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C-Stream: A Co-routine-Based Elastic Stream Processing

Engine

SEMİH ŞAHİN, Georgia Tech

BUĞRA GEDİK, Bilkent University

Stream processing is a computational paradigm for on-the-�y processing of live data. This paradigm lends

itself to implementations that can provide high throughput and low latency by taking advantage of various

forms of parallelism that are naturally captured by the stream processing model of computation, such as

pipeline, task, and data parallelism. In this article, we describe the design and implementation of C-Stream,

which is an elastic stream processing engine. C-Stream encompasses three unique properties. First, in contrast

to the widely adopted event-based interface for developing streaming operators, C-Stream provides an inter-

face wherein each operator has its own driver loop and relies on data availability application programming

interfaces (APIs) to decide when to perform its computations. This self-control-based model signi�cantly

simpli�es the development of operators that require multiport synchronization. Second, C-Stream contains a

dynamic scheduler that manages the multithreaded execution of the operators. The scheduler, which is cus-

tomizable via plug-ins, enables the execution of the operators as co-routines, using any number of threads.

The base scheduler implements back-pressure, provides data availability APIs, and manages preemption and

termination handling. Last, C-Stream varies the degree of parallelism to resolve bottlenecks by both dynami-

cally changing the number of threads used to execute an application and adjusting the number of replicas of

data-parallel operators. We provide an experimental evaluation of C-Stream. The results show that C-Stream

is scalable, highly customizable, and can resolve bottlenecks by dynamically adjusting the level of data par-

allelism used.

CCS Concepts: • Information systems → Stream management; • Software and its engineering →

Scheduling; • Computing methodologies→ Parallel programming languages;
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1 INTRODUCTION

As the world becomes more instrumented and interconnected, the amount of live data generated

from software and hardware sensors increases exponentially. Data stream processing is a compu-

tational paradigm for on-the-�y analysis of such streaming data at scale. Applications of streaming

can be found in many domains, such as �nancial markets (Zhang et al. 2009), telecommunications
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(Zerfos et al. 2013), cyber-security (Schales et al. 2014), and health care (Garg et al. 2010), to name

a few.

A streaming application is typically represented as a graph of streams and operators (Hirzel

et al. 2013), in which operators are generic data manipulators and streams connect operators to

each other using �rst in �rst out (FIFO) semantics. In this model, the data is analyzed as it streams

through the set of operators forming the graph. The key capability of streaming systems is their

ability to process high-volume data sources with low latency. This is achieved by taking advantage

of various forms of parallelism that are naturally captured by the streaming model of computa-

tion (Hirzel et al. 2014), such as pipeline, task, and data parallelism.

While streaming applications can capture various forms of parallelism, there are several chal-

lenges in taking advantage of them in practice. First, the operators, which are the building blocks

of streaming applications, should be easy to develop and preferably sequential in nature, saving

the developers from the complexities of parallel programming. Second, streaming systems need

a �exible scheduler that can dynamically schedule operators to take advantage of various forms

of parallelism in a transparent manner. Furthermore, the scheduler should be con�gurable so that

we can adjust the trade-o� between latency and high throughput. Last, but not least, the stream

processing system should be elastic in the sense that the level and kind of parallelism applied can

be adjusted depending on the resource and workload availability.

In this article, we describe the design and implementation ofC-Stream, which is an elastic stream

processing engine. C-Stream addresses all of the aforementioned challenges. First, in contrast to

the widely adopted event-based interface for developing stream processing operators, C-Stream

provides an interface wherein each operator has its own driver loop and relies on data availability

application programming interfaces (APIs) to decidewhen to perform its computations. Thismodel

signi�cantly simpli�es development of multi-input port operators that otherwise require complex

synchronization. Furthermore, it enables intraoperator optimizations, such as batching. Second,

