
C-SPARQL: A CONTINUOUS QUERY LANGUAGE
FOR RDF DATA STREAMS

DAVIDE FRANCESCO BARBIERI∗, DANIELE BRAGA†, STEFANO CERI‡,
EMANUELE DELLA VALLE§ and MICHAEL GROSSNIKLAUS¶

Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Piazza L. Da Vinci, 32–20133 Milano, Italy
∗dbarbieri@elet.polimi.it

†braga@elet.polimi.it
‡ceri@elet.polimi.it

§dellavalle@elet.polimi.it
¶grossniklaus@elet.polimi.it

This article defines C-SPARQL, an extension of SPARQL whose distinguishing feature

is the support of continuous queries, i.e. queries registered over RDF data streams and

then continuously executed. Queries consider windows, i.e. the most recent triples of such
streams, observed while data is continuously flowing. Supporting streams in RDF format
guarantees interoperability and opens up important applications, in which reasoners can
deal with evolving knowledge over time.

C-SPARQL is presented by means of a full specification of the syntax, a formal
semantics, and a comprehensive set of examples, relative to urban computing applica-
tions, that systematically cover the SPARQL extensions. The expression of meaningful
queries over streaming data is strictly connected to the availability of aggregation prim-
itives, thus C-SPARQL also includes extensions in this respect.

Keywords: RDF; SPARQL; stream processing; continuous queries; stream reasoning.

1. Introduction

“How many cars are currently entering the city center?” “How many of them come
from the north-east district?” “Is the traffic in the streets of the north-east district
flowing smoothly?” Data Stream Management Systems (DSMS) [15] enable users to
issue such queries and are able to continuously answer them, by producing results
which are also varying with time. The revolutionary idea, which made it possible,
was to give up with one-time semantics, typical of database management systems,
and turn to continuous semantics.

In this paper, we address the challenges linked to a similar “revolution” in
the context of the Semantic Web and RDF repositories. As a matter of fact,
RDF repositories are scaling up in the classical time invariant domain of static

¶Michael Grossniklaus’s work is carried out under SNF grant number PBEZ2-121230.

3

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-326745

Erschienen in: International Journal of Semantic Computing ; 04 (2010), 01. - S. 3-25
https://dx.doi.org/10.1142/S1793351X10000936

4

knowledge: SPARQL engines are now capable of querying integrated repositories,
collecting data from multiple sources and supporting complex queries. However,
the opportunity of combining static (or relatively slowly changing) RDF data with
rapidly changing (or “streaming”) information has been neglected or forgotten so
far. Indeed, we deem that there is a potential interest for giving up with one-time
semantics in RDF repositories as well, so as to explore the benefits provided by
continuous semantics.

Therefore, we introduce RDF streams as the natural extension of the RDF
data model to the new scenario continuous and Continuous SPARQL (or simply
C-SPARQL) as the extension of SPARQL for querying RDF streams. Augmenting
the knowledge bases with streaming facts is useful in all contexts in which reasoning
on dynamic information is needed, like computing time-varying traffic conditions in
a city or monitoring patient’s parameters in medical applications. Standard reason-
ers cannot cope yet with dynamic knowledge, as they consider static RDF graphs
to carry out reasoning tasks.

1.1. Contributions and structure

C-SPARQL is defined in terms of several orthogonal extensions of SPARQL, in such
a way that a regular SPARQL query is also a C-SPARQL query.

• Similar to RDF graphs, every RDF stream is identified by using an IRI, but
instead of being a static collection of RDF triples a stream is a timed sequence
of RDF triples, continuously produced by a data source. Every RDF triple in a
stream is annotated with a timestamp.

• The distinguishing feature of C-SPARQL is the support for continuous queries,
i.e. queries that are registered over RDF streams and then executed continu-
ously. C-SPARQL queries produce as output the same output types as SPARQL:
boolean answers, selections of variable bindings, constructions of new RDF triples,
or RDF descriptions of the involved resources. These outputs are continuously
renewed with each query execution. In addition, C-SPARQL queries can be des-
ignated to produce new RDF streams.

• Extending SPARQL into C-SPARQL requires several additions for defining
streams, their windows, their timestamps, and language constructs for aggre-
gating stream information. In particular, query registration and designating the
window structure are the key aspect of C-SPARQL.

The structure of the paper is as follows. Section 2 provides necessary back-
ground on DSMS and SPARQL. Section 3 introduces C-SPARQL by explaining in
details the notions of RDF stream, window over an RDF stream, query registration,
aggregates, and timestamp function. Section 4 describes the formal semantics of the
language. Section 5 provides some running examples to illustrate the C-SPARQL
syntax and informal semantics. Finally, Sec. 6 illustrates how we intend to progress
with this research and Sec. 7 concludes the paper.

5

2. Background and Related Work

This section illustrates previous work on data streams and then on the SPARQL
language.

2 .1. Data streams

In many real-world applications data take the form of continuous streams instead
of the form of finite data sets stored in a traditional repository. This is the case for
monitoring of network traffic, for telecommunications management, for clickstreams,
for manufacturing, for sensor networks, and for many other domains. In such appli
cations, instead of classical "on~shot" queries, clients need to register continuously
running queries, which return new results as new data arrive on the streams. A
data stream is a sequence of items received continuously and in real-time, ordered
either implicitly, by arrival time, or explicitly, by means of timestamps. Not only
is it typically impossible to control the order in which items arrive, but, even more
importantly, it is not feasible to locally store a stream in its entirety [16]. Due to
all these peculiar characteristics, traditional database systems and data processing
algorithms are not suitable for handling numerous and complex continuous queries
over data streams. Ad-hoc data management systems have been studied and devel
oped since t he late nineties.

One of the first proposed models for data streams was the Chronicle data
model (23). It introduced the concept of chronicles as append-only ordered sequences
of tuples, together with a restricted view definition language and an algebra that
operates over chronicles as well as over traditional relations. OpenCQ [27] and Nia
garaCQ [10) addressed continuous queries for monitoring persistent data sets spread
over wid~area networks. Another data stream management system is Aurora [6],
which in turn evolved into the Borealis project 111 which addresses the distribution
ISSUeS.

