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Abstract—In this paper, we present C-KLAM, a Maximum
A Posteriori (MAP) estimator-based keyframe approach for
SLAM. As opposed to many existing keyframe-based SLAM
approaches, that discard information from non-keyframes or
reducing the computational complexity, the proposed C-KLAV
presents a novel, elegant, and computationally-efficienethnique
for incorporating most of this information, resulting in im proved
estimation accuracy. To achieve this, C-KLAM projects both
proprioceptive and exteroceptive information from the non
keyframes to the keyframes, using marginalization, whilemain-
taining the sparse structure of the associated information matrix,
resulting in fast and efficient solutions. The performance 6 C-
KLAM has been tested in both simulations and experimentally
using visual and inertial measurements, to demonstrate thait
achieves performance comparable to that of the computaticaly-
intensive batch MAP-based 3D SLAM, that uses all available
measurement information.

I. INTRODUCTION AND RELATED WORK

poses and landmarks, usiadj available measurement infor-
mation. However, for trajectories with frequent loop cles)

(i) fill-ins are generated between periodic batch updates fo
iISAM, when the number of constraints is greater than five
times the number of robot poses [4], and (ii) many nodes in
the Bayes tree used by iSAM2 have to be relinearized, hence
degrading the performance of these approaches.

The second category includes fixed-lag smoothing ap-
proaches such as [12,/14] that consider a constant-sidiggli
window of recent robot poses and landmarks, along with
measurements only in that time window. Here, old robot poses
and landmarks arenarginalized and the corresponding mea-
surements are discarded. However, marginalization destro
the sparsity of the information matrix, and the cost of this
approach becom&3(?), hence limiting the number of poses,
R, in the sliding window. Moreover, this approach is unable
to close loops for long trajectories.

For mobile robots navigating in large environments over The third category consists d&&yframe-based approaches,
long time periods, one of the main challenges in desightich as PTAMI[6], FrameSLAM [7], and view-based maps
ing an estimation algorithm for Simultaneous LocalizatiofPose graphs) [8]. [2], [3] that process measurement inderm
and Mapping (SLAM) is its inherently high computationafion from only asubset of all available views/keyframes/robot
complexity. For example, the computational complexity dposes. Here, information from non-keyframesliscarded (as
the Minimum Mean Squared Error (MMSE) estimator foPpposed to marginalized) in order to retain the sparsity of

SLAM, i.e., the Extended Kalman filter [15], i©®(N?) at

the information matrix, hence trading estimation accuriacy

each time step, wher® is the number of landmarks in thereduced computational cost.

map. Similarly, for the batch Maximum A Posteriori (MAP)

In this paper, we present the Constrained Keyframe-based

estimator-based SLAM (smoothing and mapping) [1], thleocalization and Mapping (C-KLAM), an approximate batch

worst-case computational complexity & [K + N]?), where

MAP-based algorithm, which estimates only keyframes (key

K is the number of robot poses in the trajectory. While exgstifobot poses) and key landmarks while also exploiting infor-

batch MAP-based SLAM approaches such aswfeAM [1],

mation (e.g., visual observations and odometry measurenen

g%0[10], and SPAI[9] generate efficient solutions by exploitingvailable to the non-keyframes. In particular, this infation
the sparsity of the information matrix, for large-scale SLA is projected onto the keyframes, by generating pose cantstra

with frequent loop closures, this cost eventually prolsibéal-
time operation.

between them. Our main contributions are as follows:
« In contrast to existing keyframe methods, C-KLAM uti-

The approximate solutions developed to reduce MAP-based lizes both proprioceptive [e.g., inertial measurement uni

SLAM’s computational complexity can be classified into thre

(IMU)] and exteroceptive (e.g., camera) measurements

main categories. The first category of approaches such as from non-keyframes to generate pose constraints between

iISAM [4] and iISAM2 [5] incrementally optimize over all robot
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the keyframes. This is achieved by marginalizing the non-
keyframes along with the landmarks observed from them.

