
C-KLAM: Constrained Keyframe-Based
Localization and Mapping

Esha D. Nerurkar†, Kejian J. Wu‡, and Stergios I. Roumeliotis†

Abstract—In this paper, we present C-KLAM, a Maximum
A Posteriori (MAP) estimator-based keyframe approach for
SLAM. As opposed to many existing keyframe-based SLAM
approaches, that discard information from non-keyframes for
reducing the computational complexity, the proposed C-KLAM
presents a novel, elegant, and computationally-efficient technique
for incorporating most of this information, resulting in im proved
estimation accuracy. To achieve this, C-KLAM projects both
proprioceptive and exteroceptive information from the non-
keyframes to the keyframes, using marginalization, whilemain-
taining the sparse structure of the associated information matrix,
resulting in fast and efficient solutions. The performance of C-
KLAM has been tested in both simulations and experimentally,
using visual and inertial measurements, to demonstrate that it
achieves performance comparable to that of the computationally-
intensive batch MAP-based 3D SLAM, that uses all available
measurement information.

I. I NTRODUCTION AND RELATED WORK

For mobile robots navigating in large environments over
long time periods, one of the main challenges in design-
ing an estimation algorithm for Simultaneous Localization
and Mapping (SLAM) is its inherently high computational
complexity. For example, the computational complexity of
the Minimum Mean Squared Error (MMSE) estimator for
SLAM, i.e., the Extended Kalman filter [15], isO(N2) at
each time step, whereN is the number of landmarks in the
map. Similarly, for the batch Maximum A Posteriori (MAP)
estimator-based SLAM (smoothing and mapping) [1], the
worst-case computational complexity isO([K +N]3), where
K is the number of robot poses in the trajectory. While existing
batch MAP-based SLAM approaches such as the

√
SAM [1],

g2o [10], and SPA [9] generate efficient solutions by exploiting
the sparsity of the information matrix, for large-scale SLAM
with frequent loop closures, this cost eventually prohibits real-
time operation.

The approximate solutions developed to reduce MAP-based
SLAM’s computational complexity can be classified into three
main categories. The first category of approaches such as
iSAM [4] and iSAM2 [5] incrementally optimize over all robot

†E. D. Nerurkar, and S. I. Roumeliotis are with the Departmentof
Computer Science and Engineering, Univ. of Minnesota, Minneapolis, USA
{nerurkar,stergios}@cs.umn.edu

‡K. J. Wu is with the Department of Electrical and Computer Engineering,
Univ. of Minnesota, Minneapolis, USAkejian@cs.umn.edu

This work was supported by the University of Minnesota (UMN)through
the Digital Technology Center (DTC) and AFOSR (FA9550-10-1-0567).
E. D. Nerurkar was supported by the UMN Doctoral Dissertation Fellowship.
The authors thank Chao X. Guo and Dimitrios G. Kottas for their help with
the experimental datasets.

poses and landmarks, usingall available measurement infor-
mation. However, for trajectories with frequent loop closures,
(i) fill-ins are generated between periodic batch updates for
iSAM, when the number of constraints is greater than five
times the number of robot poses [4], and (ii) many nodes in
the Bayes tree used by iSAM2 have to be relinearized, hence
degrading the performance of these approaches.

The second category includes fixed-lag smoothing ap-
proaches such as [12, 14] that consider a constant-size, sliding-
window of recent robot poses and landmarks, along with
measurements only in that time window. Here, old robot poses
and landmarks aremarginalized and the corresponding mea-
surements are discarded. However, marginalization destroys
the sparsity of the information matrix, and the cost of this
approach becomesO(R3), hence limiting the number of poses,
R, in the sliding window. Moreover, this approach is unable
to close loops for long trajectories.

The third category consists ofkeyframe-based approaches,
such as PTAM [6], FrameSLAM [7], and view-based maps
(pose graphs) [8], [2], [3] that process measurement informa-
tion from only asubset of all available views/keyframes/robot
poses. Here, information from non-keyframes isdiscarded (as
opposed to marginalized) in order to retain the sparsity of
the information matrix, hence trading estimation accuracyfor
reduced computational cost.

