
C-SPARQL: SPARQL for Continuous Querying

Davide Francesco Barbieri Daniele Braga Stefano Ceri

Emanuele Della Valle Michael Grossniklaus
{ dbarbieri, braga, ceri, dellavalle, grossniklaus} ~elet.polimi.it

Politecnico di Milano- Dipartimento di Elettronica e lnformazione
Piazza L. da Vinci, 32- 20133 Milano- Italy

ABSTRACT

C-SPARQL is an extension of SPARQL to support contin

uous queries over RDF data streams. Supporting streams

in RDF format guarantees interoperability and opens up

important applications, in which reasoners can deal with

knowledge that evolves over time. We present C-SPARQL

by means of examples in Urban Computing.

Categories and Subject Descriptors: H.2.3 [Database

Management]: Query Languages

General Terms: Languages

Keywords: SPARQL, Data Streams, RDF

1. C-SPARQL IN A NUTSHELL

RDF repositories are scaling up in the time-invariant do

main, and SPARQL engines support complex queries over

multiple sources. However, the combination of static (or rel

atively slowly changing) knowledge with rapidly changing

(or "streaming") data has been so far neglected or forgot

ten. RDF streams are the natural extension of the RDF

data model to this new scenario and C-SPARQL (for Con

tinuous SPARQL) the extension of SPARQL to query RDF

streams. C-SPARQL bridges data streams to reasoning and

enables stream reasoning, a new research area. C-SPARQL

is defined by orthogonal extensions to the standard SPARQL

grammar [2], so that SPARQL is a subset of C-SPARQL.

RDF streams - Similar to RDF graphs, RDF streams

are identified by IRis, which are locators of the streaming

data sources. Instead of being static collections of triples,

streams are sequences of triples continuously produced and

annotated with timestamps, which are monotonically non

decreasing.

Windows - Introducing RDF streams as a new type of

input data requires the ability to identify them and apply

selection criteria over them. As for identification, we rely

on the association with distinct IRis. As for selection, given

that streams are intrinsically infinite, we introduce the no

tion of windows (the last items in the data streams), whose

characteristics are inspired by those of continuous query lan

guages such as CQL [1]. The extraction can be physical (a

given number of triples) or logical (a variable number of

triples within a given timeframe). Identification and win

dowing are expressed by means of the FROM STREAM clause:

1061

FromStrClause -+ ' FROM' ['NAMED'] ' sTREAM ' StreamiRI

' [RANGE' Window 'l'

Window -+ LogicaJWindow I PhysicaJWindow

LogicaJWindow -+ Number TimeUnit WindowOverlap

TimeUnit -+ 'MSEC' I ' sEc ' I 'MI N' I ' HOUR' I 'DAY'

WindowOverlap -+ ' STEP' Number TimeUnit I 'TUMBLING'

PhysicalWindow -+ 'TRIPL ES' Number

Logical windows are sliding when progressively advanced

of a STEP that is shorter than the window's time interval; they

are non- overlapping (or TUMBLING) when they are advanced of

exactly their time interval at each iteration. With tumbling

windows every triple of the data stream is included into one

window, whereas with sliding windows some triples can be

included into several windows. The optional NAMED keyword,

like in the standard SPARQL FROM clause, tracks the prove

nance of triples binding the IRI of the stream to variables

later accessible via the GRAPH clause.

Registration- C-SPARQL produces as output the same

types as SPARQL: boolean answers, variable bindings, new

RDF triples, or RDF descriptions of resources. These out

puts are continuously renewed with each query execution

when a statement is registered as QUERY:

Registration-+ ' REGI STER' ('QUERY'I's TREAM') QName 'As ' Query

Only a CONSTRUCT or DESCRI BE query can be registered as

STREAM, to produce RDF triples that, once associated with

timestamps, yield to new RDF streams. In this case, ev

ery query execution produces from a minimum of one triple

to a maximum of an entire RDF graph, depending on the

construction pattern.

Aggregation- The SPARQL specification lacks aggrega

tion capabilities, although some SPARQL implementations

already support it. A continuous query language without ag

gregates would not be practically useful, therefore, we also

provided C-SPARQL with aggregation. This extension is

orthogonal w.r.t. the othersand gives rise to an extension

of SPARQL which is significant per se. We also allow mul

tiple independent aggregations within the same query, thus

pushing the aggregation capabilities beyond those of SQL.