C-Stream contains a dynamic scheduler that manages the multithreaded execution of the opera-

tors. The scheduler, which is customizable via plug-ins, enables the execution of the operators as

co-routines, using any number of threads. The base scheduler implements back-pressure, provides

data availability APIs, and manages preemption and termination handling. Scheduler plug-ins are

used to implement di�erent scheduling policies that can prioritize latency or throughput. Last,

C-Stream provides elastic parallelization. It can dynamically adjust the number of threads used

to execute an application and can also adjust the number of replicas of data-parallel operators

to resolve bottlenecks. For the latter, we focus on stateless operators, but the techniques also ap-

ply for partitioned parallel operators1. Finally, we have evaluated our system using a variety of

topologies under varying operator costs. The results show that C-Stream is scalable (with increas-

ing number of threads), highly customizable (with respect to latency and throughput trade-o�s),

and can resolve bottlenecks by dynamically adjusting the level of data parallelism used (providing

elasticity).

In summary, this article makes the following contributions:

• We propose an operator development API that facilitates sequential implementations, sig-

ni�cantly simplifying the development of multi-input-port operators that otherwise require

explicit synchronization.

• We develop a �exible scheduler and accompanying runtime machinery for executing oper-

ators as co-routines, using multiple threads.

1This requires state migration and ordering support (Schneider et al. 2015), which is not yet implemented in our prototype.
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• We present techniques for elastic execution, including the adjustment of the level of paral-

lelism used and the number of operator replicas employed.

• We provide a detailed evaluation of our system to showcase its e�cacy.

The rest of this article is organized as follows. Section 2 overviews the programming model

and the operator development APIs used by C-Stream. Section 3 describes the co-routine-based

runtime, the multithreaded scheduler, and the custom scheduler plug-ins that we have developed

for it. Section 4 explains how Stream-C achieves elasticity. Section 5 presents our experimental

evaluation. Section 6 discusses related work and Section 7 contains our conclusions.

2 PROGRAMMING MODEL

In this section, we �rst give a brief overview of the basic concepts in stream processing. We then

describe the programming model used by C-Stream, with a focus on �ow composition and operator

development.

2.1 Basic Concepts

A streaming application takes the form an operator �ow graph. Operators are generic data ma-

nipulators that are instantiated as part of a �ow graph, with specializations (e.g., parameter con-

�gurations and port arity settings). Operators can have zero or more input and output ports. An

operator with only output ports is called a source operator and an operator with only input ports is

called a sink operator. Each output port produces a stream, that is, an ordered series of tuples. An

output port is connected to an input port via a stream connection. These connections carry tuples

from the stream, providing FIFO semantics. There can be multiple stream connections originating

from an output port, called a fan-out. Similarly, there can be multiple stream connections destined

to an input port, called a fan-in.

Three major kinds of parallelism are inherently present in streaming applications; Stream-C

takes advantage of all three (see Section 4):

• Pipeline parallelism: As one operator is processing a tuple, its upstream operator can process

the next tuple in line at the same time.

• Task parallelism: A simple fan-out in the �ow graph gives way to task parallelism, in which

two di�erent operators can process copies of a tuple at the same time.

• Data parallelism: This type of parallelism can be taken advantage of by creating replicas of

an operator and distributing the incoming tuples among them so that their processing can be

parallelized. This requires a split operation, but more important, a merge operation after the

processing in order to reestablish the original tuple order. Data parallelism can be applied

to stateless as well as partitioned stateful operators (Gedik et al. 2014). Stateless operators

are those that do not maintain the state across tuples. Partitioned operators maintain the

state across tuples, but the state is partitioned based on the value of a key attribute. In order

to take advantage of data parallelism, the streaming runtime has to modify the �ow graph

behind the scenes (Hirzel et al. 2014).

There are two aspects of developing a streaming application. The �rst is to compose an applica-

tion by instantiating operators and connecting them via streams. This is called �ow composition.

It is a task typically performed by the streaming application developer. The second is operator de-

velopment, which involves creating reusable streaming analytics. It is a task typically performed

by a library developer.
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Listing 1. Flow composition in C-Stream.

Fig. 1. Example flow graph from Listing 1.