In H1 Babu et al. tackle the problem of continuous queries over data streams
addressing semantic issues as well as efficiency concerns. They specify a general
and flexible architecture for query processing in the presence of data streams. This
research evolved into the specification and development of a query language tailored
for data streams, named CQL ~ 3]. Further optimizations are discussed in [28].

A different perspective on the same issue brought Law et al. [25] to put particular
emphasis on the problem of mining data streams (26). Another DSMS is Stream
Mill lliL. which extensively considered and addressed data mining issues, specifically
with respect to the problem of online data aggregation and to the distinguishing
notion of blocking and non-blocking operators. Its query language (ESL) efficiently
supports physical and logical windows (with optional slides and tumbles) on both
built-in aggregates and user-defined aggregates. The constructs introduced in ESL
extend t he power and generality of Data Stream Management Systems.

The problem of processing delays is one of the most critical issues and at the
same time a strong quality requirement for many data stream applications, since

6

the value of query results decreases dramatically over time as the delays sum up.
In [11], the authors address the problem of keeping delays below a desired threshold
in situations of overload, which are common in data stream systems. The framework
described in the paper is built on top of the Borealis platform.

As for the join over data streams, rewriting techniques are proposed in [17]
for streaming aggregation queries, studying the conditions under which joins can
be optimized and providing error bounds for results of the rewritten queries. The
basis for the optimization is a theory in which constraints over data streams can be
formulated and the result error bounds are specified as functions of the boundary
effects incurred during query rewriting.

2.2. SPARQL

SPARQL has been developed under the patronage of the World Wide Web Consor-
tium as the standard query language for RDF. Consequently, the most authoritative
source about the syntax and semantics of the SPARQL language is the W3C rec-
ommendation [30].

Cyganiak [12] presents a relational model of SPARQL. The author uses rela-
tional algebra operators (join, left outer join, projection, selection, etc.) to model
the SPARQL SELECT clauses. A translation system between SPARQL and SQL is
outlined. The system extensively resorts to the use of COALESCE and IS NULL in
order to express some SPARQL features. Harris [22] presents an implementation of
SPARQL queries over a relational database engine. The use of relational algebra
operators is similar to that of [12].

In [8], a logical reconstruction of RDF family of languages is given. The authors
prove the equivalence of their framework to W3C definition of RDF, getting com-
plexity results and a model theoretic semantics.

In [20], Gutierrez et al. discuss the semantics and the computational complexity
of a conjunctive query language for RDF with basic patterns, which is a formal and
unambiguous basis for defining the semantics of SPARQL queries evaluation. In [29],
Perez et al. consider simple RDF graphs (without special semantics for literals) and
a simplified version of filters. These assumptions allow them (1) to provide a compo-
sitional semantics; (2) to prove that there is a normal form in which, under certain
constraints over variable bindings, a wide range of queries can be expressed; (3) to
fix some complexity bounds; and (4) to discuss optimization opportunities. Haase
et al. [21] present a comparison of functionalities of pre-SPARQL query languages,
many of which gave inspirations to the definition of SPARQL.

A previous attempt to extend SPARQL to support data streams has been pre-
sented by Bolles et al. [7]. Their paper represents an antecedent of our work as it
introduces a syntax for the specification of logical and physical windows in SPARQL
queries by means of local grammar extensions. However, their approach is different
from the work presented in this paper in several key aspects. First, Bolles et al. sim-
ply introduce RDF streams as a new data type, and omit essential ingredients,

7

such as aggregate and timestamp functions. With these limitations, the resulting
expressive power is not sufficient to express most practical queries. Second, the
authors do not follow the established approach where windows are used to trans-
form streaming data into non-streaming data in order to apply standard algebraic
operations. Instead, Bolles et al. have chosen to change the standard SPARQL oper-
ators by making them timestamp-aware and, thereby, effectively introduce a new
language semantics. Finally, their approach allows window clauses to appear within
SPARQL group graph pattern expressions. On the one hand, this makes the query
syntax more intricate, as window clauses can appear in multiple places. On the
other hand, it complicates query evaluation. Since window operations are no longer
required to be at the leaves of the query tree, they need to be interleaved with
standard SPARQL operations, violating the separation of concerns between stream
management and query evaluation.

In [35] the authors describe techniques of reasoning that can deal with streaming
facts. Their work is complementary to ours, as they focus their work on advanced
reasoning techniques that can scale up to high frequencies, rather than query pro-
cessing and stream management.

3. C-SPARQL

This section presents C-SPARQL by first defining its syntax and then showing sev-
eral examples of increasing complexity. Since the syntactic extensions are succinct
and well-defined, we prefer to introduce all of them at once and then use a series of
examples that progressively showcase the extensions.

We first characterize RDF streams as a new data type. Then we introduce
the syntax for identifying streams and for defining windows over streams, followed
by the definition of aggregation as an orthogonal extension. Finally, we discuss a
function used for retrieving timestamp information. The syntax of each new feature
is given in terms of additional productions to be added to the standard SPARQL
grammar [31].

3.1. RDF stream data type

C-SPARQL adds RDF streams to the data types supported by SPARQL.a An RDF
stream is defined as an ordered sequence of pairs, where each pair is constituted by
an RDF triple and its timestamp τ :

. . .

(〈subji, predi, obji〉, τi)

(〈subji+1, predi+1, obji+1〉, τi+1)

. . .

aSimilarly, the stream type extends the relation type in CQL.

8

Timestamps can be considered as annotations of RDF triples; they are mono-
tonically non-decreasing in the stream (τi ≤ τi+1). They are not strictly increasing
because timestamps are not required to be unique. Any (unbounded, though finite)
number of consecutive triples can have the same timestamp, meaning that they
“occur” at the same time, although sequenced in the stream according to some
positional order.