« In contrast to sliding-window approaches, C-KLAM in-
corporates information from marginalized frames and
landmarkswithout destroying the sparsity of the infor-
mation matrix, and hence generates fast and efficient
solutions.

o The cost of marginalization in C-KLAM is cubic,
O(M?), only in the number of non-keyframes/, be-
tween consecutive keyframes, dimikar in the number of
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Fig. 1. An example of the exploration epoch before (left) aftdr (right) the approximation employed in C-KLAM,, x4 are the keyframes to be retained,
andx;, x2, andxs are the non-keyframes to be marginalized. Similafly, f5 are key landmarks (observed from the keyframes) to be extaiwhile f5,
f3, andfy are non-key landmarks (observed exclusively from the reyfremes) to be marginalized. In the left figure, the arrowsade the measurements
between different states. In the right figure, the blue amepresents the pose constraint generated between theuk@grusing C-KLAM.

landmarks,F;, observed exclusively from th&/ non- of all robot posesxg.4, andall landmark positionsf; .5, using

keyframes, wheré/ < F),;. all available proprioceptiven,.;, and exteroceptiveZy.4,
o The keyframes and the associated landmark-map aneasurements is given by:

maintained over the entire robot trajectory, and thus _, ,,

C-KLAM enables efficient loop closures, necessary for *0:4

ensuring accurate and consistent long-term navigationW

EMAP £ arg max  p(xo.4, f1:5) 204, u0:3)  (3)
X0:4,f1:5

here Z; denotes the set of all exteroceptive measurements
Il. ALGORITHM DESCRIPTION obtained at robot pose;, i = 0, 1,...,4. Under the Gaussian

In this section, we first present a brief overview of batcANd independent noise assumptions [ih (1) ddd (2), (3) is
MAP-based SLAM, followed by the details of the proposeSqU'Valent_ to minimizing the following nonlinear leastsges
C-KLAM algorithm. Moreover, to facilitate the descriptia COSt function:
these estimation algorithms, we will use the specific exampl
scenario depicted in Fig] 1. Note, however, that C-KLAM is a
general approach that can be used for any number of key and
non-key poses and landmarks.

C(x0:4, f1:5; Z0.4, u0:3)
3

1 R 1
= §||X0 - Xo\0||2pm0 + Z §||Xz'+1 — f(x;, ui)llé;
=0

A. Batch MAP-based SLAM . %Hzij — (i, £,
Consider a robot, equipped with proprioceptive (e.g., IMU) 2:;€20:4
and exteroceptive (e.g., camera) sensors, navigating iB a 3 3
environment. The motion model for the robot is given by: £ Cp(x0;Xoj0) + ZCM (Xit1,X451;)
i=0
Xipr = £oxi, i = wi) @) + Z Co(xi,fj;2ij) (4)
wheref is a general nonlinear functiB,nxl- andx;; denote 27 €Z0.a

the robot poses at time-stepsand: + 1, respectivelyu; =

. . . . wherexg ~ N (X0, Pojo) denotes the prior for the robot
u;, +w;, is the measured control input (linear acceleration arb se Q! = G;Q,G, andG, is the Jacobian of with respect
rotational velocity), wheran;, denotes the true control input, T v |

) - . to the noisew;. In what follows, we denote the cost terms
and w; is the zero-mean, white Gaussian measurement noise

with covarianceQ;. The measurement model for the robot ailquesgrslﬂr;rrcr)]rgngeb&prlocr, th:n:jocb ot rrgs()t:z)(;ivgln d[stzee!:tli)r]ldmark
time-stepi, obtaining an observation,;, to landmarkf; is by =M 0, resp y '

given by: A standard approach for minimizing](4) is to employ
' the Gauss-Newton iterative minimization algorithm|[16}twi
z;j = h(x;,f;) +vij (2) computational complexity up tO([K +N]?), whereK and N
] ) ] denote the number of robot poses and landmarks, respgctivel
where h is a general nonlinear measurement fundiand e that, as the robot explores the environment and observe

vij is the zero-mean, white Gaussian measurement noise Wi}y jandmarks, the size of the optimization problem (both

covarianc&tij. . , K and N) in (@) continuously increases. Therefore, for long
Consider the current exploration epoch shown in Eig. {rsiectories with many features and frequent loop closuhes
consisting of five robot poses;, ¢ = 0,1,...,4, and of

’ : - ) cost of solving[(#) may prohibit real-time operation.
five point landmarks’ positiond;, j = 1,2,...,5, observed

from these poses. The batch MAP estimate¥" fMAF B, C-KLAM Algorithm

o
1The details of the IMU motion model can be found fin][12]. In order to reduce the CompUtatlonal comple_X|ty of MAP.-
2The details of the camera measurement model for point festwsed in based SLA_M and ensure accurate and real-time navigation
our experiments, can be found [n][12]. over long time durations, the proposed C-KLAM approach
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Fig. 2. Structure of the sparse symmetric positive definittormation
(Hessian) matrix corresponding to the cost functinin (5) (measurements
shown with red arrows in Fig. 1). The colored blocks denot&-nero
elements. The block-diagonal sub-matricAg, and A, correspond to key
poses and key landmarks, respectively,, and A ; correspond to non-key
poses and non-key landmarks to be marginalized, resplgctidere A and
A are, in general, block tri-diagonal, whil&;, and A ; are block diagonal.

