells already expressing Krox-20 and P 0  were infected with either 
LacZ control (H and I) or MKK7-expressing (J and K) adenoviruses. Cells 
were labeled with either LacZ and P 0  (H and I) or MKK7 and P 0  (J and K) 
antibodies. Note down-regulation of P 0  protein in Krox-20 – expressing cells 
infected with MKK7 adenovirus. Bars, 15  μ m.   

 Figure 5.    c-Jun expression inhibits myelination in Schwann cell/DRG 
neuron cocultures.  (A and B) c-Jun is down-regulated in myelinating cells. 
Arrows show c-Jun – negative nuclei in periaxin-positive (red) myelinating 
cells. Numerous other cells that are not forming myelin remain c-Jun posi-
tive (green). (C) Western blot showing expression of endogenous c-Jun and 
cJunER fusion protein in purifi ed Schwann cells retrovirally infected with ei-
ther control empty vector (BP2) or vector expressing the cJunER fusion pro-
tein (BP2/cJunER). (D) The number of myelinating segments in cocultures is 
reduced by c-Jun expression (cJun ER). Error bars show one standard devia-
tion of the mean. (E and F) In cocultures, c-Jun is reactivated in myelinating 
cells induced to demyelinate by high concentrations of NRG-1. (E) Control 
cultures with arrows showing c-Jun – negative nuclei associated with peri-
axin-positive (red) myelinating cells. Arrowhead shows c-Jun (green) in a 
nucleus not associated with myelinating cells. (F) Cultures exposed to 
200 ng/ml NRG-1 for 3 d. Arrow shows activation of c-Jun in a degenerat-
ing myelin internode and arrowhead indicates c-Jun in a nucleus of a cell 
not engaged in myelin formation. Bars, 15  μ m.   
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can exert effects both early and late in the myelination pro-

gram (see Materials and methods). 

 Exposure of DRG/Schwann cell cocultures to high con-

centrations of NRG-1 provides a demyelination signal and results 

in fragmentation of myelin internodes ( Zanazzi et al., 2001 ). 

Using 200 ng/ml NRG-1 to con� rm this, we found that the de-

myelination was accompanied by extensive increase in nuclear 

c-Jun expression, with  � 60% of identi� able myelin internodes 

now showing clear nuclear c-Jun expression ( Fig. 5, E and F ). 

This observation is consistent with c-Jun providing a signal 

that opposes myelin differentiation and promotes the imma-

ture Schwann cell phenotype. Collectively, these observations 

strengthen the conclusion that c-Jun is a negative regulator of the 

myelin program ( Parkinson et al., 2004 ). 

 A central role for c-Jun in promoting 

dedifferentiation 

 When actively myelinating cells in developing nerves are re-

moved from axonal contact, for example, by preparing dissoci-

ated cell cultures from neonatal nerves, not only is myelination 

arrested but cells revert to the immature phenotype: c-Jun re-

appears, Krox-20 levels fall, and cells stop expressing myelin 

genes and reactivate genes characteristic of immature Schwann 

cells ( Jessen and Mirsky, 2005 ). Because c-Jun potentially 

blocks the forward transition toward myelination, we investi-

gated whether c-Jun was also required for, or promoted, the re-

verse transition back to the immature phenotype. This possibility 

was also raised by two previous observations, namely the re-

activation of c-Jun in demyelinating cocultures and the � nding 

that delayed activation of c-Jun reversed myelin gene expression 

already established through enforced Krox-20 expression. 

 To test this, we examined the rate of dedifferentiation of 

neonatal myelinating cells in the absence of c-Jun. To obtain such 

cells, we used  c-Jun  – null Schwann cells from mice in which 

� oxed  c-Jun  ( Jun  fl/fl ) had been excised in Schwann cells se-

lectively by breeding with  P 0 -CRE  mice (see Materials and 

methods). No obvious morphological or immunohistochemical 

abnormalities were noted in these nerves by a morphological 

 Figure 6.    Neonatal myelinating cells dedifferentiate slowly in the absence 
of c-Jun.  (A and B) Comparison of P 0  expression in control cells from  c-Jun  fl /fl  /
 CRE   �    (cJun  con) mice and cells without c-Jun from  c-Jun  fl /fl  / CRE  +  ( cJun  
null) mice prepared at P5 and cultured in DM containing 20 ng/ml NRG-1 
for 4 d. (A) Cells with high myelination-related levels of P 0  have largely dis-
appeared from control cultures. (B)  c-Jun  – null cultures retain numerous cells 
with high P 0 , two of which are illustrated. (C – F) Similar delay in the loss 
of periaxin in cells prepared at P2 from nerves of  cJun  – null mice cultured 
for 2 d (see Materials and methods). (C and D) Control cultures are c-Jun 