3.2. Windows

The introduction of RDF streams as a new type of input data requires the ability
to identify such data sources and to specify selection criteria over them.

For identification, we assume that each data stream is associated with a distinct
IRI, that is a locator of the actual data source of the stream. More specifically, the
IRI represents an IP address and a port for accessing streaming data.b

As for selection, given that streams are intrinsically infinite, we introduce the
notion of windows upon streams, whose types and characteristics are inspired by
those of the windows in continuous query languages such as CQL [3].

Identification and windowing are expressed in C-SPARQL by means of the FROM
STREAM clause:

FromStrClause → ‘FROM’ [‘NAMED’] ‘STREAM’ StreamIRI ‘[RANGE’ Window ‘]’
Window → LogicalWindow | PhysicalWindow

LogicalWindow → Number TimeUnit WindowOverlap

TimeUnit → ‘ms’ | ‘s’ | ‘m’ | ‘h’ | ‘d’
WindowOverlap → ‘STEP’ Number TimeUnit | ‘TUMBLING’
PhysicalWindow → ‘TRIPLES’ Number

A window extracts from the stream the last data stream elements, which are
considered by the query. Such extraction can be physical (a given number of triples)
or logical (a variable number of triples which occur during a given time interval).

Logical windows are sliding [18] when they are progressively advanced of a given
STEP (i.e. a time interval that is shorter than the window’s time interval); they
are non-overlapping (or TUMBLING) when they are advanced of exactly their time
interval at each iteration. With tumbling windows every triple of the data stream is
only considered into exactly one window, whereas with sliding windows some triples
can be included into several windows.

The optional NAMED keyword works exactly as if applied to the standard
SPARQL FROM clause for tracking the provenance of triples. It binds the IRI of
a stream to a variable which is later accessible through the GRAPH clause.

bIn a typical C-SPARQL application we expect that several streaming data sources can be available
on the Internet, modeled as RDF data streams (possibly after data transcoding); RSS feeds or
other publish-subscribe mechanisms allow to be seamlessly captured by the same abstraction.

9

3.3. Query registration

Continuous queries in C-SPARQL are queries over RDF data streams (i.e. queries
including at least one FROM STREAM clause).

A registered C-SPARQL query produces continuous output in the form of vari-
able bindings tables or graphs. Each C-SPARQL query is registered through the
following statement.

Registration → ‘REGISTER QUERY’ QueryName

[‘COMPUTED EVERY’ Number TimeUnit] ‘AS’ Query

The optional COMPUTED EVERY clause indicates the frequency at which the query
should be computed. If no frequency is specified, the query is computed at a fre-
quency that is automatically determined by the system.c

In addition, C-SPARQL allows the production of RDF streams, registered
through the following statement.

Registration → ‘REGISTER STREAM’ QueryName

[‘COMPUTED EVERY’ Number TimeUnit] ‘AS’ Query

We only register CONSTRUCT and DESCRIBE queries as STREAM, as they produce
RDF triples that, once associated with a timestamp, yield RDF streams that can
be managed in C-SPARQL. Every query execution produces from a minimum of
one triple to a maximum of an entire RDF graph in output, depending on the query
construction pattern. In the former case, a different timestamp is assigned to every
triple, while in the latter case, the same timestamp is assigned to all the triples
of the constructed graph. Still, the system-generated timestamps are in monotonic
non-decreasing order.

3.4. Aggregation in C-SPARQL

The SPARQL specification lacks aggregation capabilities, but a continuous query
language over streams without aggregates would not be useful in practice. Therefore,
we have added aggregation to C-SPARQL.d The addition is orthogonal: the clauses
supporting aggregates can syntactically and semantically be added to SPARQL,
giving rise to a language extension which is fully autonomous and significant per se.

cSeveral Stream Management Systems are capable of self tuning the execution frequency of regis-

tered queries. This not only applies to queries with unspecified registration frequencies, but also
whenever, due to peaks of workload, the execution frequency of all queries is reduced, so as to

gracefully degrade the overall performances.
dMany SPARQL implementations already support aggregation, even in the absence of RDF
streams.

10

We allow multiple independent aggregations within the same C-SPARQL query,
thus pushing the aggregation capabilities beyond those of SQL.

Aggregation clauses have the following syntax.

AggregateClause → (‘AGGREGATE { (’ var ‘,’ Function ‘,’ Group ‘)’ [Filter] ‘}’)*
Function → ‘COUNT’ | ‘SUM’ | ‘AVG’ | ‘MIN’ | ‘MAX’
Group → var | ‘{’ var (‘,’ var)* ‘}’

Every aggregation clause has the following three parts.

• The first is a new variable (i.e. a variable not occurring in the WHERE clause or in
any other aggregation clause).

• The second is an aggregation function (one of: COUNT, MAX, MIN, SUM, AVG); COUNT
may have no argument, while the other functions take one of the variables occur-
ring in the WHERE clause as argument.

• The third is a set of one or more variables, occurring in the WHERE clause, which
express the grouping criteria.

Every clause may also have an optional fourth part, a FILTER clause. The seman-
tics of a query with aggregate functions consists in adding to the regular variable
bindings computed by the WHERE clause some new bindings, one for each of the new
variables introduced by the AGGREGATE clauses. The solution constructed in this
way may be further filtered by a standard FILTER clause, which may refer to all
the variables introduced in the WHERE and AGGREGATE clauses. The evaluations of
aggregate functions are all independent from each other and take place after the
computation of the bindings provided by the WHERE clause.e

3.5. Timestamp function

The timestamp of a stream element can be retrieved and bound to a variable using
a timestamp function. The timestamp function has two arguments.

• The first is the name of a variable, introduced in the WHERE clause and bound by
pattern matching with an RDF triple of that stream.

• The second (optional) is the URI of a stream, that can be obtained through
SPARQL GRAPH clause.