2.2 Flow Composition

Stream-C supports �ow composition using an API-based approach, employing the C++11 lan-

guage. Listing 1 shows how a simple streaming application is composed using these APIs. Figure 1

depicts the same application in graphical form.

A Flow object is used to hold the data�ow graph (Line 1). Operators are created using the

createOperator function of the Flow object (Line 4). This function takes the operator kind as a

template parameter and the runtime name of the operator instance being created as a parameter.

Optionally, it takes the arity of the operator as a parameter as well. For instance, the instance of the

Barrier operator referenced by the combiner variable is created by passing the number of input

ports, 2 in this case, as a parameter (Line 15). Operators are con�gured via their set_ methods,

which are speci�c to each operator type. The parameters to operators can also be lambda expres-

sions, such as the filter parameter of the Filter operator (Line 13). Such lambda expressions

can reference input tuples (represented by the t_ variable in the example code).

The connections between the operator instances are formed using the addConnections func-

tion of the Flow object (Lines 22 and 23). The >> C++ operator is overloaded to create chains
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of connections. For instance, (names,0) >> (0,filter,0) >> (0,combiner) represents a

chain of connections in which the output port 0 of the operator instance referenced by names is

connected to the input port 0 of the one referenced by filter and the output port 0 of the latter

is connected to the input port 0 of the operator instance referenced by combiner.

The �ow is run via the use of a FlowRunner object (Line 26). The runmethod of the FlowRunner

object takes the Flow object as well as the number of threads to be used for running the �ow as

parameters (Line 32).

2.3 Operator Development

The success of the stream processing paradigm depends, partly, on the availability of a wide range

of generic operators. Such operators simplify the composition of streaming applications by en-

abling application developers to pick and con�gure operators from a preexisting set of cross-

domain and domain-speci�c operators.

Problems with the Event-Driven Programming Model. The classical approach to operator devel-

opment has been the event-driven model, in which a new operator is implemented by extending a

framework class and overriding a tuple processing function to specify the custom operator logic.

Examples abound (Storm 2015; S4 2015; Samza 2015; Hirzel et al. 2013).

However, the event-driven approach has several shortcomings. First, it makes the implementa-

tion of multi-input port operators that require synchronization di�cult. Consider the implementa-

tion of a simple Barrier operator, whose goal is to take one tuple from each of its input ports and

combine them into a single-output tuple. It is an operator that is commonly used at the end of task

parallel �ows. Recall that in the event-based model, the operator code executes as a result of tuple

arrivals. Given that there is no guarantee about the order in which tuples will arrive from di�erent

input ports, the operator implementation has to keep an internal bu�er per input port in order to

implement the barrier operation. When the last remaining empty internal bu�er receives a tuple,

then the operator can produce an output tuple. More important than the increased complexity of

implementation, there are also problems related to bounding the memory usage and/or creating

back-pressure. Consider the case in which one of the input ports is receiving data at a higher rate.

In this case, the internal bu�er will keep growing. In order to avoid excessive memory usage, the

operator has to block within the tuple handler function, which is an explicit form of creating back-

pressure. Once blocking gets into the picture, then complex synchronization issues arise, such as

determining how long to busy wait or using a wait/signal-style blocking synchronization.

Second, the event-driven approach makes it more di�cult to implement intraoperator batching

optimizations, as tuples arrive one at a time. Finally, in the presence of multi-input port operators,

termination handling becomes more involved as well. One way to handle termination is to rely

on punctuations (Andrade et al. 2014), which are out-of-band signals within a stream. One kind of

punctuation is a �nal marker punctuation indicating that no more tuples are to be received from

an input port. A multi-input port operator would track these punctuations from its input ports to

determine when all of its ports are closed.

Self-control-Based Programming Model. C-Stream uses a self-control-based programming model

in which each operator runs its own driver loop inside a process function. An operator comp-

letes its execution when its control loop ends, i.e., when the process function returns. This hap-

pens typically owing to a termination request or owing to no more input data being available for

processing.