positive and periaxin has largely disappeared. (E and F)  c-Jun  – null cultures 
are c-Jun negative and retain a large number of strongly periaxin-positive 
cells. (G and H) Similar experiments with cells from  JunAA  mice. These 
cells lose periaxin expression at the same rate as control cells, indicating 
that the major N-terminal phosphorylation sites of c-Jun are not needed for 
suppression of periaxin. Bar, 15  μ m. (I) Quantifi cation of the results illus-
trated in C – H. The graph shows the number of periaxin-positive cells (rela-
tive to the number 3 h after plating) in  c-Jun  control,  c-Jun  – null and  JunAA  
cells after 2, 4, and 6 d in DM  ±  20 ng/ml NRG-1. (J) mRNA for myelin 
genes disappears only slowly from c-Jun – null cells. Schwann cells purifi ed 
from control, c-Jun – null, and JunAA P3 mice were plated for 48 h in DM 
before RNA was extracted and levels of myelin markers were analyzed by 
quantitative PCR. Relative expression levels of c-Jun, MBP, periaxin, and P 0  
(MPZ) were obtained by normalizing samples to GAPDH. The data were 
then expressed as a percentage of the maximum (1) for each of the four 
genes. The difference in MBP, P 0 , and periaxin mRNA levels between 
c-Jun control and null mice was signifi cant (P  <  0.01). The same applies to 
the differences between JunAA and null mice. The dataset for each gene 
was analyzed by one-way ANOVA and Tukey ’ s Multiple Comparison test 
where appropriate (using GraphPad Prism Software). Error bars show one 
standard deviation of the mean. AU, arbitrary units.   
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examination (and adult nerves contained the expected numbers of 

apparently normal myelinated and unmyelinated � bers; unpub-

lished data). Actively myelinating cells were removed from axo-

nal contact by dissociating neonatal nerves (postnatal day [P] 

2 – 5) and plating the cells in culture. In wild-type cultures, c-Jun, 

which had been down-regulated in myelinating cells, was rapidly 

reexpressed after plating and seen in the large majority of my-

elinating cells by 6 h, whereas cultures from c-Jun – null animals 

were essentially c-Jun negative (unpublished data). In other cul-

tures maintained for 5 – 7 d, immunolabeling showed that 100% of 

control cells ( Jun  � /�  ;  P 0 -CRE   �  ) had c-Jun – positive nuclei, whereas 

 ≤ 5% of cells from  c-Jun  – null mice ( Jun  � /�  ;  P 0 -CRE  + ) expressed 

c-Jun, indicating effective removal of c-Jun. NRG-1 was included 

in the medium in some experiments because NRG-1 signaling is 

up-regulated in cut nerves and has been implicated in the promo-

tion of Schwann cell dedifferentiation after injury ( Carroll et al., 

1997 ;  Kwon et al., 1997 ;  Cheng et al., 1998 ;  Zanazzi et al., 2001 ; 

 Guertin et al., 2005 ). We found that the rate of loss of the myelin-

associated proteins periaxin and P 0  was strongly delayed in  c-Jun  –

 null cultures compared with  c-Jun –  positive controls ( Fig. 6, A – F 

and I ). A similar delay was seen when mRNA levels for periaxin, 

P 0 , and MBP were examined in these cultures by quantitative 

RT-PCR ( Fig. 6 J ). Therefore, when early myelinating cells are 

removed from axons, the rapid reactivation of c-Jun pushes the 

cells toward the immature phenotype. 

 N-terminal phosphorylation of c-Jun is not required for in-

hibition of myelin differentiation ( Fig. 3 ). In agreement with this, 

Schwann cells from homozygous  JunAA  mice, in which the ma-

jor N-terminal phosphorylation sites (serine-63 and -73) of both 

 c-Jun  alleles have been mutated to nonphosphorylatable alanine 

( Behrens et al., 1999 ), dedifferentiated at a similar rate to that of 

control cells ( Fig. 6, G – I ). This was con� rmed at the mRNA level 

using quantitative RT-PCR ( Fig. 6 J ). Thus, the activity of the 

c-Jun protein drives myelinating cells toward the immature pheno-

type without requiring N-terminal phosphorylation. 

 These experiments show that c-Jun has a role in sending 

actively myelinating cells back to the immature phenotype 

when the cells are removed from axonal contact in vitro. To test 

whether c-Jun also acted in this way in vivo, we cut the sciatic 

nerves of 5-d-old conditional  c-Jun  – null ( Jun  � /�  ;  P 0 -CRE  + ) and 

control ( Jun  � /�  ;  P 0 -CRE   �  ) mice and compared the rate of myelin 

loss as a measure of dedifferentiation. Morphologically, this 

was done by counting the number of rounded or collapsed 

myelin sheaths that remained at 3 and 5 d after the operation. 

The results were con� rmed by measuring the disappearance 

of MBP, using immunolabeling and image analysis of trans-

verse nerve sections at 2, 3, and 5 d ( Fig. 7 ;  Perry et al., 1995 ). 

Both measures showed a marked delay of myelin loss in the 

 c-Jun  – null nerves. Thus, c-Jun, when reexpressed after injury, 

promotes dedifferentiation in vitro and in vivo. 

