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Abstract—The goal of the present paper is two folded. The first,
the methodological one, is the complementation of well established
in diffraction theory of gratings C method with certain elements of
spectral theory and the development of interactive numerical algorithm
that made feed back conjunction between diffraction and spectral
problems. As a natural result the second goal appeared: the appearing
of such tool for numerical experiments resulted in profound qualitative
and quantitative study of rather peculiar phenomena in resonant
scattering from periodic surface. Special attention has been paid to
the investigation of electromagnetic waves diffraction from periodic
boundaries of material with single and double negative parameters.

1. INTRODUCTION

There is no need nowadays to discuss the importance of diffraction
gratings (DG) study in modern applied optics and MW engineering
[1–22]. They have found their well-established place as a key dispersive
element in numerous devices. The utilization of DG within a rather
large range of parameters (wavelength, material properties the DG
are made with and put on, shape and depth of grooves) put certain
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requirements on the accuracy and reliability of the mathematical
modeling of electromagnetic wave scattering by DG. There are no
doubt that the solution of simulated electromagnetic boundary value
problem (BVP) and corresponding numerical algorithms including
their code implementation must be: robust, fitting the requirements
concerning efficiency and accuracy within a rather wide parameter
range (including resonant scattering), for the real time simulation and
analyses to be possible

Presently, a huge number of approaches and methods exist in
the area of wave diffraction by periodic wavy surfaces, including
periodic boundary between two or several media. It should be
outlined that most of them are certain modifications of corresponding
general methods used for the problems of wave diffraction by local
inhomogeneities. Just this possibility of “local” methods application
to infinite boundary surfaces of multilayered structure is the principal
advantage of “embedding” such surface (namely, its essential part) into
relevant periodic structure.

Existing methods and approaches for wave diffraction by local or
periodic inhomogeneity can be separated conditionally in the following
way (having no possibility to make detailed survey of such huge amount
of information, we restricted ourselves on basic publications of the
fields):

1. Approaches, using Green’s formulae technique, volume, surface
and boundary integral equations of the first and the second
kind (see [1–3], for example), including methods of analytical
regularization [4].

2. Method of partial domains, including semi-inversion procedures
[5–7].

3. Methods of perturbation theory (small inhomogeneities, small
inclinations of boundary surface, etc.) — see, for example, [8].

4. “Differential” methods — see, for example, [1, 9] and references
cited here.

5. Methods of boundary “straightening”, which are rather efficient
specialization of “differential” methods, mentioned above, — see
[10–16] and references cited here.

6. Incomplete Galerkin method — see [17] and, for example, [18].
7. Methods based on field representations by means of Rayleigh

harmonics (theory of series, involving non-orthogonal function, in
general) — see [1, 19, 20].

8. Asymptotic methods — see [21, 22].
In present DG theory C method [10–16] holds rather special place:
it is efficient and accurate in rather wide area of its applicability,
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clear in implementation, and it performs numerical modeling of
diffraction processes by arbitrary profiled DG, coated or not coated
with dielectrics.

Here we shall discuss several mathematical issues concerning
the C method that earlier skipped attention of its authors [10–16]:
the continuation of diffraction problems into the complex plane of
frequency parameters and a comparative investigation of diffraction
and spectral problems.

There is a wide set of different possibilities to formulate the
spectral problems. Among them there are ones for eigen frequencies
and eigen waves of corresponding diffraction boundary value problem.
From mathematical point of view, all of them have equal rights
for existence. But, as it often happens in theoretical physics,
the “correctness” of one or other models can be justified by
its mathematical consequences only, i.e., by mathematical results
following from the formulation, by possibility of their reasonable
physical interpretation and their utility level for modeling of
corresponding physical processes, as well as for profound understanding
of the processes inner nature. Just this makes up the principal reason
that made us to chose (among many possibilities) such posing of
spectral problem, which is, from one side, strictly connected with
excitation problem and, from the other side, is based on the idea
of analytical continuation of operator of this excitation problem in
relevant complex valued frequency domain.

It is clear that any correctly formulated diffraction problem (for
real valued frequencies) should have the solution, which is unique.
From the other side, there are well known resonant phenomena, which
become apparent, when frequency of excitation field is varying. It is
natural to think these phenomena as a result of an existence of some
eigen oscillation of the obstacle. As such eigen oscillation can not exist
for real frequencies, relevant question arises: do they exist in a domain
of complex valued frequencies? Moreover: are they allowed and are
they able to exist? What mathematical object can be treated as such
eigen oscillation? It is necessary to outline that within the scope of one
of the possible and even traditional way of spectral problems posing
(when eigen function supposed to be square integrable in the space R2

or R3) the answers are negative: eigen oscillations are forbidden for
complex valued frequencies.

That is why we have chosen the formulation of spectral problem
in which eigen oscillations are allowed to exist and they are in
strong connection with solutions of diffraction problem for real valued
frequencies. This strong connection is based on the idea of analytical
continuation of diffraction boundary value problem operator from real
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frequencies into the relevant domain (Riemannian surface) of complex-
valued frequencies. More exactly, it was necessary to construct the
relevant posing of diffraction problem considered for complex valued
frequencies.

The procedure of analytical continuation of resolvent of
corresponding operator in complex valued domain of spectral
parameter, which is frequency in our case, is well known in functional
analysis (and in the theory of boundary value problems). The
presence of poles of this continuation means the absence of uniqueness
and existence of non-trivial solution of corresponding homogeneous
functional equation for such values of spectral parameter, the residuals
of resolvent in these poles are strictly connected with eigen vectors of
“direct” initial operator and so on. It can be shown (see [4, 7]) that the
approach of analytical continuation of ”direct” operator of boundary
value problem, which we are using here, is essentially equivalent to
analytical continuation of the operator resolvent above mentioned.

Thus, the principal step in our way of construction of spectral
theory is the formulation of diffraction boundary value problem in
relevant domain (infinite-sheeted Riemannian surface) of complex
valued frequencies.

We would like to point out once again that the formulation
of the problem chosen here has predetermined the mathematical
consequences and the utility for understanding of physical essence of
“real” diffraction problem — with real valued frequencies.

2. THE DIFFRACTION PROBLEM FORMULATION
FOR REAL-VALUED FREQUENCY

In this section, we consider the standard posing of diffraction problem
for real-valued wave number k = 2π/λ, where λ is a wavelength of
incident field in vacuum, doing this in the way similar to [16]. After
that, in the next section, we discuss the necessary changes of the posing
for complex-valued k.

We consider the structure of two dielectric media, which both
together fill whole three-dimensional space R3 — see Fig. 1. The
structure is homogenous along the OX axis as well as the boundary
surface S between two media. The smooth and one-connected contour
L is a generator of surface in plane ZOY (i.e., L is boundary line
between two media for x = 0). Contour L is given by 2π-periodic
function z = ha(y); 0 ≤ a(y) ≤ 1, its maximum deviation from the
axis OY is equal to h < ∞. The upper and the low media have
dielectric constant parameters ε1, µ1, and ε2, µ2, respectively.

It is necessary to note that the case of arbitrary period d �= 2π
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Figure 1. Presentation of the problem.

of function z = ha(y) can be easily reduced to the case considered
by means of introducing of new space variables x̂ = (2π/d)x, ŷ =
(2π/d)y, ẑ = (2π/d)z. Correspondingly, instead of a wave number
k = 2π/λ, one may use a parameter κ = d/λ in all formulae and
statements below without loss of their correctness. Actually, such
substitution of κ instead of k is the only difference for d �= 2π.

