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c-myc is a cellular proto-oncogene associated with a variety of human cancers and is strongly implicated in
the control of cellular proliferation, programmed cell death, and differentiation. We have previously reported
the first isolation of a c-myc-null cell line. Loss of c-Myc causes a profound growth defect manifested by the
lengthening of both the G1 and G2 phases of the cell cycle. To gain a clearer understanding of the role of c-Myc
in cellular proliferation, we have performed a comprehensive analysis of the components that regulate cell cycle
progression. The largest defect observed in c-myc2/2 cells is a 12-fold reduction in the activity of cyclin
D1-Cdk4 and -Cdk6 complexes during the G0-to-S transition. Downstream events, such as activation of cyclin
E-Cdk2 and cyclin A-Cdk2 complexes, are delayed and reduced in magnitude. However, it is clear that c-Myc
affects the cell cycle at multiple independent points, because restoration of the Cdk4 and -6 defect does not
significantly increase growth rate. In exponentially cycling cells the absence of c-Myc reduces coordinately the
activities of all cyclin–cyclin-dependent kinase complexes. An analysis of cyclin-dependent kinase complex
regulators revealed increased expression of p27KIP1 and decreased expression of Cdk7 in c-myc2/2 cells. We
propose that c-Myc functions as a crucial link in the coordinate adjustment of growth rate to environmental
conditions.

Although c-myc was one of the first cellular oncogenes to be
discovered (8), its biology remains one of the most mysterious.
The influence of c-Myc on cell proliferation has been appre-
ciated for a long time (17), but the mechanisms by which it
exerts its effects on the cell cycle machinery are poorly under-
stood (85). The generation of a c-myc knockout mouse (21),
because of its early embryonic lethality, did not result in sig-
nificant insights. Unfortunately, all attempts to recover
c-myc2/2 cells from homozygous knockout embryos have been
frustrated by the outgrowth of cells that express one of the
other Myc family members, usually N-Myc. To overcome this
problem, we used gene targeting to eliminate c-myc expression
in a fibroblast cell line shown not to express the other family
members (73). The resultant c-myc2/2 cells are viable, but
their growth rate is reduced threefold, which explains the fail-
ure of recovery from knockout embryos.

How does c-myc affect growth rate? A number of genes have
been implicated as targets of c-Myc regulation (35, 41). This
collection includes both positively and negatively regulated
genes; however, the misregulation of this set of genes cannot
explain the diverse biological effects of c-Myc, strongly imply-
ing that additional target genes remain to be discovered (18).
The characterization of c-myc-null cells provides a unique op-
portunity to validate putative c-myc target genes already de-
scribed (13), as well as to hunt for new ones.

The c-Myc protein is a transcription factor with basic, helix-
loop-helix, and leucine zipper domains (9, 83). High-affinity
sequence-specific DNA binding requires the heterodimeric
partner Max (10, 56). Studies using Myc and Max proteins with
reciprocal complementary mutations in their leucine zippers
have shown that heterodimeric complex formation is required
for cell cycle progression, apoptosis, and transformation (2, 4).

In addition to its role as a transcriptional activator (3, 62, 95),
c-Myc has also been shown to participate in repression of
transcription (49, 67, 72, 88, 91). Several mechanisms of Myc-
dependent transcriptional repression have been proposed (69,
72, 80, 90, 99, 121), and the role of Max in Myc-mediated
repression is unclear.

The expression of the c-myc gene is closely correlated with
growth, and removal of growth factors at any point in the cell
cycle results in its prompt downregulation (22, 117). c-myc
expression is absent in quiescent cells but is rapidly induced
upon the addition of growth factors (17, 22, 58, 111, 117), and
ectopic expression in quiescent cells, under some conditions,
can elicit entry into S phase (30, 53, 112). Overexpression of
c-Myc in growing cells leads to reduced growth factor require-
ments and a shortened G1 phase (55), while reduced expres-
sion causes lengthening of the cell cycle (108). c-myc has been
shown to cooperate with activated ras to promote malignant
transformation of primary rodent cells (65).

The transition from G0 to S phase is controlled by a series of
sequential regulatory events. The expression of D-type cyclins
is an early event that is stimulated by growth factors or other
mitogens (76, 105, 118). D-type cyclins bind and activate the
cyclin-dependent kinases (Cdks) Cdk4 and Cdk6 (5, 74, 78). In
addition to cyclin binding, the activity of Cdks is also regulated
by posttranslational modifications and the binding of cyclin-
dependent kinase inhibitors (CKIs) (81, 82). The major targets
of the cyclin D-Cdk complexes are the retinoblastoma family of
proteins Rb, p107, and p130 (6, 7, 57, 77, 119). Phosphoryla-
tion of Rb in mid-G1 leads to the release of active forms of the
E2F family of transcription factors (15, 29, 42). Targets of E2F
identified to date include cyclin E, cyclin A, and many S phase-
specific genes, such as thymidine kinase and polymerase a (12,
26, 34, 59, 86, 87, 101). Cyclin E forms an active complex with
Cdk2, and this complex, which can also phosphorylate Rb, is
necessary for the orderly completion of the G1-to-S phase
transition (27, 40, 43, 61, 70).

The CKIs are currently classified in two groups (107). The

* Corresponding author. Mailing address: Department of Molecular
Biology, Cell Biology, and Biochemistry, Brown University, Provi-
dence, RI 02912. Phone: (401) 863-7631. Fax: (401) 863-1201. E-mail:
john_sedivy@brown.edu.

