
Vol.:(0123456789)

Algorithmica (2021) 83:2471–2502

https://doi.org/10.1007/s00453-021-00839-2

1 3

C‑Planarity Testing of Embedded Clustered Graphs
with Bounded Dual Carving‑Width

Giordano Da Lozzo, et al. [full author details at the end of the article]

Received: 2 January 2020 / Accepted: 21 May 2021 / Published online: 8 June 2021

© The Author(s) 2021

Abstract

For a clustered graph, i.e, a graph whose vertex set is recursively partitioned into

clusters, the C-Planarity testing problem asks whether it is possible to find a pla-

nar embedding of the graph and a representation of each cluster as a region home-

omorphic to a closed disk such that (1) the subgraph induced by each cluster is

drawn in the interior of the corresponding disk, (2) each edge intersects any disk at

most once, and (3) the nesting between clusters is reflected by the representation,

i.e., child clusters are properly contained in their parent cluster. The computational

complexity of this problem, whose study has been central to the theory of graph

visualization since its introduction in 1995 [Feng, Cohen, and Eades, Planarity for

clustered graphs, ESA’95], has only been recently settled [Fulek and Tóth, Atomic

Embeddability, Clustered Planarity, and Thickenability, to appear at SODA’20].

Before such a breakthrough, the complexity question was still unsolved even when

the graph has a prescribed planar embedding, i.e, for embedded clustered graphs.

We show that the C-Planarity testing problem admits a single-exponential single-

parameter FPT (resp., XP) algorithm for embedded flat (resp., non-flat) clustered

graphs, when parameterized by the carving-width of the dual graph of the input.

These are the first FPT and XP algorithms for this long-standing open problem

with respect to a single notable graph-width parameter. Moreover, the polynomial

dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek

and Tóth. In particular, our algorithm runs in quadratic time for flat instances of

bounded treewidth and bounded face size. To further strengthen the relevance of this

result, we show that an algorithm with running time O(r(n)) for flat instances whose

underlying graph has pathwidth 1 would result in an algorithm with running time

O(r(n)) for flat instances and with running time O(r(n2) + n
2) for general, possibly

non-flat, instances.

A preliminary version of this paper appeared in Proceedings of the 14th International Symposium

on Parameterized and Exact Computation (IPEC), Munich, Germany, 2019 [35]. Da Lozzo was

supported in part by H2020-MSCA-RISE project 734922-“CONNECT” and by MIUR Project

“AHeAD” under PRIN 20174LF3T8. Eppstein was supported in part by the US NSF under Grants

CCF-1618301 and CCF-1616248. Goodrich was supported in part by the US NSF under Grant

1815073. Gupta was supported in part by the Zuckerman STEM Leadership Program.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00839-2&domain=pdf

2472 Algorithmica (2021) 83:2471–2502

1 3

Keywords Clustered planarity · Carving-width · Non-crossing partitions · Fixed-

parameter tractability

1 Introduction

Many real-world data exhibit an intrinsic hierarchical structure that can be captured

in the form of clustered graphs, i.e., graphs equipped with a recursive clustering of

their vertices. This graph model has proved very powerful to represent information

at different levels of abstraction and drawings of clustered networks appear in a wide

variety of application domains, such as software visualization [65], knowledge rep-

resentation [60], visual statistics [22], and data mining [63]. More formally, a clus-

tered graph (for short, c-graph) is a pair C(G, T) , where G is the underlying graph

and T is the inclusion tree of C , i.e., a rooted tree whose leaves are the vertices of G.

Each non-leaf node � of T corresponds to a cluster containing the subset V
�
 of the

vertices of G that are the leaves of the subtree of T rooted at �.

A natural and well-established criterion for a readable visualization of a c-graph

has been derived from the classical notion of graph planarity. A c-planar drawing of

a c-graph C(G, T) (see Fig. 7c) is a planar drawing of G together with a representa-

tion of each cluster � in T as a region D(�) homeomorphic to a closed disc such that:

(1) for each cluster � in T , region D(�) contains the drawing of the subgraph G[V
�
]

of G induced by V
�
 ; (2) for every two clusters � and � in T , it holds D(𝜂) ⊆ D(𝜇) if

and only if � is a descendant of � in T ; (3) each edge crosses the boundary of any

cluster disk at most once; and (4) the boundaries of no two cluster disks intersect. A

c-graph is c-planar if it admits a c-planar drawing.

The C-Planarity testing problem, introduced by Feng et al. and Eades more

than two decades ago [41], asks for the existence of a c-planar drawing of a c-graph.

Despite several algorithms having been presented in the literature to construct c-pla-

nar drawings of c-planar c-graphs with nice aesthetic features [10, 38, 54, 62], deter-

mining the computational complexity of the C-Planarity testing problem has been

one of the most challenging quests in the graph drawing research area; see, e.g., the

survey papers [19, 28, 69]. A generalization of the C-Planarity testing problem is

the problem of testing the planarity of hypergraphs, which was introduced by John-

son and Pollak [59]. Given a hypergraph (V, U), where V is a finite set of vertices

and U is a finite set of hyperedges, i.e., subsets of V, the HyPergraPH Planarity

problem asks for the existence of a planar graph P = (V , E) such that the graph P[X]

is connected, for every X ∈ U . The HyPergraPH Planarity problem was shown to

be NP-complete [59] and this negative result holds even if U is the union of two par-

titions [12]. In contrast, there are polynomial-time algorithms to test hypergraph pla-

narity when P is required to belong to specific families of planar graphs [15, 20, 21,

23, 61, 72] or when U is the union of two partitions and, for every X ∈ U , not only

G[X] but also G[V ⧵ X] is required to be connected [11]. To shed light on the com-

plexity of the C-Planarity testing problem, several researches have tried to high-

light its connections with other notoriously difficult problems in the area [3, 69], as

well as to consider relaxations [5, 7, 8, 11, 33, 40, 73] and more constrained versions

[2, 4, 6, 9, 30, 42, 43] of the classical notion of c-planarity. Algebraic approaches

2473

1 3

Algorithmica (2021) 83:2471–2502

have also been considered [44, 53]. Only recently, Fulek and Tóth settled the ques-

tion by giving a polynomial-time algorithm for a generalization of the C-Planarity

testing problem, called Atomic Embeddability [47].

A cluster � is connected if G[V
�
] is connected, and it is disconnected otherwise.

A c-graph is c-connected if every cluster is connected. Efficient algorithms for the

c-connected case have been known since the early stages of the research on the prob-

lem [29, 36, 41]. Afterwards, polynomial-time algorithms have also been conceived

for c-graphs satisfying other, weaker, connectivity requirements [27, 49, 52]. A

c-graph is flat if each leaf-to-root path in T consists of exactly two edges, that is, the

clustering determines a partition of the vertex set; see, e.g.,Fig. 7a. For flat c-graphs

polynomial-time algorithms have been presented for several restricted cases [2, 13,

16, 25, 39, 43, 45, 55, 57, 58].

Motivations and contributions. In this paper, we consider the parameter-

ized complexity of the C-Planarity testing problem for embedded c-graphs, i.e.,

c-graphs with a prescribed combinatorial embedding, having a connected underly-

ing graph; see also [16, 26, 34, 58] for previous work in this direction. The focus on

instances with a fixed embedding is a natural restriction as several graph drawing

problems are often easier to solve in this setting. In fact, by our result in [34] there

exists a linear-time reduction from C-Planarity testing of embedded c-graphs to

C-Planarity testing of general c-graphs. Notably, such a reduction only works for

instances with a connected underlying graph. We remark that all the existing algo-

rithms for C-Planarity testing of embedded c-graphs only deal with instances hav-

ing a connected underlying graph. In fact, whether the C-Planarity testing problem

is polynomial-time solvable for embedded c-graphs having a disconnected underly-

ing graph remains an open problem.

In Sect. 2, we show that the C-Planarity testing problem retains its complex-

ity when restricted to instances of bounded path-width and to connected instances

of bounded tree-width. Such a result, which holds even for general, non-embedded,

c-graphs, implies that the goal of devising an algorithm parameterized by graph-

width parameters that are within a constant factor from tree-width (e.g., branch-

width [66]) or that are bounded by path-width (e.g., tree-width, rank-width [64],

boolean-width [1], and clique-width [32]) and with a dependency on the input size

which improves upon the one in [47] appears to be a significant algorithmic chal-

lenge. The estimate on the running time of the algorithm presented in [47] is O(n8)

for flat c-graphs and O(n16) for non-flat c-graphs. However, as noted by the authors

[46], these estimates depend on the running time of an algorithm presented by Car-

mesin [24, Section 6] to test whether a simply connected 2-polyhedron embeds in

R
3 , and the correctness of the claimed running time of this algorithm has not been

confirmed yet.

Remarkably, before the results presented in [47], the computational complexity

of the problem was still unsolved even for instances with faces of bounded size, and

polynomial-time algorithms were known only for “small” faces and in the flat sce-

nario. Namely, Jelinkova et al. [58] presented a quadratic-time algorithm for 3-con-

nected flat c-graphs with faces of size at most 4. Subsequently, Di Battista and Frati

[39] presented a linear-time/linear-space algorithm for embedded flat c-graphs with

faces of size at most 5.

2474 Algorithmica (2021) 83:2471–2502

1 3

Motivated by the discussion above and by the results in Sect. 2, we focus our

attention on embedded c-graphs C(G, T) whose underlying graph G has both

bounded tree-width and bounded face size, i.e., instances such that the carving-

width of the dual �(G) of G is bounded. Gu and Tamaki [51] showed that, for a

planar graph, a carving decomposition of optimal width can be computed in O(n3)

time; further, Thilikos, Serna, and Bodlaender [71] gave an FPT algorithm running

in O(ĝ(𝜔)n) time, where ĝ is a computable function, to construct a carving decom-

position of width � of a (not-necessarily planar) graph, if any, or to decide that none

exists. In Sect. 3, we present an FPT (resp., XP) algorithm based on a dynamic-

programming approach on a special carving-decomposition, namely, a bond-carv-

ing decomposition, of �(G) , to solve the problem for embedded flat (resp., non-flat)

c-graphs. The key ingredient of our algorithm lies in the ability of maintaining a

succinct description of the internal cluster connectivity via non-crossing partitions.

We remark that, to the best of the authors’ knowledge, these are the first FPT and

XP algorithms for the C-Planarity testing problem, with respect to a single graph-

width parameter. More formally, we prove the following results.

Theorem 1.1 C-Planarity testing can be solved in O(24�+log�
n + n

2) time

for any n-vertex embedded flat c-graph C(G, T) , where � is the carving-width

of �(G) , if a carving decomposition of �(G) of width � is provided, and in

O
(

(24𝜔+log𝜔 + ĝ(𝜔))n + n2
)

 time, otherwise.

Theorem 1.2 C-Planarity testing can be solved in O(44�+log�h2�−1n + n2) time for

any n-vertex embedded non-flat c-graph C(G, T) , where � is the carving-width of

�(G) and h is the height of T , if a carving decomposition of �(G) of width � is pro-

vided, and in O
(

(44𝜔+log𝜔h2𝜔−1 + ĝ(𝜔))n + n2
)

 time, otherwise.

Since h ≤ n , Theorem 1.2 immediately translates into a slice-wise polynomial

(XP) algorithm, parameterized by the dual carving width, for C-Planarity testing

of embedded non-flat c-graphs. We formalize this in the following.

Corollary 1.1 C-Planarity testing can be solved in O(44�+log�
n

2�) time for

any n-vertex embedded non-flat c-graph C(G, T) , where � is the carving-

width of �(G) , if a carving decomposition of �(G) of width � is provided, and in

O
(

(44𝜔+log𝜔 + ĝ(𝜔))n2𝜔
)

 time, otherwise.

It is well known that the carving-width cw (�(H)) of the dual graph �(H) of a

plane graph H with maximum face size �(H) and tree-width tw (H) satisfies the rela-

tionship cw (�(H)) ≤ �(H)(tw (H) + 2) [14, 18]. Therefore, Theorem 1.1 and Corol-

lary 1.1 provide the first1 polynomial-time algorithms for instances of bounded face

size and bounded tree-width. This also answers an open question posed by Di Bat-

tista and Frati [39, Open Problem (ii)] for flat instances of bounded tree-width; also,

1 The results in this paper were accepted for publication in [35] before the contribution by Fulek and

Tóth appeared in [47].

2475

1 3

Algorithmica (2021) 83:2471–2502

since any n-vertex planar graph has tree-width in O(
√

n) , it provides an 2O(
√

n) sub-

exponential-time algorithm for flat instances of bounded face size, which improves

the previous 2O(
√

n log n) time bound presented in [34] for such instances. Finally, in

Sect. 4, we exploit Theorems 1.1 and 1.2 to get single-parameter FPT and XP algo-

rithms with respect to the embedded-width and to the dual cut-width of the underly-

ing graph.

2 Definitions and Preliminaries

In this section, we give definitions and preliminaries that will be useful throughout.

Graphs and connectivity. A graph G = (V , E) is a pair, where V is the set of

vertices of G and E is the set of edges of G, i.e., pairs of vertices in V. A multigraph

is a generalization of a graph that allows the existence of multiple copies of the same

edge. The degree of a vertex is the number of its incident edges. We denote the max-

imum degree of G by �(G) . Also, for any S ⊆ V , we denote by G[S] the subgraph

of G induced by the vertices in S.

A graph is connected if it contains a path between any two vertices. A cutvertex

is a vertex whose removal disconnects the graph. A connected graph is 2-connected

if either it is an edge or it does not contain any cutvertices. The blocks of a graph are

its maximal 2-connected subgraphs.

Planar graphs and embeddings. A drawing of a graph is planar if it contains no

edge crossings. A graph is planar if it admits a planar drawing. Two planar drawings

of the same graph are equivalent if they determine the same rotation at each vertex,

i.e, the same circular orderings for the edges around each vertex. A combinatorial

embedding (for short, embedding) is an equivalence class of planar drawings. A pla-

nar drawing partitions the plane into topologically connected regions, called faces.

The bounded faces are the inner faces, while the unbounded face is the outer face.

A combinatorial embedding together with a choice for the outer face defines a pla-

nar embedding. An embedded graph (resp. plane graph) G is a planar graph with a

fixed combinatorial embedding (resp. fixed planar embedding). The length of a face

f of G is the number of occurrences of the edges of G encountered in a traversal of

the boundary of f. The maximum face size �(G) of G is the maximum length over

all faces of G.