The incident time harmonic field (Ei, H i) is given in the upper
media and is supposed to be E-polarized: vector Ei is parallel to OX
axis (the case of H-polarized incident field can be investigated in a
very similar way). The time factor is chosen as e−iωt, and it is omitted
everywhere below.

It is evident and can be shown easily that scattered field (Es, Hs)
is E-polarized too. Because all electromagnetic fields considered
satisfying time-harmonic Maxwell’s equations:

rotE = ikµH; rotH = −ikεE, (1)

any E-polarized field (E,H) can be expressed (as well known and
immediately follows from (1)) by means of one scalar generic function
U = U(y, z), which satisfies two-dimensional Helmholtz equation:

(∆ + k2εµ)U(y, z) = 0, (2)

and

Ex = U(y, z); Ey = 0; Ez = 0;

Hx = 0; Hy =
1
ikµ

∂U

∂z
; Hz = − 1

ikµ

∂U

∂y
. (3)
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Here ε and µ are constant material parameters of corresponding
dielectric media and subscripts x, y, and z denote corresponding vector
component in Cartesian coordinate system. We suppose additionally
that incident field is 2π-quasi-periodic one of the kind (see Eq. (3))

U(y + 2π, z) = ei2πΦU(y, z), (4)

where Φ is some real-valued parameter of quasi-periodicity:

|Φ| ≤ 1/2. (5)

The simplest example of such quasi-periodic field is plane wave with
an amplitude A and directional parameters α and γ:

Upw(y, z) = Aei(αy+γz); (6)
α2 + γ2 = k2εµ (7)

with real-valued parameter α. Here a parameter Φ is equal to that
positive or negative fractional part of value α/2π, which has the
smallest modulus (and that is why satisfies condition (15)). As well,
formula (6) includes both homogenous (γ is real) and inhomogeneous
(γ is complex) plane waves.

We denote generic functions of the kind (2), (3) for an incident,
scattering and a total field respectively as U i, U s and U t, where U t is
defined as follows:

U t(y, z) =

{
U i(y, z) + U s(y, z), z > a(y);
U s(y, z), z < a(y)

(8)

The standard boundary (transform) condition on the boundary surface
between two media is requirement of continuity of the tangential
components of the total electromagnetic field. By means of the
formulae (3), these conditions can be re-written in the following
standard form [1]:

U t(+)(p) = U t(−)(p),
∂U t(+)(p)

∂np
= γ

∂U t(−)(p)
∂np

p ∈ L, (9)

where

γ =

{
µ1/µ2 E-polarization
ε1/ε2 H-polarization

.

Subscripts (+) and (−) denote (uniform on the contour L) limits of
functions U t(p) and ∂U t(p)/∂np of arguments p + snp and p − snp

respectively, when s → +0. Here np is the unit normal to the contour
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L in a point p ∈ L (which direction is arbitrary chosen for the contour
L and fixed after that).

The essential part of the problem formulation is a radiation
condition formulation. Several comments worth to be done about
the “philosophy” and the history of the question before the radiation
condition formulating.

We would like to remind the reader that a radiation condition from
mathematical point of view is a kind of such “closure” of the boundary
value problem posing, which guarantees the uniqueness of the solution
to the diffraction boundary value problem. At the same time, the
radiation condition should be chosen in such a form that this unique
solution has reasonable physical sense. Standard choice of the radiation
condition is that one, which corresponds to the presence of outgoing
waves only, without waves coming from the infinity. Last statements
above look like something trivial and well known. Nevertheless, it looks
like the meaning of the words “outgoing waves” should be explained
in more thoroughly.

One of the most fundamental physical principal is the energy
conservation law. Thus, “outgoing waves”, in this context, means that
energy of scattered field must always go to the infinity (and never
comes from the infinity). That is, the energy must go to infinity not
only in the case, when it means that the wave itself should go to infinity,
but even if the wave itself must be coming from infinity, if necessary.
The point is that nowadays there is enormous flash of interest to so
called Veselago materials [24] with both negative ε < 0 and µ < 0
(left-handed or double negative media in another terminology). Thus,
their product is positive εµ > 0, and such “principal” question arises
as what is physical value of

√
εµ? Is this

√
|εµ| or −

√
|εµ|?

The answer for this question is known from textbooks at least
last 45 years or more. For example, L. A. Vainshtein explains in
his textbook [23] the theory of complex Maxwell equations (when
electromagnetic fields and material parameters are complex-valued
vectors and scalars correspondingly). He shows that because of the
energy conservation law, the material parameters ε and µ of passive
media must be situated in the first or second quadrant of complex
plane only:

ε = |ε|eiδ, 0 ≤ δ ≤ π, µ = |µ|ei∆, 0 ≤ ∆ ≤ π; (10)

i.e., Imε ≥ 0, Imµ ≥ 0. At that, all arithmetic operations with ε and µ
should be made according to standard rules for complex numbers, and
square root branch in all formulae of electromagnetic theory should be
taken as one of the kind

√
1 = 1. In particular,

εµ = |εµ|eiρ, ρ = δ + ∆ ∈ [0, 2π], (11)
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n =
√
εµ = |εµ|1/2eiρ/2, ρ/2 ∈ [0, π]; ζ =

√
µ/ε = |µ/ε|1/2ei(∆−δ)/2;

(12)
K = kn = k

√
εµ, k = 2π/λ = ω/c, Re k ≥ 0, Im k = 0 (13)

Thus, an index of refraction n =
√
εµ is a complex number, it can

be real valued, and its real part can be positive (if 0 ≤ δ + ∆ ≤ π)
or negative (if π ≤ δ + ∆ ≤ 2π), its imaginary part is always non-
negative; real part of wave resistance (wave impedance) ζ =

√
µ/ε is

always non-negative, and so on. Values κ and λ are a wave number
and a wavelength of monochromatic wave of angular frequency ω
in vacuum respectively, and K is (complex valued in general) wave
number in media with material parameters ε and µ. Here k is real
valued, and, consequently, K = kn is complex valued with the same
above-mentioned properties as index of refraction n.

In section devoted to plane waves in [23], L. A. Vainshtein
considers as the simplest example of monochromatic plane wave such
wave of amplitude A propagating along OZ axis in some media, namely

Ex = AeiKz−iωt, Hy(1/ζ)AeiKz−iωt, Ey = Ez = Hx = Hz = 0.
(14)

According to standard formulae E(t) = Re{E(ω)e−iωt} and H(t) =
Re{H(ω)e−iωt} for real electromagnetic field, this wave is propagating
with its phase velocity

u = ω/Re(K) = c/Re(n), (15)

i.e., it propagates in a positive (if Re(K) > 0, Re(n) > 0) or a negative
(if Re(K) < 0, Re(n) < 0) direction of axis OZ. In the same time,
Umov-Pointing vector S of this wave has the only component Sz of the
kind

Sz =
c

8π

(
EzH

∗
y − E∗

yHx

)
=

c

8π
ExH

∗
y =

c

8πζ∗
|A|2e−(ImK)z; (16)

ReSz = cos
δ − ∆

2
c

8π|ζ| |A|
2e−2(ImK)z. (17)

Thus, the vector ReS is always directed in positive direction of OZ
axis, i.e., the wave considered always propagates the energy in positive
direction of OZ axis, even in the case Re(K) < 0, Re(n) < 0, when the
wave itself is propagating (its phase velocity is oriented) in negative
direction of OZ axis.