In this paper, we present the Constrained Keyframe-based
Localization and Mapping (C-KLAM), an approximate batch
MAP-based algorithm, which estimates only keyframes (key
robot poses) and key landmarks while also exploiting infor-
mation (e.g., visual observations and odometry measurements)
available to the non-keyframes. In particular, this information
is projected onto the keyframes, by generating pose constraints
between them. Our main contributions are as follows:

• In contrast to existing keyframe methods, C-KLAM uti-
lizes both proprioceptive [e.g., inertial measurement unit
(IMU)] and exteroceptive (e.g., camera) measurements
from non-keyframes to generate pose constraints between
the keyframes. This is achieved by marginalizing the non-
keyframes along with the landmarks observed from them.

• In contrast to sliding-window approaches, C-KLAM in-
corporates information from marginalized frames and
landmarkswithout destroying the sparsity of the infor-
mation matrix, and hence generates fast and efficient
solutions.

• The cost of marginalization in C-KLAM is cubic,
O(M3), only in the number of non-keyframes,M , be-
tween consecutive keyframes, andlinear in the number of

Fig. 1. An example of the exploration epoch before (left) andafter (right) the approximation employed in C-KLAM.x0, x4 are the keyframes to be retained,
andx1, x2, andx3 are the non-keyframes to be marginalized. Similarly,f1, f5 are key landmarks (observed from the keyframes) to be retained, while f2,
f3, andf4 are non-key landmarks (observed exclusively from the non-keyframes) to be marginalized. In the left figure, the arrows denote the measurements
between different states. In the right figure, the blue arrowrepresents the pose constraint generated between the keyframes using C-KLAM.

landmarks,FM , observed exclusively from theM non-
keyframes, whereM ≪ FM .

• The keyframes and the associated landmark-map are
maintained over the entire robot trajectory, and thus
C-KLAM enables efficient loop closures, necessary for
ensuring accurate and consistent long-term navigation.

II. A LGORITHM DESCRIPTION

In this section, we first present a brief overview of batch
MAP-based SLAM, followed by the details of the proposed
C-KLAM algorithm. Moreover, to facilitate the descriptionof
these estimation algorithms, we will use the specific example
scenario depicted in Fig. 1. Note, however, that C-KLAM is a
general approach that can be used for any number of key and
non-key poses and landmarks.

A. Batch MAP-based SLAM

Consider a robot, equipped with proprioceptive (e.g., IMU)
and exteroceptive (e.g., camera) sensors, navigating in a 3D
environment. The motion model for the robot is given by:

xi+1 = f(xi,ui −wi) (1)

wheref is a general nonlinear function1, xi andxi+1 denote
the robot poses at time-stepsi and i + 1, respectively,ui =
uit+wi, is the measured control input (linear acceleration and
rotational velocity), whereuit denotes the true control input,
andwi is the zero-mean, white Gaussian measurement noise
with covarianceQi. The measurement model for the robot at
time-stepi, obtaining an observation,zij , to landmarkfj is
given by:

zij = h(xi, fj) + vij (2)

whereh is a general nonlinear measurement function2 and
vij is the zero-mean, white Gaussian measurement noise with
covarianceRij .

Consider the current exploration epoch shown in Fig. 1,
consisting of five robot poses,xi, i = 0, 1, . . . , 4, and of
five point landmarks’ positions,fj , j = 1, 2, . . . , 5, observed
from these poses. The batch MAP estimates,x̂MAP

0:4 , f̂MAP
1:5 ,

1The details of the IMU motion model can be found in [12].
2The details of the camera measurement model for point features, used in

our experiments, can be found in [12].

