
C-Planarity of Extrovert Clustered Graphs�

Michael T. Goodrich, George S. Lueker, and Jonathan Z. Sun

Department of Computer Science,
Donald Bren School of Information and Computer Sciences,

University of California, Irvine, CA 92697-3435, USA
{goodrich, lueker, zhengsun}(at)ics.uci.edu

Abstract. A clustered graph has its vertices grouped into clusters in a
hierarchical way via subset inclusion, thereby imposing a tree structure
on the clustering relationship. The c-planarity problem is to determine if
such a graph can be drawn in a planar way, with clusters drawn as nested
regions and with each edge (drawn as a curve between vertex points)
crossing the boundary of each region at most once. Unfortunately, as
with the graph isomorphism problem, it is open as to whether the c-
planarity problem is NP-complete or in P. In this paper, we show how
to solve the c-planarity problem in polynomial time for a new class of
clustered graphs, which we call extrovert clustered graphs. This class is
quite natural (we argue that it captures many clustering relationships
that are likely to arise in practice) and includes the clustered graphs
tested in previous work by Dahlhaus, as well as Feng, Eades, and Cohen.
Interestingly, this class of graphs does not include, nor is it included
by, a class studied recently by Gutwenger et al.; therefore, this paper
offers an alternative advancement in our understanding of the efficient
drawability of clustered graphs in a planar way. Our testing algorithm
runs in O(n3) time and implies an embedding algorithm with the same
time complexity.

1 Introduction

A clustered graph (or c-graph) consists of a pair C = (G, τ), where G = (V, E)
is an undirected graph having vertex set V and edge set E, and τ is a rooted
tree defining a hierarchy of vertex clusters, which are subsets of V organized
hierarchically by subset inclusion. That is, each node of τ represents a cluster
that is a subset of V (with the root of τ representing V), and the ancestor-
descendant relation of two nodes corresponds to the inclusion relation of two
clusters. Any two clusters in this hierarchy are either disjoint or one is completely
included in the other. We refer to G and τ as being the underlying graph and the
inclusion tree of C, respectively. Throughout this paper, we reserve the Greek
letters ν and µ for clusters and the Roman letters x and y for vertices.

Clustered graphs arise naturally from any context where a hierarchy is imposed
on a set of interrelated objects. Naturally, we would like to visualize the hierarchical
� This is an extended abstract. Work by the first and the third authors is supported

by NSF Grants CCR-0225642 and CCR-0312760.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 211–222, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

212 M.T. Goodrich, G.S. Lueker, and J.Z. Sun

information and relationships that are represented in a clustered graph, and a way
of doing so with minimal confusion is to draw the clustered graph in a planar way.
Deciding if such a drawing is possible is one of the most interesting problems in-
volving clustered graphs, and was posed by Feng, Eades and Cohen [12]. Formally,
this problem, which is called the c-planarity problem, asks if C can be drawn (or
embedded) in the plane satisfying the following criteria:

1. There is no crossing between any edges of the underlying graph G.
2. Each cluster ν ∈ τ can be enclosed in one simple closed region by a closed

curve b(ν) which is called the boundary curve of ν.
3. There is no crossing between boundary curves of any two clusters.
4. There is exactly one crossing between an edge (x, y) and a boundary curve

b(ν) if x ∈ ν and y �∈ ν. Otherwise there is no crossing between an edge and
a boundary curve.

Such a drawing is called a c-planar drawing, and a clustered graph is c-planar
iff it admits such a drawing. Clustered graphs and c-planar drawings bear both
significance in theory and interest in practice. For example, if we visualize the
communication network of a company such that the vertices, clusters, and edges
represent respectively workstations, departments, and communications between
two workstations, clearly we want a simple region and single boundary curve
for each department and no crossings except those in the above Criterion 4,
so that, for any department, we can identify (e.g., for monitoring, blocking, or
firewalling) that department’s external communications just by looking at the
boundary curve of the corresponding cluster. Another example application is in
VLSI, where in addition to designing a planar circuit, we might want to piece
each functional module together in a hierarchical way.