4672



first group, known as the CIP-KIP family, consists of the p21,
p27, and p57 proteins. These inhibitors require preformed
cyclin-Cdk complexes for binding and can inhibit all cyclin-Cdk
complexes in vitro (39, 66, 92, 93, 120). The second group of
inhibitors, known as the INK family, consists of the p15, p16,
p18, and p19 proteins. Unlike the CIP-KIP family, these in-
hibitors are active only on Cdk4 or -6-containing complexes. In
addition, binding of the INK proteins to Cdk4 or -6 is inde-
pendent of cyclins (14, 36, 37, 44, 103). Members of both
families of inhibitors have been shown to be important for
executing growth arrest signals in response to a variety of
signals, such as DNA damage, senescence, contact inhibition,
and transforming growth factor b treatment (107).

Despite its clear influence on cell proliferation, the mecha-
nisms by which c-Myc exerts its effects on the cell cycle ma-
chinery are not understood. It has been reported that c-Myc
can increase the expression levels of cyclins E and A and
repress the expression of cyclin D1 (38, 51, 89, 91, 110), but it
is likely that the majority of these effects are indirect. Several
recent studies have implicated c-Myc in the regulation of cyclin
E-Cdk2 complex activity in the absence of any changes in cyclin
E or Cdk2 expression (97, 112). Furthermore, c-Myc can pre-
vent growth arrest induced by the overexpression of p27 by
sustaining cyclin E-Cdk2 kinase activity (116). To explain these
results, it has been suggested that c-Myc induces the expression
of a hitherto-unidentified p27-sequestering protein which al-
lows cyclin E-Cdk2 complexes to remain active.

In order to more clearly understand the role of c-Myc in
promoting passage through the cell cycle, we have performed
a systematic analysis of key regulatory components in c-myc2/2

cells. The results presented here indicate that the absence of
c-Myc reduces the activity of all cyclin-Cdk complexes and that
cell cycle progression is affected at multiple independent
points. Cdk7 and p27KIP1 are implicated as downstream effec-
tors of c-Myc.

MATERIALS AND METHODS

Cell lines and culture conditions. TGR-1 is an hprt2 subclone of the Rat-1 cell
line (96). HO15.19 is a c-myc-null derivative of TGR-1 constructed by sequential
gene targeting (73). HOmyc3 is an HO15.19 derivative which constitutively
expresses murine c-Myc from a retroviral promoter. Cultures were grown in
Dulbecco’s modified Eagle’s medium supplemented with 10% calf serum (CS) at
37°C in an atmosphere of 5% CO2 (96). To obtain cells in the exponential phase
of growth, cultures were passaged under subconfluent (,50%) conditions for at
least two passages (minimum of three population doublings per passage). To
obtain quiescent cells, confluent cultures were serum starved in medium con-
taining 0.25% CS for 48 h. Cyclin transgenes were introduced in the retrovirus
vector LXSH (79) and were packaged in the C2 cell line (71). Following infection
of HO15.19 cells, colonies were selected with 150 mg of hygromycin per ml.
Colonies were ring cloned and expanded.

Analysis of the G0-to-S transition. To accurately monitor the G0-to-S transi-
tion, a standard time course protocol was established for all experiments. Expo-
nentially growing cells were seeded into the requisite number of dishes and
rendered quiescent as described above. Quiescent cultures were rinsed once with
prewarmed serum-free medium and stimulated with prewarmed medium con-
taining 10% CS. One sample was harvested immediately before serum addition
(the zero time point). Dishes were harvested at various times after serum stim-
ulation. In several experiments, data were normalized to equal cell numbers. The
cell number was determined by harvesting duplicate dishes with trypsin and
counting in a Coulter Counter.

RNase protection assays. Total RNA was prepared as described previously
(73). Templates for the in vitro synthesis of RNA were synthesized from TGR-1
genomic DNA by PCR, and RNA probes were generated as described previously
(73). Probes were specific to sequences in exon 1 of the cyclin D1, D3, and E
genes and to sequences in exon 5 of the cyclin A gene. A glyceraldehyde phos-
phate dehydrogenase (GAPDH) template was synthesized by PCR from a plas-
mid cDNA clone (108). RNase protection assays were performed with a Hyb-
Speed kit (Ambion). A 2.5- to 5-mg amount of total RNA was used per
hybridization reaction. Gels were imaged and quantitated with Fuji BAS-1000
phosphorimager. GAPDH was used as the internal control in all experiments.
Data were normalized to cell number by using a GAPDH standard curve (73).

Cdk assays. Cells at various time points were harvested with trypsin, washed
with ice-cold phosphate-buffered saline, and lysed for 2 h at 4°C in a buffer
containing 50 mM HEPES (pH 7.5), 150 mM NaCl, 2.5 mM EGTA, 1 mM
EDTA, 1 mM dithiothreitol (DTT), 10% glycerol, 0.1% Tween 20, and protease
and phosphatase inhibitors as described previously (75). Total protein concen-
trations were determined by using the Bradford assay (Bio-Rad). Individual
kinase assays were initiated with 500 mg of total extract protein for the immu-
noprecipitation of cyclins D1 and D3 and with 100 mg of total extract protein for
the immunoprecipitation of cyclins E, A, and B1 and of Cdk2 and Cdc2. All
immunoprecipitations utilized 1 mg of the appropriate antibody and 20 ml of
either Gamma-bind Sepharose (Pharmacia) or protein A-agarose (Sigma). Im-
munoprecipitations were performed for 2 h at 4°C. The beads were washed three
times with lysis buffer and twice with kinase buffer (50 mM HEPES [pH 7.5], 10
mM MgCl2, 1 mM DTT, and protease and phosphatase inhibitors). Assays were
performed in the presence of 5 mCi of [g-32P]ATP (6,000 Ci/mmol; NEN Du-
pont) and 20 mM cold ATP for 30 min at 25°C. One microgram of glutathione
S-transferase (GST)–Rb (31) was used as the substrate in Cdk4 and Cdk6 kinase
assays, and 2 mg of histone H1 (Boehringer-Mannheim) was used as the substrate
in Cdk2 and Cdc2 kinase assays. Following the kinase reaction, samples were
boiled in Laemmli sample buffer, separated by sodium dodecyl sulfate-polyac-
rylamide gel electrophoresis, and blotted onto Immobilon P membranes (Milli-
pore). Phosphorylated proteins were visualized by autoradiography, and quan-
titation was performed with a Fuji BAS-1000 phosphorimager. The membranes
were subsequently used for immunoblot analysis. Cdk-activating kinase reacti-
vation assays were performed on Cdk2 complexes as described previously (16).
Cdk2 immunoprecipitates were washed twice in lysis buffer and three times in EB
buffer (80 mM b-glycerol phosphate [pH 7.3], 20 mM EGTA, 15 mM MgCl2, 10
mM DTT, 1 mg of bovine serum albumin per ml, and protease inhibitors). Ten
nanograms of recombinant yeast Cak1p protein was added in 30 ml of EB
supplemented with 1 mM ATP. After 1 h at room temperature, the reaction was
stopped by addition of 1 ml of EB buffer. Immunoprecipitates were then washed
twice in EB buffer and twice in kinase buffer. The H1 phosphorylation Cdk2
reaction and analysis of the data were performed as described above.

