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C-semigroups on Banach spaces and functional inequalities.

Shiqi SONG, Equipe d’Analyse et Probabilit~s, University d’Evry - Val d’Essonne,
Boulevard des Coquibus, 91025 EVRY Cedex, FRANCE. E-mail: song@dmi.univ-
evry.fr

Abstract. We introduce the notion of C-semigroup on a Banach space. This notion is
intimately relevent to classical Dirichlet forms on Banach spaces. We shall prove a

sufficient condition for a semigroup on Rd to be a C-semigroup. Then, we prove that C-
semigroups satisfy various functional inequalities such as Poincaré inequality,
logarithmical Sobolev inequality and Stein-Meyer-Bakry inequalities (Riesz transform).

Key words. C-semigroup, classical Dirichlet form, well-admissible measure on Banach
space, symmetric Markov process, Poincaré inequality, logarithmical Sobolev inequality,
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Démontrer l’inégalité de Meyer à partir de la formule

~ Vf(x) es dB s = x].

0

Introduction.

We consider a separable real Banach space B. We assume that B is riggid, i.e. there is a

separable real Hilbert space H such that B* c H c B densely and continuously. We
choose an orthonormal basis (ki)~ 1 of H, consisting of elements of B *. We denote by
(*,*) the scalar product in H and by the associated norm on H.

Let  be a positive measure on B, charging every open set in B. . We suppose that  is c-

finite on the cylindrical sets. Let FC; (B) denote the family of real cylindrical two times
continuously differentiable bounded functions f on B such that ({f ~ 0})  oo. For u E

FC2f(B), we define

= limt~0 1 t + u(x)), i =1, 2, ....

We in addition assume that the measure  is well-admissible, i.e., for any i ~ 1, there

exists a function ~. 1 E L2(B,J.l) such that
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~u ~ki(x) (dx) = - u(x)~i(x) (dx),  u ~ FC2f(B).

For a well-admissible measure , we can define a differential operator in the following
way. For a function f e we shall say that f is differentiable (in directions k.), if

there exists such that, for any i ~ 1, for any u e 

The function g, which is uniquely determined by f (cf. Song [29]), will be denoted by
~f. Clearly, Vu coincides with Vu = (a°,, i > 1) if u e 
The gradient operator  being defined, we can now introduce the notion of C-semigroup.
In the following definition, A(H) denotes the space of bounded linear transformations in
H equipped with the usual operator norm (there will be no confusion with the norm
on H).

Definition 1. Let (QJ be a semigroup of symmetric Markov operators on L ~ (B,~t). We
shall say that is a C-semigroup (with respect to the measure ), if

i. for any f e L2(B,~.), for any t > 0, Q t f is differentiable;
ii. there exists a B-valued Hunt process X such that Qt is the transition semigroup of X;

iii. there exists a A(H)-valued càdlàg process Ct (which will be called a C-process), ,
adapted with respect to the natural filtration of X, with bounded variation, such that

DQ t f(x) = E C t ], x, for any differentiable function f E for any t

> 0;

iv. a{Q ) . = esssup supt>0 1 t log ~Ct~  ~.

v. C t 1 exists and has bounded variation.

vi. for any T > 0, the identity CT - s = (C 
s 
’) 1 holds, where C ’ s denotes the

adjoint operator of C , and t~, denotes the time inversion operator of the Hunt process X.

vi. for any s ~ 0, t ~ 0, Ct+s - where 9t, t ~ 0, denotes the translation
operator associated with X.
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Relatively to a C-semigroup (Qt), we introduce the operators Qt, t >_ 0, on the space

Q t (F~(x) = E x [F C , F E L2(B,H,~,). We have the following lemma:

Lemma 2. The operators (Q) are bounded, symmetric and form a semi group.

This lemma will be proved in §5. We shall call the semigroup (Qt) the tengent semigroup

A priori, C-semigroup property can concern any semigroup on But, the far

intimately relevent semigroup is the semigroup associated with the Dirichlet form defined

as follows: We define the space to be the family of differentiable functions f in

We introduce the form:

E (f,h) _ J1(dx), f, he W(l,t,).

It is known that the form (E ,W( )) is a Dirichlet form on (see Albeverio-

Rockner [1]). This Dirichlet form will be called the classical Dirichlet form associated
with the (well-admissible) measure ~.

Occasionally, we also need the next definition. As it will be seen below, this notion
concerns especially the C-semigroups associated with a classical Dirichlet form.

Definition 3. Let y be a measurable mapping from B into A(H). Let (Qt, Xt, Ct) be a
C-semigroup with its associated Hunt process X and C-process (Ct). We shall say that

t

the C-process is logarithmically differentiable with log-derivative 03B3, if ~03B3(Xs)~ ds  oo

s
almost surely, for any t > 0, and Ct satisfies the stochastic integral equation

t

ds, ‘d t >o,

0

where I denotes the identity transform in H.