A typical operator implementation in C-Stream relies on data availability API calls to block until

all the input data it needs is available for processing. A data availability call requests the runtime

system to put the operator into the waiting state until the desired number of tuples are available
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Listing 2. Barrier operator implementation in C-Stream.

from the input ports. The wait ends when the requested data is available or when the runtime

determines that the data will never be available. The latter can happen if one or more of the ports

on which data is expected close before there are enough tuples to serve the request. An input port

closes when all of its upstream operators are complete.

Listing 2 shows how a barrier operator is implemented in C-Stream. We focus on the process

function, which contains the driver loop of the operator. The �rst thing the operator does is to set

up a wait speci�cation, which contains the number of tuples that the operator needs from each

one of the input ports. For the barrier operator, the speci�cation contains the value 1 for each one

of the input ports. After the wait speci�cation is set up, the operator enters its driver loop. The

context object is used to check whether an explicit shutdown is requested. If not, the operator

passes the wait speci�cation to the waitOnAllPorts data availability API call in order to wait

until at least one tuple is available from each one of the input ports. If the call reports that the

request cannot be satis�ed due to closed ports, then the barrier operator completes, as it cannot

produce any additional output. Otherwise, it pops one tuple from each input port, combines them

into a new output tuple, and pushes it into the output port.

To compare, an alternative implementation in a hypothetical event-driven programming model,

inspired by SPL’s Barrier operator implementation in IBM Streams (Gedik and Andrade 2012), is

given in the Appendix. This alternative implementation is not only more complex in terms of

the number of lines but also involves complex multithreading logic that relies on mutexes and

conditional variables.

3 RUNTIME

In this section, we describe the runtime of C-Stream. We �rst explain the basic execution model

used by C-Stream and then provide the algorithms that constitute the base scheduler.

3.1 Execution Model

The most straightforward way to support the programming model provided by C-Stream for op-

erator development is to execute each operator as a separate thread. However, it is known that this

kind of execution model does not scale with the number of operators (Carney et al. 2003). Instead,

C-Stream executes each operator as a co-routine. This way, each operator has a stack of its own
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and the runtime system can suspend/resume the execution of an operator at well-controlled points

within its process function. In particular, C-Stream can suspend the execution of an operator at

two important points within the operator’s processing logic: (1) data availability calls, and (2) tu-

ple submission calls. These are also the points where the operator may need blocking, as there

may not be su�cient data available for processing in the input ports or there may not be su�cient

space available for submitting tuples to downstream input ports. One of the big advantages of co-

routines compared to threads is that they can be suspended/resumed completely at the application

level and with little overhead2.

C-Stream executes operators using a pool of worker threads. When an operator blocks on a data

availability call or on a tuple submission call, the scheduler assigns a new operator to the thread.

We cover the details of how the thread pool size is adjusted in Section 4, in which we introduce

elastic parallelism in C-Stream.

3.2 Scheduler

C-Stream has a pluggable scheduler. The scheduler provides the following base functionality irre-

spective of the plug-in used to customize its operation: data availability, back-pressure, preemp-

tion, and termination.

A note on locks: For the sake of simplicity, we have not detailed the locking scheme used by

the scheduler in our descriptions of the algorithms. In practice, scheduler operations make use

of reader/writer locks. The common case in which operators need not be blocked/unblocked is

handled by just holding reader locks, avoiding congestion.

ALGORITHM 1: OperatorContext::waitForAll(waitSpec)

Param:waitSpec , wait speci�cation mapping input ports to the # of tuples to wait for

Result: Over , if the request can never be satis�ed; Done , if the wait speci�cation is satis�ed

begin

needToWait ← true

while needToWait do

allAvailable ← true

foreach (iport , count ) inwaitSpec do

if |iport | < count then
allAvailable ← f alse

break
if allAvailable then needToWait ← false

else

foreach (iport , count ) inwaitSpec do

if iport .isClosed () and |iport | < count then return Over

if needToWait then scheduler .markReadBlocked (this,waitSpec,Conj )

else scheduler .checkForPreemption(this )

return Done

3.2.1 Data Availability. The scheduler supports data availability APIs by tracking the status of

the wait requests of the operators. It puts the operators into the Ready or Waiting state depend-

ing on the availability of their requested number of tuples from the speci�ed input ports. Such

requests could be conjunctive (e.g., one from each input port) or disjunctive (e.g., one from any