There is a kind of idee fixe in minds that harmonic wave
propagates in direction of its phase velocity. The only reason for
this is just tradition. The example considered shows that much more
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correct from physical point of view is idea that the wave propagates
in direction of its energy propagation. For traditional materials (with
Re ε > 0, Reµ > 0) the difference between these two directions, if
exists, is out of principal importance. But in general, as we have seen,
the directions can be even opposite.

From these formulae the simplest recipe for correct radiation
condition formulation in arbitrary passive media follows: use always
the same radiation condition as one for vacuum, but change parameter
κ by parameter K = κn = κ

√
εµ of the media; the calculation of K

must be done according to formulae above described.
Veselago materials [33] are within the scope of this recipe. That

is why, it is not a surprise that authors of paper [34, 35] came into the
same conclusion about correct formulation of radiation condition.

It is noteworthy that in the case of Veselago materials energy of
scattered waves goes to the infinity if and only if the waves themselves
are incoming from infinity, all parameters ε, µ, n and K of Veselago
medium are real, but negative; value ζ is real and positive. The same
treatment of signs of n and ζ can be found in the paper of Veselago
[33].

The canonic choice of radiation condition for the structure
considered is the requirement that outside certain vicinity of contour
L the scattered field must be presented in the form of the uniformly
converging series of the outgoing and decaying plane waves, namely

U s(y, z) =




∞∑
n=−∞

Rne
iΦny+Γn1(z−A0), z > A0;

∞∑
n=−∞

Tne
iΦny−Γn2z, z < 0,

(18)

where

Φn = Φ + n, Γnj =
√
K2

j − Φ2
n, Kj = k2εjµj , A0 =

2πh
d

, k = d/λ.

(19)
The branch of Γnj =

√
K2

j − Φ2
n in formula (19) is chosen according to

formulae (10)–(13).
The physical meaning of radiation condition (18), (19) is the

restriction of scattering field by outgoing and decaying waves only
i.e., elimination of plane waves that bring (produce!) energy from
infinity to some vicinity of the contour L. Thus, we need not introduce
any new radiation condition and can use the canonic one with proper
understanding of its complex valued parameters according to formulas
(10)–(13).
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If the contour L is piecewise smooth only and, for example, some
point p0 ∈ L is an edge point of L, then boundary condition (9) can not
be applied in point p0 (even because normal vector in p0 is not defined).
Without going into too deep mathematical details (connected with the
theory of generalized functions and Sobolev’s spaces) for more general
mathematical posing of the diffraction problem, one may use instead
of (9) the condition of field energy finiteness in any bounded domain
of the space R2: ∫

V

{
|U s(p)|2 + |gradU s(p)|

}
dv < ∞. (20)

For the case, when p0 is an edge point of contour L, the well known
edge condition [1, 25] follows from (20).

Thus, the diffraction problem considered can be formulated as the
necessity to find out the scattered field U s(y, z), which satisfies:

1. Helmholtz equation (2) in both media — for (ε, µ) equal to (ε1, µ1)
and (ε2, µ2);

2. Quasi-periodicity condition (4) with given parameter Φ;
3. Boundary conditions (9);
4. Radiation condition (18);
5. Condition (20) of energy finiteness (which is necessary only if

contour L is not smooth).

3. DIFFRACTION PROBLEM FOR COMPLEX-VALUED
FREQUENCY

In this section we discuss the necessary changes in the problem
formulation for complex κ.

For better understanding the situation, one can consider canonic
2π-quasi-periodic Green function Ggr of free space R2 (where ε = 1
and µ = 1):

Ggr(y, z, k,Φ) = − i

4π

∞∑
n=−∞

ei2πnΦH
(1)
0 (kDn(y, z)) (21)

Dn(y, z) = {z2 + (y + 2πn)2}1/2, (22)

where H
(1)
0 ξ is zero-order Hankel function of the first kind.

We would like to remind the reader that − i
4H

(1)
0 (kD0(y, z)) is

Green function (field of point source) of free space R2. Thus, function



Progress In Electromagnetics Research, PIER 59, 2006 123

(21) describes field composed as the superposition of a corresponding
2π-periodic system of unit point sources with ei2πnΦ factors, and it is
evident that (21) is 2π-quasi-periodic function of the kind (4).

As well known (see proof, for example, in [4, 7]), Green function
(21) can be rewritten by means of Poisson summation formula [4, 7] as
follows

Ggr(y, z, k,Φ) = − i

4

∞∑
n=−∞

ei[Φny+Γn|z|]Γ−1
n , (23)

Φn = n + Φ; Γn = (k2 − Φ2
n)1/2. (24)

For real-valued k the branches of square roots of Γn are of the kind

Im Γn ≥ 0, Re Γ ≥ 0, n = 0,±1,±2, . . . . (25)

It can be proved (see, for example [1, 4, 7]) that function (21),
considered as one of argument k, can be analytically continued (by
means of the same formula (21)) from real axis Im k = 0 into
Riemannian surface R0 with complex plane cuts, which are starting
in points k2

n = Φ2
n and going to infinity Im k → ∞ like, for example,

curves described in [7] (see Fig. 2):

(Re k)2 = (Im k)2 − Φ2
n = 0, n = 0,±1,±2, . . . , Im k ≤ 0. (26)

The function thus obtained is an analytic function for any κ �= κn

in any sheet of Riemannian surface. The only singular points of this
function are κn, n = 0,±1,±2, and for local variable τ = τ(κ) (in
vicinity κ = κn or κ = −κn) of the kind τ2 = κ2 − κ2

n the function has
the only simple pole in τ = 0 (i.e., the set of the function singularities is
the set of the same branch points of functions Γ−1

n , n = 0,±1,±2, . . .).
The first sheet (which sometimes is referred as the zeroth or

“physical” one) of Riemannian surface R0 is defined by condition (25)
and cuts (26). The consequent sheets differ from the first one by
opposite choice of signs of Γn for a few corresponding indices n.

It is necessary to underline that function Ggr(y, z, k,Φ) gives the
solution to the “diffraction problem” for the system of quasi-periodic
point sources in the absence of an obstacle. The function evidently
satisfies radiation condition (18) in the trivial case ε1 = ε2 = ε and
µ1 = µ2 = µ. However, even for such the simplest case the procedure of
analytical continuation gives rather complicated Riemannian surface,
as above described.

The question arises: what new quality should one expect in the
presence of an obstacle and, especially, for the boundary surface, which
separates two different media, when both media are extending to
infinity (in the way half-space like)? It is clear that two Green functions
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Figure 2. The boundary of the shape a(y) = 0.5(1 + cos y), ε2 =
4.1; κ = 0.6; h = π; ϕ = 0. Solid line corresponds to numerical
solution to the equation of the fist kind (30), dashed lines — to
numerical solution of regularized system of the second kind (31).

are naturally involved now, namely, G(j)
gr = G

(j)
gr (y, z, k√εjµj ,Φ), j =

1, 2, which satisfy radiation conditions (18) in the upper and the low
half-spaces respectively.