of all robot poses,x0:4, andall landmark positions,f1:5, using
all available proprioceptive,u0:3, and exteroceptive,Z0:4,
measurements is given by:

x̂MAP
0:4 , f̂MAP

1:5 , arg max
x0:4,f1:5

p(x0:4, f1:5|Z0:4,u0:3) (3)

whereZi denotes the set of all exteroceptive measurements
obtained at robot posexi, i = 0, 1, . . . , 4. Under the Gaussian
and independent noise assumptions in (1) and (2), (3) is
equivalent to minimizing the following nonlinear least-squares
cost function:

C(x0:4, f1:5;Z0:4,u0:3)

=
1

2
||x0 − x̂0|0||2P0|0

+

3∑

i=0

1

2
||xi+1 − f(xi,ui)||2Q′

i

+
∑

zij∈Z0:4

1

2
||zij − h(xi, fj)||2Rij

, CP (x0; x̂0|0) +

3∑

i=0

CM (xi+1,xi;ui)

+
∑

zij∈Z0:4

CO(xi, fj ; zij) (4)

where x0 ∼ N (x̂0|0,P0|0) denotes the prior for the robot
pose,Q′

i = GiQiG
T
i , andGi is the Jacobian off with respect

to the noisewi. In what follows, we denote the cost terms
arising from the prior, the robot motion, and the landmark
measurements byCP , CM , andCO, respectively [see (4)].

A standard approach for minimizing (4) is to employ
the Gauss-Newton iterative minimization algorithm [16] with
computational complexity up toO([K+N]3), whereK andN
denote the number of robot poses and landmarks, respectively.
Note that, as the robot explores the environment and observes
new landmarks, the size of the optimization problem (both
K andN) in (4) continuously increases. Therefore, for long
trajectories with many features and frequent loop closures, the
cost of solving (4) may prohibit real-time operation.

B. C-KLAM Algorithm

In order to reduce the computational complexity of MAP-
based SLAM and ensure accurate and real-time navigation
over long time durations, the proposed C-KLAM approach

Fig. 2. Structure of the sparse symmetric positive definite information
(Hessian) matrix corresponding to the cost functionC2 in (5) (measurements
shown with red arrows in Fig. 1). The colored blocks denote non-zero
elements. The block-diagonal sub-matricesAk and Ab correspond to key
poses and key landmarks, respectively.Ar and Af correspond to non-key
poses and non-key landmarks to be marginalized, respectively. HereAk and
Ar are, in general, block tri-diagonal, whileAb andAf are block diagonal.

(i) builds a sparse map of the environment consisting ofonly
the key robot poses and the distinctive landmarks observed
from these key poses3, and (ii) uses measurement information
from non-key poses to create constraints between the key
poses, in order to improve estimation accuracy.

Specifically, for the example in Fig. 1, let us assume that
we retain: (i)x0 andx4 as key poses, and (ii) landmarks,f1
and f5, observed from these key poses as key landmarks4. In
this case, (4) can be split into two parts as follows:

C = CP (x0; x̂0|0) + CO(x0, f1; z01) + CO(x4, f5; z45)
︸ ︷︷ ︸

C1(x0,x4,f1,f5;x̂0|0,z01,z45)

+

3∑

i=0

CM (xi+1,xi;ui) +
∑

zij∈Z1:3

CO(xi, fj ; zij)

︸ ︷︷ ︸

C2(x1:3,f2:4,x0,x4,f1,f5;Z1:3,u0:3)

(5)

The first part of the cost function,C1, depends only upon
the key poses, key landmarks, and the measurements between
them (denoted by thin black arrows in Fig. 1). This part
consists of cost terms arising from the prior term and from
the two exteroceptive measurements,z01 andz45, obtained at
the key posesx0 andx4, respectively. The second part of the
cost function,C2, contains all cost terms that involve non-key
poses and non-key landmarks. Specifically, these correspond
to two types of cost terms: (i) terms that involveonly non-key
poses and non-key landmarks (corresponding to measurements
denoted by solid red lines in Fig. 1), e.g.,CO(x1, f2; z12),
and (ii) terms that involveboth key and non-key elements

3The terms key poses and keyframes are used interchangeably in this paper.
4Note that we retain only two key poses/landmarks in this example, in

order to simplify the explanation. However, C-KLAM can be used to retain
any number of key poses/landmarks. Furthermore, for the example in Fig. 1,
we assume that the depth to the features is available (e.g., from an RGB-D
camera), in order to reduce the number of measurements and poses required.
However, if a regular camera is used, at least two observations of a key feature
and the corresponding poses will need to be retained.