The function returns the timestamp of the RDF stream element producing the
binding. If the variable is not bound, the function is undefined, and any comparison
involving its evaluation has a non-determined behavior. If the variable gets bound
multiple times, the function returns the most recent timestamp value relative to the
query evaluation time.

eWe deliberately constrain C-SPARQL aggregates to use only the variables in the WHERE
clause — and not other variables bound by other AGGREGATE clauses — in order to achieve
their independence.

11

4. Formal Semantics of C-SPARQL

This section provides the formal semantics of C-SPARQL. In order to do this, we
build on the work of Pérez et al. [29], and extend it with the formalization of
aggregates, windows and the timestamp function. We address the reader to [29] for
details and, for the sake of readability, only summarize the basic aspects of their
formalization here.

The semantics of a C-SPARQL query is formalized via the concept of mapping.
We denote as I, B, L, V respectively the domains of IRIs, blank nodes, literals, and
variables which are all disjoint. We also define T = (I ∪ B ∪ L). A mapping μ is a
partial function μ : V → T which gives the bindings for all the variables of a query.
Evaluation occurs when a graph pattern (denoted as P) in the query is matched
against an RDF dataset (D). P is a set of triple patterns t = (s, p, o) such that
s, p, o ∈ (V ∪ T). We then define dom(μ) as the subset of V where μ is defined
(i.e., the domain of μ), and deg(μ) as the cardinality of dom(μ). We also use the
notation μ(x) to refer to the bindings of variable x in μ. Two mappings μ′ and μ′′

are said to be compatible if ∀x ∈ dom(μ′) ∩ dom(μ′′), then μ′(x) = μ′′(x).
Let Ω1 and Ω2 be sets of mappings. Then the basic operators for the composition

of mappings are

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 are compatible}
Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2}

Ω1\Ω2 = {μ ∈ Ω1|∀μ′ ∈ Ω2, μ and μ′ are not compatible}

The left outer-join is a derived operator

Ω1 Ω2 = (Ω1 �� Ω2) ∪ (Ω1 \ Ω2)

The evaluation of a graph pattern P over a dataset D, is compactly denoted as
[[P]]D, and is defined recursively, as follows:

(1) [[t]]D = {μ |dom(μ) = var(t)∧μ(t) ∈ D}, where t is a triple pattern and var(t)
is the set of variables occurring in t

(2) [[(P1 AND P2)]]D = [[P1]]D �� [[P2]]D
(3) [[(P1 OPT P2)]]D = [[P1]]D [[P2]]D
(4) [[(P1 UNION P2)]]D = [[P1]]D ∪ [[P2]]D

4.1. Aggregates

We start by extending the binary operators (UNION, AND, OPT, and FILTER) with
the new operator AGG (short for AGGREGATE). An aggregation pattern is denoted
as A(v, f, p, G), where v is the name of the new variable, f is the name of the
aggregation function to be evaluated, p is the parameter of f , and G is the set of
the grouping variables. We extend the evaluation of [[P]]D by adding a fifth rule to

12

the above definition to deal with aggregation patterns:

(5) [[(P AGG A)]]D = [[P]]D [[A]]D, where P is a standard graph pattern and
A(va, fa, pa, Ga) is an aggregation pattern.

The evaluation of [[A]]D is defined by a mapping μa : V → T , where dom(μa) =
va∪Ga; also, deg(μa) = deg(Ga)+deg(va) = deg(Ga)+1. This extension fully con-
forms to the notion of compatibility between mappings. Indeed, va /∈ dom(P) and,
therefore, calling μp the mapping that evaluates [[P]]D, μp and μa are compatible.

The result of the evaluation of μ produces a table of bindings, having one column
for each variable v ∈ dom(μ). We can refer to a specific row in this table as μ(i),
and to a specific column as μ[v]. The i-th binding of v is therefore μ(i)[v].

The values to be bound to the variable va are computed as

∀ i ∈ [1, deg(μ)], μ(i)[va] = fa(pa, μ[Ga])

where f(pa, μ[Ga]) is the evaluation of the function fa ∈ (SUM, COUNT, AVG, MAX,
MIN) with parameters pa over the groups of values in μ[Ga]. The set of groups of
values in μ[Ga] is made of all the distinct tuples μ(i)[Ga], i.e., the subset of the
mapping μ[Ga] without duplicate rows.

4.2. Windows

We define an RDF stream as

R = {(〈subj, pred, obj〉, τ) |〈subj, pred, obj〉 ∈ ((I ∪ B) × I × (I ∪ B ∪ L)), τ ∈ T)}
where T is the infinite set of timestamps. Note that triple patterns are enclosed in
round brackets while triples are enclosed in angular brackets.

A logical window is defined as

ωl(R, ti, tf) = {(〈s, p, o〉, τ) ∈ R | ti < τ ≤ tf}.
Let

c(R, ti, tf) = |{(〈s, p, o〉, τ) ∈ R|ti < τ ≤ tf}|
be a function which counts the items in R which have timestamp in the range (ti, tf],
then a physical window is defined as

ωp(R, n) = {(〈s, p, o〉, τ) ∈ ωl(R, ti, tf)|c(R, ti, tf) = n}.
A window ω can be sliding, with range ρ and step σ. For logical windows, ρ

and σ take the form of a time interval. Logical windows (a) contain the most recent
triples in a time interval of length ρ; and (b) are evaluated with frequency 1/σ.
For physical windows, ρ and σ are integers. Physical windows (a) contain the last ρ

triples; and (b) are evaluated whenever σ new triples arrive in the stream. A window
is said to be as tumbling with range ρ if it is sliding with range ρ and step ρ.