 Figure 7.    c-Jun drives dedifferentiation in vivo.  (A) MBP immunolabeling 
of sciatic nerve sections showing delayed loss of myelin in  c-Jun  – null nerves 
compared with controls, 3 d after transection of nerves of 5-d-old mice. 
Bar, 10  μ m. (B) Quantifi cation of the delay in myelin disappearance by 
quantitative image analysis of MBP-immunolabeled sections (comparable 
to those shown in A) 2, 3, and 5 d after injury (expressed as percentage 
of MPB +  area in uncut P5 nerve). In every case, the difference between 
c-Jun – null and control nerves is signifi cant (P  <  0.01). (C) Electron micro-

graphs showing  c-Jun  – null and control nerves from 5-d-old mice, intact and 
3 d after injury as indicated. Note preservation of rounded or partially 
collapsed myelin sheaths in  c-Jun  – null nerves. Bar, 4  μ m. (D) Counts of my-
elin sheaths (rounded or collapsed) in c -Jun  – null and control nerves 3 and 
5 d after injury (3 d, P  <  0.05; 5 d, P  <  0.01). Error bars show standard 
deviation of the mean.   
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 Figure 8.    Cross-inhibitory relationship between c-Jun and Krox-20.  
(A and B) Cells cotransfected with empty GFP vector (to visualize transfected 
cells) and an empty control vector (EV; A) or a  Jun(Asp)  vector (B). Both 
cultures were then treated with 1 mM db-cAMP for 2 d to induce Krox-20 
and were immunolabeled for Krox-20. In A, arrows point to induced Krox-20 
in nuclei of GFP-positive control cells (yellow nuclei of Krox-20 – positive 
GFP-positive cells). In B, no Krox-20 is induced (arrows) in cells containing 
 Jun(Asp) . Arrowheads in both panels indicate untransfected cells that have 
been induced to express Krox-20 by db-cAMP as controls for induction. 
(C) Activation of JNK inhibits induction of Krox-20. Western blot of cells 
infected with adenovirus expressing control LacZ or virus expressing acti-
vated MKK7 to activate JNK is shown. Note that the Krox-20 and periaxin 
induced by 2 d of exposure to 1 mM db-cAMP in LacZ control cells is 
inhibited by MKK7 expression. Note also that MKK7 elevates c-Jun in the 
presence of db-cAMP. (D – G) In  c-Jun  – null cells, loss of Krox-20 expression 
is signifi cantly delayed. Double immunolabeling of  c-Jun  control cells (D 
and E) and  c-Jun  – null cells (F and G) for Krox-20 (red) and periaxin (green) 
after 2 d in culture in DM containing 20 ng/ml NRG-1 is shown. Note that 
Krox-20 has disappeared from the control cells, whereas many  c-Jun  – null 
cells still have Krox-20 – positive nuclei (G, arrows). Note that  c-Jun  – null 
Krox-20 – positive cells are also periaxin positive (F, arrows), whereas con-
trol cells have lost periaxin expression (D). Bars, 15  μ m.   

 A cross-inhibitory relationship between 

c-Jun and Krox-20 

 The fact that Krox-20 and c-Jun have opposing effects on my-

elination and that Krox-20 suppresses c-Jun raised the question 

of whether c-Jun, in turn, suppressed Krox-20 because cross-

inhibitory relationships between transcription factors involved 

in fate determination have been described in other systems. 

We found that c-Jun suppressed Krox-20 in several types of 

experiment. First, enforced c-Jun expression in wild-type cells, 

using  Jun(Asp)  or  Jun(Ala) , completely blocked Krox-20 ex-

pression in response to db-cAMP elevation ( Fig. 8, A and B ; and 

not depicted). Second, db-cAMP – induced Krox-20 expression 

was blocked when c-Jun was activated by enforced expression 

of the upstream kinase MKK7 and the results were analyzed 

by Western blot ( Fig. 8 C ). Note that MKK7 also prevented the 

db-cAMP – induced down-regulation of c-Jun protein and phospho –

 c-Jun. Lastly, we examined the loss of Krox-20 that is seen 

when neonatal myelinating cells are removed from axonal con-

tact and placed in culture ( Fig. 8, D – G ). When cells from con-

trol P2 nerves were plated in DM, Krox-20 protein expression 

disappeared within 24 h as expected. But when cells from 

 c-Jun  – null nerves were used, robust Krox-20 immunoreactivity 

remained in many cells at 2 d ( Fig. 8 G ), although Krox-20 

 immunolabeling decreased and eventually disappeared there-

after (not depicted). Therefore, when myelinating cells from 

normal neonatal nerves lose axonal contact, the resulting reacti-

vation of c-Jun (above) contributes signi� cantly to the rapid drop 

in Krox-20 that is seen under these circumstances. 