Due to this the Riemannian surface R of analytical continuation
of boundary value problem operator in respect to κ be somehow
“doubled” Riemannian surface R0 of free space. More exactly, it is
necessary to consider two sets j = 1, 2 of branch points (of functions
Γnj — see (19))

K2
jn = Φ2

n, n = 0,±1,±2, . . . , j = 1, 2, (27)

where
Kj = κ

√
εjµi. (28)

and κ in (26) is replaced by Kj = κ
√
εjµi; index of refraction

n =
√
εµ is a complex number calculated according to formula (12).

See Riemannian surface and cuts depicted in Fig. 3.
That is why, it is natural to generalize the formulation of

diffraction problem (considered in the previous section for real-valued
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Figure 3. Riemannian surface with cuts defined by equation (23).

κ) for the case of complex-valued κ in the following way. At first, we
suppose that wave number κ belongs to Riemannian surface R. At
second, radiation condition (18) for each given κ ∈ R has the same
form, but the signs of square roots of Γn in formula (19) must be taken
according to the sheet, which κ is belonging to. At third, all the other
conditions are exactly the same as ones for real-valued κ.

Thus, the only formal difference in the diffraction problems posing
for complex- and real-valued k is that now we consider k belonging to
relevant Riemannian surface, instead of the previous case Imκ = 0.

We would like to emphasize the significant difference between the
diffraction problem considered in comparison with diffraction problem
for finite obstacles, where well known Sommerfeld radiation condition
traditionally applied. The procedure of analytical continuation into the
domain of complex-valued κ requires changing of Sommerfeld condition
by Reichardt radiation condition (see details in [4, 7, 26]). However,
for the infinite periodic structure under consideration the radiation
condition in form (18) are valid (see below) for both real- and complex-
valued κ as above described. The reason of such difference is that
Sommerfeld condition is one of a kind of asymptotic requirement, but
Reichardt conditions as well as condition (18) are the exact series
representations in a vicinity of the infinite point.

As we have had already mentioned in Introduction, the usefulness
of one or another formulation of diffraction problem for complex-valued
κ is based on the mathematical consequences from such posing, namely,
on qualitative properties of the solution and on its connection with the
solutions for real valued κ. The detailed explanation of such qualitative
mathematical consequences requires a lot of space, and we shall not
dwell on it here. We restrict ourselves here by brief explanation of
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the several facts that to justify the formulation, which we have been
chosen above.

Taking into account radiation condition (18) and using standard
Green formulae technique, one can represent scattered field U s(q), q =
(yq, zq) ∈ R2\L as an integral over one period of the boundary contour
L with integrand formed by the linear combination of the functions

G(j)
gr

(
yq − yp, zq − zp, k

√
εjµj ,Φ

) ∂U s(p)s

∂np
,

∂G
(j)
gr

(
yq − yp, zq − zp, k

√
εjµj ,Φ

)
∂np

U s(p), p = (yp, zp) ∈ L, j = 1, 2.

(29)

Here, as usually, the values of U s(p) and normal derivative ∂U s(p)/∂np

should be treated as limiting values of these functions on the contour
L and limits are taken along the normal np from the side, where
the medium with corresponding value of index j is situated (i.e.,
medium with such εj , µj)). Substitution of this representation into the
boundary conditions (9) gives the system of two integral-differential
equations of the first kind [1]. Analytical Regularization Method
reduces this system to functional equation of the second kind in the
way similar to one described in [4, 29, 32]. After that the technique
similar to one described in [1, 4, 7] gives the result that a resolvent of
a diffraction boundary value problem operator treated as a function of
κ ∈ R is a finite-meromorphic operator-function in surface R, and the
function may have poles of finite multiplicity only, and upper half-plane
of first sheet of R has no singularity at all; this resolvent coincides with
analytical continuation of such resolvent for real-valued κ.

Thus, the diffraction problem formulation that is chosen for the
complex-valued κ really gives “natural” analytical continuation of
diffraction problem for real-valued κ.

Unfortunately, the Riemannian surface constructed in such way
has rather complicated structure in the presence of several dielectric
media (several periodic layers). Even in the case of two media
considered herein the set of the cuts and branch points is rather
complicated, especially if one takes into account that the change of
ε2 and µ2, namely, the changes δ and ∆ in formulae (10) leads to the
rotation of the branch points as well as to the rotation of the contours
of the corresponding cuts and, consequently, to crossing of such curves
generated by the first (upper) and the second (lower) media. Thus, it
is necessary to change the cuts curves, and it is not easy to make this
in a uniform way (especially for a considerable number of the media).
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From formal mathematical point of view the positions and shapes
of cuts are out of any importance (if the cuts have the same starting
and ending points), because all Riemannian surfaces thus obtained are
equivalent. But the complexity or the simplicity of the system of these
cuts is very important from practical and, in particular, numerical
points of view. The simpler the better, especially when complexity is
higher than the limits of our ability to understand, and it seems to us
that for cuts structure of a few media we are very near to these limits.

That is why we call the formulation of diffraction problem in
complex domain, which is above described, as the “global” one with
the only one frequency parameter for all media. The alternative posing
is the “local” one, when for each media its own spectral parameter is
chosen and all others parameters of the others media are “frozen”, i.e.,
are fixed in “physical domain” of their definition.

More precisely, the idea is the following. Let us take certain
real valued κ and calculate all Kj = κ

√
εjµj , j = 1, 2, 3, . . . , N for

each media, where N is number of layers (here we have considered
above diffraction problem for N = 2). Now one can fix all Kj with
exception of Kj0 for some index j0. After that it is possible to consider
diffraction problem for complex valued , when all the others parameters
Kj , j �= j0 are fixed as above described. It is clear that natural domain
of analytical continuation in respect to parameter Kj0 is the same
Riemannian surface as that one for the canonic Green functions (23)
and (24), where parameter is changed for parameter Kj0 .

For each j = 1, 2, 3, . . . , N we denote as Rj such Riemannian
surfaces of variable Kj as the parameter of analytical continuation,
when the others parameters Ks, s �= j are fixed. Such analytical
continuations in the complex domain of one parameter Kj we shall
call as the local formulations of the diffraction problem, i.e., one in
respect to each media separately.

The local formulation has a few evident advantages in comparison
with the global one. The first of them is the simplicity: corresponding
Riemannian surface has much more simple structure. The second
advantage is that it is possible to investigate influence of the
corresponding media, including resonance properties of each layer,
independently that may essentially simplify the understanding of inner
nature of diffraction processes.

4. SPECTRAL PROBLEM

In this section we formulate the spectral problem for complex κ.
The formulation is strictly connected with corresponding diffraction
problem considered in the previous section.
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As well known (and can be easy proved), the diffraction problem
for real valued κ (see Section 2) always has the solution and the solution
is unique, if Γnj �= 0 for all n and j — see (19). In particular, radiation
condition (18) guarantees the solution uniqueness for real-valued κ.
But such uniqueness (as well as existence) of a solution can not be
guaranteed for arbitrary κ ∈ R and even more: it does not take place
for some values κm ∈ R. This fact can be shown analytically for the
simplest obstacles. It means, of course, that the operator of diffraction
boundary value problem is not invertible for κ = κm and a set Ω of
such κm can be treated as a part of spectrum of the operator.