We shall see that the constant a(Q~) in Definition l.iv is a functional of the log-derivative

of Ct, if it exists.

The introduction of the notion of C-semigroup has been stimulated by our experiences on
the studies of classical Dirichlet spaces on Banach spaces. We have noticed that, for a
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symmetric Markovian semigroup Q t on many problems will have very simple

solutions, if we can say about The notion of C-semigroup synthesizes what about

would be useful.

Examples of interventions of C-semigroups are numerous. The Brownian semigroups,
the Omstein-Uhlenbeck semigroups, the Bessel semigroups (cf. Song [31]), the
symmetric convolution semigroups, etc., are C-semigroups. Also, the transition

semigroup of a stochastic differentiable flow on Rd of the form

dXt + 

where b is a gives rise to a C-semigroup. Notice that, in this last

example, a C-process is simply given by C = i,j _ d), which is obviously
logarithmically differentiable with log-derivative (8..b). We shall see later (Theorem 1.1, ,
Part I) that this will remain true for a larger class of functions b on Rd.
The notion of C-semigroup already had been introduced in [31], where we proved that,
for a Markovian semigroup Q on R to be the transition semigroup of a two parameter
continuous symmetric Markov process in the sense of Hirsch-Song [13], [14], Qt must
be a C-semigroup with a(Q~) _ 0. More recently in [30], we show that C-semigroup
property can be used to prove the Markovian uniqueness for Dirichlet operators on
Banach spaces. In the present paper we shall show that C-semigroups satisfy various
functional inequalities.

The paper is organised in two parts. In the first part, we shall give a sufficient condition

for a semigroup on Rd to be a C-semigroup.
In the second part, we shall study the Poincaré inequality, the logarithmical Sobolev
inequality, the Stein-Meyer-Bakry inequalities, for a C-semigroup associated with a
classical Dirichlet form.

Let us say two words on the hypothesis of our paper. First, we have limited ourselves to
consider only Banach spaces. But, our knowledge on Bakry’s paper [3], in which Bakry
has already used the tengent semigroup 0, convinces us of the possibility to apply our
method to the studies of diffusions on Riemmanian manifolds. Secondly, the notion of

C-semigroup is introduced by use of the gradient operator ~. This deprives us of

considering that semigroups which possess an "opérateur carré du champs" r{f,f) other
than ~~f,~f~.
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Part I. Existence of C-semigroups on Rd.

~ 1. Hypothesis.

In this section, we describe the semigroups which will be proved to be C-semigroups.
Our description uses the notion of Dirichlet form, for which we refer to the book of
Fukushima [9]. For the special case of Dirichlet forms on Banach spaces, we also can
refer to Ma-R6ckner [ 19], Song [29], [28], and the references therein.

We work on Rd equipped with the Lebesgue measure dx. We consider the classical
Sobolev space H1’2(Rd) and the Dirichlet form

£(u,v) _ j ~ a.u(x) a.v(x) dx = dx, u, v E H1~2(Rd)~

where Vu(x) = and ~i is in the distribution sense. Let Pt be the

semigroup associated with E. This semigroup has a nice representation: Ptf(x) = E[f(x +
~Z where ~i denotes the standard d-dimensional Brownian motion started from zero.

Let 03A9 denote C(R + ,Rd). The points in H will be denoted by w, while the coordinate
process will be denoted by (wt, t ~ 0). We shall denote the law of x + on 03A9 by Px. .

If ~ denotes an Rd-valued random variable whose law is the Lebes g ue measure,
independent of p, the law of 03BE + on 03A9 will be denoted by P.

We choose now a function b in L 2 (R d ,dx) and put b 
n 
= P 

lln 
b for any inte g er n >_ 1. We

assume the following hypotheses on the function b.

Hyl The fonction b is an ~-quasi-continuous function in the space and there are

constants C > 0, v > 0, 2 > p > 0 such that I b(x) I _ C exp t vl x I p ? . .

Under this hypothesis, the functions b belong to 
n

Hy2: 

Let us show then that ebn e for any n z 1. Indeed, for any t > 0, we have
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This implies

dx _ P .

Hy3: The functions eb and ebn belong to H1’2(Rd).
Hy4: For any 1 S i, j S d, ai.b are signed measures whose positive and negative parts areJ

of finite energy with respect to E.

Hy5: There exists a constant 0  C such that, for any n >_ 1, for dx-a.s. x e Rd, the
matrix a2b n (x) - CId is definite negative.
The measures ~ijb are decomposed in positive parts and negative parts: ~ijb = ~ijb+ -

We denote a..b+ + by a..b . By definition, a..b is a finite E-energyiJ iJ 1J iJ iJ

measure. Let Bt(03C9) = (Bij(03C9)(t)) be the matrix-valued process on 03A9 such that each

Bij(03C9)(t) is, under P, the additive functional associated with the measures ~ijb. We shallij J

denote the matrix (a..b) by a2b and (a..b ) by a2b . Remark that, when a..b are
iJ iJ n n iJ

functions, Bij(03C9)(dt) is just ~ijb(Xt(03C9)) dt.