AggregateClause -+

('AGGREGATE { (' var ','Function',' Group') ' [Filter] '}')*

Function-+ 'couNT' I 'sUM' I 'AVG' I 'MIN' I 'MAX'

Group--+ var I ' {' va.r (')' var)* '}'

Every aggregation clause has the following parts: (a) a

new variable (i.e. a variable not occurring in the WHERE clause

or in other aggregation clauses); (b) an aggregation func

tion (one of: COUNT, MAX, MIN, SUM, AVG); (c) a set of one or

Erschienen in: WWW'09 : Proceedings of the 18th international conference on World wide web / Juan Quemada... (eds.). - New York, NY :
ACM, 2009. - S. 1061-1062. - ISBN 978-1-60558-487-4

http://dx.doi.org/10.1145/1526709.1526856

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-277370

http://nbn-resolving.de/urn:nbn:de:bsz:352-277370

more variables, occurring in the WHERE clause, that express

the grouping criteria; and (d) an optional FILTER clause.

The semantics of a query with aggregate functions con

sists in adding to the regular variable bindings computed by

the WHERE clause some new bindings, one for each of the new

variables introduced by the AGGREGATE clauses. The solution

constructed in this way may be further filtered by the FI L

TER clause. The evaluations of aggregate functions are all

independent from each other and take place after the com

putation of the bindings provided by the WHERE clause.

2. EXAMPLES OF C-SPARQL
A simple Query with Aggregation - Aggregation is

orthogonal w.r.t. the other extensions, so we start with a

query having aggregates but no streams. It counts the num

ber of sensors placed in every street and returns those with

more than 5 sensors. The query is not continuous and re

quires no registration.

PREFIX c : <htt p :/ /linkedurbandata.or g/ ci t y#>
SELECT DISTINCT ?s t r eet ?sensors
WHERE { ?sensor c :pl acedin ?street . }
AGGREGATE {(?sensor s , COUNT, {?s t reet}) FILTER (?sensor s > 5) }

The query is executed by first extracting all pairs of bind

ings of sensors with their street, then the number of sensors

in each street is counted into the new variable sensors and

each resulting pair is extended into a triple , then the triples

which satisfy the filter predicate are selected, and finally

distinct pairs of street and sensor numbers are projected.

A simple Query over a Stream- A classic example

in Urban Computing is counting the cars enter the city cen

ter passing through tollgates. The next query counts how

many cars went through each tollgate in the last 10 minutes,

sliding the window every minute.

REGISTER QUERY CarsEnter ingCityCenter Pe rTol lgate AS
PREF IX t: <http ://l i nkedurbandata .org/traffic#>

SELECT DISTINCT ?tollgate ?passages
FROM STREAM <www. uc .eu/ t ollgat es .trdf> [RANGE 10 MIN STEP 1 MIN]
WHERE { ?t ol lgat e t : r egister s ?car . }
AGGREGATE { (?passages, COUNT, {? t ollgat e})}

First, all pairs of bindings of tollgates with the car they

register are extracted from the current window, then the

number of cars is counted into the new variable pas sages

for each tollgate (and each resulting pair is extended into

a triple), and finally the result is projected as distinct pairs

of tollgate and passages. Note that at every new minute

new triples enter into the window and old triples exit , and

the query result does not change during the slide interval; it

changes only at every slide change (i.e., at every minute).

In this stream, as in all the streams that we will use in

the examples of this paper, the predicate of the triple (e.g.

t :regis t er) is fixed while the subject and object part of the

triple (e.g., ?t ollgat e and ?car) are variable. Thus, a physi

cal source for this stream will have items consis ting of pairs

of values. This arrangement is coherent with RDF reposi

tories whose predicates are taken from a small vocabulary

constituting a sort of schema, but C-SPARQL makes no as

sumption on variable bindings of its stream triples.