(i) builds a sparse map of the environment consistingray

the key robot poses and the distinctive landmarks observefly , _ {A
from these key posB,sand (i) uses measurement information 0
from non-key poses to create constraints between the key

poses, in order to improve estimation accuracy.

Specifically, for the example in Fif] 1, let us assume tha®c; =

we retain: (i)xg andx, as key poses, and (ii) landmarl,
andfs, observed from these key poses as key landfiatks
this case,[(4) can be split into two parts as follows:

C = Cp(x0;%oj0) + Co(x0,f1;201) + Co(Xa, f5; 245)

C1(x0,x4,f1,f5;%0)0,%01,245)

3
+) Culxipnxiw) + Y Co(xifj2;) (5)

i=0 zij€21:3

Ca(x1:3,f2.4,%0,%4,f1,f5;21.3,10:3)

The first part of the cost functior¢;, depends only upon

(corresponding to measurements denoted by dashed red lines
in Flg[]]), e.g.,Co(xl, fy; le) andCM(xl,xo; U.O).

Before we proceed, we note that keyframe-based approaches
optimize only overC; in order to reduce the computational
complexity, i.e., the cost terms ifi, and the corresponding
measurements are discarded, resulting in significant rimder
tion loss. An alternative and straightforward approacht tha
retains part of the information i€;, is to marginalize the
non-key poses and landmarks;.; and f5.4, respectively.
Mathematically, this is equivalent to approximatidg as
follows (see Fig[R):

12 ~ ~ o o
CQ = CQ(X07X47f17f5;X07X47f17f5)

Xo—}’\(o Xo—f(o T XO_)ACO
VAN ¥ B 1]xa =%y X4 =Xy
= ateg fi — £ 2 | fHi—f ol f—f
f5 — f5 f5 — f5 fs — f5
(6)
with,
r 0] [By 0][A, A ] ' [Bf B
A,y By, O] Ay, Af 0 0
(7
o)1 Y] el
8b B, 0] [Ap Ay gf gcL.b

where %o, %4, fi, and f5 are the estimates oty, x4, fi,
and f5, respectively, at the time of marginalization, is
a constant term independent of the optimization variables,
and gy, g, 8, and gy are the gradient vectors @, with
respect to{xo, x4}, {f1,f5}, {x1.3}, and {f2.4}, respectively.
Also, g¢; andHc, denote the Jacobian and Hessian matrix,
respectively. Lastly, we note thdflc,, as expected, is the
Schur complement of the diagonal block, corresponding to
non-key poses and non-key landmarks, of the Hesdihs,
of the original cost function(, (see Fig[P).

However, as expected, the marginalization of non-key poses

the key poses, key landmarks, and the measurements betwegerand x, due to their observations of key landmarks
them (denoted by thin black arrows in F@ 1). This padnd f;, creates additional constraints between the key poses
consists of cost terms arising from the prior term and froaind the key landmarks. This directly translates into fifl-in

the two exteroceptive measurememnts, andz,s, obtained at

the reduced Hessian matrikdc,, hence destroying the sparse

the key poses, andx,, respectively. The second part of thestructure of the original HessiarH¢,, and increasing the

cost functionC,, contains all cost terms that involve non-keysomputational cost of obtaining a solution to the corresjiag
poses and non-key landmarks. Specifically, these corrésp@hinimization problem.

to two types of cost terms: (i) terms that involeely non-key

In order to address this problem and maintain the sparse

poses and non-key landmarks (corresponding to measuremefrcture of the Hessian (information) matrix while incorp

denoted by solid red lines in Fifl 1), e.do(x1, f2;212),

rating information fronC,, C-KLAM carries out an additional

and (i) terms that involveboth key and non-key elementsgpproximation step, i.e., it further approximatés by a

3The terms key poses and keyframes are used interchangeabig paper.