EMSA. Nuclear extracts were prepared as described previously (97). Probes
were generated by annealing synthetic oligonucleotides and labeled in a fill-in
reaction with Klenow enzyme. Electrophoretic mobility shift assays (EMSA)
were performed with 4 mg of total nuclear protein extract as described previously
(51). To visualize free E2F, 0.8% deoxycholate was added to the indicated
reaction mixtures, which were then incubated on ice for 20 min. Nonidet P-40
was added to deoxycholate-treated samples to a final concentration of 1.5% prior
to electrophoresis.

Antibodies. The sources of antibodies were as follows: New England Biolabs,
phospho-specific mitogen-activated protein kinase (MAPK) (9101S); Oncogene
Research, p21 (Ab-5); Pharmingen, Rb (14001A); Santa Cruz, c-Fos (sc-52),
cyclin D1 (sc-450), cyclin D3 (sc-182), cyclin E (sc-481), cyclin E (sc-198), cyclin
A (sc-596), cyclin B1 (sc-245), Cdk4 (sc-260), Cdk2 (sc-163), Cdk6 (sc-177), p107
(sc-318), p130 (sc-317), E2F-1 (sc-193), E2F-2 (sc-633), E2F-3 (sc-878), E2F-4
(sc-866), E2F-5 (sc-999), p27 (sc-1641), and p16 (sc-1661); Upstate Biotechnol-
ogy, Cdc2 (06-194) and cyclin D (06-137); and Zymed, Cdk7 (13-8700). The p15
antibody was provided by Charles Sherr. Samples for immunoblotting were
prepared by direct rapid lysis in Laemmli sample buffer and analyzed as de-
scribed previously (38).

RESULTS

Activity of Cdks in growing cells. As the first measure of
potential cell cycle defects, we determined the activities of all
cyclin-Cdk complexes during steady-state exponential growth.
Cyclins D1, E, A, and B1, as well as Cdk2 and Cdc2, were
immunoprecipitated from cellular extracts, and the kinase ac-
tivities of the immunoprecipitates were determined by using
the appropriate substrates (Fig. 1A). c-myc2/2 (HO15.19) cells
displayed defects in the range of two- to fivefold in all kinase
activities. Reconstitution of c-Myc activity by retrovirus infec-
tion (cell line HOmyc3) corrected all of the observed kinase
defects and in some cases resulted in a modest increase in
activity relative to that in wild-type c-myc1/1 cells. The largest
defects were seen in cyclin E-associated activity and total Cdk2
activity. In c-myc2/2 cells cyclin E-associated activity was
equally defective whether histone H1 or Rb was used as the
substrate. These results indicate that the increased cell cycle
transition time observed in c-myc2/2 cells is caused by a mod-
est but coordinate downregulation of all major cyclin-Cdk
complexes.

To investigate possible causes of reduced Cdk activity, the
expression levels of cyclins, Cdks, and CKIs in growing cells
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were examined by immunoblotting (Fig. 1B). With the excep-
tion of cyclin D1, cyclin and Cdk expression levels were slightly
but reproducibly reduced in c-myc2/2 cells, and expression was
restored upon reconstitution of c-Myc activity. Cyclin D1 levels
were slightly elevated in c-myc2/2 cells. Examination of CKIs
showed that p16 expression was unchanged, p21 expression
was decreased, and p27 expression was elevated. Finally, ex-
pression of Cdk7, the catalytic subunit of the CAK complex,
was reduced, while the expression of its regulatory partner
(cyclin H) was unchanged. Expression of p21, p27, and Cdk7
has not been previously linked to c-Myc activity. Expression of
Max, Mad1, and Mnt was unchanged. Expression of Mad2-
Mxi, Mad3, and Mad4 could not be detected.

Activation of immediate-early events. Cell cycle entry of
quiescent cells begins with a rapid activation of several signal
transduction pathways followed by the activation of immedi-
ate-early genes. These events occur prior to the induction of
c-myc gene expression and should thus remain unaffected in
c-myc-null cells. We examined two representative components
of the immediate-early cascade: the activation of the MAPK
pathway and the induction of c-fos gene expression (Fig. 2).
Cells were made quiescent by a combination of serum depri-
vation and contact inhibition, and cell cycle reentry was elicited
by the addition of fresh whole serum (see Materials and Meth-
ods); this basic regimen was followed in all experiments inves-
tigating the G0-to-S transition. Both the kinetics and the mag-
nitude of MAPK activation as well as c-fos induction were
indistinguishable in c-myc1/1 and c-myc2/2 cells. Therefore,
loss of c-myc does not cause a generalized defect in signal
transduction pathways.