 Thus c-Jun suppresses Krox-20 expression in several situa-

tions. In contrast, we found that c-Jun did not suppress the my-

elin-related transcription factor Oct-6, which appears earlier than 

Krox-20 in developing nerves and controls the timing of Krox-20 

activation, although its expression is not restricted to myelinating 

Schwann cells ( Bermingham et al., 1996 ;  Blanchard et al., 1996 ; 

 Jaegle et al., 1996 ). Enforced expression of MKK7 to activate 

c-Jun did not signi� cantly suppress db-cAMP – induced Oct-6 ex-

pression ( Fig. 9 A ). Also, phospho – c-Jun and Oct-6 were co-

expressed by Schwann cells before myelination ( Fig. 9, B – E ). 

Coexpression of c-Jun and Krox-20 is seen neither in these cells 

nor later in development, when c-Jun is selectively lost from 

cells that activate Krox-20 and myelinate ( Parkinson et al., 2004 ). 

Onset of myelination therefore involves a transition from imma-

ture cells coexpressing Oct-6 and c-Jun to myelinating cells that 

are c-Jun negative but coexpress Oct-6 and Krox-20, although 

Oct-6 disappears later from most myelinating cells. 

 Krox-20 and c-Jun regulate Sox-2 

 Because Sox-2 has been implicated in negative regulation of 

myelination ( Le et al., 2005b ), we examined whether Sox-2 and 

c-Jun were coexpressed and whether Sox-2 was suppressed by 

cAMP or Krox-20, as expected of a negative myelin regulator. 

We found that Sox-2 and c-Jun were coexpressed in the nuclei 

of immature Schwann cells that have not yet myelinated ( Fig. 10, 

A – D ) and were reactivated and coexpressed after injury ( Fig. 10, 

G – N ; and not depicted). In vitro, db-cAMP or enforced Krox-20 

suppressed Sox-2 ( Fig. 10, E and F ). Thus, db-cAMP and Krox-20 

suppress both c-Jun and Sox-2. 
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activation drives the cells back to the immature state. Also in vivo, 

reactivation of c-Jun after injury of neonatal nerves pushes early 

myelinating cells toward demyelination. In previous work, we 

also showed that c-Jun is important for events that characterize the 

immature but not myelinating state, namely cell death and pro-

liferation ( Parkinson et al., 2004 ). 

 The most striking abnormality in early postnatal nerves 

in conditional  c-Jun  – null mice is the failure of myelinating 

cells to dedifferentiate normally after injury. It is therefore 

likely that the negative in� uence of c-Jun on myelin differen-

tiation that we have documented is, in vivo, more important 

for pushing the dedifferentiation program in injured or patho-

logical nerves than for the regulation of myelination during 

normal development. 

 Consistent with the involvement of Krox-20 and c-Jun in 

antagonistic programs, expression of these factors is mutually 

exclusive: immature cells express relatively high levels of c-Jun 

and low levels of Krox-20, switching to high levels of Krox-20 

and low levels of c-Jun in myelinating cells. In cut or crushed 

nerves, Krox-20 falls and c-Jun is reexpressed at high levels 

as cells transit back to the immature state. Furthermore, c-Jun 

and Krox-20 show a cross-antagonistic functional relationship 

because expression of Krox-20 suppresses c-Jun and enforced 

expression of c-Jun suppresses Krox-20. 

 c-Jun is therefore a transcription factor that negatively 

regulates the myelinating Schwann cell phenotype, representing 

a signal which functionally stands in opposition to the network 

of promyelin transcription factors, which includes Oct-6, Brn2, 

NF � B, Sox-10, and Nab1 and 2, in addition to the key role of 

Krox-20 ( Topilko et al., 1994 ;  Nagarajan et al., 2001 ;  Jaegle et al., 

2003 ;  Le et al., 2005b ;  Ghislain and Charnay, 2006 ;  LeBlanc et al., 

2006 ). Negative regulation of myelin differentiation is likely to 

emerge as a major aspect of Schwann cell biology, with particu-

lar importance for plasticity, demyelinating pathology, and re-

sponses to injury and regeneration, in addition to developmental 

regulation. It is also likely that the molecular machinery of my-

elin suppression will turn out to be equally complex to that of its 

promyelin counterpart. Thus, inducible nitric oxide synthase, 

Sox-2, Erk1/2 activation, and Notch signaling have all been im-

plicated in negative control of myelin differentiation ( Harrisingh 

et al., 2004 ;  Ogata et al., 2004 ;  Le et al., 2005a ;  Agthong et al., 

2006 ; Woodhoo, A., M. Duran, K.R. Jessen, and R. Mirsky. 2004. 

 Differentiation . Abstr. 119). Similarly, the p38 MAPK signaling 

pathway, although important for events immediately before my-

elination, also accelerates demyelination ( Fragoso et al., 2003 ; 

unpublished data), and delayed demyelination is seen in mice 

with genetic inactivation of Toll receptors, nitric oxide synthase, 

phospholipase A2, and matrix metalloprotease 9 ( Levy et al., 2001 ; 

 De et al., 2003 ;  Shubayev et al., 2006 ;  Boivin et al., 2007 ). In fu-

ture work, it will be important to learn about the functional 

interactions between the different signaling systems that are 

emerging as potential myelin suppressors. 