(corresponding to measurements denoted by dashed red lines
in Fig. 1), e.g.,CO(x1, f1; z11) andCM (x1,x0;u0).

Before we proceed, we note that keyframe-based approaches
optimize only overC1 in order to reduce the computational
complexity, i.e., the cost terms inC2 and the corresponding
measurements are discarded, resulting in significant informa-
tion loss. An alternative and straightforward approach that
retains part of the information inC2, is to marginalize the
non-key poses and landmarks,x1:3 and f2:4, respectively.
Mathematically, this is equivalent to approximatingC2 as
follows (see Fig. 2):

C2 ≃ C′
2(x0,x4, f1, f5; x̂0, x̂4, f̂1, f̂5)

= α′ + gT
C′
2







x0 − x̂0

x4 − x̂4

f1 − f̂1

f5 − f̂5






+

1

2







x0 − x̂0

x4 − x̂4

f1 − f̂1

f5 − f̂5







T

HC′
2







x0 − x̂0

x4 − x̂4

f1 − f̂1

f5 − f̂5







(6)

with,

HC′
2
=

[
Ak 0

0 Ab

]

−
[
Bk 0

Bb 0

] [
Ar Arf

Afr Af

]−1 [
BT

k BT
b

0 0

]

(7)

gC′
2
=

[
gk

gb

]

−
[
Bk 0

Bb 0

] [
Ar Arf

Afr Af

]−1 [
gr

gf

]

,

[
gC′

2
,k

gC′
2
,b

]

(8)

where x̂0, x̂4, f̂1, and f̂5 are the estimates ofx0, x4, f1,
and f5, respectively, at the time of marginalization,α′ is
a constant term independent of the optimization variables,
and gk,gb,gr, and gf are the gradient vectors ofC2 with
respect to{x0,x4}, {f1, f5}, {x1:3}, and {f2:4}, respectively.
Also, gC′

2
andHC′

2
denote the Jacobian and Hessian matrix,

respectively. Lastly, we note thatHC′
2
, as expected, is the

Schur complement of the diagonal block, corresponding to
non-key poses and non-key landmarks, of the Hessian,HC2

,
of the original cost function,C2 (see Fig. 2).

However, as expected, the marginalization of non-key poses,
x1 and x3, due to their observations of key landmarksf1
and f5, creates additional constraints between the key poses
and the key landmarks. This directly translates into fill-ins in
the reduced Hessian matrix,HC′

2
, hence destroying the sparse

structure of the original Hessian,HC2
, and increasing the

computational cost of obtaining a solution to the corresponding
minimization problem.

In order to address this problem and maintain the sparse
structure of the Hessian (information) matrix while incorpo-
rating information fromC2, C-KLAM carries out an additional
approximation step, i.e., it further approximatesC′

2 by a
quadratic cost term,C′′

2 (x0,x4; x̂0, x̂4) that constraintsonly
the key posesx0 andx4. Specifically, along with the non-key
poses/landmarks, C-KLAMmarginalizes the key landmarks
f1 and f5, but only from C2. At this point, we should note
that these key landmarks still appear as optimization variables
in C1 [see (5)]. Moreover, marginalizingf1 and f5 from C2,
while retaining them inC1, implies that we ignore their data

0

5

10

15

20

−20 −10 0 10 20 30

Trajectory & Landmark Positions

y (m)

x
(m

)

BA
C−KLAM
BA Landmarks
C−KLAM Landmarks

Fig. 3. Overheadx− y view of the estimated 3D trajectory and landmark positions.The C-KLAM estimates only keyframes (marked with red squares) and
key features (marked with magenta circles), while BA estimates the entire trajectory (marked by black line) and all features (marked by black x-s).