Thus, the following spectral problem naturally arises: it is
necessary to find such values κm ∈ R, for which homogeneous
(i.e., U i(y, z) ≡ 0) boundary value problem has non-trivial solution
um(y, z) = U s(y, z). Such values κm correspondent to their functions
um(y, z) and can be called as eigen wave numbers and eigen waves
(or modes, or oscillations) respectively. Evidently, value κm can not
belong to real axis of first sheet of R.

Due to the qualitative properties of the resolvent of the boundary
value operator (see the previous section) the set Ω of eigen wave
numbers includes all possible spectral points of boundary value
problem operator (i.e., the continuous spectrum is absent!). Moreover,
it can be proved that the set Ω coincides with set of poles of
above mentioned resolvent, and cardinality of Ω cannot be more than
countable, and Ω is the set of isolated points without any accumulation
point in any bounded part of Riemannian surface R.

In accordance with the terminology of the previous section, we
call the spectral problem described as global spectral problem (one
parameter k for all media). It is clear that the local spectral problems
in respect to each complex valued parameter Kj , j = 1, 2, 3, . . . , N
can be posed in very similar and evident way as homogeneous problem
for corresponding diffraction problem in Riemannian surface Kj ∈ Rj .
The qualitative properties of each local spectral problem are the same
as ones described above for the global spectral problem.

These qualitative properties mean that solution of spectral
problems is able to give important information about diffraction
problem operator and, consequently, about resonant properties of the
obstacle, is able to give new physical understanding of complicated
physical phenomena of wave scattering by periodic boundary between
two media. This statement is illustrated with the numerical examples
in the Section 6 of this paper.
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5. ALGORITHMS, NUMERICAL TECHNIQUES AND
IMPLEMENTATION

Following the scheme of C method [10–16] we arrive to the operator
equation of the first kind

Fx = B (30)

in respect to unknowns x with operator F and right-hand side vector
B that have the following block structures:

F =
∥∥∥∥ F1 −F2

G1 −γG2

∥∥∥∥ , x =
∥∥∥∥ R
T

∥∥∥∥ , B =
∥∥∥∥ B1

B2

∥∥∥∥ .
Here we remind the expression of the matrix operators

F p = ‖F p
mn‖∞m=1, n=−∞ , Gp = ‖Gp

mn‖∞m=1, n=−∞ ; p = 1, 2

F 1
mn = Lm−n(ρn1A0); F 2

mn = Lm−n(ρn2A0)

Ln(γ) =
1
2π

2π∫
0

exp{iγa(y) − iny}dy;

Ln(γ) =
1
2π

2π∫
0

exp{iγ(1 − a(y)) − iny}dy;

G1
mn = ρn1F

1
mn − ΦnA0

+∞∑
s=−∞

am−sF
1
ms(m− s);

G2
mn = −ρn2F

2
mn + ΦnA0

+∞∑
s=−∞

am−sF
2
ms(m− s);

an =
1
2π

2π∫
0

a(y) exp{−iny}dy;

B1 = (Bn1)∞n=−∞; Bn1 = −Ln(−κ1 cos(ϕ)A0);

B2 = (Bn2)∞n=−∞; Bn2 =

{
−κ1 cos(ϕ)B01; n = 0
(ntg(ϕ) − κ1 cos(ϕ))Bn1; n �= 0;

.

ρmp, p = 1, 2, are the solutions to the spectral problem of C-method
[16], ϕ is the angle between the wave vector of incident wave and OZ
axis.
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Analysis of the matrix entries of (30) made clear that operator
equation (30) is an equation of the first kind. Formally it follows from
the asymptotical estimation for entries of operators F 1 and F 2. It can
be proved that for |n|, |m| → ∞ the following asymptotic estimations
are valid

F 1
mn ∼

P1∑
k=1

e−i(m−n)y1
ke

− (m−n)2

2A0(|n|+1)ä(y1
k
)√

2πA0(|n| + 1)ä(y1
k)

;

F 2
mn ∼

P2∑
k=1

e−i(m−n)y2
ke

− (m−n)2

2A0(|n|+1)ä(y2
k
)√

2πA0(|n| + 1)ä(y2
k)

.

They are obtained under assumption that function z = A0a(y) (that is
describing the periodic boundary between two media) has finite sets of
points Y 1 = {y1

k}P1
k=1, Y 2 = {y2

k}P2
k=1 for which the following relations

hold

a(y1
k) = 0; ȧ(y1

k) = 0; ä(y1
k) > 0;

a(y2
k) = 1; ȧ(y2

k) = 0; ä(y2
k) < 0.

For matrix elements of operators G1 and G2 we obtain the following
asymptotic behavior:

G1
mn ∼ m

|n|
n
F 1
mn; G2

mn ∼ −im |n|
n
F 2
mn.

Such behavior of entries of operator F from (30) allows us to state that
the condition numbers of corresponding truncated systems of algebraic
equations

FNxN = BN

tends to the infinity rather quickly (cond(FN ) → ∞), when truncation
number N → ∞. We remind here that the condition number of the
system (30) is defined as cond(F ) = ‖F‖ · ‖F‖−1 and plays the crucial
role in the connection of the errors including round off errors of input
data (entries of matrix F and right hand side part B) and the solution
accumulated error δx:

‖δx‖
‖x‖ ≈ cond(F )

(‖δF‖
‖F‖ +

‖δB‖
‖B‖

)
.

We calculated the matrix FN norm ‖FN‖ =
∑N

m=1

∑N
n=1 |fmn|2 as

Frobenius’s one.
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In Fig. 2 we present the results of the numerical study of condition
number condN = cond(FN (N)) for grating with boundary function
a(y) = A0(1 + cos y)/2, κ = d/λ = 0.6, ϕ = 0, A0 = 2πh

d = π, solid
line. As it has been shown in [37], the number mr of correct binary
figures in approximate solution xN (rounded off to me binary figures,
in other words, me is the binary length of mantissa) does not exceed
the value

mr = me − log2 condN .

The computer has fixed mantissa length me. So, the value mr may
become negative, when the condition number condN is big enough.
In such a case there is no one a correct digit in the approximate
numerical solution xN . Besides the order of the value of residual
‖δN‖ = FNxN − BN will be ‖δN‖ ∼ N2−me‖xN‖, i.e., the residual
is very small even if the solution has not any correct figures. The
accurate solution of the system (30) rounded off up to me binary digits,
gives the same order of the error — see [37]. This shows the potential
impossibility of straightforward application of truncation method for
numerical solution of (30) with large numbers of truncation N , and
means that the application of regularizing procedure may be useful.