C-Planarity. An embedded c-graph C(G, T) is a c-graph whose underlying graph

G has a prescribed combinatorial embedding, and it is c-planar if it admits a c-pla-

nar drawing that preserves the given embedding. Since we only deal with embedded

c-graphs, in the remainder of the paper we will refer to them simply as c-graphs,

excepts in the statements of theorems and lemmas where we explicitly specify

whether the considered c-graphs are embedded or not. Also, when G and T are clear

from the context, we simply denote C(G, T) as C . Given a non-root cluster � ∈ T , a

vertex v ∈ V(G) is a vertex of � , if v ∈ V
�
 , and an edge (u, v) ∈ E(G) is an intra-clus-

ter edge of � , if both u and v are in V
�
 , and it is an inter-cluster edge of � , otherwise.

Note that, given two clusters �, � ∈ T such that � is an ancestor of � , the intra-clus-

ter edges of � are also intra-cluster edges of � , but the reverse is not necessarily true.

2476 Algorithmica (2021) 83:2471–2502

1 3

A candidate saturating edge of C is an edge (u, v) not in G such that u and v

are incident to the same face of G and there exists a non-root cluster � ∈ T for

which both u and v are in V
�
 ; refer to Fig. 7b. A c-graph C�(G�

, T
�) with T�

= T

obtained by adding to C a subset E+ of its candidate saturating edges is a super

c-graph of C ; also, if G′ is planar, then the set E+ is a planar saturation and the

edges in E+ are the saturating edges of C . Furthermore, c-graph C is hole-free if

there exists a face f in G such that, when f is chosen as the outer face, there does

not exist any cycle whose vertices are in V
�
 that encloses in its interior a vertex

not in V
�
 , for some non-root cluster � ∈ T . Finally, two c-graphs are equivalent if

they are both c-planar or they are both not c-planar.

Remark 2.1 In this paper, unless stated otherwise, we only consider c-graphs whose

underlying graph is connected.

We will exploit the following characterization presented by Di Battista and

Frati [39], which holds true also for non-flat c-graphs although originally only

proved for flat c-graphs.

Theorem 2.1 ([39], Theorem 1) An embedded c-graph C(G, T) is c-planar if and

only if:

 (i) G is planar,

 (ii) C is hole-free, and

 (iii) there exists an embedded super c-graph C∗(G∗
, T

∗) of C such that G∗ is planar

and C∗ is c-connected.

Condition i of Theorem 2.1 can be tested using any of the known linear-time

planarity-testing algorithms. Condition ii of Theorem 2.1 can be verified in lin-

ear time as described by Di Battista and Frati [39, Lemma 7], by exploiting the

linear-time algorithm for checking if an embedded, possibly non-flat, c-graph is

hole-free presented by Dahlhaus [36]. Therefore, in the following we will assume

that any c-graph satisfies these conditions and thus view the C-Planarity testing

problem as one of testing Condition iii of Theorem 2.1.

Tree-width. A tree decomposition of a graph G is a tree T whose nodes, called

bags, are labeled by subsets of vertices of G. For each vertex v of G the bags con-

taining v must form a nonempty contiguous subtree of T, and for each edge (u, v)

of G at least one bag of T must contain both u and v. The width of the decomposi-

tion is one less than the maximum cardinality of any bag. The tree-width tw (G)

of G is the minimum width of any of its tree decompositions.

Cut-sets and duality. Let G = (V , E) be a connected graph and let S be a sub-

set of V. The partition {S, V ⧵ S} of V is a cut of G and the set E(S, V ⧵ S) of edges

with an endpoint in S and an endpoint in V ⧵ S is a cut-set of G. Also, the cut-

set E(S, V ⧵ S) is a bond if G[S] and G[V ⧵ S] are both non-null and connected.

2477

1 3

Algorithmica (2021) 83:2471–2502

For an embedded graph G, the dual �(G) of G is the planar multigraph that has

a vertex vf , for each face f of G, and an edge (vf , vg) , for each edge e shared by

faces f and g; the edge e is the dual edge of (vf , vg) , and vice versa. Also, �(G) is

2-connected if and only if G is 2-connected. Figure 1a shows an embedded graph

G (black edges) and its dual � (G) (purple edges); we will use these graphs as run-

ning examples throughout the paper. The following duality is well known.

Lemma 2.1 ([48], Theorem 14.3.1) If G is an embedded graph, then a set of edges is

a cycle of G if and only if their dual edges form a bond in � (G).

Carving-width. A carving decomposition of a graph G = (V , E) is a pair

(D, �) , where D is a rooted binary tree whose leaves are the vertices of G, and

� is a function that maps the non-root nodes of D, called bags, to cut-sets of G

as follows. For any non-root bag � , let D
�
 be the subtree of D rooted at � and let

L
�
 be the set of leaves of D

�
 . Then, �(�) = E(L

�
, V ⧵ L

�
) . The width of a carving

decomposition (D, �) is the maximum of |�(�)| over all bags � in D. The carving-

width cw (G) of G is the minimum width over all carving decompositions of G.

The dual carving-width is the carving-width of the dual of G. Note that, the max-

imum face size �(G) coincides with the maximum degree of � (G) , which is a

lower bound for the cw (� (G)) . A bond-carving decomposition is a special kind

of carving decomposition in which each cut-set is a bond of the graph; i.e., in a

bond-carving decomposition every cut-set separates the graph into two connected

components [67, 70]. In [70], Seymour and Thomas presented a quadratic-time

algorithm to convert a carving decomposition into a bond-carving decomposition

of the same width.

In this paper, we view a bond-carving decomposition of the vertices of the

dual � (G) of an embedded graph G as a decomposition of the faces of G; see

Fig. 1c. A similar approach was followed in [14]. In particular, due to the duality

expressed by Lemma 2.1, the cut-sets �(�) of the bags � of D correspond to cycles

that can be used to recursively partition the faces of the primal graph, where these

cycles are formed by the edges of the primal that are dual to those in each cut-set.

(a)

ρ

ρ
′′

ρ
′

(b)

ρ

ρ
′′ρ′

Iρ′ Iρ′′

(c)

Fig. 1 a Running example: an embedded graph G and its dual �(G) . b A bond-carving decomposition

(D, �) of the dual �(G) of the graph G in Fig. 1a. c The decomposition (D, �) where the vertices of �(G)

are replaced by the corresponding faces of G

2478 Algorithmica (2021) 83:2471–2502

1 3

Partitions. Let Q = {q1, q2,… , q
n
} be a ground set. A partition of Q is a set

{Q1,… , Qk} of non-empty subsets Qi ’s of Q , called parts, such that Q =

⋃k

i=1
Qi and

Qi ∩ Qj = � , with 1 ≤ i < j ≤ k . Observe that k ≤ |Q|.

Let now S = (s1, s2,… , s
n
) be a cyclically-ordered set, i.e., a set equipped with

a circular ordering. Let a, b, and c be three elements of S such that b appears after

a and before c in the circular ordering of S ; we write a ≺
b

c . A partition P of S is

crossing, if there exist elements a, c ∈ S
i
 and b, d ∈ Sj , with Si, Sj ∈ P and i ≠ j , such

that a ≺
b

c and c ≺
d

a ; and, it is non-crossing, otherwise. We denote the set of all

the non-crossing partitions of S by NC(S) . Note that, |NC(S)| coincides with the

Catalan number CAT(n) of n, which satisfies CAT(n) ≤ 2
2n [50, Chapter 19].

2.1 Relationship Between Graph‑Width Parameters and Connectivity

In this section, we present reductions that shed light on the effect that the interplay

between some notable graph-width parameters and the connectivity of the under-

lying graph have on the computational complexity of the C-Planarity testing

problem.

We will exploit recent results by Cortese and Patrignani, who proved the

following:

(a) Any n-vertex non-flat c-graph C(G, T) can be transformed into an equivalent

O(n ⋅ h)-vertex flat c-graph in quadratic time [31, Theorem 1], where h is the

height of T .

(b) Any n-vertex flat c-graph can be turned into an equivalent O(n)-vertex independ-

ent flat c-graph, i.e., a flat c-graph such that each non-root cluster induces an

independent set, in linear time [31, Theorem 2].

We remark that the reductions from [31] preserve the connectivity of the underlying

graph.

Theorem 2.2 Let C(G, T) be an n-vertex (flat) c-graph and let h be the height of T .

In O(n2) time (in O(n) time), it is possible to construct an O(n ⋅ h)-vertex (O(n)-ver-

tex) independent flat c-graph C�(G�
, T

�) that is equivalent to C such that:

 (i) G
′ is a collection of stars or

 (ii) G
′ is a tree.

Proof Let C(G, T) be an n-vertex (flat) c-graph. By the results (a) and (b) above, we

can construct an O(n ⋅ h)-vertex (O(n)-vertex) independent flat c-graph C+(G+
, T

+)

equivalent to C in O(n2) time (in O(n) time). Note that, G+ only contains inter-cluster

edges.

Consider the following transformation defined for a single edge e = (u, v) of G+ ,

which constructs a new c-graph C1 starting from C+ . First, subdivide the edge e with

two dummy vertices u
e
 and v

e
 to create edges (u, u

e
) , (u

e
, v

e
) , and (v

e
, v) . Then, delete

2479

1 3

Algorithmica (2021) 83:2471–2502

the edge (u
e
, v

e
) . Finally, assign u

e
 and v

e
 to a new cluster �

e
 , and add �

e
 as a child of

the root of the tree T+ . To construct C′ in case (i), we perform the above transforma-

tion for all the edges of G+ . To construct C′ in case (ii), as long as the graph contains

a cycle, we perform the above transformation for an edge e of such a cycle. Since the

transformation to obtain C1 from C+ takes O(1) time, the construction of C′ from C+

can be done in linear time both in case (i) and (ii), the running time follows. Further-

more, Conditions i, ii of Theorem 2.1 are trivially satisfied by C′ since G′ contains no

cycles.

To show the correctness of the reduction, it suffices to prove that C1 is c-planar if

and only if C+ is c-planar. Suppose first that C+ is c-planar and thus by Theorem 2.1,

it has a c-connected super c-graph C+

con
(G+

con
, T

+

con
) with G+

con
 planar. We now con-

struct a c-connected super c-graph C1

con
(G1

con
, T

1

con
) of C1 with G1

con
 planar as follows.

First, initialize G1

con
= G

+

con
 and T1

con
= T

1 . As G+

con
 is a super graph of G+ , the edge e

also belongs to G+

con
 (and thus to G1

con
). Then, subdivide the edge e with the vertices

u
e
 and v

e
 to create edges (u, u

e
) , (u

e
, v

e
) , and (v

e
, v) in G1

con
 . Clearly, G1

con
 is a super

graph of G1 ; also, since e is an inter-cluster edge, all the clusters of T+

con
 are still

connected in G1

con
 . Also, the cluster �

e
 is connected in G1

con
 as the edge (u

e
, v

e
) is pre-

sent in G1

con
 . Therefore, C1

con
 is a c-connected super c-graph of C1 and thus, by Theo-

rem 2.1, C1 is c-planar.

Suppose now that C1 is c-planar and thus, by Theorem 2.1, it has a c-connected

super c-graph C1

con
(G1

con
, T

1

con
) with G

1

con
 planar. We now construct a c-connected

super c-graph C+

con
(G+

con
, T

+

con
) of C+ with G

+

con
 planar as follows. First, initialize

G
+

con
= G

1

con
 and T+

con
= T

+ . As C1

con
 is c-connected, the cluster �

e
 is also connected,

i.e., we have the edge (u
e
, v

e
) in G1

con
 . Consider the path (u, u

e
, v

e
, v) and replace it

with the edge (u, v). Clearly, all the clusters of T+

con
 are still connected in G+

con
 , and

G
+

con
 is still planar. Therefore, C+

con
 is a c-connected super c-graph of C+ and thus,

by Theorem 2.1, C+ is c-planar. ◻

We point out that by applying the reduction in the above proof without enforc-

ing a specific embedding, Theorem 2.2 also holds for general instances of the

C-Planarity testing problem, i.e., non-embedded c-graphs. Moreover, since the

reduction given in [31] also works for disconnected instances, applying the reduc-

tion of Theorem 2.2 for case (i) to a general disconnected instance C(G, T) would

result in an equivalent independent flat c-graph C�(G�
, T

�) such that G′ is a collec-

tion of stars. An immediate, yet important, consequence of this discussion is that

an algorithm with running time O(r(n)) for flat instances whose underlying graph

is a collection of stars would result in an algorithm with running time O(r(n)) for

flat instances and with running time O(r(n2) + n
2) for general, possibly non-flat,

instances, where r is a computable function.

The proof of the following lemma, which will turn useful in the following sec-

tions, is based on the duality expressed by Lemma 2.1.

Lemma 2.2 Given an n-vertex embedded c-graph C(G, T) and a carving decomposi-

tion (D, �) of � (G) of width � , in O(n2) time, it is possible to construct an O(n)-vertex

2480 Algorithmica (2021) 83:2471–2502

1 3

embedded c-graph C�(G�
, T

�) that is equivalent to C such that G′ is 2-connected, and

a carving decomposition (D�
, �

�) of � (G�) of width �� = max(�, 4).

Proof Let B(H) and X(H) be the set of blocks and cut-vertices of a graph H respec-

tively. For each cut-vertex c ∈ X(H) , let i
c
(H) denotes the number of blocks incident

to c and let i
H
=
∑

c∈X(H) i
c
(H) . Since G is planar, we have that i

G
∈ O(n) . We con-

struct C�(G�
, T

�) as follows.

Consider the following operation defined for a cut-vertex c ∈ X(G) . Let � be the

cluster that is the parent of c in T , and let (u, c) and (v, c) be two edges belonging

to different blocks of G that are clockwise consecutive in the list of edges incident

to c. Let f be the face of G that is to the left of the edge (u, c) when traversing this

edge from u to c (and thus also to the left of the edge (v, c) when traversing this edge

from c to v). Refer to Fig. 2. Consider the c-graph C+(G+
, T

+) obtained as follows.

Initialize C+ to C . Then, embed a path (u, c
+

, v) inside the face f of G+ , where c+ is

a new vertex that we add as a child of � in T+ ; see Fig. 2. We denote by f ′ the face

of G+ bounded by the cycle (u, c
+

, v, c) and by f ′′ the other face of G+ incident to c+ .

We have that C and C+ are equivalent. This is due to the fact that any saturating edge

(c, x) incident to c and lying in f (of a c-connected c-planar super c-graph of C) can

be replaced by two saturating edges (x, c
+) lying in f ′′ and (c+, c) lying in f ′ (of a

c-connected c-planar super c-graph of C+), and vice versa.