While the problem of determining if a given graph is planar is well-known to
be solvable in linear time (e.g., see [3, 14, 17]), the general c-planarity problem

(a) (b) (c)

x4
x3

x5x6

x2x1

1 2

31 2

x4
x6

x5x3

x2x1

x4
x3

x5x6

x2x1

x4
x3

x5x6

x2x1

Fig. 1. (a) A c-graph C with 5 clusters µ1 = {x1}, µ2 = {x2}, µ3 = {x3, x4, x5, x6},
ν1 = {x3, x5} and ν2 = {x4, x6}, and the inclusion tree τ . C is not c-planar although
the underlying graph is planar. (b) Removing any edge of the underlying graph will
make C c-planar. (c) Splitting cluster ν1 or ν2 will also make C c-planar.

C-Planarity of Extrovert Clustered Graphs 213

is not known to be solvable in polynomial time. In particular, the existence of
boundary curves makes the c-planar testing and embedding significantly harder
than simply testing a graph for planarity. In Fig. 1, for example, the c-graph
in (a) is not c-planar although the underlying graph is obviously planar, but
removing one edge or splitting one cluster in this c-graph will make it c-planar,
as illustrated in (b) and (c).

Although a number of papers have addressed the problem of how to draw a
c-planar c-graph in the plane [1, 6, 7, 8, 9, 10], very little progress has been made
in testing the c-planarity of a given c-graph. Previous work provides effective
tests only for a few special classes of c-graphs [4, 5, 12, 13]. In this paper we
define and test a new class of c-graphs, which generalizes the result in [5, 12]
but is not comparable with [4, 13]. The general problem is still open. So far the
testing problem and the embedding problem appear to be equivalent in all solved
cases (since each testing algorithm implies an embedding algorithm), so we don’t
distinguish them unless necessary.

1.1 Previous Results

Let G(ν) be the subgraph of G induced by cluster ν. (ν is a node in τ and
an associated set of vertices in V .) Then ν is a connected cluster iff G(ν) is a
connected subgraph. Otherwise ν = (ν1, . . . , νk) is a disconnected cluster, where
each G(νi) is a connected component of G(ν).1 That is, each νi is a set of vertices
in a connected component of G(ν). For simplicity, we call νi a chunk of ν. A
connected cluster is considered to have itself as the only chunk, i.e., ν = (ν1)
when ν is connected. C is c-connected iff all clusters in τ are connected.2 The
c-planarity problem for c-connected c-graphs was solved in O(n2) time by Feng,
Eades and Cohen [12], and then in linear time by Dauhlhaus [5]. For general
c-graphs, it is unknown if the problem is NP-hard or not. Gutwenger et al. [13]
solved in O(n2) time the case of almost c-connected c-graphs, namely, those c-
graphs in which either each disconnected cluster ν ∈ τ has its parent and all
siblings connected, or all disconnected clusters lie on a path in τ . Cortese et
al. [4] recently solved in polynomial time another special case, which we call the
cycles of clusters, where the underlying graph is a cycle and the clusters at each
level of the inclusion tree, when contracted into vertices, also form a cycle. To
the best of our knowledge, these three classes of c-graphs are the only ones for
which c-planarity has been tested in polynomial time.

1.2 Extrovert C-Graphs

We introduce the concept of classifying the disconnected clusters into extrovert
and introvert, and will later solve the c-planarity problem for the case that all
disconnected clusters are extrovert.
1 In this paper, we will always use superscripts to denote the partition of an object,

and subscripts to distinguish different objects.
2 The previous papers simply used the term connected instead of c-connected, but

we consider it desirable to introduce the new terminology to distinguish between a
connected graph G and a c-connected c-graph C.