By hypothesis Hy2 and its consequence, we can define the bounded measures 

and ~. 
n 
(dx) = With respect to the measure ~, we have an integration

by parts formula:

~iu(x) (dx) = - u(x) 2~ib(x) (dx), u ~ C1c(Rd).

Notice that by Hy3, ~ib ~ L2(Rd, .). Therefore, the measure  is well-admissible and

the operator O introduced in Introduction is well define on the space L2(Rd, ). We then

consider the classical Dirichlet form (E , associated with p.

Let Q 
t 
denote the Markov semigroup on associated with E 

p, 
(cf. Fukushima

[9]). The main object of Part I is to prove the following theorem:

Theorem l. Under the hypotheses Hyl to Hy5, (Qt) is a C-semigroup. Moreover, if

a..b,1 _ i, j  d, are functions on Rd, a C-process can be associated with (~ ), which is
y ‘t

logarithmically differentiable with logarithmic derivative ~2b = (a..b).
iJ
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§2. Estimate on the function b.

Recall th at there is a conservative ~-symmetric diffusion process X in Rd whose Dirichlet

form coincides with E (see Takeda [34]). The process X satisfies the stochastic
equation:

t

Xt + ~(2 ~it + ds.

0

The law of X on Q will be denoted by QX when XD = x, and by Q when XD has the law

of ~. We know how to describe the semigroup Qt of X: According to Takeda [34], there

is a multiplicative functional N defined on Q such that

t t

N (o) = exp{ (2Vb(m ), do) - 4 f (Vb,Vb)(o ) ds}, ,

for P -a.s. o E SI, for any x E Rd. Then, Q t f(x) 
= P x [N or more generally,

Qx[F(03C9t)] = Px[NtF(03C9t)], where 03C9t = (03C9s, 0 ~ s ~ t). It is known that N is a P -
martin g ale for any x ~ Rd.

Notice that the above results hold again when the function b is replaced by the function

b . We shall denote the corresponding objects by (Xn, ~, , Q~, Q, Nt ) . .

Lemma 1. We have the followin g three conver g ences in L (P), the convergences of the
processes being with respect to the uniform norm over any compact set in R : :

...

b (00) -+ b(m); Vb(w ) s ds; j a2b n (w ) s ds -~ B ~ (~).° * 

0 0 0

Proof. These are consequences of results of Hirsch-Song [ 13], [ 14]. ~

Let A denote the family of stopping times T such that

P-esssup03C9 {supn ~~2bn~ (03C9s) ds + }  ~.

0
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Lemma 2. For any 03C4 ~ , P-esssup03C9 supn Nn03C4(03C9) is finite.

Proof. It is enough to notice that, under P,

t t

~~bn( S)~ = bn(w~) - ds. 0
0 0

Lemma 3. There is an increasing sequence (~n) in A such that ~, 

m, for dx-a.s. x E d.
Proof. Set

t

= 
°

0

As a consequence of Lemma 1, St is finite and continuous Px-almost surely, for dx-a.s.
x e Rd. To prove the lemma, it is enough to set 03C4nw = inf( t; S n . . lJ

~3. C-Process.

For any w E 03A9, let C{w) and denote respectively the following two dxd matrix-
valued processes on 03A9 determined by the equations:

t

= Id + 2 w, and

0

t

= I + 2 Cn(w) ds, P-a.s. w.
0

It can be shown that the solutions of these equations exist and are unique. Moreover, we
have:

t

Lemma 1. Let At be the unique solution of the equation: At = Id - 2 AS dBs, t ~ 0.
0

Then, for any t~ 0, At = Ct-1 the inverse of Ct. Similar result holds also for 
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Proof. It is because d(A C ) = 0. Q

Lemma 2. -~ C(w) uniformly on each compact intervals for P-a.s. w.

Proof. Consider the difference between C and Cn:

t t

= 2 j 2 j ds

0 0

t t

= 2 a2b 
n 
(m 

s 
C 
s 
(w) + 2 a2b n (w ) s (C s (w) - ds.

0 0

Consider the two integrals in the last term. The second one is overestimated by

t

2 supn~~2bn~(03C9s) ds ’

0

while the first one converges uniformly to zero in any compact interval for P-a.s. w,
which is the consequence of Lemma ~2.1. Now, to finish the proof of the lemma, it is
enough to apply Wendroff inequality (cf. Mao [20], p.24-32). [~]

Lemma 3. For any integer p ~ 1, set ~(p,s) = k2 p, where k is the unique integer such
that s e [k2 p, (k+1)2 p[. For a fixed integer n ~ 1, let C (n,p)(o) be solution of the
equation

t

= I d + 2J ds.