We now show that � (G+) admits a carving decomposition (D+
, �

+) of width

�
+ = max(�, 4) . In order to do so, we show how to modify the carving decomposi-

tion (D, �) of � (G) of width � into (D+
, �

+) . Consider the leaf bag �f of D corre-

sponding to face f and let � be the parent of �f in D. We construct D+ from D as fol-

lows. First, we initialize (D+
, �

+) = (D, �) ; in the following, we denote by �′ the bag

of D+ corresponding to the bag � of D. We remove �′
f
 from D+ , add a new non-leaf

bag �′ as a child of �′ and two leaf bags �′
f ′
 , corresponding to face f ′ , and �′

f ′′
 , corre-

sponding to face f ′′ , as children of �′ ; refer to Fig. 2. Let e1 = (f �, f ���) , e2 = (f �, f ��) ,

e3 = (f1, f �) , and e4 = (f �, f ��) be the edges of � (G+) that are dual to the edges (u, c),

(u, c
+) , (v, c), and (v, c

+) of G+ , respectively, where f ′′′ is the face of G+ incident to

(u, c) different from f ′ . We have �
+(��

f �
) = {e1, e2, e3, e4} ,

c

v

u

c+f ′

f ′′

f1

c

u

v

f α

f1

νf

α′

λ′

ν ′
f ′′ ν ′

f ′

f f1

f1

f ′

f ′′

f ′′′

(D , γ) (D +
, γ

+)C (G, T) C
+(G +

, T
+)

Fig. 2 Reduction of Lemma 2.2 focused on cutvertex c. The transformation of (D, �) into (D+
, �

+) is

shown. The red dashed edges are dual to those in the cut-set of each bag

2481

1 3

Algorithmica (2021) 83:2471–2502

�
+(��

f ��
) = (�(��

f
) ⧵ {e1, e3}) ∪ {e2, e4} , �

+(��) = �(��
f
) , and �+(��) = �(�) , for any

other bag � belonging to both D
+ and D. In particular, the size of the edge-cuts

defined by all the bags different from �′
f ′
 stays the same, while the size of the edge-

cut of �′
f ′
 is 4. Therefore, (D+

, �
+) is a carving decomposition of � (G+) of

width �+ = max(�, 4).

Let c be a cut-vertex in X(G). We perform the operation described above for

each pair of clockwise consecutive edges incident to c in G which belong to dif-

ferent blocks of G. This results in a c-graph C
c
(G

c
, T

c
) equivalent to C(G, T) such

that X(G
c
) = X(G) ⧵ {c} , |V(G

c
)| = |V(G)| + i

c
(G) , and i

G
c
= i

G
− i

c
(G) . Moreo-

ver, as discussed above, � (G
c
) admits a carving decomposition (D

c
, �

c
) of width

�
c
= max(�, 4) . The construction of the c-graph C

c
 and of the carving decomposi-

tion (D
c
, �

c
) can be achieved in linear time by exploiting standard doubly-linked lists

with pointers stored with the elements, which support the following two operations

in constant time (according to a prescribed orientation of the edges that allows to

define when a face leaves an edge to its left/right): (1) Given two clockwise consecu-

tive edges incident to a common vertex, retrieve the face that leaves both such edges

to its right/left, and (2) given an edge (u, c) and a face that leaves such an edge to its

right/left, retrieve the edge (v, c) that leaves such a face to its left/right. Note that,

such data structures can be constructed in linear time from the edge-face incidence

graph of G; for implementation details see, e.g., [37].

Repeating the above procedure as long as no cutvertex is left, eventually yields a

2-connected c-graph C�(G�
, T

�) , with |V(G�)| = n + i
G
= O(n) , that is equivalent to

C and a carving decomposition (D�
, �

�) of � (G�) of width �� = max(�, 4) . Since, for

each cutvertex c, the execution of the above procedure takes O(|V(G�)|) time and

since the cutvertices and the blocks of graph G
c
 can be computed in O(|V(G�)|) time

[56], we have that C′ and (D�
, �

�) can be constructed in O(n2) time. This concludes

the proof. ◻

3 A Dynamic‑Programming Algorithm for C‑Planarity Testing

In this section, we present an FPT algorithm for the C-Planarity testing problem

of c-graphs parameterized by the dual carving-width. We first describe a dynamic-

programming algorithm to test whether a 2-connected c-graph C is c-planar, by ver-

ifying whether C satisfies Condition iii of Theorem 2.1. Then, by combining this

result and Lemma 2.2, we extend the algorithm to simply-connected instances.

A key ingredient of our algorithm lies in the ability of maintaining a succinct

description of the internal cluster connectivity of a subgraph of a given c-graph.

This is done by exploiting non-crossing partitions of the vertex set of a c-graph. In

the following, we provide definitions and operations that allow us to handle these

partitions in an efficient way. Hereafter we first give concepts which are common

to both flat and non-flat c-graphs. Then, in Sects. 3.1 and 3.2 we present concepts

which are tailored for flat and non-flat c-graphs, respectively. Finally, in Sect. 3.3,

we present our algorithm to test whether a 2-connected c-graph C is c-planar.

2482 Algorithmica (2021) 83:2471–2502

1 3

Annotated Sets in Clustered Graphs. Let C(G, T) be a c-graph. A set

S = {S1, S2,… , S
k
} such that S

i
⊂ V(G) , for every i ∈ {1, 2,… , k} , is a clustered-

annotated set of C if each element S
i
∈ S is associated with a non-root cluster

�
i
∈ T . Next we define how the association between the elements S

i
 of a clustered-

annotated set and clusters of T are altered by performing union and intersection

operations.

Definition 3.1 Let S and S′ be two clustered-annotated sets of a c-graph C(G, T) . Let

S ∈ S and S�
∈ S

� , and let � and �′ be the clusters associated with S and S′ , respec-

tively. Also, let Q be a subset of V(G). We have the following:

(a) The cluster �
∪
 associated with S

∪
= S ∪ S

� is the lowest common ancestor of �

and �′ in T .

(b) The cluster �
∩
 associated with S

∩
= S ∩ Q is �.

Condition a of Definition 3.1 has a simple, yet important, consequence which we

formally state below.

Remark 3.1 The intra-cluster edges of both � and �′ are also the intra-cluster edges

of �
∪
 , while the opposite is not necessarily true.

3.1 Flat C‑Graphs

Let C(G, T) be a flat c-graph. A flat partition of a set V � ⊆ V(G) is a partition of V ′

that is also a clustered-annotated set of C . A flat partition {S1,… , S
k
} is good if all

the vertices of S
i
 are in V

�
i

 where �
i
 is the cluster associated with S

i
 , for each part S

i
 .

As C is a flat c-graph, every vertex of G belongs to a unique non-root cluster, there-

fore the association between parts and non-root clusters in a good flat partition is

uniquely defined. Furthermore, a flat partition of a cyclically-ordered set V � ⊆ V(G)

is admissible if it is both good and non-crossing.

Let P be a good flat partition of a set Q ⊆ V(G) and let Q′
⊂ Q . The projection of

P onto Q′ , denoted as P|Q′ , is the flat partition of Q′ obtained from P by first replac-

ing each part S
i
∈ P with S

i
∩ Q

� and then removing empty parts, if any. Since P is

good and by Condition b of Definition 3.1, we have that each part of P|Q′ is associ-

ated with a non-root cluster such that all its vertices belong to that cluster. Therefore,

P|Q′ is good.

We define the binary operator ⊎
F
 , called generalized union, that given two

good flat partitions P
′ and P

′′ of sets Q�
⊆ V(G) and Q��

⊆ V(G) , respectively,

returns a good flat partition P∗
= P

�
⊎

F
P
�� of Q�

∪ Q
�� obtained as follows. Initial-

ize P
∗
= P

�
∪ P

�� . Then, as long as there exist Qi, Qj ∈ P∗ such that Qi ∩ Qj ≠ � ,

replace sets Qi and Qj with their union Qi ∪ Qj in P∗ . We now argue that P∗ is good.

First, since P′ and P′′ are both good, Qi and Qj are associated with non-root clus-

ters, say � and �′ . Second, since C is a flat c-graph, Qi ∩ Qj ≠ � implies that � = �
� .

Finally, by Condition a of Definition 3.1, Qi ∪ Qj is associated with � . We have the

following.

2483

1 3

Algorithmica (2021) 83:2471–2502

Lemma 3.1 The generalized union P∗
= P

�
⊎

F
P
�� of two good flat partitions P′ and

P
′′ can be computed in O(|Q�| + |Q��|) time.

Proof We show how to compute P∗ in O(|Q�| + |Q��|) time. Let P� = {Q�
1
,… , Q�

k�
}

and P�� = {Q��
1

,… , Q��
k��
} . We construct an undirected graph G∗ as follows. First, for

each element a ∈ Q
�
∪ Q

�� , we add a vertex v
a
 to V(G∗) . Then, for each part Q�

i
∈ P�

(resp. Q��

i
∈ P��), we add a vertex vQ′

i
 (resp. vQ′′

i
) to V(G∗) . Finally, for each element

x ∈ Q�

i
 (resp. x ∈ Q��

i
), we add an edge (vx, vQ�

i
) (resp. (vx, vQ��

i
)) to E(G∗) . As k′ ≤ |Q′|

and k
′′ ≤ |Q′′| , |V(G∗)| ≤ |Q�| + |Q��| + k� + k�� ≤ 2(|Q�| + |Q��|) and

E(G∗) ≤ |Q�| + |Q��|.

Observe that, for every part Q�

i
∈ P� (resp. Q��

i
∈ P��), the set

VQ�
i
= {vQ�

i
} ∪ {vx|x ∈ Q�

i
} (resp. VQ��

i
= {vQ��

i
} ∪ {vx|x ∈ Q��

i
}) induces a star in G∗ .

Therefore, there exist Q�

i
∈ P� and Q��

j
∈ P�� such that Q�

i
∩ Q��

j
≠ � if and only if

VQ�
i
∪Q��

j
= {vQ�

i
} ∪ {vQ��

j
} ∪ {vx|x ∈ Q�

i
∪ Q��

j
} induces a connected subgraph of G

∗ .

We now perform a breadth-first search (BFS) in G∗ to find all the connected compo-

nents of G∗ . Let C = {C1, C2,… , C
l
} be the set of all the connected components. For

every C
i
∈ C , we construct a new part Q∗

i
 by removing from C

i
 the vertices corre-

sponding to parts in P′ and P′′ . The set {Q∗
1
,… , Q∗

l
} is our required P∗ . Since the

BFS runs in O(|V(G∗)| + |E(G∗)|) time, the lemma follows. ◻

An admissible flat partition P of a cyclically-ordered set S ⊆ V(G) can be

naturally associated with a 2-connected plane graph G(P) as follows; see, e.g.,

Fig. 3c. The outer face of G(P) is a cycle C(P) whose vertices are the elements in

S and the clockwise order in which they appear along C(P) is the same as in S .

Also, for each part S
i
∈ P such that |S

i
| ≥ 2 , graph G(P) contains a vertex v

i
 in

the interior of C(P) that is adjacent to all the elements in S
i
 , i.e., removing all the

edges of C(P) yields a collection of stars, whose central vertices are the v
i
’s, and

isolated vertices. To show that G(P) is planarly embedded, we only need to prove

that the edges incident to the central vertices of any two different stars do not

cross. In particular, let v
1
 and v

2
 be the central vertices of two different stars and

let (v1, a) , (v1, b) , (v2, c) , and (v2, d) be edges of G(P). Since a, b ∈ S1 and c, d ∈ S2

and since P is non-crossing, we have that both c and d are encountered when

traversing the cycle C from a to b either clockwise or counterclockwise. There-

fore, either v
1
 and all its incident edges are embedded in the interior of the cycle

composed of the edges (v2, c) , (v2, d) , and the edges of the subpath of the cycle C

s1

s2

s3

s4

(a)

G(P ′) and G(P ′′)

s1

s2

s3

s4

(b)

H

s1

s4

(c)

G(P ∗)

Fig. 3 Illustrations for Definition 3.2

2484 Algorithmica (2021) 83:2471–2502

1 3

encountered while traversing C from c to d either clockwise or counterclockwise.

We say that G(P) is the cycle-star associated with P.

We also extend the definitions of generalized union and projection to admissi-

ble flat partitions by regarding the corresponding cyclically-ordered sets as unor-

dered. We remark that the projection of an admissible flat partition always yields an

admissible flat partition. On the other hand, the generalized union of two admissi-

ble flat partitions may produce a flat partition which is good but crossing. However,

in the following we define an operator, central to our algorithm, which given two

admissible flat partitions (with some additional properties) returns an admissible flat

partition.

Definition 3.2 Let P′ and P′′ be two admissible flat partitions of cyclically-ordered

sets S�
⊆ V(G) and S��

⊆ V(G) , respectively, with the following properties (where

S∩ = {s1, s2,… , s
k
} denotes the set of elements that are common to S′ and S′′): (i)

|S
∩
| ≥ 2 and (S� ∪ S

��) ⧵ S∩ ≠ � , (ii) the elements of S
∩
 appear consecutively both in

S
′ and S′′ , and (iii) the cyclic ordering of the elements in S

∩
 determined by S′ is the

reverse of the cyclic ordering of these elements determined by S′′.

The binary operator , called bubble merge, returns an admissible flat partition

obtained as follows; refer to Fig. 3. Consider the cycle-stars G(P�) and G(P��) associ-

ated with P′ and P′′ , respectively.

• First, identify the vertices corresponding to the same element of S
∩
 in both C(P�)

and C(P��) (see Fig. 3a) in such a way that no vertex of C(P�) lies inside C(P��) ,

and vice-versa. Since the elements in S
∩
 are consecutive along both C(P�) and

C(P��) , by item (ii), and since the ordering of such elements along C(P�) is the

reverse of their ordering along C(P��) , by item (iii), this yields a new plane graph

H (see Fig. 3b). Note that H is 2-connected since G(P�) and G(P��) are 2-con-

nected and since |S
∩
| ≥ 2 ; therefore, the outer face fH of H is a simple cycle.

• Second, traverse fH clockwise to construct a cyclically-ordered set S∗
⊆ S

�
∪ S

��

on the vertices of fH.
• Finally, set P∗ = (P�

⊎
F

P
��)|S∗ . P∗ is good by the definition of generalized union

and projection. The fact that P∗ is a non-crossing partition of S∗ follows immedi-

ately from the planarity of H (see Fig. 3c).

Lemma 3.1 and the fact that the graph H in Definition 3.2 can be easily con-

structed from P′ and P′′ in linear time imply the following.