13

4.3. Timestamp function

A variable v can occur multiple times in a graph pattern P . When P is matched
against D, v gets as many bindings as are its occurrences in P . Some of these
bindings may derive from static data, others from streaming data. Each of the
bindings coming from the stream R is characterized by the timestamp of the triple
that matches one of the triple patterns t ∈ P such that v ∈ dom(t). We denote the
set of timestamps associated with a variable by a triple pattern t as TSset(v, t) and
the set of all timestamps associated with the variable by a graph pattern P as

TSset(v, P) = {τ |t ∈ P ∧ v ∈ dom(t) ∧ τ ∈ TSset(v, t)}.
We can now define the timestamp function

ts(v, P) = max(TSset(v, P))

which returns the highest timestamp associated with v among all bindings of v in
P . The timestamp function returns a value only if v has been matched at least once
over a triple 〈s, p, o〉 ∈ R, ⊥ otherwise.

5. Examples of C-SPARQL

In this section, we progressively introduce examples of use of C-SPARQL in urban
computing.

5.1. Urban computing

As cities grow and evolve, their state changes continuously under the influenced of
human and natural factors. People moving in, out and within cities using a variety
of means of transportation is one of the most easily observed human factors. Good
examples for natural factors are weather changes, and their effects on pollution and
street congestion.

Urban computing is a branch of Pervasive Computingf applied to everyday urban
settings and lifestyle [24]. Streets, squares, restaurants, shops, train stations, sub-
ways, buses, cabs, and any semipublic space in our cities are examples of urban
settings. Urban lifestyles are even broader and include people living, working, vis-
iting and having fun in those settings. People constantly enter and leave urban
settings with patterns of behavior that change between day and night.

So far, the application of Pervasive Computing to urban settings and lifestyles
has been explored very little. Pervasive Computing is normally applied either to
homogeneous large scale areas (e.g., forests, reefs, and glaciers) or, on the other
hand, in small-scale ones (e.g., smart rooms and houses). In both of these application
scenarios, researchers can deploy their own sensors or actuators and can rely on a

fPervasive Computing is a human-computer interaction paradigm in which ICT is seamlessly
integrated into everyday objects and activities.

14

well-defined environment. On the contrary, experiments in urban settings cannot
assume a controlled environment. The core problem is no longer deploying sensing
and actuation technologies, but rather building systems to interact with already
deployed sensors and actuators. In many cases, urban computing even necessitates
asking people to “act” as sensors or actuators.

Up until very recently, setting up urban computing experiments was almost
impossible due to the lack of sensors and sensor data. Today, a large amount of
the required information is made available on the Internet at almost no cost. Data
about commercial activities and meeting places, about events scheduled in the city
and their venues, about the position and speed of public transportation vehicles
as well as about the availability of parking in specific areas is readily available in
computerized form. Several interesting cases of people acting as sensors are already
documented, for instance in Wikimapia and OpenStreetMap [19] people voluntarily
provide geographic information, in [32] the presence and the movements of people is
estimated using the density of communication and the number of cellular hand-overs
in a mobile phone network.

Urban computing poses a set of different challenges, ranging from technological
to social issues. Our experience in the field, lead of to believe that sustainable mobil-
ity is an exemplar case of urban computing. Mobility demands have been growing
steadily for decades and will continue to do so in the future. For many years, the
primary way of dealing with this increasing demand has been the increase of the
roadway network capacity, by building new roads or adding new lanes to exist-
ing ones. However, financial and ecological considerations are posing increasingly
severe constraints on this process. Hence, there is a need for additional intelligent
approaches designed to meet the demand while, at the same time, more efficiently
utilizing existing infrastructure and resources.

In [13], we give a comprehensive list of requirements for information processing
in the case of urban computing. In particular, we highlight the need to cope with
knowledge and data that change over the time. For instance, data relating to street
names, landmarks, etc. changes very slowly, whereas the number of cars that go
through a traffic detector during a five minutes interval changes very rapidly. We
conclude that an urban computing system must at least be able to continuously
reason upon the combination of slowly evolving knowledge, such as street topology,
and data streams such as the current position of all means of public transport. In
the following, we show examples of use of C-SPARQL that precisely combine those
two types of information.

5.2. A simple query with aggregation

Given that aggregation is an orthogonal extension with respect to the other exten-
sions regarding the management of streams, we start with a query having aggregates
but no streams. The first query simply counts the number of sensors which are stat-
ically placed in the streets and returns the street and the number of sensors if more

15

than 5 sensors have been placed in the same street. The query is not continuous,
hence it needs no registration.

The query is executed as follows. First, all pairs of bindings of sensors with
their street are extracted from the repository, then the number of sensors located
at each street is counted into the new variable total-sensor and each resulting
pair is extended into a triple, then the triples which satisfy the filter predicate are
selected, and finally distinct pairs of street and total sensors are projected.

5.3. Querying streaming knowledge

A classic example of stream management is the counting of the number of cars that
enter the city center through the various tollgates around it. Assuming that each
tollgate registers each car going through it, the next query counts how many cars
each tollgate has been registering in the last 10 minutes. The sliding window is
adjusted every minute.

The query is executed as follows. First, all pairs of bindings of tollgates with
the car they register are extracted from the current window over the stream, then
the number of cars registered by each tollgate is counted into the new variable
passages and each resulting pair is extended into a triple that, finally, is projected
as distinct pairs of tollgate and passages.

The window considers all triples that are in input for the last 10 minutes, and
advances every minute. This means that new triples enter into the window and old
tuples exit from the window every minute. Note that the result of the aggregation
does not change during the slide interval, therefore also the query result does not

16

change during the slide interval; it changes instead at every slide change (i.e., every
minute).

In this stream, as in all the streams that we will use in the examples of this
article, the predicate of the triple (e.g. t:register) is fixed while the subject and
object part of the triple (e.g., ?tollgate and ?car) are variable. Thus, a physical
source for this stream will have items consisting of pairs of values. This arrange-
ment is coherent with RDF repositories whose predicates are taken from a small
vocabulary constituting a sort of schema, but C-SPARQL makes no assumption on
variable bindings of its stream triples.