association5 and treat them as different features (sayf ′1 andf ′5)
in C2. Under this implicit assumption, C-KLAM approximates
C2 by [see (6) - (8), and Fig. 2]:

C2 ≃ C′
2(x0,x4, f

′
1, f

′
5; x̂0, x̂4, f̂1, f̂5) ≃ C′′

2 (x0,x4; x̂0, x̂4)

= α′′ + gT
C′′
2

[
x0 − x̂0

x4 − x̂4

]

+
1

2

[
x0 − x̂0

x4 − x̂4

]T

HC′′
2

[
x0 − x̂0

x4 − x̂4

]

(9)

with,

HC′′
2
= Ak −Bk(D−BT

b A
−1
b Bb)

−1BT
k (10)

gC′′
2
= gC′

2
,k +BkD

−1BT
b

· (A−1
b +A−1

b Bb(D−BT
b A

−1
b Bb)

−1BT
b A

−1
b)gC′

2
,b (11)

and

D = Ar −ArfA
−1
f Afr. (12)

where α′′ is a constant, independent of the optimization
variables, andgC′′

2
, HC′′

2
denote the Jacobian and Hessian

matrix, respectively.
After this approximation, the final C-KLAM cost function

becomes:

CCKLAM = C1(x0,x4, f1, f5; x̂0|0, z01, z45)

+ C′′
2 (x0,x4; x̂0, x̂4) (13)

whose corresponding Hessian would be the same as that of
C1 (and thus sparse) with an additional link betweenx0 and
x1 due toC′′

2 . In summary, by approximatingC2 by C′′
2 , C-

KLAM is able to incorporate most of the information from
the non-key poses/landmarks, while maintaining the sparsity

5Besides the inability to relinearize marginalized states,ignoring this data
association is the main information loss incurred by C-KLAMas compared
to the batch MAP-based SLAM.

of the Hessian matrix. Moreover, the part of the cost function,
C1, corresponding to the key poses/landmarks, remains intact.

Lastly, we show that the approximation (marginalization)
described above can be carried out with cost cubic in the
number of marginalized non-key poses, and only linear in the
number of marginalized non-key landmarks. For computing
the Hessian,HC′′

2
, note that bothAb andAf [see (10), (12)]

are block diagonal and hence their inverses can be calculated
with cost linear in the number of corresponding landmarks.
The most computationally-intensive calculation in (10) isthat
of (D − BT

b A
−1
b Bb)

−1, which is cubic in the number of
non-key poses currently being marginalized. Since this size is
bounded, the marginalization in C-KLAM can be carried out
with minimal computational overhead. Note that the analysis
for the cost of computing the Jacobian,gC′′

2
, is similar.

III. E XPERIMENTAL AND SIMULATION RESULTS

A. Experimental Results

The experimental setup consists of a PointGrey Chameleon
camera and a Navchip IMU, rigidly attached on a light-
weight (100 g) platform. The IMU signals were sampled at
a frequency of 100 Hz while camera images were acquired at
7.5 Hz. SIFT features [11] were detected in the camera images
and matched using a vocabulary tree [13]. The experiment was
conducted in an indoor environment where the sensor platform
performed a 3D rectangular trajectory, with a total length of
144 m and returned back to the initial position in order to
provide an estimate of the final position error.

In the C-KLAM implementation, the corresponding approx-
imate batch MAP optimization problem was solved every 20
incoming camera frames. The exploration epoch was set to
60 camera frames, from which the first and last 10 con-

Fig. 4. 3D view of the estimated trajectory and landmark positions for the AR.Drone experiment. C-KLAM estimates only keyframes (marked with red
squares) and key features (marked with magenta circles) while BA estimates the entire trajectory (marked by black line)and all features (marked by x-s).

secutive camera frames were retained as keyframes, while
the rest were marginalized using the C-KLAM algorithm.
We compared the performance of C-KLAM to that of the
computationally-intensive, batch MAP-based SLAM [bundle
adjustment (BA)], which optimizes over all camera poses and
landmarks, using all available measurements, to provide high-
accuracy estimates. In the BA implementation, the batch MAP
optimization problem was solved every 20 incoming camera
frames.