214 M.T. Goodrich, G.S. Lueker, and J.Z. Sun

An edge (x, y) ∈ E(G) is called an extrovert edge of a cluster ν iff x ∈ ν
and y �∈ ν.3 We call x an extrovert vertex of ν in this case. We denote by E∗

ν

and V ∗
ν respectively the sets of extrovert edges and extrovert vertices of ν. For a

subset ν0 ⊂ ν, we denote by E∗
ν (ν0) and V ∗

ν (ν0) respectively the corresponding
subsets of E∗

ν and V ∗
ν , i.e., E∗

ν (ν0) = {e ∈ E∗
ν : e is incident on a vertex of ν0}

and V ∗
ν (ν0) = V ∗

ν ∩ ν0.

Definition 1. (extrovert chunks, clusters, and c-graphs)

– A chunk νi of a disconnected cluster ν = (ν1, . . . , νk) is an extrovert chunk
iff the parent cluster µ of ν is connected, and E∗

µ(νi) �= ∅.
– A disconnected cluster ν = (ν1, . . . , νk) is an extrovert cluster iff each chunk

νi, i ∈ {1, . . . , k}, is extrovert.
– C = (G, τ) is an extrovert c-graph iff all clusters in τ are either connected

or extrovert.

Otherwise the corresponding chunks, clusters and c-graphs are introvert. (See
Fig. 1 (a) for example of an extrovert c-graph with extrovert clusters ν1 and ν2.)

Like the almost-connected c-graphs of [13], extrovert c-graphs include the class
of c-connected c-graphs. Extrovert c-graphs appear to allow a greater degree of
disconnectivity than almost-connected c-graphs, since many sibling clusters are
allowed to be disconnected. Extrovert c-graphs are also more flexible than the
cycles of clusters of [4].

Extrovert c-graphs are a significant generalization of c-connected c-graphs,
and we hope they will find use in practice. Intuitively, why might several chunks
of a cluster need be drawn together (in the same cluster) when they have no
relationships (edges) between them? Perhaps it is because they have similar
relationships to entities outside of the cluster. Thus, since our definition requires
each chunk of a disconnected cluster ν to have at least one edge going out of the
parent cluster of ν, we might expect that this sort of situation arises in practice.

2 Preliminaries

2.1 PQ-Tree and PQ-Reduction

A PQ-tree [3] T (U) is a tree on a set U of n leaves that has two types of internal
nodes, P-nodes and Q-nodes, where a P-node can permute its children arbitrarily
but a Q-node can only reverse the order of its children. Various combinations
of permuting the children of the P-nodes and reversing the order of children of
some the Q-nodes result in various permutations of U at the tree leaves. The set
of all achievable permutations of the leaves is called the consistent set of T (U)
and is denoted by CONSISTENT(T (U)). We say that a subset S ⊆ U of leaves
in T (U) is consecutive in a permutation π of U if the elements in S appear as a
consecutive subsequence in π. PQ-trees support a reduction operation

PQ-REDUCE(T (U), S) (1)

3 An extrovert edge is called a virtual edge in [12].

C-Planarity of Extrovert Clustered Graphs 215

that returns a new PQ-tree whose consistent set contains exactly those elements
of CONSISTENT(T (U)) in which S is consecutive; if there are no such elements
the operation fails.

2.2 Circular Permutations

Suppose we wish to read off the order in which a set of elements appear on
the circumference of a circle. Depending on where we start, and whether we
read clockwise or counterclockwise, we can obtain various permutations; we will
say these permutations are circularly equivalent. For example, the permutations
(3, 5, 2, 4, 1, 6), (2, 4, 1, 6, 3, 5), and (5, 3, 6, 1, 4, 2) are circularly equivalent. We
call an equivalence class of this relation a circular permutation. We say any
element of the equivalence class is a representative of the circular permutation.
Informally, a circular permutation represents the order of objects that appear
around a circle.

Say a set S is consecutive in a circular permutation π if it is consecutive in
any representative of π. Informally, this means that the elements of S appear
consecutively around the circle.