Induction of D-type cyclins and activation of Cdk4 and
Cdk6. The D-type cyclins are the first cyclins to be induced
during the G0-to-S transition. Expression of cyclins D1 and D3
was examined by RNase protection and immunoblotting (Fig.
3A and B). The kinetics of cyclin D1 and D3 mRNA induction
were the same in c-myc1/1 and c-myc2/2 cell lines. The induc-
tion ratios in c-myc1/1 cells were 20- and 3.5-fold for cyclins
D1 and D3, respectively. In c-myc2/2 cells, there were 2.3- and

2.7-fold reductions in cyclin D1 and D3 mRNA accumulation,
respectively. The magnitude of this reduction is the same as
previously observed for GAPDH mRNA and 28S rRNA dur-
ing the same cell cycle interval (13, 73). The induction profile
of cyclin D3 protein followed that of the mRNA; however,
c-myc2/2 cells accumulated somewhat more cyclin D1 protein
than c-myc1/1 cells (Fig. 3B). Although the magnitude of this
effect was small, it is the opposite of what was observed at the
mRNA level. No significant differences in the expression of
Cdk4 and Cdk6 proteins were observed between c-myc1/1 and
c-myc2/2 cells (Fig. 3B). Expression of cyclin D2 was not
examined in detail because Rat-1 cells do not express this
cyclin (98).

Activities of D-type cyclin-Cdk complexes were determined
by direct kinase assays. Cellular extracts were immunoprecipi-
tated with antibodies specific for either cyclin D1 or cyclin D3,
and kinase activities were assayed by using a recombinant Rb

FIG. 1. Cdk activities and expression of cell cycle effectors in exponentially growing cells. (A) Cdk activities. Complexes were immunoprecipitated from extracts with
the antibodies indicated at the bottom. The substrate used in the kinase assays (histone H1 or Rb) is indicated in parentheses. Cell lines: TGR-1, c-myc1/1; HO15.19,
c-myc2/2; HOmyc3, HO15.19 with reconstituted c-Myc expression. All data are normalized to the activity measured in TGR-1 immunoprecipitates. CycA, cyclin A.
Error bars indicate standard deviations of a minimum of two independent experiments. (B) Immunoblots of cyclin, Cdk, CKI, and Mad proteins. myc rec., HOmyc3.

FIG. 2. Immediate-early serum-induced events. (A) Phosphorylation of
Erk-1 and Erk-2 proteins. (B) Induction of c-Fos expression. Both events were
analyzed by immunoblotting; in panel A a phospho-specific MAPK antibody was
used. In panel B the higher-molecular-weight bands represent phosphorylated
forms of the c-Fos protein. Cell lines: TGR-1, c-myc1/1; HO15.19, c-myc2/2.
Time points are identified above each lane. Extract from an equal number of
cells was loaded in each lane.

4674 MATEYAK ET AL. MOL. CELL. BIOL.



substrate (Fig. 4A and B). The induction ratios of cyclin-asso-
ciated kinase activity in c-myc1/1 cells were 30- and 3.0-fold for
cyclins D1 and D3, respectively. The induction profiles of ki-
nase activities followed closely those of the cyclin mRNAs, in
terms of both the temporal kinetics and the overall magnitude
of the response. We estimated that approximately 90% of total
Cdk4 and Cdk6 activity was found in cyclin D1 complexes (data
not shown). A 12-fold defect in cyclin D1-associated kinase
activity was observed in c-myc2/2 cells; the defect in cyclin
D3-associated kinase activity was 3.4-fold. The dramatic defect
in cyclin D1-associated kinase activity was reproducible in four
independent experiments.

Phosphorylation of the Rb family of proteins. In order to
determine whether the observed decrease in cyclin D-associ-
ated kinase activity has physiological consequences, the phos-
phorylation status of Rb and the related p107 and p130 pro-
teins was examined by immunoblotting (Fig. 5). In c-myc1/1

cells, the shift from the faster-migrating, hypophosphorylated
forms of all three Rb family proteins to the slower-migrating,
hyperphosphorylated forms occurred within a narrow 2-h win-
dow between 6 and 8 h after serum stimulation. By 10 h after
serum stimulation, all three proteins were found in their hy-
perphosphorylated forms. In contrast, in c-myc2/2 cells, the
shift to the hyperphosphorylated forms was delayed, and the
time period during which the shift occurred was greatly ex-
tended. A complete shift to the hyperphosphorylated migra-
tion position was not observed until approximately 20 to 24 h
after serum stimulation in the case of Rb, while p130 was not
fully shifted even at 24 h. p107 phosphorylation was affected to
a lesser extent, but the hypophosphorylated form was still
clearly detectable in late G1. The delay in the onset of Rb
family protein phosphorylation and the increased time re-
quired for full phosphorylation are consistent with the reduced
activity of cyclin D-Cdk complexes.

Induction and activation of the E2F family of transcription
factors. Hypophosphorylated Rb, p107, and p130 bind to and
occlude the transactivation potential of E2F transcription fac-
tors. Rb binds to E2F-1, E2F-2, E2F-3, and E2F-4, while p107
and p130 bind to E2F-4 and E2F-5 (109). To determine the
functional consequences of the persistence of hypophosphor-
ylated Rb proteins at later times during the G0-to-S transition
in c-myc2/2 cells, we used EMSA to analyze cellular extracts
for E2F DNA-binding activity (Fig. 6A). Approximately equiv-
alent amounts of E2F-p130 complexes were present in extracts
of quiescent c-myc1/1 and c-myc2/2 cells. In c-myc1/1 cells
this complex disappeared between 6 and 8 h after serum stim-
ulation. This is the same time period during which p130 was
observed to shift from the hypophosphorylated to the hyper-
phosphorylated form. In c-myc2/2 cells the E2F-p130 complex
was clearly detectable at the 8-h time point and persisted at
lower levels until 16 to 20 h after serum stimulation.

p107 is known to form S phase-specific complexes with E2F,
cyclin A, and Cdk2 (24, 68). The E2F-p107 complex was first
detected in c-myc1/1 cells at 12 h and accumulated to appre-
ciable levels by 20 h after serum stimulation. In c-myc2/2 cells
this complex was not seen until 24 h, and then only at a
significantly reduced level. The appearance of the E2F-p107
complex correlated closely with initial S phase entry in both
c-myc1/1 and c-myc2/2 cells. The E2F-Rb complex was a rel-
atively minor band in extracts from both cell lines; conse-
quently, it is difficult to draw conclusions on differential ex-
pression. The most striking feature of the EMSA profiles was
the severely reduced free E2F DNA-binding activity in
c-myc2/2 cells, especially at late times after serum stimulation.