“Note that we retain only two key poses/landmarks in this etamin
order to simplify the explanation. However, C-KLAM can beedsto retain
any number of key poses/landmarks. Furthermore, for thenpbain Fig.[1,
we assume that the depth to the features is available (eogn, &n RGB-D
camera), in order to reduce the number of measurements aed pequired.
However, if a regular camera is used, at least two obsenstib a key feature
and the corresponding poses will need to be retained.

quadratic cost term¢y (xg, x4; X0, X4) that constraintonly
the key poses, andx,. Specifically, along with the non-key
poses/landmarks, C-KLAMmarginalizes the key landmarks
f; and f5, but only from Cy. At this point, we should note
that these key landmarks still appear as optimization ket
in C; [see [[5)]. Moreover, marginalizin§ and f; from Cs,
while retaining them irCy, implies that we ignore their data
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Fig. 3. Overheadr — y view of the estimated 3D trajectory and landmark positidiftsee C-KLAM estimates only keyframes (marked with red sqgspend
key features (marked with magenta circles), while BA estamahe entire trajectory (marked by black line) and alldesg (marked by black x-s).

associatiofland treat them as different features ($pndf!) of the Hessian matrix. Moreover, the part of the cost fumgtio
in C. Under this implicit assumption, C-KLAM approximate<’;, corresponding to the key poses/landmarks, remains intact
Csy by [see[(®) -I(8), and Fid.] 2]: Lastly, we show that the approximation (marginalization)
described above can be carried out with cost cubic in the
- number of marginalized non-key poses, and only linear in the
PR [xo —5(0} N 1 [xo - )?:0] Hon [xo —5(0} number of marginalized non-key landmarks. For computing
¢ % the HessianH¢y, note that bothA, and A [see [(1D), [(IR)]
are block diagonal and hence their inverses can be caldulate
with, with cost linear in the number of corresponding landmarks.
T A -1 \— 1T The most computationally-intensive calculation[in]l(10jhat

Hey = Ai —Bi(D—B, A, By)" By (10) ot (D — BT'A,'B,)~", which is cubic in the number of
gcy = 8y k T B.D"'B{ non-key poses currently being marginalized. Since this sz

(A, + A, 'By(D - BYA; 'By) 'BYA; Vgc,, (11) bounded, the marginalization in C-KLAM can be carried out
with minimal computational overhead. Note that the analysi
for the cost of computing the Jacobiagy,, is similar.

I I els o FOR ~ o TN
Ca ~ Cy(x0, x4, 1, f5; %o, %4, f1, f5) ~ C5 (%0, X4; %0, X4)

and
D=A,—AA;'Ay,. (12)

where o” is a constant, independent of the optimization Ill. EXPERIMENTAL AND SIMULATION RESULTS

variables, andgcy, Hey denote the Jacobian and HessiaA. Experimental Results
matrix, respectively.

After this approximation, the final C-KLAM cost function
becomes:

The experimental setup consists of a PointGrey Chameleon
camera and a Navchip IMU, rigidly attached on a light-
weight (100 g) platform. The IMU signals were sampled at
Corram = Ci(xo, x4, f1, 55 Ro|0, Zo1, Z45) a frequency of 100 Hz while camera images were acquired at
(13) 7.5 Hz. SIFT features [11] were detected in the camera images

and matched using a vocabulary tree [13]. The experiment was
whose corresponding Hessian would be the same as thatefiducted in an indoor environment where the sensor ptatfor
C1 (and thus sparse) with an additional link betweenand performed a 3D rectangular trajectory, with a total length o
x; due toCy. In summary, by approximating, by C3, C- 144 m and returned back to the initial position in order to
KLAM is able to incorporate most of the information fromprovide an estimate of the final position error.
the non-key poses/landmarks, while maintaining the sfyarsi |n the C-KLAM implementation, the corresponding approx-

_ N N o _ _ imate batch MAP optimization problem was solved every 20

Besides the inability to relinearize marginalized statgsoring this data . . .
association is the main information loss incurred by C-KLAdg compared Incoming camera frames. The eXplorat'on epoch was set to
to the batch MAP-based SLAM. 60 camera frames, from which the first and last 10 con-

+ C (%0, %43 R0, Ra)
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Fig. 4. 3D view of the estimated trajectory and landmark tmss$ for the AR.Drone experiment. C-KLAM estimates onlyykames (marked with red
squares) and key features (marked with magenta circledp i estimates the entire trajectory (marked by black liaeyl all features (marked by x-s).

secutive camera frames were retained as keyframes, whdep closures. In the C-KLAM implementation, the resulting
the rest were marginalized using the C-KLAM algorithmoptimization problem was solved every 20 incoming camera
We compared the performance of C-KLAM to that of thérames. The exploration epoch was set to 100 camera frames,
computationally-intensive, batch MAP-based SLAM [bundl&om which the first and last 20 consecutive camera frames
adjustment (BA)], which optimizes over all camera poses ameere retained as keyframes, while the rest were margirthlize
landmarks, using all available measurements, to provigk-hi using the C-KLAM algorithm. At the end of the experiment,
accuracy estimates. In the BA implementation, the batch MARKLAM retained 330 keyframes and 348 key landmarks,
optimization problem was solved every 20 incoming camemmmpared to 1110 camera poses and 1083 landmarks in BA.
frames. Fig. [4 shows the estimated 3D trajectory and landmarks