2.3 PC-Trees and PC-Reduction

PC-trees [15] provide an elegant structure that both simplifies PQ-trees and
allows convenient operations on circular permutations. A PC-tree is an unrooted
tree with two types of internal nodes, P-nodes and C-nodes, where a P-node can
permute its neighbors and a C-node is assigned a cyclic order to its neighbors
and can only reverse the order. The circular consistent set of a PC-tree T (U) on
a set of leaves U , denoted C-CONSISTENT(T (U)), is the set of all permissible
circular permutations of the leaves. Much as with PQ-trees, PC-trees support
an operation

PC-REDUCE(T (U), S) (2)

that returns a new PC-tree whose circular consistent set contains exactly those
circular permutations in C-CONSISTENT(T (U)) for which the subset S of leaves
in T (U) is consecutive; again, if there are no such elements, the operation fails.
These trees will be very useful in our algorithm.

It’s clear that a PQ-tree is a rooted image of a PC-tree where the Q-nodes
correspond to the C-nodes. Therefore the concept of circular consistent set also
applies to PQ-trees and the operation PC-REDUCE can take a PQ-tree as input
as well. We will not distinguish PQ-trees and PC-trees any more, but use PQ-
REDUCE and PC-REDUCE as two operations that can act on the same tree.

2.4 C-Planarity of C-Connected C-Graphs

Let D be a planar embedding of G. Then for a subgraph H of G we use D(H)
to denote the subembedding of H in D. The boundary of a face in a planar
embedding consists of the vertices and edges incident with this face. When ν is a
connected cluster, criteria 2–4 in the definition of a c-planar embedding are ac-
tually equivalent to requiring that all extrovert vertices of ν are at theboundary

216 M.T. Goodrich, G.S. Lueker, and J.Z. Sun

of the outer face of D(G(ν)), and all extrovert edges are in the outer face of
D(G(ν)). The boundary curve b(ν) can always be obtained by slightly expand-
ing the boundary of the outer face of D(G(ν)). (See cluster µ3 in Fig. 1 (a).)
In the figures, we use solid lines for the boundary of the outer face of D(G(ν))
and dashed lines for the boundary curve b(ν). The definition of c-planarity re-
stricted to c-connected c-graphs then translates into the following property for
each cluster.

Property 1 (simple). For a connected cluster ν, a simple planar embedding of
ν is a planar embedding D of the graph (G(ν) ∪ E∗

ν) with the vertices of V ∗
ν

drawn at the boundary of the outer face of the subembedding D(G(ν)) and the
edges of E∗

ν drawn in the outer face of D(G(ν)). For a planar embedding D of
G, we say ν is simple in D if the subembedding D(G(ν)∪E∗

ν) is a simple planar
embedding of ν. (In both cases the boundary curve b(ν) is a slight expansion of
the boundary of the outer face of D(G(ν).)

The following three lemmas can be deduced from the results of [12]. We sum-
marize and restate them in a particular way to facilitate the presentation of our
work. The first lemma is equivalent to Theorem 1 in [12].

Lemma 1. A c-connected c-graph C = (G, τ) is c-planar iff G is planar and
there exists a planar embedding D of G in which each ν ∈ τ is simple.
The next two lemmas are deduced from the testing algorithm of [12]. We provide
them without proofs. We also omit the original constructions of [12] that fulfill
these procedures.

Lemma 2. For any connected cluster ν of size m, we can build in O(m) time
a PQ-tree on the set of leaves E∗

ν , say T (E∗
ν), such that the circular consistent

set of (T (E∗
ν)) equals the set of circular permutations of the edges of E∗

ν on b(ν)
resulting from all possible simple planar embeddings of ν.
We write the procedure of building T (E∗

ν) from ν in [12] as the following oper-
ation that converts a subgraph to a PQ-tree.

T (E∗
ν) ← CONVERT(ν). (3)

Lemma 3. For any PQ-tree T (E∗
ν) resulting from Lemma 2, we can build in

O(m) time a representative subgraph Rν as a replacement of G(ν) in G with the
vertex set rν of Rν being a replacement of the cluster ν, and the extrovert vertex
and extrovert edge sets of rν remaining V ∗

ν and E∗
ν . If we substitute Rν for G(ν)

in G, then

– the circular consistent set of (T (E∗
ν)) equals the set of circular permutations

of E∗
ν at b(rν) resulting from all possible simple planar embeddings of rν .