2The boost co-routines library we use can context switch in 33 cycles on a modern 64-bit Intel processor; see http://www.

boost.org/doc/libs/1_58_0/libs/coroutine/doc/html/coroutine/performance.html.
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port). However, data availability has to also consider the termination scenarios. While an opera-

tor may be waiting for availability of data from an input port, that data may never arrive, as the

upstream operator(s) may never produce any additional items due to termination. The scheduler

tracks this via the Completed operator state.

3.2.2 Back-pressure. The scheduler handles back-pressure by putting limited size bu�ers on

operator input ports. When an operator submits a tuple, the runtime system checks if space is

available in the downstream input port bu�ers. In the case of space unavailability, the operator

doing the submission will be put into theWaiting state until there is additional space in the down-

stream input ports to enable progress. Care needs to be taken for handling termination. If the

downstream input port is attached to an operator that has moved to the Completed state owing

to a global termination request, then the current operator should be put back into the Ready state

so that it can terminate as well (avoiding a potential deadlock when the downstream input port is

full). Another important case to handle is �ows that involve cycles. Back-pressure along a cyclic

path can cause deadlock. C-Stream handles this by limiting the feedback loops in the application

to control ports—input ports that cannot result in production of new tuples but can change the

internal state of an operator.

3.2.3 Termination. C-Stream handles termination using two mechanisms. The �rst is the Com-

pleted state for the operators, as we have outlined earlier. The second is the notion of closed input

ports. An input port closes when its upstream operator(s) have all moved into the Completed state.

In order for an operator to move into the Completed state, it needs to exit its driver loop. That typ-

ically happens when an explicit shutdown is requested or when all of the input ports are closed,

that is, no more tuples can be received from them. An operator moving into the Completed state

may result in unblocking some downstream operators that are waiting on data availability; these

operators can learn about the unavailability of further data via their input ports’ closed status.

3.2.4 Preemption. To prevent operators from starving and to provide low latency, C-Stream’s

base scheduler uses a quanta-based approach. As part of tuple availability and tuple submission

calls, operators are checked for preemption. If the operator has used up its quanta, it is preempted.

Depending on the scheduler plug-in, the next operator is selected for execution. Furthermore, C-

Stream maintains per operator and per input port statistics, such as the amount of time that each

operator has been executed over the recent past or how long tuples have waited on input port

bu�ers on average. Such statistics can be used by scheduler plug-ins to implement more advanced

preemption policies.

3.2.5 Base Scheduler Algorithm. We now describe the base scheduler algorithm. Recall that

there are two points at which the operator code interacts with the scheduler. These are the data

availability calls and tuple submission calls. We start our description of the algorithm from these.

Data availability calls: The operator context object provides two data availability calls:

waitForAll (conjunctive wait) and waitForAny (disjunctive wait). The pseudo-code for these is

given in Algorithms 1 and 2, respectively.

ThewaitForAll call takes a wait speci�cation as a parameter, which maps ports to the number

of tuples to wait from them. It blocks until the speci�ed number of tuples are available from the

input ports and returns Done . However, if at least one of the ports on which we are waiting tuples

is closed without having the su�cient number of tuples presents, then the call returns Over . The

closed status of a port is determined using the isClosed call on the input port, which returns true

when all the upstream operators of a port are in the Completed state. The completion of operators

typically propagates from the source toward the sinks. For example, in a typical chain topology,

the source operator will move into the Completed state when it exits from its driver loop, typically
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ALGORITHM 2: OperatorContext::waitForAny(waitSpec)