Comhining Static and Streaming Knowledge - A

more complex example counts the number of car entering the

city center from each district. The RDF repository stores

(a) which districts a city is divided in, (b) which streets

belong to each district, and (c) which street each tollgate is

placed in. The window is set to 30 minutes and slides every

5 minutes. For brevity, the declaration of prefixes c: and t :

will be omitted in the next examples.

1062

REGISTER QUERY CarsEnteringCityCent erPerDistrict AS
SELECT DISTINCT ?dist ri ct ?pa ssage s
FROM STREAM <www .uc . eu/ t ollgat es.trdf > [RANGE 30 MIN STEP 5 MIN]

WHERE { ?t oll t:regi ste r s ?car . 7t ol l c :placed in ?street .
?dis t ric t c: contains ?s t r eet . }

AGGREGATE { (?passages, COUNT , {?d i st r ict }) }

As in the previous query, all pairs of bindings of tollgates

with the cars are extracted. Also, a graph pattern also ex

tracts the pair of bindings of tollgates with the district they

are in. Here the cars are counted based on the district.

Streaming the Results of a Query - Continuous que

ries renew their output at each query execution; such out

put could be periodically transferred to another system for

further analysis (e.g., to plot the traffic as a function of

time). In addition, C-SPARQL allows the construction of

new RDF data streams, by supporting the possibility to

register CONSTRUCT and DESCRI BE queries. We can register the

previous query to generate a stream of RDF triples :

REGISTER STREAM CarsEnt er ingCityCente r Per Distr ic t AS
CONSTRUCT {?d ist rict t :has-entering- car s ?passages}

FROM STREAM <www.uc. eu/ t oll gat es .tr df > [RANGE 30 MI N STEP 5 MIN]
WHERE { ? t oll t : registers ?car ?tol l c :pl acedin ?stree t .

?di strict c : cont ains ?street . }
AGGREGATE { (?pa ssages , CO UNT , {?d i st rict}) }

Every query execution may produce from a minimum of

one triple to a maximum of an entire graph. In the former

case, a different timestamp is assigned to every triple; in

the latter case, the same timestamp is assigned to all the

triples of the graph. In both cases, timestamps are system

generated in monotonic order.

Combining Multiple Streams- We now also consider

traffic control cameras registering cars at traffic lights, orig

inating a different stream. The next query finds the streets

that have been over 80% of their capacity in the last 5 min

utes and shows the number of cars (cars seen by cameras

and passing through tolls are summed up).

REGISTER QUERY FullSt reets AS

SELECT { ?str eet ?pa ssages }
FROM STRE AM <www .uc .eu/ tol lgat es . t r df > [RANGE 5 MIN TUMBLI NG]
FROM STREAM <www .uc .eu/cameras . t rdf > [RANGE 5 MI N TUMBLING]

WHERE { GRAPH <http : //s t r eam.org/m ilant ol lgates .trdf > {
?t o ll t:regi ster s ?car . ?t oll c :placedin ?s t reet

} UNION

GRAPH <ht tp : //s t r eam .org/m ilancameras .trdf > {
?camer a t: regis ter s ?car . ?camera c :p lacedAt ?light .
?light c : cr ossing ?s t r eet .

} UNION { ?street c :hasCapacit y ?capacity . }
AGGREGATE { (?passages , COUNT, {?st r eet })

FILTER (?pa ssages > (0 .8• ?capacity)) }

Here, the bindings over the different graphs are combined

following the semantics of the UNI ON pattern evaluation in

SPARQL, and it becomes possible to count in the new vari

able pa ssages the cars registered either by the tollgates or by

the cameras in each street.

Acknowledgement

Thls work is supported by the FP7-215535 integrated project

(LarKC) funded by the KU. Dr. Grossniklaus's work is carried
out under SNF grant number PBEZ2-121230. W e acknowledge
Ioana Manolescu for her contributions to the initial discussions

on the p ot ential impact of RDF streams on several use cases.

3. REFERENCES
[1] A. Arasu , S. Babu, and J. Widom. The CQL Continuous

Query Language: Semantic Foundations and Query

Execution. The VLDB Journal, 15(2) :121- 142, 2006.

[2] K Prud'hommeaux and A. Seaborne. SP ARQL Query
Language for RDF Grammar.

http://www.w3.org /TR/rdf-sparql-query/#sparqlGrammar.