– G is planar iff G has a planar embedding in which rν is simple.

We write the procedure of building the representative subgraph Rν from T (E∗
ν)

in [12] as
Rν ← REPRESENT(T (E∗

ν)), (4)

and the procedure of substituting Rν for G(ν) in G as

C-Planarity of Extrovert Clustered Graphs 217

G ← SUBSTITUTE(G(ν), Rν). (5)

The above lemmas characterize the c-planarity of c-connected c-graphs, and
provide gadgets to test it. Intuitively, the processes in Lemma 2 and 3 provide
that, G has a planar embedding with ν being simple ⇔ G after the substitu-
tion has a planar embedding with rν being simple ⇔ G after the substitution
is planar. Then the testing algorithm CPT in [12] traverses τ bottom-up and
performs operations (3),(4),(5) for each cluster. After substituting all clusters,
G is planar if and only if the original G has a planar embedding that makes all
original clusters simple, so that c-planarity testing is converted into planarity
testing. The algorithm runs in O(n2) time.

3 C-Planarity of Extrovert C-Graphs

In this section we characterize the c-planarity of extrovert c-graphs. The follow-
ing lemma is a straightforward characterization of the c-planarity of c-graphs.

Lemma 4 (Theorem 2 in [12]). A c-graph C = (G = (V, E), τ) is c-planar, iff
there exists a c-connected c-planar c-graph C′ = (G′ = (V, E′), τ) with E ⊂ E′.

C′ is called a super c-graph of C. Our idea to characterize the c-planarity of
extrovert c-graphs is to treat each chunk of a cluster as a small connected cluster
and use the following two properties together with Property 1.

Property 2 (connectable). Let ν = (ν1, . . . , νk) be a disconnected cluster with
its parent cluster µ being connected, and D be a simple planar embedding of µ
in which each chunk νi of ν is also simple. We say that ν is connectable in D iff
there is a way to draw k − 1 extra edges inside b(µ) that connect the k chunks
of ν into one connected component, without introducing any edge crossings. We
call the extra edges bridges of ν.

Property 3 (conflict). Let νl = (ν1
l , . . . , νkl

l), l = 1, . . ., be sibling disconnected
clusters with their parent cluster µ being connected, and D be a simple planar
embedding of µ in which each chunk νi

l of each νl is also simple. We say that
the νl’s conflict in D iff each νl is connectable, but there is no way to connect
all of the νl’s inside b(µ) simultaneously without introducing edge crossings.

Theorem 1. An extrovert c-graph C = (G, τ) is c-planar iff G is planar and
there exists a planar embedding D of G such that, each chunk of each cluster
is simple in D; each extrovert cluster is connectable in the subembedding of its
parent cluster; and no sibling extrovert clusters conflict.

Proof. [sketch]Sufficiency. Assume there is such an embedding D of G. Since
each chunk of cluster is simple, we can add a boundary curve for each chunk
in D, which is slightly outside the boundary of the outer face of this chunk.
The only thing disqualifying this drawing to be a c-planar drawing is that an
extrovert cluster is enclosed in not a single but many regions. Connect each

218 M.T. Goodrich, G.S. Lueker, and J.Z. Sun

extrovert cluster ν with k > 1 chunks by adding k − 1 bridges. As required by
Property 2 and 3, the bridge between two chunks νi and νj will cross only with
the boundary curves of νi and νj . So we can merge the k simple closed regions
for chunks into one region by “digging tunnels” along the bridges as shown in
Fig 2. Since each chunk region is simple and there are only k−1 bridges spanning
k chunks, the resulting region for the whole cluster is still simple. Doing this for
all extrovert clusters gives a c-planar embedding of C.