Fig. [3 shows ther — y view of the estimated trajectory for both BA and C-KLAM. From the figure, we see that,
and landmark positions. As evident, the estimates of thetrolsimilar to the previous experiment, the estimates of thetob
trajectory and landmark positions generated by C-KLANrajectory and landmark positions generated by C-KLAM
are almost identical to those of the BA. Loop closure waalmost coincide with those generated by the BA, although no
performed and the final position error was 7 cm for C-KLAMI|oop closure was performed in either C-KLAM or BA. Since
only 5% more than that of the BA. the quadrotor did not return to the exact starting posittha,

In terms of speed, the C-KLAM algorithm took only 4%final position error cannot be determined for this experitmen
of the time required for the entire BA. At the end of thigHowever, the difference between the final position estisiate
experiment, C-KLAM retained 238 keyframes and 349 ke§f BA and C-KLAM was 0.4% of the length of the total
landmarks, while BA had 1038 camera frames and 1281 laritRjectory.
marks. This significant reduction in the number of estimated )
states in C-KLAM led to substantial improvement in effiB- Simulation Results
ciency. Moreover, by using information from non-keyframes The performance of C-KLAM was extensively tested in
to constrain the keyframes, C-KLAM was able to achieveimulations for a variety of conditions. The simulationuis
estimation performance comparable to that of the BA. corroborate our experimental results, both in terms of the

Another experiment was conducted using the same IMldecuracy and speed of C-KLAM. However, due to space
camera sensor package mounted on a Parrot AR.Drone quadinitations, we present Monte-Carlo results for a singhatsi
tor, flying in an indoor environment with a total trajectorylation setup. In particular, the IMU-camera platform tnesesl
length of 126 m. However, in this experiment, the drone dia helical trajectory of radius 5 m at an average velocity of
not return to the exact starting position and there were 806 m/s and the camera observed features distributed on the



interior wall of a circumscribing cylinder with radius 6 m

and height 2 m. The camera had a 90 deg field of view,
with measurement noise standard deviation of 1 pixel, whil¢4]
the IMU was modeled with MEMS quality sensors. The C-

KLAM approximate batch MAP optimization problem was

solved every 10 incoming camera frames. The exploratiofb]
epoch was set to 20 camera frames, from which 4 consecutive
camera frames were retained as keyframes, while the rest

were marginalized using the C-KLAM algorithm. In the BA

implementation, the batch MAP optimization problem was[6]

solved every 10 camera frames.

TABLE |
RMSERESULTS FORBA AND C-KLAM.

BA
3.92e-4
2.24e-2
2.78e-2

C-KLAM
5.02e-4
2.75e-2
5.31le-2

Robot Orientation (rad
Robot Position (m)
Landmark Position (m

Table[] shows the Root Mean Square Error (RMSE) fo

the platform’s position and orientation, and for the landksa
position (averaged over all key landmarks). From the takée,

[7]

(8]

r

9]

see that, as expected, the performance of C-KLAM, in terms

of accuracy, is comparable to that of the BA.

IV. CONCLUSIONS

[10]

In this paper, we presented C-KLAM, an approximate
MAP estimator-based SLAM algorithm. In order to reduce
the computational complexity of batch MAP-based SLAM, C-
KLAM estimates only the keyframes and key landmarks, ob-

served from these keyframes. However, instead of discgrdiH—l]

the measurement information from non-keyframes and non-

key landmarks, C-KLAM uses most of this information to
generate pose constraints between the keyframes, reg;sintin[lzl

substantial information gain. Moreover, the approximagio
performed in C-KLAM retain the sparsity of the informa-

tion matrix, and hence the resulting optimization problem

can be solved efficiently. We presented both simulation ahtBl

experimental results for validating the performance of C-

KLAM and compared it with that of the batch MAP-based

SLAM (bundle adjustment). Our results demonstrated that C-

KLAM not only obtains substantial speed-up, but also aabsev[14]

estimation accuracy comparable to that of the batch MAP-

based SLAM that uses all available measurement information _ _
[15] R. Smith and P. Cheeseman. On the representation and
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