5.4. Combining static and streaming knowledge

For a more complex example, consider the case in which we want to count the num-
ber of car entering the city center from each district. We assume to have previously
stored in an RDF repository: (a) into which districts a city is divided, (b) which
streets belong to each district and (c) in which street each tollgate is placed. The
next query counts how many cars entered the city from each district in the last 30
minutes; the sliding window is modified every five minute.

The query is executed as follows. As in the previous query, all pairs of bindings
of tollgates with the car they register are extracted from the current window over
the stream. A graph pattern is used to extract the pairs of bindings from the RDF
repository that relate tollgates to the city district in which they are. Then, the
number of cars registered by the tollgates in each district is counted and bound to
the new variable passages and, finally, it is projected as distinct pairs of district
and passages.

5.5. Example of evaluation through semantics

In this example we demonstrate the evaluation of the following C-SPARQL query
through the use of the formal semantics introduced in Sec. 4. Note that the query is

17

a simplification of the previous one as it counts the passages of cars for each street
and not per city district.

In this query, we select data again both from a static knowledge dataset (S)
containing the location of every tollgate and an RDF stream R representing the
data retrieved by all the tollgates.

The query can be expressed as

P = t1 AND t2 AGG A1

where

• t1 = ?tollgate registers ?car

• t2 = ?tollgate placedIn ?street

• A1 = A(?passages, count, ?car, ?street)

• D = ωl(R, now − 10, now) ∪ S

According to the given formalization, P is evaluated as

[[P]]D = [[t1]]D �� [[t2]]D [[A1]]D.

In particular, since t1 and t2 only take into account streaming data and static
knowledge respectively, the evaluation of P can be rewritten as

[[P]]D = [[t1]]R �� [[t2]]S [[A1]]D.

The evaluation steps are

(1) T1 = Eval(t1)D

(2) T2 = Eval(t2)D

(3) T3 = T1 AND T2

(4) A1 = Eval (A(?total, count, ?car, ?street))D

(5) Join evaluation

Notice that the steps (1) and (2) can be evaluated in parallel. Based on a sample
dataset, the tables below demonstrate the evaluation of Eval(P) for each of the
steps given above in terms of the corresponding intermediate result.

18

Eval(T1)

?tollgate ?car

T-130 AB123CD
T-142 CD234EF
T-142 EF567GH

... ...

Eval(T2)

?tollgate ?street

T-130 Pine Park
T-142 Oak avenue

... ...

↓ ↙
Eval(T1 AND T2)

?sensor ?car ?street

T-130 AB123CD Pine Park
T-142 CD234EF Oak avenue
T-142 EF567GH Oak avenue

...

Eval(A1)

?street ?passages

Pine Park 1
Oak avenue 2

... ...

↓ ↓
Eval(P)

?tollgate ?car ?street ?passages

T-130 AB123CD Pine Park 1
T-142 CD234EF Oak Avenue 2
T-142 EF567GH Oak Avenue 2

...

5.6. Queries with Multiple Aggregate Functions

C-SPARQL supports multiple independent aggregations within one query. As an
example, we combine the two aggregate functions used in the previous queries in
one query, thus restricting car monitoring to those streets having at least five gates.

19

The two variables total-sensor and passages are both added to the variable
binding table produced by the WHERE clause, and the filter condition eliminates from
it those rows corresponding to streets with less than five sensors; then, the result
of the query is extracted continuously in the same way as the previous example.

5.7. Streaming the results of a query

As continuous queries renew their output in each query execution, their output
could in turn be periodically transferred to another system for further analysis
(e.g., to plot the traffic as a function of time). In addition, C-SPARQL allows the
construction of new RDF data streams, by supporting the possibility to register
CONSTRUCT and DESCRIBE queries.

Consider the previous query in which the projected pairs of district and passages
is used to construct a triple. The corresponding C-SPARQL query is

This query uses the same logical conditions as the previous one, but it constructs
the output in the format of a stream of RDF triples. Every query execution may
produce from a minimum of one triple to a maximum of an entire graph. In the
former case, a different timestamp is assigned to every triple, while in the latter
case, the same timestamp is assigned to all the triples of the graph. In both cases,
timestamps are system-generated in monotonic order. Results of two evaluations of
the previous query are presented in the table below.

Triple Timestamp

c:IT-MI-Baggio t:has-entering-cars "100" t400
c:IT-MI-Barona t:has-entering-cars "75" t400
c:IT-MI-Baggio t:has-entering-cars "130" t401
c:IT-MI-Barona t:has-entering-cars "95" t401
c:IT-MI-Fiera t:has-entering-cars "65" t401

20

The first evaluation occurs at t400. Suppose that only data from two districts
(i.e., c:IT-MI-Baggio and c:IT-MI-Barona) are present in the window. Then, the
evaluation generates two triples with the same timestamp (i.e., t400).

The second evaluation occurs at t401. Suppose that part of the data elaborated
by the previous query are still in the window and that new data related to the
district uc:IT-MI-Fiera entered in the window. Then, the evaluation produces
three triples, all of them having the same new timestamp t401.

5.8. Combining multiple streams

In addition to tollgates, assume that traffic control cameras also register cars at
traffic lights and output a different stream. Based on the sum of cars seen by these
cameras and passing toll gates, we consider a query returning all the streets which
have been full for more than 80% of their capacity in the last 5 minutes.

The query is executed as follows. Pairs of bindings of tollgates with the cars are
extracted from the first graph, using a window over the tollgate stream, and from the
second graph, using a window over the control camera stream. Then, the capacity
of each street is extracted from the RDF repository. At this point all the bindings
are combined following the semantics of the UNION patter evaluation in SPARQL,
and it becomes possible to count in the new variable passages the cars registered
either by the tollgates or by the cameras in each street. Finally, the streets which

21

satisfy the filter predicate are selected and distinct pairs of street and passages are
projected.