In order to obtain more stable numerical algorithm we applied
two-side regularization (left and right hand side regularization similar
to [4, 29]). For this purpose we consider the contour L, given by formula
z = ha(y), 0 ≤ a(y) ≤ 1 with additional restriction that function a(y)
has the finite numbers P1 and P2 of maximums {y1

k}P1
k=1 and minimums

{y2
k}P2

k=1 only, and ä(y) �= 0 for j = 1, 2 and all possible k, where
ä(y) is second derivative of function a(y). Relaying on the asymptotic
estimation for the entries of F , we introduce matrix-operator T1 =
‖δmn

√
|n| + 1‖∞m,n=−∞, T2 = ‖δmnτn‖∞m,n=−∞, τ0 = 1, τn = i/n, n �=

0, and now one can make right hand side x1 = T1y1, x2 = T1y2 and
left-hand side regularization. The below-presented formulae explain
the idea clearly:(

I 0
0 T2

) (
F1 −F2

G1 −γG2

) (
T1 0
0 T1

)
⇒{

F1T1y1 − F2T1y2 = B1;
T2G1T1y1 − γT2G2T1y2 = T2B2;

⇒
{

c1y1 − c2y2 + A11y1 −A12y2 = B1;
−c1y1 + c2γy2 + A21y1 −A22y2 = T2B2,

where c1, c2 are constants, defined by the boundary shape (under
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mentioned above restrictions on function a(y)):

c1 =
P1∑
k=1

1√
2πA0ä(y1

k)
, c2 =

P2∑
k=1

1√
2πA0ä(y2

k)
,

where ä(y) is the derivative of second order of function a(y).
The analytical inversion of{

c1y1 − c2y2

−c1y1 + c2y2

gives the operator equation of the second kind

y + Hy = d. (31)

In Fig. 2 we presented with dashed line the condition number of
truncated system (31) for the same gratings at the same frequency.
We can see that application of regularizing procedure gave us the
decreasing of condition number of the system that we have to solve
numerically by more than 100 times and increased the acceptable
value of number of truncation, and, as a result, extended the range of
parameters h (depth of grooves up to 2π) and κ (frequency parameter
up to 2).

Let us now consider homogeneous problem

y + Hy = 0. (32)

This operator H depends on spectral parameter κ analytically. The
condition of existence of nontrivial solution to (32) is the equality to
zero of the determinant of (32) that arrives to

det[I + H(κ)] = 0.

Numerical algorithm has been developed for the spectral problem
numerical solution is strongly based on the experience that had been
acquired during the study of eigen frequencies in fields of DG and open
waveguide resonators [7, 30–32].

From the point of view of numerical methods, the key feature
of the algorithm is the numerical search of the complex valued
frequencies in multi sheeted Riemannian surface and the calculation of
electromagnetic field density distribution corresponding to the certain
eigen frequency.

Thus, the first problem is the calculation of the complex valued
roots of function f(z) = det[I + H(z)], which is determinant of the
system (32), and z is corresponding complex valued variables (namely,
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z is κ or Kj) belonging to the relevant Riemannian surface. The
routine for these roots searching had been constructed as adaptive
set of several methods. Linear and quadratic interpolations of direct
f = f(z) and inverse z = z(f) functions are among them (we used
Traub’s interpolation scheme that has a few numerical advantages
over more popular Muller’s one — see [38]). Using already calculated
approximations of the root, the computer routine chooses the best
interpolation method for each next step of more accurate approach
construction. It is necessary to take into account that, at first, the root
can be situated in the different from initial guess sheet of Riemannian
surface. At second, during the root search current approximation to
the root may be placed in another sheet than the previous one, even
if exact value of root is situated in the same sheet. Thus, the routine
while operating must automatically switch the search into relevant
Riemannian sheet. The routine constructed analyses the possibility
of such switching and makes proper choice of such a sheet, which
minimizes the difference between two successive approximations. As
numerical experiments have already shown, the strategy explained is
rather fast and robust and it gives required precision of the root value.

The numerical reconstruction of the electromagnetic field density
distribution in the boundary domain is an important and always
required characteristic of eigen regimes. In order to get it we have
to find out numerically corresponding eigen vector x. Namely, if
some characteristic value zc of matrix-operator I +H(z) is found (i.e.,
f(zc) = 0), system (32) for z = zc is a degenerated one, and it is
necessary to find eigen vector corresponding to zero eigen value of
operator I + H(zc). This problem has been solved by means of well
known algorithm of inverse iteration — see [36–38] (which, of course,
was applied to the reduced matrix that is the finite approximation to
the infinite matrix-operator I + H(zc)).

In such way, we constructed efficient and powerful tool for
numerical study of spectral properties of periodic boundary between
two media within rather wide range of parameters. That is to be
illustrated in the following section.

6. NUMERICAL RESULTS DESCRIPTION,
DISCUSSION AND INTERPRETATION

6.1. Connection between Spikes in Diffraction
Characteristics and Eigen Regimes

In present paper we have considered rather wide range of theoretical
aspects of spectral theory of gratings. Each of them, due to existence of
numerical algorithm that is efficient and reliable tool for computational



134 Poyedinchuk et al.

                                 
a)                                                                                                  c)

H/E
nκ nκ nκ

E 1.403 1.4379 -0.2067

H 0.674 0.7117 -0.1123

1.648 1.75987 -0.3021

( )00Rarg

R
00W

0 0.5 1 1.5
0

0.2

0.4

0 0.5 1 1.5 2
-200o

0

200o

2

( )ya
b)

' ''

Figure 4. Correlation between diffraction characteristics and
excitation in the POR regimes, close to natural ones. Red curves
correspond to E-polarization, the blue ones to the H-polarization. The
boundary is described by the curve a(y) = sin2(y/2), h = π, ε2 =
5; µ2 = 1.

experiments, may be illustrated with numerous interesting examples,
and numerical results can provide a good background for profound
electromagnetic analysis. But keeping our study within the frames
of a paper we shall just outline the major, from out point of view,
qualitative properties of the studies spectra of dielectric grating with
arbitrary profile of grooves.

In our investigation of diffraction properties of gratings we
followed the approach [7, 30, 31], considering the periodic boundary
(DG) as periodic open resonator (POR).

The assumption that resonant transmission/reflection from the
periodic boundary treated as POR is related to the excitation of
regimes close to eigen ones in the region of the boundary (0 < z <
a(y)) has been inspired by the following facts: when parameters
of the problem are close to ones providing the spikes in diffraction
characteristics a decrease in the value of the determinant of the system
of equations of corresponding BVP and an increase in the field intensity
near the boundary do emerge.

To prove this statement we have studied the frequency responses
of the electromagnetic field scattered from the DG of the shape a(y) =
sin2(y/2), depicted in Fig. 4c. The structure under consideration —
a periodic boundary between dielectrics with limited depth does not
support pronounced (with high quality Q factor) resonances. That
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is why, in order to follow the connection between so called low Q
resonances with excitation of natural oscillation, we have to study the
behavior of the phase of reflected zero order efficiency argR00(κ). It is
known that in the vicinity of resonant frequency the phase has to be
changed by the value approximately equal to π, so it may serve a good
pointer to the close existents of eigen regime.

In Fig. 4a the reflected energy WR
00(κ) and the phase arg(R00(κ))

of the 0-th harmonic for E and H polarized wave when real frequency
parameter κ = d/λ varying are presented. The amplitude of
the scattered waves have calculated from the solution to diffraction
problem (for real frequencies) (31); and the nearest eigen complex
frequencies κ′n + iκ′′n have been found as the solution to the spectral
problem (32). In the table (Fig. 4b) the values of κn corresponding
to the spikes in the curves arg(R00(κ)) and nearest complex eigen
frequencies κ′n + iκ′′n are presented. The correspondence of the
resonances in the frequency characteristic of argR00(κ) and excitation
in the structure the oscillations close to natural ones is clearly seen.