Lemma 3.2 The bubble merge of two admissible flat partitions P
′ and P

′′ can be

computed in O(|S�| + |S��|) time.

3.2 Non‑Flat C‑Graphs

In this subsection, we show how the concepts of flat partition, good flat partition,

admissible flat partition, generalized union, projection, and bubble merge need to

2485

1 3

Algorithmica (2021) 83:2471–2502

be naturally extended to non-flat c-graphs. To this aim, recall that an intra-cluster

edge is an edge that connects two vertices of the same cluster. Therefore, in a non-

flat c-graph C(G, T) , an intra-cluster edge for a cluster � ∈ T is also an intra-cluster

edge for all the clusters that are encountered on the path from � to the root of T .

In the context of non-flat c-graphs, we are going to use an extension of the notion

of non-crossing partition that takes into account the inclusion between clusters.

Let Q = {q1, q2,… , q
n
} be a ground set. In a recursive partition P = {Q1,… , Qk}

of Q , it holds that either Qi ∩ Qj = � or Qi ⊂ Qj , with 1 ≤ i < j ≤ k . Observe that

k ≤ 2|Q| − 1 , as it is possible to represent the hierarchy of P by means of a rooted

tree whose leaves are the elements in Q and whose internal vertices have degree

greater than 2, except possibly for the root which may have degree 2.

Let now S = (s1, s2,… , s
n
) be a cyclically-ordered set. A recursive partition P

of S is crossing, if there exist elements a, c ∈ S
i
 and b, d ∈ Sj , with Si, Sj ∈ P and

Si ∩ Sj = � (i.e. neither S
i
 nor Sj are contained in one another), such that a ≺

b
c and

c ≺
d

a ; and, it is non-crossing, otherwise. We observe that the size of the set RNC(S)

of all the non-crossing recursive partitions of S coincides with CAT(2n − 1) , as each

non-crossing recursive partition in RNC(S) can be paired with exactly one rooted

ordered tree on 2n − 1 vertices whose leaves are the elements of S [50, Chapter 32].

Let C(G, T) be a c-graph. The depth of a cluster � ∈ T is the length of the path

between � and the root cluster in T . Observe that, the root cluster has depth 0. A

cluster � ∈ T is an ancestor (resp., successor) of a cluster � ∈ T , with � ≠ � , if �

belongs to the subtree of T rooted at � (resp., � belongs to the subtree of T rooted at

�). Observe that, a cluster is neither an ancestor nor a successor of itself. Given a set

S ⊆ V(G) , the lowest common ancestor of S in T is the deepest cluster � ∈ T such

that all the vertices of S are in V
�
 . A non-flat partition of a set V � ⊆ V(G) is a recur-

sive partition of V ′ that is also a clustered-annotated set of C . A non-flat partition

S = {S1,… , S
k
} is good if (i) all the vertices of S

i
 are in V

�
i

 , where �
i
 is the cluster

associated with S
i
 , for each part S

i
∈ S , and (ii) for any two parts Si, Sj ∈ S such that

Si ⊂ Sj , �i
 should be a successor of �j . Let S = {S1,… , S

k
} be a good non-flat parti-

tion. Since C is a non-flat c-graph and S is good, for each part S
i
∈ S , the cluster

associated with S
i
 must be either the lowest common ancestor �

i
 of S

i
 in T or a non-

root ancestor of �
i
 in T . The details of how this association is defined are given in

Sect. 3.3. Furthermore, a non-flat partition of a cyclically-ordered set V � ⊆ V(G) is

s1

s2

s3

s4

s5

s6

s7

s8

s9

s
′

1

s
′

2

s
′

3

s
′

4

s
′′

1

s
′′

2

s
′′

3

(a)

P
′
and P

′′

s
′

1 s
′

4
s
′′

3
s6 s8 s

′

2
s7 s9 s1 s3 s4 s

′′

2 s2 s
′′

1 s
′

3 s5s
∗

µ1 µ2 µ3

µ5

µ4

µ6

µ7

(b)

T

vµ1
vµ2

vµ3

vµ5

vµ4

vµ6

vµ7

(c)

A(P ′, P ′′)

Fig. 4 Illustration for the construction of the auxiliary graph A(P�
, P

��) of two good non-flat partitions

P
′ and P′′ defined on the vertices of a c-graph C(G, T) . The non-flat partitions P′ and P′′ are, in fact, also

non-crossing, and thus admissible

2486 Algorithmica (2021) 83:2471–2502

1 3

admissible if it is both good and non-crossing. The definition of projection of a non-

flat partition onto a set is identical to the corresponding definition in the flat setting.

In order to the extend the definition of generalized union to be applicable to pairs

of good non-flat partitions, we introduce the following auxiliary directed graph;

refer to Fig. 4. Given a pair (P�
, P

��) of good non-flat partitions of sets Q�
⊂ V(G) and

Q
��
⊂ V(G) , respectively, we construct a graph A(P�

, P
��) as follows. The vertex set

of A(P�
, P

��) contains a vertex v
�
 if there exists a part S ∈ P

�
∪ P

�� that is associated

with the cluster � . The edge set of A(P�
, P

��) contains an edge v
�
v
�
 directed from

v
�
 to v

�
 , if � is an ancestor of � in T and there exists no vertex v

�
 in the vertex set

of A(P�
, P

��) such that the cluster � is in the path connecting � and � in T . Observe

that, by construction, the underlying undirected graph of A(P�
, P

��) is a forest. Also,

two parts S�
, S

��
∈ P

�
∪ P

�� intersect only if there exists a directed path in A(P�
, P

��) ,

possibly of length 0, between the vertices corresponding to the clusters to which S′

and S′′ are associated with. This holds since there exists a directed path between two

vertices of A(P�
, P

��) only if the corresponding clusters are one ancestor of the other

in T .

We are now ready to define the generalized union ⊎
R
 of P′ and P′′ , which returns

a non-flat partition P∗
= P

�
⊎

R
P
�� of Q�

∪ Q
�� obtained as follows; refer to Fig. 5.

We initialize P∗
= P

�
∪ P

�� . Then, we perform the following procedure consisting of

two phases.

• Phase 1. We visit the vertices of A(P�
, P

��) . When we are at a vertex v
�
 , as long

as there exist Qi, Qj ∈ P∗ such that Qi and Qj are associated with the same cluster

� and Qi ∩ Qj ≠ � , we remove sets Qi and Qj from P∗ and add the set Qi ∪ Qj to

P
∗ . By Condition a of Definition 3.1, the set Qi ∪ Qj is associated with the cluster

� . Observe that, after this phase is completed, any two parts Qi, Qj ∈ P∗ intersect

only if Qi and Qj are associated with different clusters.
• Phase 2. We again visit the vertices of A(P�

, P
��) , but according to a topological

ordering of such vertices from sources to sinks. When we are at a vertex v
�
 , as

long as there exist Qi, Qj ∈ P∗ such that (a) Qi ∩ Qj ≠ � , and (b) Qi is associ-

ated with the cluster � , Qj is associated with the cluster � , and v
�
v
�
 is an edge of

s
′

1

s
′

4s
′′

3

s4

s5

s
′

3

s
′′

1

s2

s3

s4s
′′

2

s6

s8

s7

s9 s
′

2

s1

s3

s4

s6

s7

s9

(a)

P
′
∪ P

′′

s
′

1

s
′

4s
′′

3

s6

s7

s9

s2

s3

s4s
′′

2

s7

s9 s
′

2

s6

s8

s4

s5

s
′

3

s
′′

1

s1

s3

s4

(b)

Phase 1

s6

s8

s2

s3

s4s
′′

2

s1

s3

s4

s1

s2

s3

s1

s4

s5

s
′

3

s
′′

1

s7

s9 s
′

2

s
′

1

s
′

4s
′′

3

s6

s7

s8

s
′

2
s9

(c)

Phase 2

Fig. 5 Illustrations for the construction of the generalized union of the two admissible non-flat partitions

P
′ and P′′ illustrated in Fig. 4a. Different parts are represented by shaded polygons. The arrows in b show

how the parts obtained in Phase 1 are merged in Phase 2, according to the auxiliary graph A(P�
, P

��) , to

obtain c

2487

1 3

Algorithmica (2021) 83:2471–2502

A(P�
, P

��) , we remove the part Qj from P∗ and add the part Qi ∪ Qj to P∗ . By Con-

dition a of Definition 3.1, the set Qi ∪ Qj is associated with the cluster �.

By the above definition, the generalized union of P′ and P′′ can be easily computed

in quadratic time. We formalize this fact in the following.

Lemma 3.3 The generalized union P∗
= P

�
⊎ P

�� of two good non-flat partitions P′

and P′′ can be computed in O
(
(|Q�| + |Q��|)2

)
 time.

In the same way as an admissible flat partition P can be naturally associated

with a cycle-star G(P), an admissible non-flat partition P′ of a cyclically-ordered

set S ⊂ V(G) can be naturally associated with a 2-connected plane graph G
R
(P�) ,

as follows. The outer face of G
R
(P�) is a cycle C(P�) whose vertices are the ele-

ments in S and the clockwise order in which they appear along C(P�) is the same

as in S . Also, for each part S
i
∈ P

� , graph G
R
(P�) contains a vertex v

i
 in the inte-

rior of C(P�) . We further add the following edges to the graph G
R
(P�) . First, we

add an edge connecting two vertices v
i
 and vj if and only if Sj is the smallest part

in P′ such that Si ⊂ Sj . Then, we add an edge connecting a vertex v ∈ S with a

vertex v
i
 if and only if S

i
 is the smallest part in P′ containing v. We say that G

R
(P�)

is the cycle-tree associated with P′ ; see Fig. 6c for an example.

The definition of bubble merge of two admissible non-flat partition is identi-

cal to the corresponding definition in the flat setting where, however, the oper-

ator ⊎
R
 is used instead of the operator ⊎ , and the role played by cycle-stars is

now assumed by the cycle-trees associated with the input admissible non-flat

partitions; refer to Fig. 6. Since the cycle-tree G
R
(P) associated with an admis-

sible non-flat partition on a cyclically-ordered set S ⊆ V(G) can be constructed

in O(|S|2) time and it has size linear in |S| , the bubble merge of two admissible

s1

s2

s3

s4

s5

s6

s7

s8

s9

(a)

GR(P ′) and GR(P ′′)

s1

s9

(b)

H

s1

s9

(c)

GR(P ∗)

Fig. 6 Illustrations for the construction of the bubble merge of the two admissible non-flat partitions P′

and P′′ illustrated in Fig. 4a

2488 Algorithmica (2021) 83:2471–2502

1 3

non-flat partitions P′ and P′′ of cyclically-ordered sets S′ and S′′ , respectively, can

be easily computed in quadratic time. We formalize this fact in the following.

Lemma 3.4 The bubble merge of two admissible non-flat partitions P′ and P′′ can

be computed in O
(
(|S�| + |S��|)2

)
 time.

3.3 Algorithm

Let C(G, T) be a 2-connected, possibly non-flat, c-graph. Let (D, �) be a bond-

carving decomposition of � (G) of width at most � and let � be a non-root bag

of D. We denote by F
�
 the set of faces of G that are dual to the vertices of � (G)

that are leaves of the subtree D
�
 of D rooted at � . Also, let G

�
 be the embedded

subgraph of G induced by the edges incident to the faces in F
�
 . Since (D, �) is a

bond-carving decomposition of � (G) , there exists a unique face of G
�
 not in F

�
 ,

which we denote as f∞
�

 . The interface graph I
�
 of � is the subgraph of G

�
 induced

by the edges that are incident to f∞
�

 . The boundary B
�
 of � is the vertex set of I

�
 .

Note that, the edges of I
�
 are dual to those in �(�) . By Lemma 2.1 and by the defi-

nition of bond-carving decomposition, we derive the next observation about I
�
.

Observation 3.1 The interface graph I
�
 of � is a cycle of length at most �.

Since G is 2-connected, by Observation 3.1 the vertices in B
�
 have a natural

(clockwise) circular ordering defined by cycle I
�
 . Therefore, from now on, we

regard B
�
 as a cyclically-ordered set.

In the following, for the sake of simplicity, we refer to flat partitions and non-

flat partitions simply as partitions, and assume that in the context of non-flat and

flat c-graphs such a term refers to the appropriate notion. Similarly, we denote

the generalized union of good partitions by ⊎ , and assume that in the context of

non-flat and flat c-graphs such a term refers to the operation ⊎
F
 and ⊎

R
 , respec-

tively. We will exploit the following useful observation concerning the general-

ized union.

Observation 3.2 Let P
′ and P

′′ be two good partitions of a set V
�
⊂ V(G) , let

P
∗
= P

�
⊎ P

�� , and let S be a part in P′ . Then, there exists a part S∗
∈ P

∗ such that

S ⊆ S
∗ and S∗ is associated with the cluster S is associated with.

Let P ∈ NC(B
�
) be an admissible partition and let C

�
(G

�
, T

�
) be the c-graph

obtained by restricting C to G
�
 . Also, let C⋄

�
(G⋄

�
, T

⋄

�
) be a super c-graph of C

�
 con-

taining no saturating edges in the interior of f∞
�

 and such that G⋄

�
 is planar. We

have the following definition.

2489

1 3

Algorithmica (2021) 83:2471–2502

Definition 3.3 The c-graph C⋄

�
 realizes P if (refer to Fig. 7):

(a) for every two vertices u, v ∈ B
�
 , we have that if u and v are in the same part

S
i
∈ P , then they are connected in G⋄

�
 by paths of intra-cluster edges of the cluster

S
i
 is associated with,

(b) for every two vertices u, v ∈ B
�
 and for every path p

uv
 connecting u and v in G⋄

�
 ,

consider the lowest common ancestor � of V(puv) in T . If � is a non-root cluster,

then there exists a part S
i
∈ P such that u, v ∈ S

i
 and the cluster associated with

S
i
 is either � or a non-leaf successor of �,

(c) for each cluster � in T such that V
�
∩ B

�
≠ � , each vertex of � in G

�
 is connected

to some vertex of � in B
�
 by paths of intra-cluster edges of � in G⋄

�
,

(d) for each cluster � in T such that V
�
∩ B

�
≠ � and for every vertex v ∈ V(�) ∩ B

�
 ,

there exists a part in P that contains v which is associated with � or with a non-

leaf successor of � , and

(e) for each cluster � in T such that V
�
∩ B

�
= � and V

�
∩ V(G

�
) ≠ � , all the vertices

of � are in G
�
 and are connected by paths of intra-cluster edges of � in G⋄

�
.