5.9. Exploiting the timestamp function

We now want to detect all cars turning from one street (via Golgi) into another one
(via Celoria) by means of two cameras which are installed on the same traffic light.
This is performed by the following query:

Note that we use the two variables so as to extract the two different timestamps,
although they refer to the same physical car; this effect is obtained be the equality
predicate in the FILTER clause. Then, the timestamp precedence checks that the car
is seen by the first camera and then by the second camera. In this way, we match
cars that are flowing in the right direction.

6. Future Work

The experiments conducted so far have been addressed to existing standard stream
management systems, coupled with existing SPARQL engines, so as to be a proof
of concept of the feasibility of the approach. Table 1 contains a comparative analy-
sis of the stream related features of three prominent stream management systems,
STREAM, Aurora/Borealis, and Stream Mill. For the future, we envision execu-
tion scenarios for C-SPARQL consisting of a collection of several interconnected
nodes, each one supporting the execution of C-SPARQL queries. Nodes could have
limitations/specializations, i.e. the ability of supporting pure SPARQL (with no
data stream or aggregation) or specific stream-focused queries (with no capability
of integration with a global RDF repository).

22

Table 1. Feature comparison of C-SPARQL and existing data stream management systems.

Windows

Logical Physical Partitioning

C-SPARQL � �
STREAM �∗ � �
Aurora/Borealis � �
Stream Mill � � �

Timestamps

Internal External Latent

C-SPARQL �
STREAM � �
Aurora/Borealis � �
Stream Mill � � �

Aggregation (1)

Functions Custom Functions Group-by

C-SPARQL SQL-1† �
STREAM SQL-1 �
Aurora/Borealis SQL-1 � �
Stream Mill SQL-1 � �

Aggregation (2)

Having Multiple Aggregates Blocking

C-SPARQL � � Plug-in dependent
STREAM � Yes
Aurora/Borealis � Yes/No
Stream Mill � Yes/No

Architecture Language Semantics

C-SPARQL Client/Server SPARQL extension Formal
STREAM Client/Server SQL extension Operational
Aurora/Borealis Network XML dialect Declarative
Stream Mill Client/Server SQL extension Operational

∗ specified in the CQL language, but currently not supported by STREAM
† average, count, maximum, minimum, sum

Also, for what concerns query processing, several interesting optimization
problems arise.

• The first issue concerns the development of analysis techniques for multiple
queries, in order to recognize their common parts and reformulate the queries
so as to compute common parts only once. This is a classical problem of contin-
uous queries, known as multi-query optimization problem [33].

• Another issue concerns the development of incremental evaluation strategies that
take into account the particular features of windows used in the query in order
to compute the result at the next iteration as a function of the deltas that are
produced due to incoming and outgoing triples in the window. This is also a
classic problem of continuous queries [36].

• Another interesting optimization problem concerns the incremental materializa-
tion of knowledge that could be available to higher-order RDF-based reasoners
(e.g., reasoners supporting RDF-S or OWL) when derived knowledge depends

23

upon streaming data. We can envision scenarios where knowledge at the next
iteration could be computed as a function of the deltas that are produced due to
incoming and outgoing triples in the window. This is an application if continuous
queries to scenarios which support derived data, studied in [34].

• Another issue concerns the ability to adapt query computations under heavy
query loads dynamically, e.g. by sampling input streams or by relaxing the win-
dow refreshment. Queries could be registered together with confidence limits
so as to help the system’s tuning. Sampling functions could be made avail-
able as part of the query language, thus enabling an explicit declaration within
queries.

• Another issue concerns the distribution of query execution nodes close to data
stream sources. The idea is that each source could provide input stream of arbi-
trary nature and then specific nodes could perform the transformation of such
streams into summarized RDF triples and then transmit them to higher-level
nodes for more complex computations. Nodes local to streams could support only
stream-specific operations. Optimization could reuse classic results of distributed
database systems [9].

7. Conclusions

The concept of C-SPARQL is simple, yet pervasive. While specialized Stream
Database Management Systems provide solutions for on-the-fly analysis of data
streams, they cannot combine data streams with knowledge bases, and cannot per-
form reasoning tasks. C-SPARQL bridges data streams to reasoning and enables
stream reasoning, a new, unexplored, high impact research area.

C-SPARQL is our contribution to LarKC, an FP7 project sponsored by the
EU for enabling massive and scalable reasoning computations [14]. The study of
C-SPARQL execution environment is suggestive of several important research direc-
tions, sketched in the previous section, which may reuse and adapt classic query
optimization results. In the course of the larKC project, we will choose the most
promising and interesting ones and concentrate on them.

Acknowledgments

The authors acknowledge Ioana Manolescu for her contributions to the initial
discussions based on the potential impact of RDF streams on several use cases.
Also, Alessandro Gnoli deserves to be mentioned for providing support for the
experiments conducted on existing DSMS and RDF repositories.

References

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing and S. Zdonik,
The design of the borealis stream processing engine, in Proc. Intl. Conf. on Innovative
Data Systems Research (CIDR 2005), 2005.

24

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein and
J. Widom, STREAM: The stanford stream data manager (Demonstration Descrip-
tion), in Proc. ACM Intl. Conf. on Management of Data (SIGMOD 2003), 2003,
p. 665.

[3] A. Arasu, S. Babu and J. Widom, The CQL continuous query language: Semantic
foundations and query execution, The VLDB Journal 15(2) (2006) 121–142.

[4] S. Babu and J. Widom, Continuous queries over data streams, SIGMOD Rec. 30(3)
(2001) 109–120.

[5] Y. Bai, H. Thakkar, H. Wang, C. Luo and C. Zaniolo, A data stream language and
system designed for power and extensibility, in Proc. Intl. Conf. on Information and
Knowledge Management (CIKM 2006) 2006, pp. 337–346.

[6] H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
E. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts and S. Zdonik, Retrospec-
tive on Aurora, The VLDB Journal 13(4) (2004) 370–383.

[7] A. Bolles, M. Grawunder and J. Jacobi, Streaming SPARQL — Extending SPARQL
to process data streams, in Proc. Europ. Semantic Web Conf. (ESWC 2008), 2008,
pp. 448–462.