Fig. 3 shows thex − y view of the estimated trajectory
and landmark positions. As evident, the estimates of the robot
trajectory and landmark positions generated by C-KLAM
are almost identical to those of the BA. Loop closure was
performed and the final position error was 7 cm for C-KLAM,
only 5% more than that of the BA.

In terms of speed, the C-KLAM algorithm took only 4%
of the time required for the entire BA. At the end of this
experiment, C-KLAM retained 238 keyframes and 349 key
landmarks, while BA had 1038 camera frames and 1281 land-
marks. This significant reduction in the number of estimated
states in C-KLAM led to substantial improvement in effi-
ciency. Moreover, by using information from non-keyframes
to constrain the keyframes, C-KLAM was able to achieve
estimation performance comparable to that of the BA.

Another experiment was conducted using the same IMU-
camera sensor package mounted on a Parrot AR.Drone quadro-
tor, flying in an indoor environment with a total trajectory
length of 126 m. However, in this experiment, the drone did
not return to the exact starting position and there were no

loop closures. In the C-KLAM implementation, the resulting
optimization problem was solved every 20 incoming camera
frames. The exploration epoch was set to 100 camera frames,
from which the first and last 20 consecutive camera frames
were retained as keyframes, while the rest were marginalized
using the C-KLAM algorithm. At the end of the experiment,
C-KLAM retained 330 keyframes and 348 key landmarks,
compared to 1110 camera poses and 1083 landmarks in BA.

Fig. 4 shows the estimated 3D trajectory and landmarks
for both BA and C-KLAM. From the figure, we see that,
similar to the previous experiment, the estimates of the robot
trajectory and landmark positions generated by C-KLAM
almost coincide with those generated by the BA, although no
loop closure was performed in either C-KLAM or BA. Since
the quadrotor did not return to the exact starting position,the
final position error cannot be determined for this experiment.
However, the difference between the final position estimates
of BA and C-KLAM was 0.4% of the length of the total
trajectory.

B. Simulation Results

The performance of C-KLAM was extensively tested in
simulations for a variety of conditions. The simulation results
corroborate our experimental results, both in terms of the
accuracy and speed of C-KLAM. However, due to space
limitations, we present Monte-Carlo results for a single simu-
lation setup. In particular, the IMU-camera platform traversed
a helical trajectory of radius 5 m at an average velocity of
0.6 m/s and the camera observed features distributed on the

interior wall of a circumscribing cylinder with radius 6 m
and height 2 m. The camera had a 90 deg field of view,
with measurement noise standard deviation of 1 pixel, while
the IMU was modeled with MEMS quality sensors. The C-
KLAM approximate batch MAP optimization problem was
solved every 10 incoming camera frames. The exploration
epoch was set to 20 camera frames, from which 4 consecutive
camera frames were retained as keyframes, while the rest
were marginalized using the C-KLAM algorithm. In the BA
implementation, the batch MAP optimization problem was
solved every 10 camera frames.

TABLE I
RMSERESULTS FORBA AND C-KLAM.

BA C-KLAM
Robot Orientation (rad) 3.92e-4 5.02e-4

Robot Position (m) 2.24e-2 2.75e-2
Landmark Position (m) 2.78e-2 5.31e-2

Table I shows the Root Mean Square Error (RMSE) for
the platform’s position and orientation, and for the landmarks’
position (averaged over all key landmarks). From the table,we
see that, as expected, the performance of C-KLAM, in terms
of accuracy, is comparable to that of the BA.