Conditions a and b of Definition 3.3 imply that each part S
i
 of P is in a one-to-

one correspondence with a connected component of G⋄

�
[V

�
] , where � is the clus-

ter S
i
 is associated with. Conditions c and e of Definition 3.3 do not depend on

partition P. However, they are necessary for the existence of a super c-graph C∗ of

C satisfying Theorem 2.1 whose restriction to G
�
 coincides with C⋄

�
 . In fact, Con-

dition c of Definition 3.3 reflects the possibility for the clusters which intersect

B
�
 and that are not yet connected by means of intra-cluster edges of C⋄

�
 to reach

connectivity by means of intra-cluster edges of C∗ that lie outside I
�
 . Let �′ be a

cluster such that V
�� ∩ B

�
≠ � . Observe that, by Condition c of Definition 3.3, a

connected component of G⋄

�
[V

��] is in one-to-one correspondence with a partition

of the set V
�� ∩ B

�
 such that all the vertices belonging to the same connected com-

ponent of G⋄

�
[V

��] are in the same part. This observation, together with Condi-

tions b and d of Definition 3.3, ensures that each connected component of G⋄

�
[V

��]

is represented by a part of P. Moreover, Condition e of Definition 3.3 ensures

that cycle I
�
 does not form a cluster separator, that is, a cycle of G such that the

(a) (b) (c)
Iρ′

f∞

ρ′

(d)
Iρ′

(e)

Fig. 7 a A flat c-graph C(G, T) . b A super c-graph of C containing all the candidate saturating edges.

c A c-planar drawing of C and the corresponding planar saturation. d A planar saturation of a c-graph,

whose underlying graph is the graph G
�′
 of the decomposition in Fig. 1, where no saturating edge lies

in the interior of f∞
��

 . e The admissible flat partition P determined by the planar saturation in d; sets of

vertices of I
�′
 belonging to the same cluster and connected by saturating edges in d form distinct parts in

P (enclosed by shaded regions)

2490 Algorithmica (2021) 83:2471–2502

1 3

vertices of some cluster � appear both in its interior and in its exterior, but not

in it. Thus, partition P “represents” the internal-cluster connectivity in C⋄

�
 of the

clusters whose vertices appear in B
�
 in a potentially positive instance. Also, P is

realizable by C
�
 if there exists a super c-graph C⋄

�
(G⋄

�
, T

⋄

�
) of C

�
 that realizes P con-

taining no saturating edges in the interior of f∞
�

 and such that G⋄

�
 is planar.

We are going to exploit the next lemma, which holds for any bond-carving

decomposition.

Lemma 3.5 Let �′ and �′′ be the two children of the root � of D. Then , I
��
= I

���
.

Proof Let L
�′
 and L

�′′
 be the set of leaves of the subtree of D rooted at �′ and �′′ ,

respectively. Recall that, �(��) = E(L
��

, V ⧵ L
��
) and �(���) = E(L

���
, V ⧵ L

���
) . Since

L
��
= V ⧵ L

���
 and L

���
= V ⧵ L

��
 , we have �(��) = �(���) . Thus, cycles I

�′
 and I

�′′
 are

composed of the edges of G that are dual to the same edges of � (G). ◻

Lemma 3.5 allows us to derive the following useful characterization.

Theorem 3.1 (Characterization) The 2-connected embedded c-graph C(G, T) is c-pla-

nar if and only if there exist admissible partitions P� ∈ NC(B
��
) and P�� ∈ NC(B

���
) ,

where �′ and �′′ are the two children of the root � of D, such that:

 (i) P
′ and P′′ are realizable by C

��
(G

��
, T

��
) and by C

���
(G

���
, T

���
) , respectively, and

 (ii) for each cluster � in T such that V
�
∩ B

��
≠ � , there exists exactly one part

S ∈ P
∗ , with P∗

= P
�
⊎ P

�� , such that S = V
�
∩ B

��
 and S is associated with

either � or with a non-leaf successor of �.

Proof We first prove the only if part. Let C⋄(G⋄
, T

⋄) be a c-connected super c-graph

of C with G⋄ planar, which exists by Theorem 2.1. Let C⋄

��
(G⋄

��
, T

⋄

��
) and C⋄

���
(G⋄

���
, T

⋄

���
)

be the super c-graphs of C
�′
 and C

�′′
 induced by C⋄ , respectively. We first define two

admissible partitions P� ∈ NC(B
��
) and P�� ∈ NC(B

���
) as follows. We describe the

construction of P′ , the construction of P′′ being analogous. For each cluster � ∈ T
��
 ,

consider each connected component H of the cluster � restricted to G
⋄

�′
 . Let

S = V(H) ∩ B
��
 . If S ∉ P

� , then we associate S with � and add it to P′ . Otherwise, S

already belongs to P′ ; let � be the cluster associated with S. Observe that, � is either

a successor or an ancestor of � . We associate S with the deepest cluster between �

and � . Clearly, by construction, the partitions P′ and P′′ are realizable by C
��
(G

��
, T

��
)

and C
���
(G

���
, T

���
) , respectively. Observe that, by the above construction, for each

cluster � in T such that V
�
∩ B

��
≠ � , each vertex in V

�
∩ B

��
 belongs to at least one

part in P′ (and to at least one part in P′′) that is associated with either � or with a

non-leaf successor of � . Let � be a cluster such that V
�
∩ B

��
≠ � . Since C⋄(G⋄

, T
⋄) is

a c-connected c-graph, the cluster � induces a single connected component. There-

fore, by the definition of generalized union, all the parts in P′ and in P′′ whose verti-

ces belong to V
�
 contribute to generating a part S ∈ P

∗ , with P∗
= P

�
⊎ P

�� , such that

2491

1 3

Algorithmica (2021) 83:2471–2502

S = V
�
∩ B

��
 . In particular, by Condition a of Definition 3.1, S is associated with

either � or with a non-leaf successor of �.

We now prove the if part. By Lemma 3.5, it holds G = G
��
∪ G

���
 and

I
��
= I

���
= G

��
∩ G

���
 . Let C⋄

�′
 be a super c-graph of C

�′
 realizing P′ and let C⋄

�′′
 be a

super c-graph of C
�′′

 realizing P′′ ; these c-graphs exist since Condition i holds. Let

C
⋄ be the super c-graph of C obtained by augmenting C with the saturating edges of

both C⋄

�′
 and C⋄

�′′
 . We have that G⋄ is planar since both G⋄

�′
 and G⋄

�′′
 are planar, since

G
⋄

�′
 and G⋄

�′′
 share the common interface I

��
= I

���
 , by Lemma 3.5, and since there are

no saturating edges of C⋄

�′
 (resp. C⋄

�′′
) that lie in the interior of f∞

��
 (resp. f∞

���
).

We show that every cluster � is connected in C⋄ , provided that Condition ii holds.

This proves that C⋄ is a c-connected super c-graph of C , thus by Condition iii of

Theorem 2.1, c-graph C is c-planar. We let B = B
��
= B

���
 and distinguish two cases,

based on whether some vertices of � appear along cycle I
��
= I

���
 or not.

Consider first a cluster � containing vertices in B. By Condition c of Defini-

tion 3.3, we have that every vertex in � either belongs to B or it is connected by

paths of intra-cluster edges of � in either C⋄

�′
 or C⋄

�′′
 to a vertex in B. Since, by Condi-

tion ii of the statement, there exists only one part S
�
∈ P

∗ such that S
�
= V

�
∩ B

��
 ,

we have that the different parts of P′ and of P′′ containing vertices of � are joined

together by the vertices of � in B. Therefore, the cluster � is connected in C⋄ . Finally,

consider a cluster � such that no vertex of � belongs to B. Then, all the vertices of

cluster � only belong to either C
�′
 or C

�′′
 , by Condition e of Definition 3.3. Suppose

that � only belongs to C
�′
 , the case when � only belongs to C

�′′
 is analogous. Since C⋄

�′

realizes P′ , by Condition e of Definition 3.3, all the vertices of � in G′

�
 are connected

by paths of intra-cluster edges of � . Thus, cluster � is connected in C⋄ , since it is

connected in C⋄

�′
 . This concludes the proof. ◻

Theorem 3.1 implies that the algorithmic core of our problem lies in the com-

putation of the set A
�
 of all admissible partitions of B

�
 that are realizable by C

�
 , for

every non-root bag � of D. Observe that the size of A
�
 depends on both the size of B

�

and the height h of T as any part in a partition can be associated with at most h − 2

clusters, namely the non-root clusters in the path between the lowest common ances-

tor of the vertices in the part and the root of T . Therefore, we can upper bound |A
�
|

in the flat and in the non-flat case by NC(B
�
) and by h2|B

�
|−1

⋅ RNC(B
�
) , respectively.

We now present our main algorithmic tool.

algoritHm 1. Let (D, �) be a bond-carving decomposition of � (G) of width � .

We process the bags of D bottom-up and compute the following relevant informa-

tion, for each non-root bag � of D: (1) the set A
�
 , and (2) for each admissible parti-

tion P ∈ A
�
 , for each part S

i
∈ P , and for each cluster � that is either the cluster

associated with S
i
 or a non-root ancestor of such cluster, the number count(S

i
,�) of

vertices of cluster � belonging to G
�
 which are either in S

i
 or are connected to some

vertex of S
i
 by paths of intra-cluster edges of � in C⋄

�
 . Since there may exist parts

S1, S2 ∈ P such that S
1
⊃ S

2
 , for any cluster � which is either the cluster associated

with S
1
 or a non-root ancestor of such cluster, we have that the vertices of cluster �

belonging to G
�
 which are either in S

2
 or are connected to some vertex of S

2
 by paths

2492 Algorithmica (2021) 83:2471–2502

1 3

of intra-cluster edges of � in C⋄

�
 are also counted in count(S1,�) . In that case, to

avoid double counting of these vertices of � , the value of count(S2,�) is set to ����.

• If � is a leaf bag of D, then G
�
= I

�
 consists of the vertices and edges of a

single face of G. Further, by Observation 3.1, graph G
�
 is a cycle of length

at most � . In this case, A
�
 simply coincides with the set of all the admissi-

ble partitions of B
�
 for which each part is associated with its lowest common

ancestor. In fact, since G
�
 is a simple cycle I

�
 , for any admissible partition P of

B
�
 we can construct a super c-graph C⋄

�
(G⋄

�
, T

⋄

�
) of C

�
 that realizes P containing

no saturating edges in the interior of f∞
�

 and such that G⋄

�
 is planar as follows:

Let G
R
(P) (resp. G(P)) be the cycle-tree (resp. cycle-star) associated with the

partition P if C is non-flat (resp. flat). Since the proof is identical in both the

cases, in the following we denote both G
R
(P) and G(P) by G

P
 . Recall that each

vertex u ∈ V(G
P
) ⧵ B

�
 corresponds to a part S

u
 in P and that such a part is asso-

ciated with the cluster �
u
 . Consider an edge (u, v) ∈ E(G

P
) such that v ∈ B

�
 ,

u ∈ V(G
P
) ⧵ B

�
 , and such that there exists no other vertex w ∈ V(G

P
) ⧵ B

�
 for

which �
w
 is a descendant of �

u
 in T . Contracting the edge (u, v) to v results

in a plane graph such that G
P
[S

u
] is connected. We repeatedly identify such

an edge and contract it to its endpoint in B
�
 . Observe that, at the end of above

recursive procedure, we get that V(G
P
) = B

�
 , that G

P
 is a super graph of I

�
 ,

and that, for every part S ∈ P , the graph G
P
[S] is connected. By considering

G
⋄

�
= G

P
 and T⋄

�
= T

�
 , we obtain the desired super c-graph C⋄

�
 of C

�
 that realizes

P. Therefore, we can construct A
�
 by enumerating all the possible non-cross-

ing partitions of B
�
 and by testing whether each such partition is good in O(�)

time. Note that, the total number of non-crossing partition of B
�
 is at most

CAT(�) ≤ 2
2� when C is flat, and it is at most CAT(2� − 1) ≤ 2

4�−2 when C is

non-flat. Further, for each P ∈ A
�
 , we can compute all counters count(S

i
,�) for

every S
i
∈ P and for every cluster � that is either the cluster associated with S

i

or a non-root ancestor of such cluster, in total O(� + h) time, by visiting G
P
.

• If � is a non-leaf non-root bag of D, we have already computed the relevant

information for the two children �′ and �′′ of � . In the following way, we either

detect that C does not satisfy Condition iii of Theorem 2.1 or construct the rel-

evant information for � :

(1) Initialize A
�
= �;

(2) For every pair of realizable admissible partitions P�
∈ A

�
� and P��

∈ A
�
�� ,

perform the following operations:

 (2a) Compute P∗
= P

�
⊎ P

�� and compute the counters count(S
i
,�) (as

described in the proof of Lemma 3.6), for each S
i
∈ P

∗ and for each

cluster � that is either the cluster associated with S
i
 or a non-root

ancestor of such cluster, from the counters of the parts in P�
∪ P

��

whose union is S
i
.

 (2b) If there exists some S
i
∈ P

∗ such that S
i
∩ B

�
= � and some cluster �

that is either the cluster associated with S
i
 or a non-root ancestor of

2493

1 3

Algorithmica (2021) 83:2471–2502

such cluster for which count(S
i
,�) ≠ ���� and count(S

i
,�) is smaller

than the number of vertices in � , then reject the instance.

 (2c) Compute and add P to A
�
.

(3) Remove duplicates from A
�
 , if any.

Remark 3.2 algoritHm 1 rejects the instance at step (2b), if I
�
 forms a cluster sepa-

rator. This property is independent of the specific generalized union P∗ considered at

this step and implies that no P∗ (and, thus, no P at step (2c)) can satisfy Condition e

of Definition 3.3.

The next lemma is concerned with the correctness and the time complexity of

algoritHm 1.

Lemma 3.6 For each non-root bag � of D, algorithm 1 computes the relevant infor-

mation for � in O(24�+log�) time if C is flat and in O(44�+log�
n) time if C is non-flat,

given the relevant information for its children.

Proof Let �′ and �′′ be the two children of � in D. We will first show the correctness

of the algorithm and then argue about the running time.

Let A
�
 be the set of all the admissible partitions of B

�
 that are realizable by C

�

and let A∗

�
 be the set of all the admissible partitions of B

�
 computed by algoritHm 1.

We show A∗

�
 = A

�
.

We first prove A
𝜈
⊆ A

∗

𝜈
 . Let P

�
 be a realizable admissible partition in A

�
 . Since

P
�
 is realizable by C

�
 , there exists a super c-graph C∗

�
(G∗

�
, T

∗

�
) of C

�
 that realizes

P
�
 containing no saturating edges in the interior of f∞

�
 and such that G∗

�
 is planar.