The expression of E2F-4 and E2F-5 is constant throughout
the cell cycle, whereas E2F-1, E2F-2, and E2F-3 are induced in
mid- to late G1 following serum stimulation (109). E2F activity
is known to be important for the correct temporal expression

FIG. 3. Cyclin and Cdk expression during the G0-to-S transition. (A) RNase protection analysis of cyclins D1 (CycD1) and D3. (B) Immunoblot analysis of cyclins
D1 and D3, Cdk4, and Cdk6. (C) RNase protection analysis of cyclins E and A. (D) Immunoblot analysis of cyclins E and A and Cdk2. Cell lines: TGR-1, c-myc1/1;
HO15.19, c-myc2/2. All data are presented on an equal-cell-number basis. (A and C) The fold induction is expressed relative to the TGR-1 zero time point. (B and
D) Time points are identified above each lane, and antibodies are indicated on the left.
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of certain S phase-specific genes, and it also participates in the
induction of the E2F-1 and E2F-2 genes by a feedback mech-
anism (47, 52, 102). Expression of all of the E2F proteins was
therefore analyzed by immunoblotting (Fig. 6B). No significant
difference in the expression levels of E2F-4 and E2F-5 was
observed; however, c-myc2/2 cells displayed a significant delay
in the induction of E2F-1, E2F-2, and E2F-3.

Induction of cyclins E and A and activation of Cdk2. Since
both the cyclin E and cyclin A genes have been shown to be
targets of E2F regulation (12, 34, 86, 101), their expression was
examined by RNase protection. In c-myc1/1 cells cyclin E
mRNA was induced between 6 and 8 h after serum stimula-
tion, and this induction was delayed by approximately 6 h in
c-myc2/2 cells (Fig. 3C). The maximum level of cyclin E
mRNA accumulation was 1.7-fold lower in c-myc2/2 cells. Cy-
clin A induction was even more severely affected, lagging by
approximately 12 h in c-myc2/2 cells (Fig. 3C). The expression
of both cyclin E and cyclin A proteins was examined by immu-
noblotting (Fig. 3D), and the induction profiles correlated well
with the RNase protection data.

Given the delay in cyclin induction, it was of interest to
determine the timing as well as the extent of associated kinase
activation. Cyclin E or Cdk2 was immunoprecipitated from
cellular extracts, and the associated kinase activity was deter-
mined with histone H1 as the substrate (Fig. 4C and D). Cyclin
E-associated kinase activity was first detected in c-myc1/1 cells

at 12 h after serum addition. The delay in activation in
c-myc2/2 cells was approximately 6 h, and the maximum level
of activity was fourfold lower. Induction of total Cdk2 activity
was delayed by approximately 8 h, and the maximum activity
was twofold lower.

Immunoblotting did not reveal any clear differences in levels
of total Cdk2 protein expression (Fig. 3D); however, changes
in the migration positions were observed. In c-myc1/1 cells,
more than half of the total Cdk2 protein shifted to a faster-
migrating position by 12 h after serum addition, and the ratio
of slower- and faster-migrating forms further increased by 18 h.
In c-myc2/2 cells, however, the appearance of the faster-mi-
grating Cdk2 band was greatly delayed, and the ratio of the two
forms remained in favor of the slower-migrating form for as
long as 40 h after serum stimulation. It is believed that the shift
to higher mobility is due to phosphorylation of Thr 160 of
Cdk2 by CAK and that this represents the active form of the
enzyme (104). The mobility shift of Cdk2 therefore correlated
well with the direct assay of its activity and pointed to a CAK
defect as at least one cause of reduced activity.

Regulation of Cdk complex activity by CAK and p27. The
presence of reduced levels of Cdk7 and increased levels of p27
in c-myc2/2 cells provide one possible explanation for the
global reduction in Cdk activity. To investigate whether CAK
activity may be limiting in cells, Cdk2 complexes were immu-
noprecipitated from exponentially growing cells, incubated in

FIG. 4. Cdk activities during the G0-to-S transition. (A) Cyclin D1 immunoprecipitates (IP). (B) Cyclin D3 immunoprecipitates. (C) Cyclin E immunoprecipitates.
(D) Cdk2 immunoprecipitates. Complexes were immunoprecipitated from extracts containing equal amounts of total protein, and kinase assays were performed with
either a GST-Rb substrate (A and B) or a histone H1 substrate (C and D) as described in Materials and Methods. Cell lines: TGR-1, c-myc1/1; HO15.19, c-myc2/2.
The fold induction is expressed relative to the TGR-1 zero time point. The kinase assays shown are representative of three independent experiments.
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the presence or absence of active recombinant CAK, and as-
sayed for histone H1 phosphorylation activity (Fig. 7). Cdk2
activity from c-myc1/1 cells was stimulated 2.4-fold by CAK.
As previously shown (Fig. 1A), Cdk2 activity was lower in
c-myc2/2 cells; this activity could also be stimulated by CAK,
but to a lesser degree than that in c-myc1/1 cells. Finally, even
the elevated Cdk2 activity levels found in c-myc2/2 cells with
reconstituted c-Myc expression (Fig. 1A) could be further stim-
ulated with CAK. In an independent experiment, Cdk2 com-
plexes immunoprecipitated from cells at various times during
the G0-to-S transition (including the time of peak activity)
could be further stimulated (threefold) by CAK (data not
shown). These results clearly indicate that even in normal
(c-myc1/1) cells, CAK activity is not saturating, suggesting that
a fraction of fully assembled Cdk complexes are inactive be-
cause they lack the activating CAK phosphorylation.