 We � nd that Krox-20 represses both c-Jun and Sox-2 and 

that, in the absence of Krox-20, c-Jun is highly expressed in 

Schwann cells without the need for speci� c extrinsic signaling. 

Therefore, the loss of Krox-20 that follows nerve cut or crush 

is likely to allow the cells to resume their constitutive c-Jun 

 In c-Jun – null cells generated by CRE expression in vitro, 

Sox-2 protein levels were reduced ( Fig. 10 O ). In accord with 

this, inhibition of JNK (which controls c-Jun levels;  Figs. 4 and 8 ) 

by the inhibitor SP600125 or by adenoviral expression of the 

JNK binding domain of JIP-1 also reduced Sox-2 protein ex-

pression ( Fig. 10 P  and not depicted). Sox-2 remaining in cul-

tures of  c-Jun  – null cells was suppressed to undetectable levels 

by enforced Krox-20 expression ( Fig. 10 Q ). 

 Collectively, these experiments show that c-Jun and Sox-2 

are extensively coregulated. They are consistent with the possi-

bility that c-Jun plays a role in regulating Sox-2 and that some 

of the inhibitory effects of c-Jun on myelination may be chan-

neled through Sox-2. 

 Discussion 

 Much as Krox-20 promotes the transition from the immature 

Schwann cell phenotype toward myelination, we � nd that c-Jun 

acts in a reverse way to promote the immature Schwann cell state 

at the expense of myelination. c-Jun, at physiological expression 

levels and apparently without N-terminal phosphorylation, in-

hibits myelin gene activation by Krox-20 or cAMP elevation. 

Enforced c-Jun expression also inhibits myelination in cocultures. 

When early myelinating cells are released from axon-associated 

promyelin signals and placed in culture, the resulting c-Jun 

 Figure 9.    The JNK – c-Jun pathway does not suppress Oct-6.  (A) West-
ern blot of Schwann cells infected with adenoviruses expressing control 
LacZ or activated MKK7 to activate JNK. Note comparable induction of 
Oct-6 (by 1 mM db-cAMP for 24 h) in control cells and MKK7 cells. (B – E) 
Teased E17 sciatic nerve stained with HOECHST dye showing that Oct-6 
and phospho – c-Jun are coexpressed in immature Schwann cells. (B and C) 
Double immunolabeling for phospho – c-Jun (P-cJun; red) and Oct-6 (green) 
in C shows coexpression in Schwann cell nuclei. (D and E) Double immuno-
labeling for phospho – c-Jun (red) and Krox-20 (green) in E shows phos-
pho – c-Jun alone. Bar, 15  μ m.   
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 expression. This will help push the cells toward dedifferentia-

tion and promote proliferation as seen in Wallerian degenera-

tion. A similar mechanism is likely to be operative during the 

dedifferentiation and proliferation that takes place when Krox-20 

is genetically inactivated in adult nerves without axon transec-

tion ( Decker et al., 2006 ). The way in which c-Jun and Sox-2 

interact during these events remains to be examined. 

 Although we have shown previously that in Schwann cells, 

as in other cell types, c-Jun has a role in controlling prolifera-

tion ( Parkinson et al., 2004 ), this effect can be clearly dissoci-

ated from the negative regulation of myelin differentiation. 

Several of the present experiments demonstrate this, including 

those in which genetic removal of c-Jun ampli� es myelin gene 

expression in response to Krox-20 or cAMP and where myelin 

gene activation by these signals is inhibited by enforced expres-

sion of Jun or JNK activation by MKK7. It is also seen when 

clearance of Krox-20 and myelin proteins from early myelinat-

ing cells that have been removed from axons and placed in DM 

is accelerated by c-Jun or JunAA. In all these cases, Jun inhibits 

myelination or drives demyelination under conditions where 

Schwann cells are not dividing. 

 Suppression of myelination by c-Jun can also be dissoci-

ated from the classical N-terminal phosphorylation of c-Jun 

typically performed by JNK. Rather, suppression of the myelin 

phenotype appears to depend on the levels of the c-Jun protein 

itself. This can be seen from the fact that Jun(Ala), in which all 

potential N-terminal phosphorylation sites are absent, suppressed 

Krox-20 – induced myelin gene expression as effectively as 

Jun(Asp), in which the N-terminal phosphorylation sites have 

been mutated to aspartic acid to mimic the active phosphorylated 

c-Jun. It is also evident from the observation that normal c-Jun 

and nonphosphorylatable c-Jun (in cells from  JunAA  mice) ap-

pear to be equally effective at driving down myelin gene ex-

pression in experiments where neonatal myelinating cells are 

removed from axonal contact and placed in culture. This is in 

line with results from other systems, where phosphorylation of 

c-Jun by JNK is not required for all its actions ( Behrens et al., 

1999 ;  Raivich and Behrens, 2006 ). The JNK pathway may in-

stead function to control c-Jun protein levels, in part by modu-

lating the activity of several transcription factors that together 

regulate the  c - jun  promoter ( Besirli et al., 2005 ), which is a situ-

ation that would explain the effects of the JNK activator MKK7 

in our experiments. 