The field pattern formed by grating in resonant regime is
rather interesting and useful characteristic, giving more profound
understanding of the resonant phenomena. By studying the various
field patterns, calculated at different eigen frequencies, we can analyze
the peculiarities of spectral properties of grating. In order to obtain
qualitative characteristics of eigen field, we have calculated the patterns
of the distribution |Ex(y, z)| for E-polarized wave or |Hx(y, z)|, for H
polarized plane wave, corresponding to their eigen frequencies. In the
calculation we used the routine for numerical determination of eigen
vectors corresponding to their eigen frequency.

We would like to attract the attention to the fact that in the
case of H polarization the first resonances appears at much smaller
frequency parameter, that is for more long waves. This resonance exists
due to the possibility of excitation of TEM wave that is propagating
along the grooves and, under certain parameters, is able to provide
the resonances. Naturally, this resonance disappears at certain value
of that corresponds to the minimal depth of grooves that can provide
resonance conditions for TEM wave.

Much more pronounced resonances may be seen in the diffraction
by the dielectric layer, limited with periodic boundary, see for example
Fig. 5. Fig. 5a presents the curve WR

00(κ) and in Fig. 5b the table,
demonstrating the correspondence of resonances in real frequencies and
relevant complex eigen frequencies.

It is clearly seen here that the eigen complex frequencies of
oscillations in DG or POR, which are close to the natural ones, are
in strict correlation with the resonances in diffraction characteristics
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Figure 5. The diffraction and spectral characteristics for the dielectric
layer with ε2 = 4.4, µ2 = 1, limited with the boundaries a(y) =
0.5−4π−2(cos(y)+cos(3y)/9+cos(5y)/25) and 1−a(y) of thickness h1

normally excited with E polarized plane wave. Solid line corresponds
to h1 = 0.5π, dashed line corresponds to the layer with h1 = 0.1π.

of this structure. In particular (and it is to be demonstrated in our
future article devoted to the multilayered periodic structures study)
the operation on the frequency that is close to the eigen one of certain
POR can provide the regimes of total reflection or transmission of
electromagnetic waves scattered by this resonator.

6.2. General Regularities in POR Spectrum Behavior

Having performed rather extensive study of the eigen complex
frequencies of POR with material and geometrical parameters varying,
we can make several comments on the regularities of spectrum
behavior.

First of all, we have to point out that the spectral properties of
POR for two different polarizations manifest the principal difference.
Further on, following the analogy with waveguide open resonators
[30, 31], we shall call eigen oscillations, corresponding to E-polarization
as TM eigen modes, and that ones, corresponding to H-polarization
as TE modes. It is not possible to carry out the classification of
the natural oscillation in the way it has been done for waveguide



Progress In Electromagnetics Research, PIER 59, 2006 137

open resonators [30, 31], open resonators [4] or for DG with so-called
coordinate shape grooves [7]. So here we shall for the present time
make numeration for the eigen modes starting with the smallest real
part of eigen frequency.

The parameter region where certain type of eigen oscillations
is allowed, is strictly bounded by the domain of eigen frequencies
existence and corresponding cuts in the Riemannian surface, see
Fig. 2. Eigen complex frequencies, in the first (physical) sheet of
Riemannian surface continuously depend on the parameters of the
problem (geometrical, constitutive). The values of real and imaginary
parts of eigen frequencies of TM modes weekly change with the ε2 or
µ2 varying. Real and imaginary part of κ decrease with ε2 increasing
that is the Q factor of natural oscillation is increasing. The eigen fields
density is, naturally more concentrated inside the second material.

For TM modes similar situation appears for real part of complex
frequency κ′ with the depth of grooves h is increasing. Imaginary
part of complex eigen frequency is also decreasing, but with certain
oscillations, the mean value of Q factor is definitely growing. The field
of eigen oscillation for DG with deep grooves is concentrated in the
grooves.

Situation similar to the one described above may be observed for
small values of ε2/µ2 and for not deep grooves for modes.

But, when the grooves of DG become of considerable size and
ε2 >∼= 3, the “regular” behavior of eigen frequencies with parameter
change does not exist any more, and we have the spectral curves
behavior of rather complicated type, having resemblance with Vienne
graphs that are well-known from the circuit theory.

6.3. Certain Irregularities in POR Spectrum Behavior

Rather special behavior of spectral curves for TE modes is illustrated
by Fig. 6. The curves, that correspond to real (Re(κ)) and imaginary
parts (Im(κ)) of eigen frequencies (Fig. 6a) come very close and even
cross each other when depth of grooves h increases. It more easy to
grasp this phenomena presenting calculated values of eigen frequencies
in parametric form as function κ(h) in the fist sheet of the plane R,
see Fig. 6b. Note, the crossing of curves κ2(h) and κ3(h) occurs at the
point (1.6681,−0.3591) for different values of parameters hi, i = 2, 3.

One can see clearly the resemblance with diagrams for eigen
frequencies of close resonators and naturally the question about
degeneration and coupling of oscillation arises.

We have to remind here that similar situation had been already
revealed and discussed for open resonators [29], gratings [7] and open
waveguide resonators [30, 31]. Relying on the results, [7, 30, 31, 39]
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Figure 6. The spectral curves for TE modes, boundary a(y) =
sin2(y/2), ε2 = 5, µ2 = 1. In Fig. a) the spectral curves κi(h), i =
1, . . . , 4 are presented. In Fig. b) spectral curves κi(h), i = 1, . . . , 4 are
depictured in the plane R. The dashed lines correspond to the cuts
Eq. (23).
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we can treat the spectrum characteristics, presented in Fig. 6, as
the mode coupling phenomena. The “coupling” phenomena we treat
here as the mutual influence of eigen modes, resulting in the eigen
frequencies and Q factor variation and accompanied with appearance
in resonator “inter-mode” complicated field structures, corresponding
to eigen frequencies.

Here we remind that behavior of eigen frequencies, similar to
presented in Fig. 6, is coursed by the existence (in this parameter
range) of degeneracy points (DP) or/and Morse critical points (MCP)
of operator-function

f = det(I −H(k, h, εi, µi)), (33)

that is analytically continued into the domain of complex values of
h = h′ + ih′′.

The study of singular point of f(κ, h) in two-dimensional complex
space C2 would allow us to investigate purposefully the regions of
POR’s parameters where the spectrum curves come closer, and even
cross, each other. Those two types of singular points are rather natural
[7, 31, 39] for such situation.

In order to determine the coordinates of DP (κd, hd) we have to
find out the solution of the system{

f(κ, h) = 0; k = k′ + iκ′′

f ′
κ(κ, h) = 0; h = h′ + ih′′ . (34)

The eigen modes coupling phenomenon is well known in different
resonator devices. It displays as an abrupt change in Q factor
and as the transformation of internal resonator field structure when
the geometrical parameters are varying slightly. It has been shown
[7, 31, 39] that the availability of isolated MCP of the boundary value
problem operator function causes mode coupling. In order to find the
coordinates of MCP, it is necessary to solve the system{

f ′
κ(κ, h) = 0;
f ′
h(κ, h) = 0;

f ′′
κκ(κ, h)f ′′

hh(κ, h) − (f ′′
κh(κ, h))2 �= 0. (35)

The calculation of MCP provides us with the opportunity to
approximate the corresponding spectral curves in the (κm, hm) vicinity
by a rather simple quadratic form.

f ′′
κκ(κ, h) · (κ− κm)2 + 2f ′′

κh(κ, h)(κ− κm)(h− hm)
+f ′′

hh(κ, h)(h− hm)2 + 2δ + O3 = 0; (36)
δ = f(κm, hm) �= 0.
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Figure 7. The mode coupling phenomena. a(y) = sin2(y/2), ε2 =
5, µ2 = 1, H polarization. The behavior of eigen modes in the
vicinity of MCP: eigen frequencies (κ(h), Fig. a) and eigen fields
(|Hx(y, z)| = const, computed within one period, Fig. b) calculated
consequently in the points, indicated at the curves.