The fact that CAK phosphorylation of Cdk2 complexes from
c-myc1/1 and c-myc2/2 cells could not increase their activity to
the level observed in c-Myc-overexpressing cells indicated the
existence of a negative effector whose expression was likewise
affected by c-Myc. The expression of p27, and its dependence
on c-Myc expression, was therefore carefully examined in ex-
ponentially growing cells as well as during the G0-to-S transi-
tion. RNase protection during the G0-to-S progression showed
a rapid drop in p27 mRNA levels in c-myc1/1 cells, falling
2.5-fold within 2 h and 5-fold within 6 h of serum stimulation
(Fig. 8A). In contrast, p27 mRNA levels remained constant in
c-myc2/2 cells over a period of 24 h. Immunoblotting of p27
protein produced consistent results (Fig. 8B). Under exponen-
tial growth conditions, c-myc2/2 cells displayed 2.2-fold-ele-
vated p27 mRNA levels (Fig. 8C). This data is consistent with
the increased levels of p27 protein observed in c-myc2/2 cells
under these conditions (Fig. 1B).

Formation of Cdk complexes was examined by immunopre-
cipitation with cyclin D1, D3, E, or A antibodies followed by
immunoblotting with the corresponding Cdk antibody. No sig-
nificant differences were detected between c-myc1/1 and
c-myc2/2 cells in the amounts of any cyclin-Cdk complex (data
not shown). However, cyclin D1-Cdk4 and -Cdk6 complexes
during the G0-to-S transition contained clearly elevated levels
of p27 (Fig. 8D). The expression of CKI proteins in the INK4
family as well as in the CIP-KIP family was also examined by
immunoblotting during the G0-to-S transition (data not
shown). p15 and p16 were clearly detectable, but no differences
in their expression levels were observed. The expression levels
of p18, p19, and p57 were too low to be detected by immuno-
blotting. The levels of p21 protein were lower in c-myc2/2 cells;
this is consistent with the decreased expression level found in
exponentially cycling cells (Fig. 1B).

Ectopic overexpression of cyclins D1, E, and A. In an at-
tempt to restore normal growth in c-myc2/2 cells, we intro-
duced retrovirus vectors expressing human cyclin cDNAs. We
isolated numerous clonal cell lines, each expressing a single
human cyclin transgene. All clones were screened by immuno-
blotting for the expression of the exogenous cyclin protein, and
cell lines with the highest expression levels were chosen for

FIG. 5. Phosphorylation of Rb family members during the G0-to-S transition.
Samples were taken at the time points indicated above each lane and analyzed by
immunoblotting. Cell lines: TGR-1, c-myc1/1; HO15.19, c-myc2/2. Protein from
an equal number of cells was loaded in each lane.

FIG. 6. E2F DNA-binding activity and protein expression during the G0-to-S transition. (A) E2F DNA-binding activity measured by EMSA. Cell lines: TGR-1,
c-myc1/1; HO15.19, c-myc2/2. The times at which samples were collected are identified above the lanes. 1DOC, addition of 0.8% deoxycholate to the reaction mixture.
The identities of E2F complexes are marked by arrows between the panels and were determined by supershifts with the indicated antibodies. (B) Immunoblot analysis
of E2F family members. The antibodies used are indicated on the left.
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further analysis (Fig. 9A). In no case did we observe reversion
of the slow-growth phenotype. However, overexpression of
cyclin D1 restored the kinetics of Rb phosphorylation to nor-
mal (Fig. 9B). In one cyclin D1-overexpressing cell line
(HO15D2), Rb phosphorylation was actually accelerated rela-
tive to that in c-myc1/1 cells, such that the majority of Rb
protein was in the hyperphosphorylated form by 6 h after
serum stimulation. However, despite the precocious Rb phos-
phorylation, the growth rate was hardly affected: the doubling
times were 50.1 h for the empty vector control (HO15LX4)
and 41.5 h for the cyclin D1-overexpressing cells (HO15D2). In
this context, it is important to note that the doubling time of
parental TGR-1 cells is 17.7 h (73), and it is 18.8 h following
reconstitution of c-myc in the knockout cells (HOmyc3).
Therefore, c-Myc must affect cell cycle progression at addi-
tional points downstream of Cdk4 and -6 activation.

DISCUSSION

c-Myc is required for the serum-induced activation of Cdk4
and -6 complexes. The largest defect observed in c-myc2/2

cells is a 12-fold reduction in the activation of cyclin D1-Cdk4
and -Cdk6 complexes during the G0-to-S transition. Prior work
has demonstrated the influence of c-Myc overexpression on the
activity of cyclin D1-Cdk4 (112), cyclin E-Cdk2 (89, 97, 100,
112), and cyclin A-Cdk2 (46, 100) complexes. The effect on
Cdk4 and -6 activation during the G0-to-S transition is tempo-
rally the earliest cell cycle effect of c-Myc demonstrated to
date. The induction of D-type cyclins and the activation of
Cdk4 and -6 occurs at 4 to 6 h and 6 to 8 h, respectively, after
the stimulation of c-myc1/1 cells with serum. These events thus
follow very closely the peak of c-myc expression at 4 h (108).
The expression of D-type cyclins is very responsive to growth
factor stimulation, which has led to suggestions that cyclin
D-Cdk4 and -Cdk6 complexes constitute a regulatory link be-
tween the extracellular environment and cell cycle progression
(105, 106). Given the strong influence of c-Myc on cell growth,
the linkage between c-Myc and Cdk4 and -6 activation is a very