Param:waitSpec , wait speci�cation mapping input ports to the # of tuples to wait for

Result: Over , if the request can never be satis�ed; Done , if the wait speci�cation is satis�ed

begin

needToWait ← true

while needToWait do

oneAvailable ← f alse

foreach (iport , count ) inwaitSpec do

if |iport | ≥ count then
oneAvailable ← true

break
if oneAvailable then needToWait ← false

else

cannotSatisfy← true

foreach (iport , count ) inwaitSpec do

if not iport .isClosed () or |iport | ≥ count then

cannotSatisfy← false

if |iport | ≥ count then needToWait← false

break
if cannotSatisfy then return Over

if needToWait then scheduler .markReadBlocked (this,waitSpec,Disj )

else scheduler .checkForPreemption(this )

return Done

owing to its source data being depleted or to a global shutdown request. The source operator

moving into the Completed state will cause the downstream operator to receive an Over status

if it was waiting for data on its input port, unblocking it so that it can exit its driver loop as

well.

In the case that we need to wait, this is achieved by making a markReadBlocked call to the

scheduler, asking it to put the operator into the ReadBlocked state. This is also a blocking call. The

outer while loop in the algorithm ensures that the wait spec is reevaluated after the scheduler

returns. This is important because if the return from the scheduler call is due to termination or

port closure, the request may never be satis�ed, in which case Over is returned.

Finally, in the case that we do not need to wait, we still make a call to the scheduler, named

checkForPreemption. This is to check whether the operator should be preempted or not. The

scheduler simply forwards this call to the scheduler plug-in, which decides whether the opera-

tor should be preempted.

The waitForAny call is similar in nature but returns Over only when none of the ports can ever

satisfy the request.

Tuple submission calls: Output ports handle the tuple submissions, pseudo-code of which is

given in Algorithm 3. To implement back-pressure, tuple submissions must block if at least one

of the downstream input ports is full (the number of tuples is equal tomaxQueueSize). However,

there are two cases in which the input port sizes may go slightly over the limit.

The �rst is the shutdown case, in which a request for shutdown has been made. In this case, the

tuple should be enqueued into the downstream ports right away, moving the control back to the

operator’s processing loop so that it can detect the shutdown request and return from its process

function. This will enable the runtime to move the operator into the Completed state.
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ALGORITHM 3: OutputPort::pushTuple(tuple)

Param: tuple , tuple to be pushed to all subscriber input ports

begin

needToWait← true

while needToWait do

waitSpec ← {}

if not isShutdownRequested () then

foreach iport in this .subscribers do

if |iport | ≥ maxQueueSize thenwaitSpec .add (iport )

if |waitSpec | = 0 then

needToWait ← f alse

foreach iport in this .subscribers do
iport .pushTuple (tuple )

if needToWait then scheduler .markWriteBlocked (this .oper ,waitSpec )

else scheduler .checkForPreemption(this .oper )

ALGORITHM 4: Scheduler::markReadBlocked(oper ,waitSpec ,mode)

Param: oper , operator to be blocked

Param:waitSpec , the wait speci�cation of the operator

Param:mode , the mode of the blocking (Conj or Disj)

begin

if mode = Conj then

foreach (iport , count ) inwaitSpec do

if iport .isClosed () then return

else

allClosed ← true

foreach (iport , count ) inwaitSpec do

if not iport .isClosed () then allClosed ← f alse break

if allClosed then return

waitCond ← oper .readWaitCondition()

waitCond .setMode (mode )

waitCond .setCondition(waitSpec )

if notwaitCond .isReady () then updateOperState (oper ,ReadBlocked )

else updateOperState (oper ,Ready)

oper .yield ()

The other case happens when other operators that are being run by di�erent threads have sub-

mitted tuples between our check of the queue sizes and doing the actual enqueuing of the tuple.

This results in temporarily exceeding the queue size limit. However, this is a small compromise

that avoids the need to hold multiport locks. The queue sizes would quickly go down once the

upstream operators eventually move into theWriteBlocked state.