Fig. 2. Merge two chunk regions and boundary curves by digging a tunnel along a
bridge

Necessity. Assume C is c-planar. By Lemma 4, there exists a c-connected super
c-graph C′ = (G′, τ) of C and it has a c-planar embedding D. We only need to
show that in D of G′, each chunk of a cluster is simple; each extrovert cluster is
connectable in the subembedding of its parent; and no sibling extrovert clusters
conflict. Consider an extrovert cluster ν = {ν1, ν2, . . .} with parent cluster µ.
Since each chunk νi is extrovert, there is an extrovert edge in E∗

µ(νi) crossing
b(µ). Therefore any chunk νi cannot be enclosed in an inner face of another
chunk νj , so each chunk must be simple. The properties of being connectable
and not conflicting are obvious, noting that the extra edges in C′ include all
the bridges.
�

4 Testing Algorithm

We first convert the inclusion tree τ into τ ′ by splitting each disconnected cluster
into its chunks. Each node ν ∈ τ is a cluster and each node νi ∈ τ ′ is a chunk.
(See Fig. 3.) We always use µ for a parent and ν a for child. The frame of
our testing algorithm EXTROVERT-CPT is shown in Fig. 4. It inherits the
algorithm CPT in [12], except that we process the chunks in τ ′ instead of the
clusters in τ , and insert the following subroutine to filter the permissible circular
permutations of extrovert edges at b(µi). (See Fig. 5.)

T ′(E∗
µi) ← FILTER(T (E∗

µi)). (6)

Fig. 3. τ and τ ′ for the c-graph in Fig. 1 (a)

C-Planarity of Extrovert Clustered Graphs 219

Algorithm EXTROVERT-CPT
1: for each µi ∈ τ ′ in postorder do
2: test planarity of G(µi)
3: if µi is not the root of τ ′ then
4: T (E∗

µi) ← CONVERT(G(µi))
5: T ′(E∗

µi) ← FILTER(T (E∗
µi))

6: Rµi ← REPRESENT(T ′(E∗
µi))

7: G ← SUBSTITUTE(G(µi), Rµi)

Fig. 4. The frame algorithm for testing c-planarity of an extrovert c-graph. If any
subroutine at any moment fails, (either a subgraph is not planar or a reduction is not
doable,) then the algorithm stops and returns “not c-planar”. Otherwise it returns
“c-planar” after passing the planarity test of G(root(τ ′)) in Step 2.

Algorithm FILTER(T (E∗
µi))

for each τ -child ν of µi do
contract S(ν) into a vertex in S

for each ν that is an extrovert τ -child cluster of µi do
for each set of vertices G(µi\ν)j in G(µi\ν) that contracts into a connected com-
ponent Cj

S(µi\ν) in S(µi\ν) do

T (E∗
µi) ←PC-REDUCE(T (E∗

µi), E∗
µi(G(µi\ν)j))

return T (E∗
µi)

Fig. 5. The filter algorithm

Now we describe the filter algorithm FILTER(T (E∗
µi)) shown in Fig. 5. We

call a node ν ∈ τ a τ -child of a node µi ∈ τ ′, and µi the τ ′-parent of ν, if
every chunk νi of ν is a child of µi in τ ′. Since the parent cluster of an extrovert
cluster is connected, each ν ∈ τ has exactly one τ ′-parent. In addition to G, we
maintain a skeleton S of G which is initially equal to G but, at the time any µi

is processed in FILTER(T (E∗
µi)), contracts every τ -child ν of µi into a vertex.

We denote by Cj
F the j-th connected component of a disconnected graph F . Let

S(µi\ν), the subgraph resulting from removing ν from S(µi), have connected
components C1

S(µi\ν), C
2
S(µi\ν), Let G(µi\ν)j be the part of G(µi\ν) that

contracts into Cj
S(µi\ν) in S (as every τ -child of µi is contracted into a vertex).

Then we require that in the output of FILTER(T (E∗
µi)) the extrovert edges of

µi in each G(µi\ν)j are always consecutive among all extrovert edges of µi on
b(µi). This will be achieved by doing a PC-reduction for each G(µi\ν)j as Fig. 5
shows. (Note that G(µi\ν)j may not be a connected component of G(µi\ν), but
consist of multiple connected components.)