 In injured nerves, loss of myelin differentiation is a bene-

� cial response that helps axonal regeneration and repair. But the 

loss of myelin differentiation in demyelinating neuropathies, 

such as Charcot-Marie-Tooth 1A and Guillain-Barr é  syndrome, 

is unhelpful and leads to disability. From a clinical standpoint, 

it will be important to determine whether c-Jun is a component 

of the mechanism that pushes myelinating cells toward de-

myelination in these pathological conditions because this would 

open new avenues for clinical intervention. 

 Figure 10.    Regulation of Sox-2 by Krox-20 and c-Jun.  (A – D) Immuno-
labeling of teased newborn sciatic nerve. Nuclear c-Jun is in premyelinating 
cells ( Parkinson et al., 2004 ), most of which also express Sox-2 (over-
lay). (E) db-cAMP down-regulates Sox-2 protein. Western blot of control 
untreated cells (Con) and cells treated with 1 mM db-cAMP for 3 d (cAMP) 
is shown. Note down-regulation of c-Jun and Sox-2 and increase in Oct-6 
and Krox-20. (F) Krox-20 down-regulates Sox-2 and c-Jun. Western blot of 
cells 3 d after infection with either GFP control (GFP) or Krox-20 (K20) adeno-
viruses. (G – N) c-Jun and Sox-2 are coexpressed after nerve injury. Double 
immunolabeling of a teased uncut nerve (G – J) and of the distal stump of 
a nerve 3 d after transection (K – N). Note that neither c-Jun nor Sox-2 are 
expressed in intact nerve, whereas both factors are activated by injury 
and found in the same nuclei (arrows). Bars, 15  μ m. (O) Sox-2 protein 
is reduced in  c-Jun  – null cells. Western blot of mouse  Jun  fl /fl   Schwann cells 
infected with either GFP control (GFP) or CRE-recombinase (CRE) adeno-
viruses. Note reduced levels of Sox-2 in CRE recombined cells. (P) Inhibition 
of JNK reduces Sox-2 protein levels. Western blot for Sox-2 in control 
cells (Con) and cells treated for 2 d with 30  μ M SP600125 JNK inhibitor 
(+SP6). (Q) Western blot showing that enforced Krox-20 expression sup-
presses residual Sox-2 in c-Jun – null cells. Control cells (Con) and  c-Jun  – neg-
ative cells (CRE) were infected with control adenovirus (GFP) or adenovirus 

expressing Krox-20 (K20). Note the two-step reduction in Sox-2, fi rst by 
removing  c-Jun  alone (GFP and CRE) and second by expressing Krox-20 
from  c-Jun  – null cells (K20 and CRE).   
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experiment was performed in triplicate, and data are from four indepen-
dent experiments. 

 In other experiments, we added tamoxifen 10 – 14 d after c-JunER 
Schwann cells had been induced to myelinate by addition of ascorbate. 
The tamoxifen was added for 4 – 6 d before fi xation and immunolabeling 
for MBP. In this case also there was a substantial reduction in the number 
of myelin segments relative to control cultures, indicating that induction of 
c-Jun is able to exert effects both early and late in the myelination program. 
In two experiments, with a total of 10 experimental and 10 control cover-
slips, the mean reduction in the total number of myelin segments was 
92.1% in cultures to which tamoxifen had been added. In related experi-
ments, we also showed that delayed activation of c-Jun could reverse Krox-20 – 
induced P 0  expression in cultured c-JunER Schwann cells in which P 0  
expression was already established by adenoviral expression of Krox-20. 
Cells expressing cJunER were infected with Krox-20 adenovirus and c-Jun 
was activated 3 d later by addition of tamoxifen for 3 d before fi xation and 
immunolabeling with P 0  antibodies. In two experiments with triplicate 
coverslips, we found that despite ongoing Krox-20 expression, tamoxifen 
induction of c-Jun lowered already induced P 0  protein levels from 64.7 
to 34.8%. 

 For DRG explant cultures, DRG were dissected from rat E15 em-
bryos and placed on PDL/laminin-coated coverslips in DM supplemented 
with 0.5% FCS and 50 ng/ml NGF. Cultures were maintained for 2 wk be-
fore the addition of 50 ng/ml ascorbate and for a further 2 wk to induce 
basal lamina formation and myelination. After this time, the cultures were 
fi xed and immunolabeled with antibodies against P 0  or MBP. 