Let C∗

�
�(G

∗
�
� , T

∗

�
�) (resp. C∗

�
��(G

∗
�
�� , T

∗

�
��)) be the super c-graph of C

�
�(G

�
� , T

�
�) (resp.

of C
�
��(G

�
�� , T

�
��)) obtained by adding to C

�
′ (resp. to C

�
′′) all the saturating edges

in G∗

�
 laying in the interior of the faces of G

�
′ (resp. of G

�
′′) that are also faces of

G
�
 . Clearly, c-graph C

∗

�
�(G

∗
�
� , T

∗

�
�) (resp. c-graph C

∗

�
��(G

∗
�
�� , T

∗

�
��)) contains no satu-

rating edges in the interior of f∞
�
�
 (resp. in the interior of f∞

�
��
), since such a face

does not belong to G
�
 . We first define two admissible partitions P� ∈ NC(B

�
�) and

P
�� ∈ NC(B

�
��) as follows. We describe the construction of P′ , the construction of P′′

being analogous. For each cluster � ∈ T
��
 , consider each connected component H of

the cluster � restricted to G∗

�
�
 . Let S = V(H) ∩ B

�
� . If S ∉ P

� , then we associate S with

� and add it to P′ . Otherwise, S already belongs to P′ ; let � be the cluster associated

with S. Observe that, � is either a successor or an ancestor of � . We associate S with

the deepest cluster between � and � . Clearly, by construction, the partitions P′ and

P
′′ are realizable by C

�
�(G

�
� , T

�
�) and C

�
��(G

�
�� , T

�
��) , respectively. By hypothesis, we

have P�
∈ A

�
� and P��

∈ A
�
�� . We show that when step (2) of algoritHm 1 considers

partitions P′ and P′′ , it successfully adds P
�
 to the set A

∗

�
 . By the construction of

C
∗

�
�
 and C∗

�
��
 and the subsequent definitions of P′ and of P′′ , we have that . There-

fore, we only need to show that when the algorithm considers the pair (P�
, P

��) , it

does not reject the instance at step (2b), and thus P
�
 is added to A

∗

�
 at step (2c).

2494 Algorithmica (2021) 83:2471–2502

1 3

Let P∗
= P

�
⊎ P

�� , which is constructed at step (2a) of the algorithm. Suppose, for

a contradiction, that C is rejected at step (2b). Then, there exists a part S
i
 of P∗ and

a cluster �that is either the cluster associated withS
i
 or a non-root ancestor of such

cluster such that S
i
∩ B

�
= � and count(S

i
,�) is smaller than the number of verti-

ces in the cluster � . Therefore, the cluster � contains vertices that belong to G ⧵ G
�
 ,

which implies that P
�
 cannot satisfy Condition e of Definition 3.3, a contradiction.

This concludes the proof of this direction.

We now prove A
∗

𝜈
⊆ A

𝜈
 . Let P be a partition in A

∗

�
 obtained from the partitions

P
�
∈ A

�
� and P��

∈ A
�
�� (selected at step (2) of the algorithm). Next, we show that P is

realizable by C
�
 . This implies that A∗

𝜈
⊆ A

𝜈
.

By the definition of realizable partition, there exists a super c-graph C∗

�
�(G

∗
�
� , T

∗

�
�)

(resp. C∗

�
��(G

∗
�
�� , T

∗

�
��)) of C

�
�(G

�
� , T

�
�) (resp. of C

�
��(G

�
�� , T

�
��)) that realizes P′ (resp. P′′)

containing no saturating edges in the interior of f∞
�
�
 (resp. of f∞

�
��
) and such that G∗

�
�

(resp. G∗

�
��
) is planar. Let C∗

�
(G∗

�
, T

∗

�
) be the super c-graph of C

�
(G

�
, T

�
) constructed by

adding to C
�
 the saturating edges in C∗

�
�
 and C∗

�
��
 . We show that the c-graph C∗

�
(G∗

�
, T

∗

�
)

realizes P, contains no saturating edges in the interior of f∞
�

 , and G∗

�
 is planar.

First, we have that G∗

�
 is planar, since G∗

�
�
 and G∗

�
��
 are planar and do not contain

saturating edges in the interior of f∞
�
�
 and of f∞

�
��
 , respectively. By the previous argu-

ments, we also have that f∞
�

 contains no saturating edges.

We show that Condition a of Definition 3.3 holds. Recall that . We prove that

all the vertices in the same part S of P are connected in C∗

�
 by means of intra-cluster

edges of the cluster S is associated with. Let S
i
 be a part of P that also belongs to

P
′ or to P′′ . Then, since C∗

�
�
 and C∗

�
��
 realize P′ and P′′ , respectively, the vertices of

S
i
 are connected in C∗

�
 by paths of intra-cluster edges of the cluster S

i
 is associated

with, as they are connected by paths of intra-cluster edges of the cluster S
i
 is associ-

ated with, in either C∗

�
�
 or C∗

�
��
 , by Condition a of Definition 3.3. Otherwise, let S

i
 be

a part of P that does not belong to either P′ or P′′ . Then, by Definition 3.2, the part

S
i
 is obtained by intersecting B

�
 and a part S∗

i
 of the generalized union P∗

= P
�
⊎ P

�� .

Thus, by Condition b of Definition 3.1, S
i
 and S∗

i
 are associated with the same cluster

� . Also, the vertices in each of the parts of P′ and of P′′ contributing to the creation

of S∗

i
 are connected by paths of intra-cluster edges of � in C∗

�
�
 and C∗

�
��
 , respectively,

by Remark 3.1 and by Condition a of Definition 3.3. Therefore, we have that the

connectivity of such sets implies the connectivity of the elements of S
i
 by paths of

intra-cluster edges of � that connect at their shared vertices in B
�
� ∩ B

�
��.

Next, we show that Condition b of Definition 3.3 holds. We prove that for any

two vertices u and v of B
�
 , if they are connected by a path L in G∗

�
 for which the low-

est common ancestor of V(L) in T is a non-root cluster �′ , then they belong to a part

of P∗
= P

�
⊎ P

�� associated with a cluster �′′ , which is either �′ or a non-leaf succes-

sor of �′ in T . By Definition 3.2 and by Condition b of Definition 3.1, this in turn

implies that u and v belong to a part of P associated with �′′ . Let L1, L2,⋯ , L
k
 be

the maximal subpaths of L composed of intra-cluster edges belonging to either C∗

�
�
 or

C
∗

�
��
 such that L

i
 and L

i+1
 share an endpoint, for i ∈ {1,… , k − 1} . Note that, the end-

points of each path L
i
 both belong to B

�
′ or B

�
′′ . Therefore, by Condition a of Defini-

tion 3.3, the endpoints of L
i
 belong to a part S

i
 of P′ or P′′ , and the cluster associ-

ated with S
i
 is either �′ or a successor of �′ . As L

i
 and L

i+1
 share an endpoint, by the

definition of generalized union, we have that P∗ contains a part S∗ ⊇ S
1
∪ S

2
⋯ ∪ S

k
 .

2495

1 3

Algorithmica (2021) 83:2471–2502

Since u ∈ S
1
 and v ∈ S

k
 , S∗ contains both u and v. Moreover, by Condition a of Defi-

nition 3.1 and by Observation 3.2, the cluster associated with S∗ is either �′ or a

non-leaf successor of �′ in T .

We now show that Condition c of Definition 3.3 holds. Suppose, for a contradic-

tion, that there exists some cluster � whose vertices appear in B
�
 such that there is

at least one vertex x of � in G
�
 that is not connected by a path of intra-cluster edges

of � to some vertex of � in B
�
 . Since P′ and P′′ are realizable by C

�
′ and by C

�
′′ ,

by Condition c of Definition 3.3, there exists a vertex t ∈ B
�
� ∪ B

�
�� of � such that

either t = x or x is connected to t by means of intra-cluster edges of � . If t ∈ B
�
 ,

we get a contradiction. Otherwise, consider the part S
i
∈ P

∗ which contains t such

that the cluster �′ associated with S
i
 is either � or a non-leaf successor of � . Note

that, such a part exists by Condition d of Definition 3.3. We have that S
i
∩ B

�
= �

as otherwise there would exist a path of intra-cluster edges of � connecting x to a

vertex in B
�
 . Therefore, count(S

i
,�) is smaller than the number of vertices of � since

V
�
∩ B

�
≠ � . Thus, step (2b) would reject the instance, and P would not be added to

A
∗

�
 , a contradiction.

We now show that Condition d of Definition 3.3 holds. Let � be a cluster in T

such that V
�
∩ B

�
≠ � . As B

𝜈
⊆ B

𝜈�
∪ B

𝜈��
 , every vertex v ∈ V

�
∩ B

�
 belongs to

B
�
� ∩ B

�
 or B

�
�� ∩ B

�
 . Since P′ and P′′ are realizable by C

�
′ and C

�
′′ , respectively, by

Condition d of Definition 3.3, there exists a part S in P′ or P′′ such that v ∈ S and

the cluster associated with S is either � or a non-leaf successor of � . By Obsecrva-

tion 3.2 and Condition d of Definition 3.1, we have a part in P containing v and it is

associated with either � or a non-leaf successor of �.

Finally, we show that Condition e of Definition 3.3 holds. Suppose, for a contra-

diction, that there exists some cluster � whose vertices only belong to V(G
�
) ⧵ B

�

and that there exist two vertices u and v of � in G
�
 that are not connected by a path

of intra-cluster edges of � in G∗

�
 . First consider the case that V

�
∩ (B

��
∪ B

���
= �) .

Then, since P′ and P′′ are realizable by C
�
′ and C

�
′′ , by Condition e of Definition 3.3,

we have that all the vertices of � are either in G
�
′ and are connected by paths of intra-

cluster edges of � in G∗

�
�
 or all the vertices of � are either in G

�
′′ and are connected

by paths of intra-cluster edges of � in G∗

�
��
 , a contradiction. Otherwise, by Condition

c of Definition 3.3 there exists a vertex t ∈ B
�
� ∪ B

�
�� of � such that either t = u or u

is connected to t by means of intra-cluster edges of � in either C
�
′ or C

�
′′ . If t ∈ B

�
 ,

we get a contradiction. Otherwise, consider the part S
i
∈ P

∗ that contains t. By Con-

dition d of Definition 3.3, the cluster �′ associated with S
i
 is either � or a non-leaf

successor of � . We have that S
i
∩ B

�
= � as V

�
∩ B

�
= � . Therefore, count(S

i
,�) is

smaller than the number of vertices of � , as v ∉ S
i
 . Thus, step (2b) would reject the

instance, and P would not be added to A∗

�
 , a contradiction.

We conclude by analyzing the running time.

First, we show that Step (2a) can be performed in O(|B
�
� | + |B

�
�� |) time if C is

flat, and in O((|B
�
� | + |B

�
�� |)2 ⋅ h) time if C is non-flat. Since the generalized union P∗

can be computed in O(|B
�
� | + |B

�
�� |) time, by Lemma 3.1 in the flat case, and in

O((|B
�
� | + |B

�
�� |)2) time, by Lemma 3.3 in the non-flat case, we only need to show

that whenever a new part S ∈ P
∗ stems from the union of two parts S

1
 and S

2
 , we

can compute the counters for S in O(h) time. Clearly, the part S can be labeled

with the two parts S
1
 and S

2
 generating it in the course of the generalized union

2496 Algorithmica (2021) 83:2471–2502

1 3

operation. Let �
1
 and �

2
 be the clusters associated with S

1
 and S

2
 , respectively. By

definition of generalized union, we have that |S
1
∩ S

2
| > 0 and either �

1
= �

2
 or

one of �
1
 and �

2
 , say �

1
 , is an ancestor of the other. The counters associated with

S are computed as follows. We first consider the case that �
1
= �

2
 . In this case,

we set count(S, �) = count(S1, �) + count(S2, �) − k
�
 , where k

�
= |(S

1
∩ S

2
) ∩ V

�
| ,

for every cluster � that is either �
1
 or a non-root ancestor of �

1
 . We now con-

sider the case that �
1
 is an ancestor of �

2
 . Similarly to the previous case, we set

count(S, �) = count(S1, �) + count(S2, �) − k
�
 , for every cluster � that is either �

1
 or

a non-root ancestor of �
1
 . Recall that, in this case, we replace S

1
 with S, but S

2
 stays

in P∗ after the union of S
1
 and S

2
 . Therefore, since the connectivity of the vertices

of a cluster � , which is either �
1
 or an ancestor of �

1
 , through the vertices in S

2
 by

means of intra-cluster edges of � is now reached through the vertices in S, we update

count(S2, �) = ���� to avoid double counting. Since, there can be at most h − 2

counters associated with any part, we obtain the claimed running time.

Step (2b) can be performed in O(|B
�
� | + |B

�
�� |) time if C is flat, and in

O((|B
�
� | + |B

�
�� |) ⋅ h) time if C is non-flat. This is due to the fact that the number of

parts in P∗ is O(|B
�
� | + |B

�
�� |) , and that for each part which has an empty intersection

with B
�
 , we need to check all its at most h − 2 counters, if C is non-flat.

Step (2c) can be performed in O(|B
�
� | + |B

�
�� |) time if C is flat, and in

O((|B
�
� | + |B

�
�� |)2) time if C is non-flat as the bubble merge P can be computed in

O(|B
�
� | + |B

�
�� |) time, by Lemma 3.2 in the flat case, and in O((|B

�
� | + |B

�
�� |)2) time,

by Lemma 3.4 in the non-flat case.

Step (3) can be performed in O
(
|B

�
| ⋅ |NC(B�

�
)| ⋅ |NC(B��

�
)|
)
 time if C is flat, and

in O
(
|B

�
|h2|B�

�
|+2|B�

�
|−2

⋅ |RNC(B�
�
)| ⋅ |RNC(B��

�
)|
)
 time if C is non-flat. In fact, the set

A
�
 computed at step (2) has size in O(|A�

�
| ⋅ |A��

�
|) . In turn, |A′

�
| (resp. |A′′

�
|) is upper

bounded in the flat and in the non-flat case by |NC(B�
�
)| (resp. |NC(B��

�
)|) and by

h
2|B�

�
|−1

⋅ |RNC(B�
�
)| (resp. h2|B��

�
|−1

⋅ |RNC(B��
�
)|), respectively. Therefore, since each

partition in A
�
 can be injectively mapped to a string whose length is in O(|B

�
|) , in

order to remove duplicates from A
�
 , we can sort the partitions in A

�
 in O(|B

�
| ⋅ |A

�
|)

using radix sort, and then scan the obtained sorted list to remove consecutive dupli-

cated partitions. This yields the stated running time for Step 3.