0

Then, Cn(w) is the limit of C t (n,p)(w) when p tends to the infinity.

Proof. This can be proved by the usual Gronwall inequality method. D
Lemma 4. Let M be a dxd real symmetric matrix. Let ~,1(M) z ~,2(M} ~...~ ~,d(M) be
the eigenvalues of M. Let D be the diagonal matrix corresponding to (03BBi) and let U be an
orthonormal matrix such that UMU* = D. Let exp{ tD } denote the diagonal matrix
corresponding to Let v(t) be the solution of the equation:
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t

v(t) = Id + M v(s) ds, 
0

Then, v(t) = U*exp{tD}U.

Proof. Let w(t) = Uv(t)U*. Then, w(t) satisfies the equation:

t t

w(t) = UMU* w(s) Id + D w(s) ds, t >_ o.

0 0

Clearly, w(t) = exp{tD} is the unique solution of the equation. The lemma is proved. Q

Coroll ary 5.  

Let p = sup n sup x ~, 1 (2a2b n (x)). Remark that, b y Hy5, p  oo. We have the following
lemma.

Lemma 6. We have P-almost surely. Consequently, 

Proof. Fix n ~ 1 and p ~ 1. Consider the process C (n,p) introduced in Lemma 3. Set
A(t) = C (n,p). Let M~ = 8 ~ ~(o~-p), k Z 1. Let vjt) be the solution associated with
M~ defined in Lemma 4. We check easily that A(t + k2-p) and vk(t) for t e
[0,2 p[ satisfy the same equation. By uniqueness, we conclude, if h = and t. 1 =
i2-P, ,

A(t) = A(t)A - 1 ( ) th ( th-1 ) ... A 1 

= vh-l (1t - th-1) ... v 1 (t2 - 

Now, by Corollary 5 applied to each of v., we see for any t ~ 0.

Now, it is enough to apply Lemma 3 and Lemma 2 to complete the proof. D
Lemma 7. Let T > 0. Let tT denote the inversion operator : Then,

(C ’) 1 CT" 0  t S T, P-almost surely, where ’ denotes the transposition of
matrix.

Proof. We have P-almost surely



307

T-t

~ 
0

T T

= Id + 2 2 j~ 
0 T-t

T t

= 2 
T-t 0

From this formula we see that (C-oi )’ and (C’)- satisfy the same equation.
By uniqueness, we conclude ) 1= (C t ’j 1, 0 _ t _ T. In particular,
when t = T, we have (CTT )-1 = (CT’)-1. This proves the lemma. []

Lemma 8. Let 9t, t ~ 0, denote the translation operator on Q: 8t(w)S = wt+s’ Then, we
have the relation (C s 03B8t)Ct, s ~ 0, P-almost surely.

Proof. It is enough to notice that, under the measure P, Ct+s and C s 03B8t satisfy both
s

the same equation: A s = I d + j B°8 t (du) A , u 
0

§4. Derivative of the process X.

Lemma 1. For any n ~ 1, for x e Rd, let be the unique solution (under P) of
the equation:

dXnt(x) = 2 d03B2t + 2Vbn(Xt) dt, Xo = x.

Then, (Cnt)ij(03C9), P-a.s. w.
Proof. This can be proved using the results in Ikeda-Watanabe [15], using the

localisation, and finally using the fact that Xn is conservative. [""]

Lemma 2. We have = u E W(p,), where the vector

Vu(x) in H is represented horizontally.
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Proof. It is enough to prove it for u e But, by Lemma §3.6, we have

Q?i ’  i  «.

So, we can apply Fubini’s lemma to fInish the proof. lJ

Lemma 3. For any I e A, for t Z 0, for any u, v e H),

Proof. Indeed,

~’~ ~ ~~°~ ~ ~~

~ ~~ ~~°~~ ~ ~~°~~ ~ ~~

~ ~~ ~ ~~~~ ~ ~~

~ ~’~ ~ ~ ~~

Lemma 4. Lim > t] = Q[I(m) > t].
n

Proof. Indeed

LimnQn[03C4(03C9) > t] = LimnP[Nnt(03C9); 03C4(03C9) > t] =P[Nt(03C9); 03C4 > t] = Q[03C4(03C9) > t].[]

Corollary 5. For any £ > 0, for any t > 0, there is a 03C4 ~ A such that

limsupQn[03C4(03C9) ~ t]  ~.
n

Proof. This is because that, by Lemma §2.3, there is an increasing sequence (JQ) c A 
.

which tends to infinity P -almost surely, for dx-a.s. x e d. Since Q is locally
x x

absolutely continuous with respect to P x we have therefore limk Q[03C4k  t] = 0. Now, the

corollary follows from Lemma 4. lJ

Theorem 6. = u e W(p).
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Proof. It is enough to prove it for u ~ Let 1 ~ i ~ d. Set 9.*v = 3.v + v9.b, v ~

C1c(Rd). Let E > 0. Let T 6 A such that limsupn Qn[03C4~ t]  e. We have, for v c 

= J ~*v(x) T(o) > t] + J~ 9~v(x) T((o) ~ t] 

= Q~[u(~); > t] + 0(E)

=limn~i*v(x) Qnx[u(03C9t)] n(dx) + 2 O(~)

= - (Qnx[~u(03C9t) Cnt(03C9)])i n(dx) + 2 O(~)

= - (Q~Vu(~) C~o); > t])~ ~(dx) + 3 0(e)

= - j~ (Q~[Vu(~) C~o); > t])~ ~(dx) + 3 0(e)

= - j~ v(x) + 4 0(e).