 Myelin protein down-regulation assays 
 Schwann cells from  c-Jun  fl /fl  / CRE  �    (cJun con) mice and cells without c-Jun 
from  c-Jun  fl /fl  / CRE +   (cJun null) mice, from animals aged between P2 – 5, 
were plated on PDL/laminin-coated coverslips. 3 h after plating, time zero 
coverslips were fi xed and immunolabeled. Sister cultures were topped up 
with DM alone or DM supplemented with 20 ng/ml NRG-1. Coverslips 
were then fi xed and immunolabeled at the time points stated in the text. 
For quantitative evaluation of the number of periaxin-positive cells in c-Jun 
control and c-Jun – null cells at various time points after culturing, the number 
of periaxin-positive cells per coverslip was counted and expressed as a 
percentage of the number at time zero. 

 Quantitative RT-PCR 
 Schwann cells from  P 0 -CRE + /Jun  fl /fl   and  P 0 -CRE - /Jun  fl /fl   nerves were dissoci-
ated and plated on to PDL/laminin-coated 35-mm dishes as described in 
the previous section. At 3 h after plating, some dishes were used for RNA 
extraction (time zero control). Experimental cells were taken for RNA ex-
traction at 48 h after plating. RNA was purifi ed using the RNeasy plus kit 
(QIAGEN) and 1.5  μ g RNA was converted to cDNA using the Superscript II 
fi rst-strand synthesis system (Invitrogen). Real-time PCR was performed 
using the DyNAmo SYBR Green qPCR kit (Finnzymes) and the Opticon 2 
DNA Engine (MJ Research). Relative expression values were obtained by 
normalizing to GAPDH for each data point. 

 Primer sequences for genotyping and quantitative RT-PCR 
  c-Jun  fl   mice.   Forward, CCGCTAGCACTCACGTTGGTAGGC; and reverse, 
CTCATACCAGTTCGCACAGGCGGC. 

  P 0 -CRE  mice.   Forward, GCTGGCCCAAATGTTGCTGG; and reverse, 
CCACCACCTCTCCATTGCAC. 

 Quantitative RT-PCR.   GAPDH forward, TGCACCACCAACTGCT-
TAG; GAPDH reverse, GGATGCAGGGATGATGTTC; KROX20 forward, 
AGCTGCCTGACAGCCTCTAC; KROX20 reverse, GTTTCTAGGCGC A-
GAGATGG; MBP forward, ACACAAGAACTACCCACTACGG; MBP 
reverse, GGGTGTACGAGGTGTCACAA; Periaxin forward, GACTCACC-
GGCAGCTAAGAG; Periaxin reverse, GCCCTTCATCTCGTATCCAG; cjun 
forward, ACCCCCACTCAGTTCTTGTG; cjun reverse, AGTTGCTGAG-
GTTGGCGTAG; P 0  forward, CTGGTCCAGTGAATGGGTCT; and P 0  re-
verse CATGTGAAAGTGCCGTTGTC. 

 Imaging 
 Immunolabeled coverslips were analyzed at room temperature with micro-
scopes (Eclipse E8000 or Optiphot-2; Nikon) or using Plan Fluor 20 ×  0.5, 
40 ×  0.75, 40 ×  1.3, or 40 ×  1.3 NA oil objectives. Images were acquired 
using a digital camera (DZM 1200; Nikon) and Act-1 acquisition software 
(Nikon). Images were processed using Photoshop (version 7.0 or 9.0; Adobe). 
A confocal microscope (Multi-photon UV; Leica) with constituent software 
and a Plan-Apochromat 40 ×  oil objective was used at room temperature to 
acquire images of MBP-immunopositive areas in 5- μ m wax-embedded 

 Materials and methods 

 HA-tagged Jun(Asp)- and Jun(Ala)-expressing plasmids were obtained from 
Dirk Bohmann (University of Rochester Medical Center, Rochester, NY; 
 Papavassiliou et al., 1995 ). The cJunER fusion protein construct was obtained 
from Moshe Yaniv (Centre National de la Recherche Scientifi que Institute 
Pasteur, Paris, France;  Bossy-Wetzel et al., 1997 ). The JNK inhibitor 
SP600125 ( Bennett et al., 2001 ) was obtained from BIOMOL Interna-
tional, L.P. NGF was obtained from Invitrogen. Oct-6 antibodies were ob-
tained from Dies Meijer (Erasmus University Medical Center, Rotterdam, 
Holland) and John Bermingham (McLaughlin Research Institute, Great 
Falls, Montana) and periaxin antibodies were obtained from Peter Brophy 
and Diane Sherman (Centre for Neuroscience Research, Edinburgh, Scot-
land). Serine-63 phospho – c-Jun polyclonal antibody was obtained from 
Cell Signaling Technology. Polyclonal MKK7 antibodies and monoclonal 
antibodies to JNK1, JNK2, and serine-63 phospho – c-Jun were obtained 
from Santa Cruz Biotechnology, Inc. Polyclonal CRE recombinase and Sox-2 
and lacZ antibodies were obtained from EMD and Millipore, respectively. 
4-hydroxytamoxifen was obtained from Sigma-Aldrich. Monoclonal anti-
body to MBP was obtained from Sternberger Monoclonals. Polyclonal goat 
anti – rabbit Ig FITC was obtained from MP Biomedicals, donkey anti – mouse 
Ig Cy3 and streptavidin-Cy3 were obtained from Jackson ImmunoResearch 
Laboratories, and biotinylated sheep anti – mouse Ig was obtained from 
GE Healthcare. HOECHST dye was obtained from Sigma-Aldrich. Sources 
of other reagents are detailed elsewhere ( Morgan et al., 1991 ,  1994 ; 
 Archelos et al., 1993 ;  Jessen et al., 1994 ;  Dong et al., 1995 ;  Stewart, 1995 ; 
 Parkinson et al., 2001 ,  2003 ,  2004 ). 