We are now the ready to provide the overall running time of algoritHm 1.

The number of pairs of realizable partitions considered at Step (2) is bounded

by |NC(B
�
�)| ⋅ |NC(B

�
��)| , which is bounded by 2

2(|B
�
� |+|B

�
�� |) if C is flat, and it

is bounded by h
2|B�

�
|+2|B�

�
|−2

⋅ |RNC(B�
�
)| ⋅ |RNC(B��

�
)| , which is bounded by

h
2|B�

�
|+2|B�

�
|−2

⋅ 2
4(|B

�
� |+|B

�
�� |) if C is non-flat. Moreover, the running time of Step (2)

is upper bounded by Step 2a. Since, |B
�
′ | ≤ � and |B

�
′′ | ≤ � , we therefore have that

the overall running time of Step (2) is O(� ⋅ 24�) = O(24�+log�) time if C is flat, and

in O(�2
⋅ h ⋅ h2�−2

⋅ 28�) = O(44�+log�h2�−1) time if C is non-flat. Observe that, the

running time of Step (2) dominates the running time of Step (3). Thus, algoritHm 1

runs in O(24�+log�) time, if C is flat, and in O(44�+log�h2�−1) if C is non-flat. ◻

By Lemma 3.6 and since D contains O(n) bags, we have the following.

2497

1 3

Algorithmica (2021) 83:2471–2502

Lemma 3.7 Sets A
�′

 and A
�′′

 can be computed in O(24�+log�
n) time, if C is flat, and

in O(44�+log�h2�−1n) if C is non-flat.

We obtain the next theorems by combining Lemma 3.7 and Theorem 3.1,

where the additive O(n2) factor in the running time derives from the time needed

to convert a carving decomposition of � (G) into a bond-carving decomposition of

the same width [70].

Theorem 3.2 C-Planarity testing can be solved in O(24�+log�
n + n

2) time for any

2-connected n-vertex embedded flat c-graph C(G, T) , if a carving decomposition of

� (G) of width � is provided.

Theorem 3.3 C-Planarity testing can be solved in O(44�+log�h2�−1n + n2) time for

any 2-connected n-vertex embedded non-flat c-graph C(G, T) , if a carving decompo-

sition of � (G) of width � is provided.

We are finally ready to prove our main result.

Proof of Theorems 1.1 and 1.2 Let (D, �) be a carving decomposition of � (G) of opti-

mal width � = cw (� (G)) . First, we apply Lemma 2.2 to C to obtain, in O(n2) time,

a 2-connected O(n)-vertex flat c-graph C�(G�
, T

�) equivalent to C and a correspond-

ing carving decomposition (D�
, �

�) of width �� ≤ max(�, 4) . Then, we apply either

Theorem 3.2 or Theorem 3.3 to test whether C′ (and thus C) is c-planar depending on

whether C is flat or non-flat, respectively. The running time follows from the running

time of Theorem 3.2 and 3.3, from the fact that �� = O(�) , |V(G�)| ∈ O(n) , and that

a carving decomposition of � (G) of optimal width � can be computed in O(ĝ(𝜔)n)

time [71], where ĝ is a computable function. This concludes the proof of the theo-

rems. ◻

4 Graph‑Width Parameters Related to the Dual Carving‑Width

In this section, we discuss implications of our algorithm for instances of bounded

embedded-width and of bounded dual cut-width.

Embedded-width. A tree decomposition of an embedded graph G respects the

embedding of G if, for every face f of G, at least one bag contains all the vertices of

f [17]. The embedded-width emw (G) of G is the minimum width of any of its tree

decompositions that respect the embedding of G. For consistency with other graph-

width parameters, in the original definition of this width measure [17] the vertices

of the outer face are not required to be in some bag. Here, we adopt the variant pre-

sented in [34], where the tree decomposition must also include a bag containing the

outer face. We have the following.

Lemma 4.1 Let G be an embedded graph. Then, cw (� (G)) ≤ emw
2(G) + 2 emw (G)

.

2498 Algorithmica (2021) 83:2471–2502

1 3

Proof Recall that the dual � (G) of G has maximum degree �(G) and maxi-

mum face size �(G) , where �(G) and �(G) are the maximum face size and the

maximum degree of the graph G, respectively. It is well-known that the tree-

width tw (G) of G and the tree-width tw (� (G)) of � (G) satisfy the relation:

tw (� (G)) ≤ tw (G) + 1 [18]. Also, for any graph H, the carving-width cw (H)

of H satisfies the relation: cw (H) ≤ �(H)(tw (H) + 1) [14]. Therefore, we have

cw (� (G)) ≤ �(G)(tw (G) + 2) . Finally, the embedded-width emw (G) of G satisfies

the relations: emw (G) ≥ �(G) and emw (G) ≥ tw (G) , by definition [17, 34]. Com-

bining the above inequalities, we get the stated bound for the carving-width of � (G).

 ◻

Cut-width. Let � be a linear order of the vertex set of a graph G = (V , E) . By

splitting � into two linear orders �
1
 and �

2
 such that � is the concatenation of �

1

and �
2
 , we define a cut of � . The width of this cut is the number of edges between

a vertex in �
1
 and a vertex in �

2
 . The width of � is the maximum width over all its

possible cuts. Finally, the cut-width of G is the minimum width over all the possible

linear orders of V. The dual cut-width is the cut-width of the dual of G.

The following relationship between cut-width and carving-width has been proved

in [68].

Theorem 4.1 (Theorem 4.3, [68]) The carving-width of G is at most twice its

cut-width.

By Lemma 4.1 and Theorem 4.1, we have that single-parameter FPT and XP

algorithms also exist with respect to the embedded-width and to the dual cut-width

of the underlying graph for flat and non-flat c-graphs, respectively.

5 Conclusions

In this paper, we studied the C-Planarity testing problem for c-graphs with a pre-

scribed combinatorial embedding. We showed that the problem is polynomial-time

solvable when the dual carving-width of the underlying graph of the input c-graph

is bounded. In particular, we provided a fixed-parameter tractable and a slice-wise

polynomial algorithm for the C-Planarity testing problem for embedded flat and

non-flat c-graphs, respectively. This also addresses a question we posed in [34],

regarding the existence of notable graph-width parameters such that the C-Planar-

ity testing problem for embedded flat c-graphs is fixed-parameter tractable with

respect to a single one of them. Namely, we answer this question in the affirma-

tive when the parameters are the embedded-width of the underlying graph, and the

carving-width and cut-width of its planar dual.

Funding Open access funding provided by Università degli Studi Roma Tre within the CRUI-CARE

Agreement.

2499

1 3

Algorithmica (2021) 83:2471–2502

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen

ses/ by/4. 0/.

References

 1. Adler, I., Bui-Xuan, B., Rabinovich, Y., Renault, G., Telle, J.A., Vatshelle, M.: On the boolean-

width of a graph: structure and applications. In: D.M. Thilikos (ed.) WG 2010, LNCS, vol. 6410, pp.

159–170 (2010). https:// doi. org/ 10. 1007/ 978-3- 642- 16926-7_ 16

 2. Akitaya, H.A., Fulek, R., Tóth, C.D.: Recognizing weak embeddings of graphs. In: A. Czumaj (ed.)

SODA ’18, pp. 274–292. SIAM (2018). https:// doi. org/ 10. 1137/1. 97816 11975 031. 20

 3. Angelini, P., Da Lozzo, G.: SEFE = C-planarity? Comput. J. 59(12), 1831–1838 (2016). https:// doi.

org/ 10. 1093/ comjnl/ bxw035

 4. Angelini, P., Da Lozzo, G.: Clustered planarity with pipes. Algorithmica 81(6), 2484–2526 (2019).

https:// doi. org/ 10. 1007/ s00453- 018- 00541-w

 5. Angelini, P., Da Lozzo, G.: Beyond clustered planar graphs. In: S. Hong, T. Tokuyama (eds.)

Beyond Planar Graphs, Communications of NII Shonan Meetings, pp. 211–235. Springer (2020).

https:// doi. org/ 10. 1007/ 978- 981- 15- 6533-5_ 12

 6. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing for embedded planar

graphs. Algorithmica 77(4), 1022–1059 (2017). https:// doi. org/ 10. 1007/ s00453- 016- 0128-9

 7. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Relaxing the

constraints of clustered planarity. Comput. Geom. 48(2), 42–75 (2015). https:// doi. org/ 10. 1016/j.

comgeo. 2014. 08. 001

 8. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link rep-

resentations of graphs. J. Graph Algorithms Appl. 21(4), 731–755 (2017). https:// doi. org/ 10. 7155/

jgaa. 00437

 9. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of being proper:

(in clustered-level planarity and T-level planarity). Theor. Comput. Sci. 571, 1–9 (2015). https:// doi.

org/ 10. 1016/j. tcs. 2014. 12. 019

 10. Angelini, P., Frati, F., Kaufmann, M.: Straight-line rectangular drawings of clustered graphs. Dis-

crete Comput. Geom. 45(1), 88–140 (2011). https:// doi. org/ 10. 1007/ s00454- 010- 9302-z

 11. Athenstädt, J.C., Cornelsen, S.: Planarity of overlapping clusterings including unions of two parti-

tions. J. Graph Algorithms Appl. 21(6), 1057–1089 (2017). https:// doi. org/ 10. 7155/ jgaa. 00450

 12. Athenstädt, J.C., Hartmann, T., Nöllenburg, M.: Simultaneous embeddability of two partitions. In:

C.A. Duncan, A. Symvonis (eds.) Graph Drawing—22nd International Symposium, GD 2014, Wür-

zburg, Germany, September 24–26, 2014, Revised Selected Papers, Lecture Notes in Computer Sci-

ence, vol. 8871, pp. 64–75. Springer (2014). https:// doi. org/ 10. 1007/ 978-3- 662- 45803-7_6

 13. Biedl, T.: Drawing planar partitions III: Two Constrained Embedding Problems. Tech. Report RRR

13-98, Rutcor Research Report (1998)

 14. Biedl, T.C., Vatshelle, M.: The point-set embeddability problem for plane graphs. Int. J. Comput.

Geometry Appl. 23(4–5), 357–396 (2013). https:// doi. org/ 10. 1142/ S0218 19591 36000 91

 15. Bixby, R.E., Wagner, D.K.: An almost linear-time algorithm for graph realization. Math. Oper. Res.

13(1), 99–123 (1988). https:// doi. org/ 10. 1287/ moor. 13.1. 99

 16. Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial embedding prob-

lem. Theor. Comput. Sci. 609, 306–315 (2016). https:// doi. org/ 10. 1016/j. tcs. 2015. 10. 011

 17. Borradaile, G., Erickson, J., Le, H., Weber, R.: Embedded-width: a variant of treewidth for plane

graphs (2017). arXiv:1703.07532

 18. Bouchitté, V., Mazoit, F., Todinca, I.: Treewidth of planar graphs: connections with duality. ENDM

10, 34–38 (2001). https:// doi. org/ 10. 1016/ S1571- 0653(04) 00353-1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-16926-7_16
https://doi.org/10.1137/1.9781611975031.20
https://doi.org/10.1093/comjnl/bxw035
https://doi.org/10.1093/comjnl/bxw035
https://doi.org/10.1007/s00453-018-00541-w
https://doi.org/10.1007/978-981-15-6533-5_12
https://doi.org/10.1007/s00453-016-0128-9
https://doi.org/10.1016/j.comgeo.2014.08.001
https://doi.org/10.1016/j.comgeo.2014.08.001
https://doi.org/10.7155/jgaa.00437
https://doi.org/10.7155/jgaa.00437
https://doi.org/10.1016/j.tcs.2014.12.019
https://doi.org/10.1016/j.tcs.2014.12.019
https://doi.org/10.1007/s00454-010-9302-z
https://doi.org/10.7155/jgaa.00450
https://doi.org/10.1007/978-3-662-45803-7_6
https://doi.org/10.1142/S0218195913600091
https://doi.org/10.1287/moor.13.1.99
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1016/S1571-0653(04)00353-1

2500 Algorithmica (2021) 83:2471–2502

1 3

 19. Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Liotta, G., Mutzel, P.: Selected

open problems in graph drawing. In: G. Liotta (ed.) GD ’03, LNCS, vol. 2912, pp. 515–539.

Springer (2003). https:// doi. org/ 10. 1007/ 978-3- 540- 24595-7_ 55

 20. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Blocks of hypergraphs-applied to hyper-

graphs and outerplanarity. In: C.S. Iliopoulos, W.F. Smyth (eds.) Combinatorial Algorithms—21st

International Workshop, IWOCA 2010, London, UK, July 26–28, 2010, Revised Selected Papers,

Lecture Notes in Computer Science, vol. 6460, pp. 201–211. Springer (2010). https:// doi. org/ 10.

1007/ 978-3- 642- 19222-7_ 21

 21. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for hypergraphs. J. Dis-

crete Algorithms 14, 248–261 (2012). https:// doi. org/ 10. 1016/j. jda. 2011. 12. 009

 22. Brandes, U., Lerner, J.: Visual analysis of controversy in user-generated encyclopedias. In: IEEE

VAST ’07, pp. 179–186. IEEE Computer Society (2007). https:// doi. org/ 10. 1109/ VAST. 2007. 43890

12

 23. Buchin, K., van Kreveld, M.J., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports for

hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011). https:// doi. org/ 10. 7155/ jgaa. 00237

 24. Carmesin, J.: Embedding simply connected 2-complexes in 3-space—v. A refined kuratowski-type

characterisation (2017)

 25. Chimani, M., Di Battista, G., Frati, F., Klein, K.: Advances on testing c-planarity of embedded flat

clustered graphs. In: C.A. Duncan, A. Symvonis (eds.) GD ’14, LNCS, vol. 8871, pp. 416–427.

Springer (2014). https:// doi. org/ 10. 1007/ 978-3- 662- 45803-7_ 35

 26. Chimani, M., Klein, K.: Shrinking the search space for clustered planarity. In: W. Didimo,

M. Patrignani (eds.) GD ’12, LNCS, vol. 7704, pp. 90–101. Springer (2012). https:// doi. org/ 10.

1007/ 978-3- 642- 36763-2_9

 27. Cornelsen, S., Wagner, D.: Completely connected clustered graphs. J. Discrete Algorithms 4(2),

313–323 (2006). https:// doi. org/ 10. 1016/j. jda. 2005. 06. 002

 28. Cortese, P.F., Di Battista, G.: Clustered planarity. In: J.S.B. Mitchell, G. Rote (eds.) SoCG ’05,

pp. 32–34. ACM (2005). https:// doi. org/ 10. 1145/ 10640 92. 10640 93

 29. Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-connected

clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)

 30. Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane

graph. Discret. Math. 309(7), 1856–1869 (2009). https:// doi. org/ 10. 1016/j. disc. 2007. 12. 090

 31. Cortese, P.F., Patrignani, M.: Clustered planarity = flat clustered planarity. In: T.C. Biedl,

A. Kerren (eds.) GD 2018, LNCS, vol. 11282, pp. 23–38. Springer (2018). https:// doi. org/ 10.

1145/ 10640 92. 10640 93

 32. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput.