Where O3 = O((κ−κm)3 + (h−hm)3) denotes cubic small terms, and
f ′′
κκ, f

′′
κh, f

′′
hh; are calculated in the point (κm, hm).

In Fig. 7 the detailed piece of variation of eigen values within the
interval of parameters, where mode coupling occurs is presented. We
can see one of the forms of possible behavior (for details see [31, 39])
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of spectral curves: real parts of eigen values take a shape of Vienne
graphs, imaginary parts cross each other, the structure of eigen field
pattern changes gradually while following along one of the eigen values
curves, see point 1 and point 2; point 3 and point 4; in the same time
at eigen frequencies chosen at point 1 and at point 4, that belong
to the different eigen value curves the field patterns are practically
identical; the patterns calculated at eigen values taken from point 2
and point 3 reflect the ‘transition’ (or ‘hybrid’) character of the eigen
field structure.

The study of mode coupling for arbitrary profile periodic boundary
between two dielectric media is rather complicated and is actually a
new task that has to be fulfilled in the nearest future.

6.4. Spectral Properties of the Grating with Materials ε < 0
or/and µ < 0

Different situation in physics arrives to the study of the materials with
negative constitutive parameters [24, 25, 34, 35, 40–42].

The described above solution to the spectral and, naturally,
diffraction problem and corresponding to them complementary
algorithms, can simulate the electromagnetic field interaction in
materials, characterizing by ε < 0 or/and µ < 0, and we are able
to provide the “feedback” study: spectral diffraction characteristics.

In order to prove the efficiency and perspective advantages of such
a study we shall discuss here one result of the simulation that seems
to be rather distinctive for the materials with ε < 0 or/and µ < 0.

In Fig. 8 there are two characteristic cases of TM/TE waves
diffraction by periodic boundary between the two media, when one of
them (the second) has negative permeability Re(µ2) < 0 and ε2 = 2.25.
The Fig. 8a illustrates the resonance that appears for normal excitation
of the boundary, when Im(µ2) = 0. In this case the resonance may be
seen in the curve of arg (R00) for TM waves only, as we have total
reflection of the incident wave, and |R00| = 1.

By introducing the losses in the second medium we can make the
resonance to be manifested for the amplitude of reflection filed also,
see Fig. 8b. While oblique excitation, even with rather small angles,
say ϕ = 5, see Fig. 8c, the resonance splits into two ones, moving
from initial position in frequency into two different directions. The
amplitudes of evanescent harmonics in scattering field are suffering
pronounced resonant spikes also.

Naturally, similar situation emerges for TM polarized wave
diffraction by periodic medium with parameters Re(µ2) < 0, Re(ε2) >
0.
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Figure 8. The amplitude |R00| and phase argR00 of reflected
propagating harmonic: red curves correspond to TM modes, blue — to
TE modes. The corresponding eigen frequency κ = 0.813− i0, Φ = 0.

In contrast to the resonance appearing for TE modes, that has
been discussed above, this resonance does not disappear with depth of
grooves h decreasing, even for h ≈ 0.001, see Fig. 9, where the evolution
of resonances with h decrease (Fig. 9a) and various ε2 (Fig. 9b) is
presented. It is worthwhile to point out that the Q factor of this
resonance increases when h decreases. That allows us to conclude,
that resonances of the type are characteristic for periodic boundaries
and are connected with excitation of polaritons.

All these resonances have corresponding complex eigen frequencies
with κ′′ ≈ 10−8, that means within the algorithm accuracy these
resonances have real eigen frequencies.

For the special case, say for H polarized wave, when ε1, µ1 >
0, µ2 > 0; ε2 < 0 and |ε2| > |ε1|, under condition A0 � 1, (we shall
remind that A0 = 2πh/d) following approximation for this real valued
root can be obtained:

Reκ0 =

√
ε2
2 − ε2

1

ε1ε2(ε2µ1 − ε1µ2)
(1 + O(A0)), |Imκ0| = O(A2

0).

The eigen fields, corresponding to these resonances, are concentrated in
the vicinity of the boundary, see Fig. 10, where this type of resonances,
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Figure 10. The amplitude and phase of reflected propagating
harmonic for two different surfaces: a) TE modes, ε2 = −5+i0.1; µ2 =
1, eigen frequency is almost real valued κ = 0.89 + i0; b) TM modes,
ε2 = 2.25, µ2 = −5 + i0.1; κ = 0.818 + i0. The fragments of
electromagnetic field density in the vicinity of grating calculated at
the frequency of maximal absorption are presented above.

supplied with the eigen filed structures for two different shapes of
boundary are presented.

Among numerous results of computational experiments being
carried out for double negative materials we have chosen to present here
the absorption resonance appearing in diffracted field from periodic
surface of lefthanded material when incident plane electromagnetic
wave is almost parallel to the axis OY . Fig. 11a) shows the pronounced
resonance for rather smooth (h = 0.1d) periodic surface of lefthanded
(double negative) material illuminated with E polarized planes wave
with incidence angle ϕ = 88. The real valued resonant frequency may
be estimated for surface with A0 � 1 from approximate formula

κ ≈ 1/
(

sin(ϕ) +
√(

µ2
2 − 1

)
/

(
µ2

2 − ε2µ2
))

and for H polarized plane wave the resonance frequency may be defined
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0.5(1 + cos(y)); h = 0.1d. TM modes, ε2 = −0.2 − 0.01i; µ2 =
−1.5 + 0.01; incidence angle ϕ = 88◦, complex eigen frequency
κ = 0.4645 − i0.0012.
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approximately from

κ ≈ 1/
(

sin(ϕ) +
√(

ε2
2 − 1

)
/

(
ε2
2 − ε2µ2

))
.

When A0 � 1 these approximate values of resonant frequencies
are in good agreement with calculated ones by rigorous solution
(32). The eigen frequency of corresponding natural oscillation that
has been found out from the solution to spectral problem Eq. (32)
κ = 0.4656 − i0.0012 is in good correlation with diffraction resonance.
Periodic surface eigen field intensity is concentrated near the boundary
at the frequency κ = 0.466, corresponding to maximal electromagnetic
energy absorption; the field pattern |Ex(y, z)| = const is presented in
the Fig. 11b.

7. CONCLUSION

We have discussed several issues of C method that may prove its high
potential for various practical applications. Within the limited frames
of this paper we made our choice to provide the essential attention
to the mathematical issues of spectral problem and corresponding
algorithm descriptions. These items give reliable base for the study
of various applied and fundamental questions; among which we can
mention the study and apprehension of mode coupling; the properties
of Veselago (left handed) materials.
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