Recall that by Theorem 1, to qualify a planar embedding of G to be a c-
planar embedding of C, we only need to maintain the property of simple for each
chunk of each cluster, the property of connectable for each extrovert cluster, and
the property of no conflict among all extrovert child clusters in each connected
parent cluster. By inheriting the algorithm CPT in [12] but using τ ′ instead

220 M.T. Goodrich, G.S. Lueker, and J.Z. Sun

of τ , EXTROVERT-CPT maintains all the diversity of embedding each chunk
of cluster to be simple. In addition, when µi is the only chunk of a connected
cluster µ, FILTER(T (E∗

µi)) will further filter the simple planar embeddings of
µ, by doing a sequence of PC-reductions for each extrovert child cluster of µ,
so that only those in which all extrovert child clusters of µ are connectable and
don’t conflict are left in the circular consistent set of T ′(E∗

µi). (If µi is a chunk
of an extrovert cluster, then by the definition of extrovert c-graph all of its τ -
children are connected clusters and FILTER(T (E∗

µi)) does nothing.) We’ll prove
in the next section that FILTER(T (E∗

µi)) fulfills this purpose by performing a
PC-reduction for the extrovert edges of µi incident with each G(µi\ν)j .

5 Proof of Correctness

In this section we show why making some certain sets of extrovert edges consec-
utive among all extrovert edges at b(µ) can provide Property 2 and 3 in Sec. 3
to the planar embedding inside b(µ). In order to prove the main Theorem 2, we
first prove the following lemma.

Lemma 5. Let ν = (ν1, . . . , νk) be an extrovert cluster with parent cluster µ,
and G(µ\ν) have connected components C1

G(µ\ν), C
2
G(µ\ν), Let D be a simple

planar embedding of µ in which each νi is also simple, and π(E∗
µ) be the circular

permutation of E∗
µ at b(µ). Then ν is connectable in D, iff for each Cj

G(µ\ν),

j = 1, 2, . . ., E∗
µ(Cj

G(µ\ν)) is consecutive in π(E∗
µ).

Proof. [sketch]Necessity. If there is a Cj
G(µ\ν) such that E∗

µ(Cj
G(µ\ν)) is not con-

secutive in π(E∗
µ), then there are ei ∈ E∗

µ, i ∈ {1, 2, 3, 4}, such that e1, e2 ∈
E∗

µ(Cj
G(µ\ν)) are separated by e3, e4 �∈ E∗

µ(Cj
G(µ\ν)) at b(µ). Then there is a path

p ∈ Cj
G(µ\ν) from e1 to e2 cutting b(µ) into two halves with e3 and e4 being on

different sides. (See Fig. 6.) We show that each side contains some chunk νi of
ν, so that ν cannot be connected inside b(µ) without crossing p. See the side of
e3. If e3 is incident with some νi, then νi is on this side. Otherwise e3 is incident
with some Cj′

G(µ\ν) with j′ �= j, in which case there must also be some νi on this

side because Cj
G(µ\ν) and Cj′

G(µ\ν) were in a connected graph G(µ) but become

disconnected in G(µ\ν). Similarly the side of e4 contains another chunk νi′
of ν.

Sufficiency. Suppose ν is not connectable inside b(µ). We greedily connect the
chunks of ν until getting a maximal set of connected ∪νi which doesn’t contain
some νi′

. Then there must be some paths in G(µ) with two ends e1, e2 ∈ E∗
µ

cutting b(µ) into two halves and ∪νi and νi′
on different sides. We can show

that among all such paths there is a path p with no vertex of p belonging to
ν, which means that p is contained in some connected component Cj

G(µ\ν) and

E∗
µ(Cj

G(µ\ν)) is not consecutive in π(E∗
µ) since e1 and e2 are separated at b(µ) by

the extrovert edges coming from ∪νi and those from νi′
. Details are omitted.
�

C-Planarity of Extrovert Clustered Graphs 221

e3 e4

b()

p

e2

e1

Fig. 6. e1, e2 and p are in Cj
G(µ\ν), and e3, e4 are not in Cj

G(µ\ν). There must be some

νi on the left of p and another νi′
on the right.

We conclude with the following two theorems with Theorem 3 showing the
correctness and running time of the testing algorithm. Proofs of these theorems
are omitted in this extended abstract. An embedding algorithm is implied by
the testing algorithm. Details are also omitted.