Since e is arbitrary, we have proved

J~ ti(dx) = - ~ v(x) 
This is equivalent to = u ~ [~j

Now, we can claim that Theorem §1.1 is proved.

§5. Tengent semigroup.

Let us prove Lemma 2 in Introduction.

Lemma 1. The operators (0) is a semigroup.

Proof. By the relation = (C ~OJC . we have

0~[F](x) = Q,[F(~)C~] F(~ (C~) C~ J

=Q~[Qx~)C,)~=o~[p](x). D
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Lemma 2. et iS -symmetric.

Proof. Notice that the law Q is invariant under the operator T, for any T > 0. By the

relation = We obtain that, for any F, 

j (G’ dv * j (GX>’ 
= Ql I = Ql 

= Qi G%>, = Qi = j 0398TG>, F~ dp. lJ
Lemma 3. (e t F(x),e t F(x)) e" Qt[(F, F~1/2](x), with a = a(Q . ).

Proof. Indeed, for any G e H, we have

G,etfx» = G,  G> 
~’~ ~’~ 

i

 e’ G> ~’~ = G, G> /’~ e~~ F>~’~ix>. lJ

Let us now give a description of the generator of the tengent semigroup e .t

Lemma 4. For any bounded continuous F, for any t > 0,

t t

j (G(x), Q~[ j F(m s ) B(ds) C s ]) = j ds j (e s G(x), F(x) 
0 0

Proof. It is enough to look at the limit state of the expression:

t

j (G(x), Q?[ j F(m s ) C) ds]) lJ
0

Proposition 5. For any u e G e continuous and bounded, we

have

I j l~~~~’ F~~~~ ~ l j l~~~~’ 
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- + ~ ~,(dx),

where L denotes the infinitesimal generator of Qt.

Proof. Apply Ito’s formula and use the preceding lemma. j!

Part II. Functional inequalities.

In this part we consider a well-admissible probability measure ~ on a separable real riggid

Banach space B. We consider the classical Dirichlet space (8 ,W(~)) on LZ(B,~,) and its
associated semigroup Pt (we use Pt instead of Qt to denote the semigroup, the latter will
be used to denote the Cauchy semigroup associated with We assume that there is a

diffusion process X in B whose transition semigroup coincides with Pt.

Under the assumption:

Pt is a C-semigroup,

we shall study three types of functional inequalities: Poincaré’s inequality, logarithmical
Sobolev inequality, and Stein-Meyer-Bakry inequalities.

§1. Poincare’s inequality.

Let us begin with Poincar~’s inequality and logarithmical Sobolev inequality. We shall
see that a C-semigroup behaves like the Omstein-Uhlenbeck semigroups. We refer to

Bakry-Emery [2], Davies [6], Rothaus [27], etc., on this subject. Recall the number a =

a(Q~) introduced in Definition l,iv.

Theorem 1. Suppose a  0. Then, for any t > 0,

-L u)~ u E 

Proof. Let us denote the points in C(R+,B) by w and the law of X started from p on

C(R ,B) by P. Notice that the following inequality holds:

(Du(w ), WM, P-a.s..
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If we denote by L the infinitesimal generator of P 

t

Corollary 2. (Spectral gap) Suppose a  0. Let (E~, ~, >- 0) denote the spectral family
of the self-adjoint operator L. Let f E E ]o; a[ [LZ(B,~.)]. Then, f = 0
Proof. By Theorem 1, for such a function f, we have

03BBd(E03BBf,f)=~ (f,f)~(-03B1)(  d(E03BBf,f)- e-2t03BB(dE03BB,f,f))
0+ 0+ 0+

for any t ~ 0. Let t tend to infinity, we obtain

(-a)- (-a)-

03BB d(E03BBf,f) ~ (-03B1)  d(E03BBf,f).
0+ 0+

But, this can hold only 
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§2. Logarithmical Sobolev inequality.

Theorem 1. Suppose a  0. Then, for any t > 0, for any function f e such that f

~ ~ for some constant £ > 0, we have

Proof. First of all we remark that Pt is -invariant. So, we have

We can overestimate:

S ~f(w S )~ ~ S 112] Seas ~’f(w S )~ 112]
~ e~ )) 1 ] ll2 

x s S f(l0s) x s

So, we obtain
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 - ~ a j (?fx>, ?fx» £ vdx>. D

§3. Stein-Meyer-Bakry inequalities.