intriguing finding. This linkage provides a plausible physiolog-
ical explanation for the observation that in c-myc2/2 cells Cdk4
and -6 activity is affected only modestly during exponential
growth, whereas the defect is much more pronounced during
the G0-to-S transition. In steady-state growth with optimal
serum supplementation, the activity of Cdk4 and -6 varies only
minimally during the cell cycle, and c-myc is expressed consti-
tutively at basal levels. In contrast, exit from quiescence re-
quires widespread changes in gene expression as cellular me-
tabolism is adjusted to support active growth; these changes
apparently require significant activation of Cdk4 and -6, which
is closely preceded by a strong induction of c-myc expression.
Basal levels of Cdk4 and -6 activity apparently do not require
c-Myc and are sufficient for proliferation, albeit at much re-
duced levels.

In contrast to the decrease in cyclin D1 mRNA, we repro-
ducibly observed a slight increase in the accumulation of cyclin
D1 protein, both in exponentially growing cells and during the
G0-to-S transition. The increase in cyclin D1 protein levels was
accompanied by a slight increase in the amount of immuno-
precipitable cyclin D1-Cdk4 and -Cdk6 complexes. This is in
agreement with prior observations that Cdk4 and -6 are
present in excess of cyclin D1 and that cyclin D1 is rate limiting
for the assembly of the complexes (75, 98). A likely explanation
for the discrepancy between the levels of cyclin D1 mRNA and
protein is stabilization of the protein to turnover. Cyclin D1 is
known to be degraded by the ubiquitin pathway, and its deg-
radation is enhanced by phosphorylation on threonine 286 by
glycogen synthase kinase 3b (GSK-3b) (25). It is possible that
the inactive cyclin D1-Cdk4 and -Cdk6 complexes that accu-
mulate in c-myc2/2 cells are recognized less well by GSK-3b or
that the activity of GSK-3b itself is reduced in c-myc2/2 cells.

Loss of c-Myc affects the activity of all Cdk complexes.
During the G0-to-S transition, loss of c-Myc activity resulted in
the delayed appearance of cyclin E-Cdk2 activity as well as
cyclin A-Cdk2 activity. The induction of cyclin E and A gene
expression was coordinately delayed, indicating that the delay
in Cdk2 activation was caused by a delay in the appearance of
its positive effectors, cyclins E and A. The magnitude of induc-
tion of Cdk2 activity was also reduced, but not as substantially
as the activity of Cdk4 and -6. During exponential growth, loss
of c-myc reduced coordinately the activity of all cyclin-Cdk
complexes by a factor of two- to fivefold. We know of no other
cell cycle regulator with such a pleiotropic phenotype. The
emerging picture of the c-myc2/2 phenotype has distinct par-
allels with the shift of yeast from growth on good to poor
carbon sources (23). The decrease in yeast growth rate is ac-
companied by a modest but coordinate downregulation of all
cyclin genes; the G1 cyclins CLN1 and CLN2 were most
strongly affected (3.81- and 4.42-fold, respectively), while the
effects on the remainder of the cyclins (CLN3 and CLB1 to 6)
were in the 1.5- to 2-fold range. In c-myc2/2 cells under expo-
nential growth conditions, the largest defect was in cyclin E-
Cdk2 activity, and this activity was also most sensitive to c-Myc
overexpression. It is important to note that c-myc2/2 cells do
not display a generalized defect in macromolecular synthesis;
during steady-state exponential growth, cell volume, total pro-
tein, and rRNA content are the same in c-myc1/1 and
c-myc2/2 cells (73). Furthermore, the expression of numerous
housekeeping genes, such as those for GAPDH and the ribo-
somal protein L32, is not changed.

c-Myc affects cell cycle progression at multiple independent
points. It is often observed that a single primary regulatory
defect can elicit pleiotropic phenotypes by a cascade of down-
stream effects. For example, c-Myc could act primarily at the
point of Cdk4 and -6 activation but cause more generalized

FIG. 7. Activation of Cdk2 complexes with CAK. Cdk2 complexes were im-
munoprecipitated from exponentially growing cells with Cdk2 antibodies, incu-
bated with active Cak1p, and assayed for histone H1 phosphorylation activity, as
described in Materials and Methods. Cell lines: TGR-1, c-myc1/1; HO15.19,
c-myc2/2; HOmyc3, HO15.19 with reconstituted c-Myc expression (myc recon-
str.). All data are represented as percentages of the activity measured in TGR-1
immunoprecipitates without CAK addition.
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effects by interfering with the activation of E2F and perhaps
additional downstream regulators. The strong defect in Cdk4
and -6 activation during the G0-to-S transition necessitated a
direct test of this hypothesis, which was performed by ectopi-
cally expressing cyclin D1 by using retrovirus vectors. The
rationale for this experiment was provided by observations,
made in several laboratories, that cyclins are limiting for the
assembly of cyclin-Cdk complexes (75, 98). For example, in
normal cells overexpression of cyclins has been observed to
increase Cdk kinase activity (75), and cyclin overexpression in
yeast could rescue a partial CAK defect both in G1 and in G2

(54, 113). Our results showed that while overexpression of
cyclin D1 restored normal Rb phosphorylation, the growth rate
in exponential phase was only minimally affected. Likewise, the
overexpression of cyclins E and A did not accelerate normal
growth. The conclusion that c-Myc affects the cell cycle at
multiple points is also supported by the observation that de-
spite extensive, long-term passaging of c-myc2/2 cells in sev-
eral laboratories, revertants to faster growth have never been
recovered.