 Transgenic mice 
 Animal experiments conformed to UK Home Offi ce guidelines. To obtain 
Schwann cells lacking c-Jun,  c-Jun  fl /fl   mice ( Behrens et al., 2002 ) were 
crossed with  P 0 -CRE  mice ( Feltri et al., 2002 ;  D ’ Antonio et al., 2006 ). 
Resulting  P 0 -CRE  + / c-Jun  fl /wt  mice were crossed back to  c-Jun  fl /fl   animals. 
Schwann cells were prepared from  P 0 -CRE  + /c- Jun  fl /fl   nerves, referred to as 
 c-Jun  – null cells, and from  P 0 -CRE   �  / Jun  fl /fl   littermates (controls). In some ex-
periments,  c-Jun  was excised from cultured c- Jun  fl /fl   cells using adenovirally 
expressed  CRE- recombinase. Cells were also prepared from homozygous 
 JunAA  mice, in which serines 63 and 73 of c-Jun had been mutated to ala-
nines ( Behrens et al., 1999 ). Genotyping was performed as previously de-
scribed ( Behrens et al., 1999 ,  2002 ;  Feltri et al., 2002 ). Immunolabeling 
of cells from  c-Jun  – null animals showed excision of  c-Jun  in almost all cells 
( Fig. 6 E ). 

 Cell culture, transfection, infection, and protein analysis 
 Schwann cells were prepared from sciatic nerve and brachial plexus from 
newborn, P3, or P7 rats or from P3 or P5 mice as previously described 
( Morgan et al., 1991 ). Rat Schwann cells for myelin down-regulation ex-
periments were prepared by negative immunopanning and used directly 
( Dong et al., 1999 ), whereas serum-purifi ed cells were used elsewhere. 
Cells were cultured, unless otherwise stated, in serum-free supplemented 
medium ( Jessen et al., 1994 ) containing 10  � 6  M insulin, referred to as DM. 
Unless otherwise stated, cell culture, gene transfer, immunohistochemistry, 
and Western blotting were performed as described previously ( Parkinson 
et al., 2001 ,  2003 ,  2004 ). 

 Myelinating DRG/Schwann cell cocultures 
 Dissociated DRG neurons and myelinating cocultures from E15 rats were 
prepared essentially as described by  Harrisingh et al. (2004) . DRG neu-
rons were seeded with either control infected (BP2) or cJunER (BP2/cJunER)-
expressing Schwann cells and exposed to 10  � 7  M 4-hydroxytamoxifen to 
activate cJunER. For dissociated DRG cultures, DRG were dissected from 
E15 rats and dissociated by trypsin/collagenase digestion. Cells were 
plated on PDL/laminin-coated glass coverslips in MEM/10% FCS supple-
mented with 10  � 3  M insulin, 0.3% glucose, and 50 ng/ml NGF. Cultures 
were pulsed twice for 72 h with 10  � 5  M cytosine arabinoside to remove 
endogenous fi broblasts and Schwann cells. Approximately 2 wk after plat-
ing, the pure DRG neurons were seeded with either control infected (BP2) 
or cJunER (BP2/cJunER)-expressing Schwann cells. Cultures were main-
tained for a further 2 wk to allow Schwann cell proliferation and associa-
tion with axons before treatment for a further 2 wk with medium containing 
50 ng/ml ascorbate, to induce basal lamina and myelination, and 10  � 7  M 
4-hydroxytamoxifen. The number of myelin segments per coverslip was de-
termined after immunolabeling with MBP antibodies. Separate cultures 
were maintained without seeding exogenous Schwann cells to ensure that 
there were no endogenous Schwann cells contributing to myelination. Each 
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processed for electron microscopy, as described previously ( Sharghi-
Namini et al., 2006 ), and viewed in an electron microscope (1010; JEOL) 
operating at 80 KV. Photographic images of 10 – 15 representative areas 
of the whole sciatic nerve were acquired at a magnifi cation of 5,000 using 
a camera (Orius SC10001; Gatan) and digital micrograph software (ver-
sion 3.11.2; Gatan). Images were imported into Photoshop (version 7.0), 
and the total number of rounded or collapsed myelin sheaths per image 
was counted. Image J was used to calculate the total nerve area and the 
area represented by the images. Counts were expressed as the number of 
myelin sheaths per 10,000  μ m 2 . 
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