Let 0. We define the Cauchy semigroup associated with e~’~P~:
oo

Q03BBt= m(t,s) e-03BBs Ps ds, where m(t,s) =
t 203C0 s-3/2 exp{-t2 4s }.

Let C’ be the infinitesimal generator of o’. The domain of C’ is denoted by D(C’).
t

When X = 0, we denote C~ = C. Let %~ be the tangent semigroup associated with P, The

Cauchy semigroup associated with t and its generator are denoted by respectively I’
and 03BB.
The Stein-Meyer-Bakry inequalities state the mutual overestimates between the operators

9 and C’ for a suitable X Z 0. There are already many studies on Stein-Meyer-Bakry
inequalities. We can refer to Stein [ 32], Meyer [21], [22], [23], [24], Bakry [3], [4],
Feyel [8], Pisier [25], Wu [37], Gundy [12], Varopoulos [35], Lohoué [18],
Dellacherie-Maisonneuve-Meyer [7], Gundy-Silverstein [10], Gundy- Varopoulos [I I],
Banuelos [5], Stichartz [33], etc. These studies concern various type of semigroups on
different spaces. The motivation for us to write again about Stein- Meyer- Bakry inequality
comes from the desire of understanding the papers of Bakry [3] and [4] , in the former of
which, Bakry had already used implicitely the C-semigroup notion (see also Dellacherie-
Maisonneuve-Meyer [7]). We have remarked that, for C-semigroups, explicit formulas

exist relating the gradient 9 with the Cauchy operator C’. Using these formulas, we
shall prove hereafter that C-semigroups satisfy Stein-Meyer-Bakry inequalities.

When f(x,t) is a function of two variables (x,t) , the operators 9, P , Q’, etc, will operates s

on the variable x. The resulted functions will be denoted P f(x,t), Q’f(x,t),
s s

etc. We shall use also the operator D which is the differential with respect to the variable t

of the function f(x,t). When f(xl ’ is a function in d(B,p) (resp. in we shall

write f(x,t) for the function (x,t) e Q/f(x) (resp. (x,t) e l’f(x)) defined on BXR + (we
shall not write the parameter X), and we shall call it the extension of f onto B R+. For p

> I we denote the various LP-norms below by ~2022~ as well as by N .
P P
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In what follows, we shall calculate many times integrals and derivatives. We shall not
each time prove that they are meaningful, because the technique to do so is routine.

For any f E W(~), we denote aif = ~~ f, i ~ 1, where is the basis of H

introduced in Introduction.

As in Meyer [21], we introduce the process where Xt is the B-valued -

symmetric diffusion associated with and Bt is a Brownian motion started from a point
a > 0 such that = 2t. We set 03C4 = inf { t; B t = 0 } . We denote the law of (Xt,Bt)t~0
by Ea.
The comer stone of Stein-Meyer-Bakry inequalities are martingale inequalities. We shall
use constantly three of them.

Lemma 1. (Doob’s inequality) For any p > 1, for any non negative submartingale S,

Np [sups~0 Sps]~p p-1 N p[Sp~ ].

Lemma 2. (vector Burkholder-Davis-Gundy inequality) For any p > 1, there is
constants c and C such that, for any sequence of continuous real martingales i ~

1),

c N ~ N [( ~ )112] ~ C N [( ~ 
p P L1 

~ P ~l I 
~ 

P P ~1 
’

here obviously (M.) denotes the increasing process associated with M..
Lemma 3. (Lenglart-Lépingle-Pratelli [17], Théorème 3.2) For any p > 0, there is a
constant c such that, for any continuous submartingale Z = M + A, where M is a

p
continuous local martingale and A is a continuous increasing process started from zero,

c p E[sups~0 |Zs|p ].

There are numerous forms of Stein-Meyer-Bakry inequalities. Let us begin with a general
result which holds for any classical Dirichlet form.

Theorem 4. (Without C-semigroup assumption) Let p > l. There are constants cp such
that, for any f e W(~,), for any a > 0, we have
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Proof. Recall the following two inequalities: there are constants C such that, for any
vector valued function h = (h.), with h. E for any a > 0, we have firstly

Np[(03A3 (Dhi(Xs,Bs))2 ds)1/2] ~ C Np[( 03A3 hi2)1/2]

~ CNp[(03A3 (Qahi)2)1/2] + C Np[( 03A3 Dhi(Xs,Bs)2 ds)1/2 ];

and secondly

These inequalities have been proved in Bakry [4], when h is scalar valued. But, it is easy
to generalize them to the case of vector valued functions, thanks to the corresponding
Burkholder-Davis-Gundy inequality.