Syst. Sci. 46(2), 218–270 (1993). https:// doi. org/ 10. 1007/ 978-3- 030- 04414-5_2

 33. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing nodetrix representations of

clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176 (2018). https:// doi. org/ 10. 7155/

jgaa. 00461

 34. Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: Subexponential-time and FPT algorithms

for embedded flat clustered planarity. In: A. Brandstädt, E. Köhler, K. Meer (eds.) WG 2018,

LNCS, vol. 11159, pp. 111–124. Springer (2018). https:// doi. org/ 10. 1007/ 978-3- 030- 00256-5_

10

 35. Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: C-planarity testing of embedded clus-

tered graphs with bounded dual carving-width. In: B.M.P. Jansen, J.A. Telle (eds.) 14th Inter-

national Symposium on Parameterized and Exact Computation, IPEC 2019, September 11–13,

2019, Munich, Germany, LIPIcs, vol. 148, pp. 9:1–9:17. Schloss Dagstuhl-Leibniz-Zentrum für

Informatik (2019). https:// doi. org/ 10. 4230/ LIPIcs. IPEC. 2019.9

 36. Dahlhaus, E.: A linear time algorithm to recognize clustered graphs and its parallelization. In:

C.L. Lucchesi, A.V. Moura (eds.) LATIN ’98, LNCS, vol. 1380, pp. 239–248. Springer (1998).

https:// doi. org/ 10. 1007/ BFb00 54325

 37. Di Battista, G., Didimo, W.: Gdtoolkit. In: Tamassia, R. (ed.) Handbook on Graph Drawing and

Visualization, pp. 571–597. Chapman and Hall/CRC, London (2013)

 38. Di Battista, G., Didimo, W., Marcandalli, A.: Planarization of clustered graphs. In: P. Mutzel,

M. Jünger, S. Leipert (eds.) GD ’01, LNCS, vol. 2265, pp. 60–74. Springer (2001). https:// doi.

org/ 10. 1007/3- 540- 45848-4_5

 39. Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with

small faces. J. Graph Algorithms Appl. 13(3), 349–378 (2009)

https://doi.org/10.1007/978-3-540-24595-7_55
https://doi.org/10.1007/978-3-642-19222-7_21
https://doi.org/10.1007/978-3-642-19222-7_21
https://doi.org/10.1016/j.jda.2011.12.009
https://doi.org/10.1109/VAST.2007.4389012
https://doi.org/10.1109/VAST.2007.4389012
https://doi.org/10.7155/jgaa.00237
https://doi.org/10.1007/978-3-662-45803-7_35
https://doi.org/10.1007/978-3-642-36763-2_9
https://doi.org/10.1007/978-3-642-36763-2_9
https://doi.org/10.1016/j.jda.2005.06.002
https://doi.org/10.1145/1064092.1064093
https://doi.org/10.1016/j.disc.2007.12.090
https://doi.org/10.1145/1064092.1064093
https://doi.org/10.1145/1064092.1064093
https://doi.org/10.1007/978-3-030-04414-5_2
https://doi.org/10.7155/jgaa.00461
https://doi.org/10.7155/jgaa.00461
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.4230/LIPIcs.IPEC.2019.9
https://doi.org/10.1007/BFb0054325
https://doi.org/10.1007/3-540-45848-4_5
https://doi.org/10.1007/3-540-45848-4_5

2501

1 3

Algorithmica (2021) 83:2471–2502

 40. Didimo, W., Giordano, F., Liotta, G.: Overlapping cluster planarity. J. Graph Algorithms Appl.

12(3), 267–291 (2008)

 41. Feng, Q., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: P.G. Spirakis (ed.) ESA’95,

LNCS, vol. 979, pp. 213–226. Springer (1995). https:// doi. org/ 10. 1007/3- 540- 60313-1_ 145

 42. Forster, M., Bachmaier, C.: Clustered level planarity. In: P. van Emde Boas, J. Pokorný, M. Biel-

iková, J. Stuller (eds.) SOFSEM ’04, LNCS, vol. 2932, pp. 218–228. Springer (2004). https:// doi.

org/ 10. 1007/ 978-3- 540- 24618-3_ 18

 43. Fulek, R., Kyncl, J.: Hanani-tutte for approximating maps of graphs. In: B. Speckmann, C.D.

Tóth (eds.) SoCG ’18, LIPIcs, vol. 99, pp. 39:1–39:15. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik (2018). https:// doi. org/ 10. 4230/ LIPIcs. SoCG. 2018. 39

 44. Fulek, R., Kyncl, J., Malinovic, I., Pálvölgyi, D.: Efficient c-planarity testing algebraically.

CoRR abs/1305.4519 (2013). arXiv:1305.4519

 45. Fulek, R., Kyncl, J., Malinovic, I., Pálvölgyi, D.: Clustered planarity testing revisited. Electr. J.

Comb. 22(4), P4.24 (2015)

 46. Fulek, R., Tóth, C.D.: Atomic embeddability, clustered planarity, and thickenability. CoRR

abs/1907.13086 (2019). arXiv:1907.13086

 47. Fulek, R., Tóth, C.D.: Atomic embeddability, clustered planarity, and thickenability. In:

S. Chawla (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,

SODA 2020, Salt Lake City, UT, USA, January 5–8, 2020, pp. 2876–2895. SIAM (2020). https://

doi. org/ 10. 1137/1. 97816 11975 994. 175

 48. Godsil, C.D., Royle, G.F.: Algebraic Graph Theory. Graduate texts in Mathematics. Springer,

Berlin (2001). https:// doi. org/ 10. 1007/ 978-1- 4613- 0163-9

 49. Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: P. Healy,

N.S. Nikolov (eds.) GD ’05, LNCS, vol. 3843, pp. 211–222. Springer (2005). https:// doi. org/ 10.

1007/ 11618 058_ 20

 50. Grimaldi, R.: Fibonacci and Catalan Numbers: An Introduction. Wiley, London (2012)

 51. Gu, Q., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n^3) time. ACM

Trans. Algorithms 4(3), 30:1-30:13 (2008). https:// doi. org/ 10. 1145/ 13670 64. 13670 70

 52. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in

c-planarity testing of clustered graphs. In: S.G. Kobourov, M.T. Goodrich (eds.) GD ’02, LNCS,

vol. 2528, pp. 220–235. Springer (2002). https:// doi. org/ 10. 1007/3- 540- 36151-0_ 21

 53. Gutwenger, C., Mutzel, P., Schaefer, M.: Practical experience with hanani-tutte for testing c-pla-

narity. In: C.C. McGeoch, U. Meyer (eds.) ALENEX ’14, pp. 86–97. SIAM (2014). https:// doi.

org/ 10. 1137/1. 97816 11973 198.9

 54. Hong, S., Nagamochi, H.: Convex drawings of hierarchical planar graphs and clustered planar

graphs. J. Discrete Algorithms 8(3), 282–295 (2010). https:// doi. org/ 10. 1016/j. jda. 2009. 05. 003

 55. Hong, S.H., Nagamochi, H.: Simpler algorithms for testing two-page book embedding of parti-

tioned graphs. Theoretical Computer Science (2016)

 56. Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation [H] (algorithm 447).

Commun. ACM 16(6), 372–378 (1973). https:// doi. org/ 10. 1145/ 362248. 362272

 57. Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B.: Clustered planarity: embedded clustered

graphs with two-component clusters. In: I.G. Tollis, M. Patrignani (eds.) GD ’08, LNCS, vol.

5417, pp. 121–132. Springer (2008). https:// doi. org/ 10. 1007/ 978-3- 642- 00219-9_ 13

 58. Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskocil, T.: Clustered planarity:

small clusters in cycles and Eulerian graphs. J. Graph Algorithms Appl. 13(3), 379–422 (2009)

 59. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing venn dia-

grams. J. Graph Theory 11(3), 309–325 (1987). https:// doi. org/ 10. 1002/ jgt. 31901 10306

 60. Kamada, T., Kawai, S.: A general framework for visualizing abstract objects and relations. ACM

Trans. Graph. 10(1), 1–39 (1991). https:// doi. org/ 10. 1145/ 99902. 99903

 61. Kaufmann, M., van Kreveld, M.J., Speckmann, B.: Subdivision drawings of hypergraphs. In:

I.G. Tollis, M. Patrignani (eds.) Graph Drawing, 16th International Symposium, GD 2008, Her-

aklion, Crete, Greece, September 21–24, 2008. Revised Papers, Lecture Notes in Computer Sci-

ence, vol. 5417, pp. 396–407. Springer (2008). https:// doi. org/ 10. 1007/ 978-3- 642- 00219-9_ 39

 62. Nagamochi, H., Kuroya, K.: Drawing c-planar biconnected clustered graphs. Discret. Appl.

Math. 155(9), 1155–1174 (2007). https:// doi. org/ 10. 1016/j. dam. 2006. 04. 044

 63. Niggemann, O.: Visual data mining of graph based data. Ph.D. thesis, University of Paderborn,

Germany (2001). http:// ubdata. uni- pader born. de/ ediss/ 17/ 2001/ nigge man/ disse rta. pdf

https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/978-3-540-24618-3_18
https://doi.org/10.1007/978-3-540-24618-3_18
https://doi.org/10.4230/LIPIcs.SoCG.2018.39
https://doi.org/10.1137/1.9781611975994.175
https://doi.org/10.1137/1.9781611975994.175
https://doi.org/10.1007/978-1-4613-0163-9
https://doi.org/10.1007/11618058_20
https://doi.org/10.1007/11618058_20
https://doi.org/10.1145/1367064.1367070
https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.1137/1.9781611973198.9
https://doi.org/10.1137/1.9781611973198.9
https://doi.org/10.1016/j.jda.2009.05.003
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/978-3-642-00219-9_13
https://doi.org/10.1002/jgt.3190110306
https://doi.org/10.1145/99902.99903
https://doi.org/10.1007/978-3-642-00219-9_39
https://doi.org/10.1016/j.dam.2006.04.044
http://ubdata.uni-paderborn.de/ediss/17/2001/niggeman/disserta.pdf

2502 Algorithmica (2021) 83:2471–2502

1 3

 64. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B

96(4), 514–528 (2006). https:// doi. org/ 10. 1016/j. jctb. 2005. 10. 006

 65. Paiva, R., Rodrigues, G.N., Bonifácio, R., Ladeira, M.: Exploring the combination of software

visualization and data clustering in the software architecture recovery process. In: S. Ossowski

(ed.) Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, April

4–8, 2016, pp. 1309–1314. ACM (2016). https:// doi. org/ 10. 1145/ 28516 13. 28517 65

 66. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb.

Theory. Ser. B 52(2), 153–190 (1991). https:// doi. org/ 10. 1016/ 0095- 8956(91) 90061-N

 67. Rué, J., Sau, I., Thilikos, D.M.: Dynamic programming for graphs on surfaces. ACM Trans.

Algorithms 10(2), 8:1-8:26 (2014). https:// doi. org/ 10. 1145/ 25569 52

 68. Sasák, R.: Comparing 17 graph parameters. Master’s thesis, Department of Informatics, Univer-

sity of Bergen, Bergen, Norway (2010)

 69. Schaefer, M.: Toward a theory of planarity: hanani–tutte and planarity variants. J. Graph Algo-

rithms Appl. 17(4), 367–440 (2013). https:// doi. org/ 10. 7155/ jgaa. 00298

 70. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241

(1994). https:// doi. org/ 10. 1007/ BF012 15352

 71. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Constructive linear time algorithms for small

cutwidth and carving-width. In: D.T. Lee, S. Teng (eds.) ISAAC ’00, LNCS, vol. 1969, pp. 192–

203. Springer (2000). https:// doi. org/ 10. 1007/3- 540- 40996-3_ 17

 72. van Bevern, R., Kanj, I.A., Komusiewicz, C., Niedermeier, R., Sorge, M.: Twins in subdivision

drawings of hypergraphs. In: Y. Hu, M. Nöllenburg (eds.) Graph Drawing and Network Visu-

alization—24th International Symposium, GD 2016, Athens, Greece, September 19–21, 2016,

Revised Selected Papers, Lecture Notes in Computer Science, vol. 9801, pp. 67–80. Springer

(2016). https:// doi. org/ 10. 1007/ 978-3- 319- 50106-2_6

 73. Vial, J.J.B., Da Lozzo, G., Goodrich, M.T.: Computing k-modal embeddings of planar digraphs. In:

M.A. Bender, O. Svensson, G. Herman (eds.) ESA 2019, LIPIcs, vol. 144, pp. 17:1–17:16. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https:// doi. org/ 10. 4230/ LIPIcs. ESA. 2019. 17

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Giordano Da Lozzo1 · David Eppstein2 · Michael T. Goodrich2 ·

Siddharth Gupta3

 * Giordano Da Lozzo

 giordano.dalozzo@uniroma3.it

 David Eppstein

 eppstein@uci.edu

 Michael T. Goodrich

 goodrich@uci.edu

 Siddharth Gupta

 siddhart@post.bgu.ac.il

1 Roma Tre University, Rome, Italy

2 University of California, Irvine, USA

3 Ben-Gurion University of the Negev, Beersheba, Israel

https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1145/2851613.2851765
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1145/2556952
https://doi.org/10.7155/jgaa.00298
https://doi.org/10.1007/BF01215352
https://doi.org/10.1007/3-540-40996-3_17
https://doi.org/10.1007/978-3-319-50106-2_6
https://doi.org/10.4230/LIPIcs.ESA.2019.17
http://orcid.org/0000-0003-2396-5174

	C-Planarity Testing of Embedded Clustered Graphs with Bounded Dual Carving-Width
	Abstract
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Relationship Between Graph-Width Parameters and Connectivity

	3 A Dynamic-Programming Algorithm for C-Planarity Testing
	3.1 Flat C-Graphs
	3.2 Non-Flat C-Graphs
	3.3 Algorithm

	4 Graph-Width Parameters Related to the Dual Carving-Width
	5 Conclusions
	References