IV. CONCLUSIONS

In this paper, we presented C-KLAM, an approximate
MAP estimator-based SLAM algorithm. In order to reduce
the computational complexity of batch MAP-based SLAM, C-
KLAM estimates only the keyframes and key landmarks, ob-
served from these keyframes. However, instead of discarding
the measurement information from non-keyframes and non-
key landmarks, C-KLAM uses most of this information to
generate pose constraints between the keyframes, resulting in
substantial information gain. Moreover, the approximations
performed in C-KLAM retain the sparsity of the informa-
tion matrix, and hence the resulting optimization problem
can be solved efficiently. We presented both simulation and
experimental results for validating the performance of C-
KLAM and compared it with that of the batch MAP-based
SLAM (bundle adjustment). Our results demonstrated that C-
KLAM not only obtains substantial speed-up, but also achieves
estimation accuracy comparable to that of the batch MAP-
based SLAM that uses all available measurement information.

REFERENCES

[1] F. Dellaert and M. Kaess. Square root SAM: Si-
multaneous Localization and Mapping via square root
information smoothing.International Journal of Robotics
Research, 25(12):1181–1203, Dec. 2006.

[2] R. M. Eustice, H. Singh, and J. J. Leonard. Exactly
sparse delayed-state filters for view-based SLAM.IEEE
Transactions on Robotics, 22(6):1100–1114, Dec. 2006.

[3] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard.
Temporally scalable visual SLAM using a reduced pose
graph. In Proc. of the IEEE International Conference

on Robotics and Automation, pages 54–61, Karlsruhe,
Germany, May 6–10 2013.

[4] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM:
Incremental smoothing and mapping.IEEE Transactions
on Robotics, 24(6):1365–1378, Dec. 2008.

[5] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard,
and F. Dellaert. iSAM2: Incremental smoothing and
mapping using the bayes tree.International Journal of
Robotics Research, 21:217–236, Feb. 2012.

[6] G. Klein and D. Murray. Parallel tracking and mapping
for small AR workspaces. InProc. of the IEEE and
ACM International Symposium on Mixed and Augmented
Reality, pages 225–234, Nara, Japan, Nov. 13–16 2007.

[7] K. Konolige and M. Agrawal. FrameSLAM: From
bundle adjustment to real-time visual mapping.IEEE
Transactions on Robotics, 24(5):1066–1077, Oct. 2008.

[8] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich,
M. Calonder, V. Lepetit, and P. Fua. View-based maps.
International Journal of Robotics Research, 29(29):941–
957, Jul. 2010.

[9] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard,
B. Limketkai, and R. Vincent. Efficient Sparse Pose
Adjustment for 2D mapping. InProc. of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pages 22–29, Taipei, Taiwan, Oct. 18–22 2010.

[10] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige,
and W. Burgard. g2o: A general framework for graph
optimization. InProc. of the IEEE International Con-
ference on Robotics and Automation, pages 3607–3613,
Shanghai, China, May 9–13 2011.

[11] D. G. Lowe. Distinctive image features from scale-
invariant keypoints.International Journal of Computer
Vision, 60(2):91–110, Nov. 2004.

[12] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. Johnson,
A. Ansar, and L. Matthies. Vision-aided inertial naviga-
tion for spacecraft entry, descent, and landing.IEEE
Transactions on Robotics, 25(2):264–280, Apr. 2009.

[13] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. InProc. of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
pages 2161–2168, New York, NY, Jun. 17–22 2006.

[14] G. Sibley, L. Matthies, and G. Sukhatme. Sliding window
filter with application to planetary landing.Journal of
Field Robotics, 27(5):587–608, Sep./Oct. 2010.

[15] R. Smith and P. Cheeseman. On the representation and
estimation of spatial uncertainty.International Journal
of Robotics Research, 5(4):56–68, Dec. 1986.

[16] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W.
Fitzgibbon. Bundle Adjustment A Modern Synthesis.
Lecture Notes in Computer Science, 1883:298–372, Jan.
2000.

	Introduction and Related Work
	Algorithm Description
	Batch MAP-based SLAM
	C-KLAM Algorithm

	Experimental and Simulation Results
	Experimental Results
	Simulation Results

	Conclusions