Loss of c-Myc affects the expression of Cdk effectors p27 and
Cdk7. The expression of the CKI p27KIP1 was elevated two- to
threefold in c-myc2/2 cells; in contrast, the expression of Cdk7,
the catalytic subunit of CAK, was reduced by the same mag-
nitude. p27 is a potent inhibitor of Cdk2 (93) and has been
linked to cell cycle regulation in response to contact inhibition
(92). Knockout studies indicate that p27 is at least partially

haplo-insufficient (28, 32, 60, 84); in other words, p271/2 ani-
mals as well as cells derived from them display a distinct re-
laxation of cell cycle controls. The effect of p27 on Cdk4 and -6
complexes is currently not clear. Although p27 binds to these
complexes, it has been reported that it does not inhibit their
activity (11, 116). However, at least in NIH 3T3 cells, the
activity of Cdk4 and -6 complexes may be inhibited by elevated
p27 expression (64). We detect significantly increased levels of
p27 in cyclin D1-Cdk4 and -Cdk6 complexes in c-myc2/2 cells
during the G0-to-S transition. Therefore, p27 is a good candi-
date for a global cell cycle effector whose regulation over a
small range of expression could affect cell cycle progression.

The expression of neither Cdk7 nor CAK activity is subject
to regulation as part of the intrinsic cell cycle (94, 114). How-
ever, both Cdk7 expression and CAK activity have been shown
to be downregulated in quiescent cells and to be induced after
serum stimulation in NIH 3T3 cells (94). Some cancer-derived
cell lines express three- to fivefold-higher levels of Cdk7 than
nontransformed cells (114). Recently, Cdk7 was identified as
the product of a serum-inducible gene with late kinetics in a
cDNA microarray analysis of human fibroblasts (50). We have
shown that expression of Cdk7 is reduced in c-myc2/2 cells by
a factor of two- to threefold. More importantly, Cdk2 com-
plexes immunoprecipitated from c-myc1/1 cells could be acti-
vated 2.4-fold by incubation with recombinant CAK. This re-
sult indicates that CAK activity is not saturating even in normal
(c-myc1/1) cells and that a fraction of fully assembled Cdk

FIG. 8. Expression of p27 and assembly into Cdk4 and -6 complexes. (A) RNase protection analysis during the G0-to-S transition. (B) Immunoblot analysis during
the G0-to-S transition. (C) RNase protection analysis in exponentially growing cells. (D) Presence of p27 in cyclin D1-Cdk4 and -Cdk6 complexes during the G0-to-S
transition. Complexes were immunoprecipitated (IP) with cyclin D1 antibody from extracts containing equal amounts of total protein and subsequently analyzed by
immunoblotting with p27 antibody. Equal loading of lanes was demonstrated by subsequent reblotting with Cdk6 antibody. Cell lines: TGR-1, c-myc1/1; HO15.19,
c-myc2/2.
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complexes are inactive because they lack the activating CAK
phosphorylation. Given the fact that CAK acts catalytically on
Cdk complexes, even a small change in CAK steady-state levels
could translate into physiologically relevant changes in global
Cdk activity.

The assembly of any cyclin-Cdk complex was not impaired.
The normal accumulation of cyclin D1-Cdk4 and -Cdk6 com-
plexes also suggests that the INK family of inhibitors is not
responsible for the low activity of the complexes, since it has
been shown that the bindings of cyclin D1 and INK family
proteins to Cdk4 and -6 are mutually exclusive (19). In agree-
ment, we did not detect any differences in the steady-state
levels of p16 or p15 in c-myc2/2 cells. We did detect reduced
p21CIP1 expression in c-myc2/2 cells. It has been proposed that
p21 may act as an assembly factor for cyclin-Cdk complexes
(63); however, since the assembly of cyclin-Cdk complexes was
not impaired in c-myc2/2 cells, the role of p21 needs to be
further investigated.

The Cdc25A phosphatase acts to activate Cdks by dephos-
phorylating the Y17 residue (48, 115). It has been reported
that c-Myc regulates the expression of Cdc25A at the transcrip-
tional level (33), but this observation has not been reproduced
by others (1, 89, 97, 116). Furthermore, the expression of both
Cdc25A mRNA and protein is the same in c-myc1/1 and
c-myc2/2 cells (13).

Genes regulated by c-Myc. In all cases studied here, the
effects on gene expression in c-myc2/2 cells were modest (two-
to threefold), and in no case was expression dependent solely
on c-Myc. It is very unlikely that all of the changes in gene
expression manifested in c-myc2/2 cells are direct effects of
regulation by c-Myc protein. Some genes, such as those for
cyclin D1 (20, 91, 110), p21 (45), and E2F-2 (102), contain E
boxes in their regulatory regions and may respond to c-Myc
directly. Both p21 and E2F-2 have been shown to respond to
regulation by E2F, and thus the defect in their expression may
be linked to the generalized defect in E2F activity. The cyclin
E and cyclin A genes also respond to activation by E2F and do

not contain obvious E boxes. The p27 gene contains an initi-
ator element in its promoter and may thus respond to c-Myc in
this manner (69). The murine Cdk7 promoter is TATA-less
and GC rich and contains a single consensus E box approxi-
mately 150 bp downstream from the start of transcription
(108a). The human Cdk7 promoter has the same features, and
the E box is perfectly conserved (84a). While this does not
establish Cdk7 as a Myc-regulated gene, it certainly makes this
possibility worth further investigation.

Perhaps the most enduring mystery of c-Myc has been the
identity of its target genes. The availability, for the first time, of
c-myc-null cells provides an exciting new framework for ad-
dressing this key issue. In this communication we provide the
first comprehensive analysis of the changes in gene expression
that result from loss of c-Myc function. The complex nature of
these changes presents a challenge for the future to differen-
tiate direct and indirect targets of c-Myc, as well as to identify
new ones. The study presented here also sheds new light on the
biological activities of c-Myc. We propose that c-Myc is a
crucial link that functions in the coordinate adjustment of cell
cycle progression to environmental conditions.
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