[8] J. D. Bruijn, E. Franconi and S. Tessaris, Logical reconstruction of normative RDF,
in Proc. Workshop on OWL: Experiences and Directions (OWLED 2005), 2005.

[9] S. Ceri and G. Pelagatti, Distributed Databases Principles and Systems (McGraw-Hill,
New York, 1984).

[10] J. Chen, D. J. DeWitt, F. Tian and Y. Wang, NiagaraCQ: A scalable continuous query
system for internet databases, in W. Chen, J. F. Naughton and P. A. Bernstein,
editors, Proc. ACM Intl. Conf. on Management of Data (SIGMOD 2000), 2000,
pp. 379–390.

[11] Y. Cheng Tu, S. Liu, S. Prabhakar and B. Yao, Load shedding in stream databases:
A control-based approach, in Proc. Intl. Conf. on Very Large Data Bases (VLDB
2006), 2006, pp. 787–798.

[12] R. Cyganiak, A relational algebra for SPARQL, Technical Report, HP-Labs.
[13] E. Della Valle, I. Celino, D. DellAglio, K. Kim, Z. Huang, V. Tresp, W. Hauptmann,

Y. Huang and R. Grothmann, Urban Computing: A Challenging Problem for
Semantic Technologies 12 (2008).

[14] D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E. D. Valle,
F. Fischer, Z. Huang, A. Kiryakov, T. K. Il Lee, L. School, V. Tresp, S. Wesner,
M. Witbrock and N. Zhong, Towards LarKC: A platform for web-scale reasoning, in
Proc. IEEE Intl. Conf. on Semantic Computing (ICSC 2008), 2008.

[15] M. Garofalakis, J. Gehrke and R. Rastogi, Data Stream Management: Processing
High-Speed Data Streams (Data-Centric Systems and Applications), (Springer-Verlag,
New York, 2007).

[16] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz and J. I. Munro, Identifying
frequent items in sliding windows over on-line packet streams, in Proc. Intl. Conf. on
Internet Measurement (IMC 2003), 2003, pp. 173–178.

[17] L. Golab, T. Johnson, N. Koudas, D. Srivastava and D. Toman, Optimizing away
joins on data streams, in Proc. Intl. Workshop on Scalable Stream Processing System
(SSPS 2008), 2008, pp. 48–57.

[18] L. Golab and M. T. Özsu, Processing sliding window multi-joins in continuous queries
over data streams, in Proc. Intl. Conf. on Very Large Data Bases (VLDB 2006), 2003,
pp. 500–511.

[19] M. Goodchild, Citizens as sensors: The world of volunteered geography, GeoJournal,
69(4) (2007) 211–221.

25

[20] C. Gutierrez, C. Hurtado and A. O. Mendelzon, Foundations of semantic web
databases, in Proc. ACM Symp. on Principles of Database Systems (PODS 2004),
2004, pp. 95–106.

[21] P. Haase, J. Broekstra, A. Eberhart and R. Volz, A comparison of RDF query lan-
guages, in Proc. Intl. Semantic Web Conf. (ISWC 2004), 2004, pp. 502–517.

[22] S. Harris, SPARQL Query processing with conventional relational database systems,
in Proc. Intl. Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS
2005), 2005, pp. 235–244.

[23] H. V. Jagadish, I. S. Mumick and A. Silberschatz, View maintenance issues for the
chronicle data model, in Proc. ACM Symp. on Principles of Database Systems (PODS
1995), 1995, pp. 113–124.

[24] T. Kindberg, M. Chalmers and E. Paulos, Guest editors’ introduction: Urban
computing, IEEE Pervasive Computing 6(3) (2007) 18–20.

[25] Y.-N. Law, H. Wang and C. Zaniolo, Query languages and data models for database
sequences and data streams, in Proc. Intl. Conf. on Very Large Data Bases (VLDB
2004), 2004, pp. 492–503.

[26] Y.-N. Law and C. Zaniolo, An adaptive nearest neighbor classification algorithm
for data streams, in Proc. Europ. Conf. on Principles and Practice of Knowledge
Discovery in Databases (PKDD 2005), 2005, pp. 108–120.

[27] L. Liu, C. Pu and W. Tang, Continual queries for internet scale event-driven infor-
mation delivery, IEEE Trans. Knowl. Data Eng. 11(4) (1999) 610–628.

[28] K. Munagala, U. Srivastava and J. Widom, Optimization of continuous queries with
shared expensive filters, in Proc. ACM Intl. Symp. on Principles of Database Systems
(PODS 2007), 2007, pp. 215–224.

[29] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complexity of SPARQL, in
Proc. Intl. Semantic Web Conf. (ISWC 2006), 2006, pp. 30–43.

[30] E. Prud’hommeaux and A. Seaborne, SPARQL Query language for RDF, http://
www.w3.org/TR/rdf-sparql-query/.

[31] E. Prud’hommeaux and A. Seaborne, SPARQL Query language for RDF grammar,
http://www.w3.org/TR/rdf-sparql-query/#sparqlGrammar.

[32] J. Reades, F. Calabrese, A. Sevtsuk and C. Ratti, Cellular census: Explorations in
urban data collection, IEEE Pervasive Computing 6(3) (2007) 30–38.

[33] P. Roy, S. Seshadri, S. Sudarshan and S. Bhobe, Efficient and extensible algorithms
for multi query optimization, SIGMOD Rec. 29(2) (2000) 249–260.

[34] R. Volz, S. Staab and B. Motik, Incremental maintenance of materialized ontologies,
in Intl. Conf. on Ontologies and Databases (ODBASE 2003), 2003.

[35] O. Walavalkar, A. Joshi, T. Finin and Y. Yesha, Streaming knowledge bases, in Proc.
Intl. Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2008),
2008.

[36] J. Yang and J. Widom, Incremental computation and maintenance of temporal
aggregates, The VLDB Journal 12(3) (2003) 262–283.