Based on that remark, the truth of the theorem results immediately from the identity
VCf(x,t) = valid for any f E D(L), the domain of the generator L. For
example, to prove the left side inequality of the theorem, applying the first inequality to
f = (~if, i ~ 1), we write

S C N 
p 
[~Q 

a 
Vf,Q 

a 
O f~112] + C N 

p 
[CfJ,
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where the last step is obtained by applying the second inequalities to the function 

Remark. The simplicity of the proof of the inequalities is due to the simple form of the
"opérateur carré du champ" associated with the classical Dirichlet form.

Remark. If a  0, there is a gap in the spectrum of the generator L (cf. Corollary § 1.2).
We can hence take limits in the inequalities of Theorem 4, when a tends to infinity. Then,
under some boundedness condition and ergodicity, the term Np[QaCf] tends to zero,
while the term N p [~Q a 9f,Q a ~f~1~2] tends to zero if p(B) = oo, tends to if

p(B)  oo. In parflcular cases such as the Omstein-Ulenbeck semigroup, E~f,E~f> can

be easily controled by! This provides a proof of Meyer inequality (cf. Meyer [24]).

How to cancel the terms N p [Q a Cf] and N p [~Q 112] from the right hand sides
of the inequalities in Theorem 4, if a is not necessarily negative? To answer the question,
the following formula, in which we recognize the intervention of the C-process, gives a
good starting point.

Lemma 5. Let X > av0. Then, we have the formula:

T

D(L),

0

where Ea.

Proof. Let g be a function in L ~ (B,~i). We consider its extension g onto BxR . Recall
(cf. Bakry [3]) that, because X > 0, the L-norm of Q/g decreases exponendally to zero,
when t tends to infinity. This will justify the convergences of various integrals which will
be coming.

The formula of the lemma is the differentiable form of the following one, which is well
known when X = 0:

T

Ea[ dB s e ~’~ = x]

0

T

= Ea[ 2 a lo g s) ds e ~’~ = x]

0
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obtained by enlarging the filtration 03C3(B)t by the variable 03C4 (see Jeulin [1 6]), where B
denotes the derivative with respect to the variable whose place is occupied by B ;

s

= E
a[e -03BB(03C4-s) P03C4-s g(x,Bs) 2 ~ log m(Bs ,03C4- s) ds ]

0

by the symmetry of the process X;

La
= E[e-03BB(La-s) PLa-sg(x,2ZLa-s) 2 ~ logm(2ZLa-s,La- s) ds]

by the "retournement du temps" (cf. Revuz- Y or [26]), where Z is a 3-dimensional Bessel
process started from zero and ~a ~ ~t ~ ~ ~ 

= E[ e-03BBu P ug(x,2Zu) 2 ~log m(2Zu ,u) du]

0

oo oo

- j du j dy y 2 m(Viy, u) e ’~ P u g(x,Viy) 2 8 log m(Viy,u)
0 0

when a tends to the infinity; (for the potential of Z t , see Revuz-Yor [26])

oo «

= 4 j y dy j du e ’~ P u g(x,Viy) B m(Viy,u)
0 0

oo «

= 4 J Y dY J dU ’~ a Pugx;> m.,u> >.«y
0 0

oo oo

~ ~ ’ Y ~Y ’ ~~ ~ ’~ ~~ ~’~~~Y’~~
0 0

« oo oo

= 4 y dy ~( Q03BB2022+2022g(x) )2022=2y- 4 y dy du e-03BBu PuC03BBg(x,2y) m(2y,u)
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00 00

0 0

oo

=4 y dy Q03BB22yC03BBg(x)=1 2 (C03BB)-1g(x).

Replacing g by 2-f, we obtain:

1 2f(x)=E~[e03BBsC03BBf(Xs,Bs) dBs e-03BB03C4|X03C4 = x], f ~D(C03BB).

Now, to prove the lemma, it is enough to take the gradient 9 on both sides of this
formula when f e D(L). On the left hand side, we obtain 1 ~f. To compute the right
hand side, we first employ the above technique of enlargement of filtration, next, we use
the C-semigroup property, then, we invert the time, finally, we obtain the formula of the
lemma. j!
Before studying the consequence of the formula in Lemma 5 on a general C-semigroup,
let us first try it with the Ornstein-Uhlenbeck process on B (so X is now In such

case, C s = c and a = - 1. Taking the limit in the formula when ~, decreases to zero.
We obtain:

1 2 f(x)=E~[CF(Xs,Bs) es dBse-03C4 |X03C4 = x].

0

(In fact, this formula can be proved directly and very easily. Chronologically, this
t

formula was the genn of that in Lemma 5.) Set Nt = ~ dB . By integration
0

by parts, we can write:

1 2 f(x) = E~[N03C4- Nses-03C4 ds|X03C4 = x].