Theorem 2. Let νl = (ν1
l , . . . , νkl

l), l = 1, 2, . . ., be sibling extrovert clusters
with connected parent cluster µ, D be a simple planar embedding of µ in which
each νi

l is also simple, and π(E∗
µ) be the circular permutation of E∗

µ at b(µ).
Let S be the skeleton of G in which each child cluster of µ is contracted into
a vertex, S(µ\νl) have connected components C1

S(µ\νl)
, C2

S(µ\νl)
, . . ., and each

Cj
S(µ\νl)

, j = 1, 2, . . ., be contracted from a subgraph G(µ\νl)j of G(µ\νl). Then
each νl is connectable and all of the νl’s don’t conflict in D, iff for each G(µ\νl)j,
l = 1, 2, . . . and j = 1, 2, . . ., E∗

µ(G(µ\νl)j) is consecutive in π(E∗
µ).

Theorem 3. The algorithm EXTROVERT-CPT correctly tests the c-planarity
of an extrovert c-graph in O(n3) time.

References

1. G. D. Battista, W. Didimo, and A. Marcandalli. Planarization of clustered graphs.
In Graph Drawing (GD’01), LNCS 2265, pages 60–74, 2001.

2. G. D. Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996.

3. K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Comput. Systems Sci., 13(3):335–
379, 1976.

4. P. G. Cortese, G. D. Battista, M. Patrignani, and M. Pizzonia. Clustering cycles
into cycles of clusters. In Graph Drawing (GD’04), 2004.

5. E. Dahlhaus. A linear time algorithm to recognize clustered planar graphs and its
parallelization. In LATIN’98, LNCS 1380, pages 239–248, 1998.

6. C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Planarity-preserving clus-
tering and embedding for large planar graphs. In Graph Drawing (GD’99), LNCS
1731, pages 186–196, 1999.

7. P. Eades, Q. Feng, and H. Nagamochi. Drawing clustered graphs on an orthogonal
grid. Journal of Graph Algorithms and Applications, 3(4):3–29, 1999.

222 M.T. Goodrich, G.S. Lueker, and J.Z. Sun

8. P. Eades and Q.-W. Feng. Multilevel visualization of clustered graphs. In Graph
Drawing, GD’96, LNCS 1190, pages 101–112, 1996.

9. P. Eades, Q.-W. Feng, and X. Lin. Straight-line drawing algorithms for hierarchical
graphs and clustered graphs. In Graph Drawing, GD’96, LNCS 1190, pages 113–
128, 1996.

10. P. Eades and M. L. Huang. Navigating clustered graphs using force-directed meth-
ods. J. Graph Algorithms and Applications: Special Issue on Selected Papers from
1998 Symp. Graph Drawing, 4(3):157–181, 2000.

11. S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer
Science, 2(3):339–344, 1976.

12. Q.-W. Feng, P. Eades, and R. F. Cohen. Clustered graphs and C-planarity. In 3rd
Annual European Symposium on Algorithms (ESA’95), LNCS 979, pages 213–226,
1995.

13. C. Gutwenger, M. Jnger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher.
Advances in C-planarity testing of clustered graphs. In Graph Drawing (GD’02),
LNCS 2528, pages 220–235, 2002.

14. J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
1974.

15. W. Hsu and R.M.McConnell. PC trees and circular-ones arrangements. Theoretical
Computer Science, 296(1):59–74, 2003.

16. A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of
graphs. In Theory of graphs: International symposium, pages 215–232, 1966.

17. T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms, volume 32 of
Ann. Discrete Math. North-Holland, Amsterdam, The Netherlands, 1988.

	Introduction
	Previous Results
	Extrovert C-Graphs

	Preliminaries
	PQ-Tree and PQ-Reduction
	Circular Permutations
	PC-Trees and PC-Reduction
	C-Planarity of C-Connected C-Graphs

	C-Planarity of Extrovert C-Graphs
	Testing Algorithm
	Proof of Correctness