0

It yields immediately:
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~f~p~2~N03C4~ p+ 2~ sups~03C4~Ns~~p.
To finish the estimate, we first apply the Burkholder-Davis-Gundy inequality to the
vector martingale N, then apply the inequalities mentioned in the beginning of the proof
of Theorem 4. We conclude ~f~I - c ~Cf~. By duality, we conclude also the inverse

P P P

inequality: ~Cf~ I _ c ~f~. The formula given by Lemma S provides thus a second
P P P

proof of Meyer’s inequality.

Give up the Ornstein-Uhlenbeck semigroup and consider again our C-semigroup P . t We
notice that the above technique remains applicable, if the C-process has a bounded log-
derivative and a  0. We can therefore claim our second form of Stein-Meyer-Bakry
inequalities:

Theorem 6. Assume that the C-process has a bounded log-derivative ~y and a  o.

Then, the following inequality holds:

(2 c + 2 1 ~y ~ ~ ) ~ ~~ ~ , , d f E W(~),
P P -aP °°’ P

where c is a martingale inequality constant An inverse inequality also holds by duality.
P

Nevertheless, Theorem b is not the optimal form of the inequalities, while all power of
martingale inequalities has not been exhausted yet. Let us start up off again with the

following representation of the norm ~~D~ ~ :
P

where the supremum is taken over the family of h in Lq(Rd,H,p.) such that ~h~ q = 1,
where q is the conjugate number of p. Let us set h(x,y) = Qa’h(x) for such a function h.

Y

The function h is related with the martingale: for t  03C4,

Mt= E[e
-03BB03C4h(X03C4)C03C4 | Ft] = e-03BBt03BBBth (Xt)Ct= e

-03BBth(Xt,Bt)
Ct.

The martingale M , t for t  ~c, has another expression:

Mt=e -03BBs 03BBh(Xs,Bs)CsdBs+ e -03BBs03A3~ih(Xs,Bs)Cs d203B2 it,

t s s s s i i s s s t

0 0
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where ~~ are independent brownian motions. Using the function h(x,t), we have the
following estimation:

Let us estimate separately the above two norms. We need the following notation. Let ~, be
a real number. We shall write 03BBdt ~ - C t if, for any H-valued process g t we have

oo

dC 1~)z0.
0

Lemma 7. If C t we have ~2  

Proof. > 0. Set f(t) _ 1, + E) 1. Set g t = f(t) g C t 11 [o,a] (t) in the
above definition, where a > 0, g e H. We have

a a

- 2 ~, dt _ 2 f(t) 
0 0
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= + e] - log[(g,g) + e].

Taking the limit in the above inequality when e tends to zero, and replacing g by hCa, we

obatin: - 203BB a~ log(h,h) - loghCa, hCa>. This proves the lemma. []
Remark This lemma provides another proof of Lemma §3.6, Part I.

Lemma 8. Set h = h(X ,BJ. There is constant c such that, for any 3L > 0 such that 3Ldt
~-C 

T

)t( J* C~ h~, C~ h,) ~ c~ c~ .

0

Proof. Indeed, by Itô’s formula, we have:

Remark Dh = Since C dC -1, , this formula implies that (h ,h~ is a
submartingale. Applying Lemma 3 to the couple (h and ( (Dh , Dht~dt, we obtain:

In order to replace (h ,h) , we shall prove that (h ,h) also is
a submartingale. Look at the bounded variation part of the semi-martingale (h ,h) 1/2 . It
is given by: 

.
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The Schwarz inequality yields that this is bigger than

which is non negative. So, ht,ht>1/2 is a submartingale. Now, by Doob’s inequality, we
can write:

’ ~’~ " q S C ’ ’ hx,hQ ~’~ ’ ’q ,
which is what we wanted. []
Lemma 9. There is a constant c such that:

P

II( j ,B ) ds ) ~~~ l l  c 1 , f e Dfl$).
ssp p p

0

Proof. Notice . that C03BBf(Xt,B t) = e03BBt Ea[C03BBf(X03C4) e-03BB03C4|Xt,Bt], t  03C4. We can now make

the same arguments as that used in the proof of Lemma 6, to the submartingale

’

Corollary 10. Set a’ = inf{03BB > 0; C t dC t - I ) . Then, there is constant c p such

that, for any f G wql>, ~f~ 1  C ~C03B1’f~ .

P P P

Proof. We need only to consider f e Dfl$) Let X > 0 such that 03BBdt ~ - C t dC t " I .
According to Lemma 7, the formula in Lemma 5 is valid. We can therefore write:

 C l lC’4 1 .

P
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But the constant in the above inequality is the same for all X > a’. The lemma is proved
by taking the limit when X decreases to a’. lJ

Theorem 1 1, There is constants c > 0 such that, for any f e W(j), we have

1 cp~f~p~ ~C03B1’f~p ~ (cp ~f~p + 03B1’~f~p ).

Proof. The left hand side inequality is proved in the precedin g corollary. The ri ght hand
side inequality can be proved by duality. D

~,
Remark. We can substitute lied l + ~f~l for ~C03B1 4 1 (see Bakry [3]).

P P P
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