The output port uses themarkWriteBlocked scheduler function for moving operators into the

WriteBlocked state. If blocking is not needed due to back-pressure, the preemption is checked via

the checkForPreemption scheduler function.

Moving operators into the blocked state: The scheduler uses the markReadBlocked and

markWriteBlocked functions to move operators into blocked state, whose pseudo-codes are give

in Algorithms 4 and 5, respectively.
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ALGORITHM 5: Scheduler::markWriteBlocked(oper , waitSpec)

Param: oper , operator to be blocked

Param:waitSpec , set of ports that are full

begin

if isShutdownRequested () then return

waitCond ← oper .writeWaitCondition()

waitCond .setCondition(waitSpec )

if notwaitCond .isReady () then updateOperState (oper ,WriteBlocked )

else updateOperState (oper ,Ready)

oper .yield ()

ALGORITHM 6: Scheduler::markCompleted(oper )

Param: oper , operator to be moved into completed state

begin

updateOperState (oper ,Completed )

foreach downOper in oper .subscribers () do

if downOper .state () = ReadBlocked then updateOperState (downOper ,Ready)

if isShutdownRequested () then

foreach upOper in oper .publishers () do

if upOper .state () =WriteBlocked then updateOperState (upOper ,Ready)

In the markReadBlocked function, the scheduler quickly rechecks whether the port closures

would prevent the scheduler from moving the operator into the blocked state. For conjunctive

wait speci�cations, this happens when any one of the ports is closed and for disjunctive ones

when all of the ports are closed. Otherwise, the wait speci�cation of the operator is recorded as

part of the operator’s scheduling state (waitCond variable). Then, the wait condition is reeval-

uated (waitCond .isReady () call in the pseudo-codes), as the state of the input ports may have

changed since the time operator context has detected that it should ask the scheduler to block. If

this reevaluation still indicates the need to block, then the scheduler updates the operator state to

ReadBlocked. Otherwise, it sets it to Ready. In both cases co-routine yield () is called on the oper-

ator as the last step. Thus, the yield moves the control back to the worker thread, which will ask

the scheduler for an available operator to execute. The scheduler will forward this request to the

scheduler plug-in, which will pick one of the ready operators for execution.

In the markWriteBlocked function, we �rst check if a shutdown is requested and, if so, we

return. This avoids a potential deadlock for the case in which a subscribing input port is full

and its associated operator has already terminated. Otherwise, we record the wait speci�cation

of the operator as part of the operator’s scheduling state (waitCond variable), and reevaluate it

(waitCond .isReady ()) to make sure that it is safe to block the operator. Then, the operator’s sched-

uling state is updated and yield () is called, as before.

Moving operators into the completed state: An operator moves into the Completed state

when it exits its process function, at which point themarkCompleted function of the scheduler is

called. The pseudo-code for this function is given in Algorithm 6. As can be seen, the scheduler

simply moves the operator into the Completed state has to consider two important scenarios.

First, if there are subscribers to the output ports of the operator that are in the ReadBlocked

state, these downstream operators may never satisfy their wait speci�cations owing to the com-

pletion of this operator. For this purpose, the scheduler puts them into the Ready state. Recall from
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ALGORITHM 7: Scheduler::markInputPortWritten(iport )

Param: iport , input port that is written

begin

foreach oper in operators .readBlockedOn(iport ) do

waitCond ← oper .readWaitCondition()

if waitCond .isReady () then updateOperState (oper ,Ready)

else if waitCond .isReady (iport ) then

waitCond .remove (iport )operators .removeReadBlockedOn(iport )

ALGORITHM 8: Scheduler::markInputPortRead(iport )

Param: iport , input port that is read

begin

foreach oper in operators .writeBlockedOn(iport ) do

waitCond ← oper .writeWaitCondition()

if waitCond .isReady () then updateOperState (oper ,Ready)

else if waitCond .isReady (iport ) thenwriteBlockedOperators .remove (iport )

Algorithms 1 and 2 that once markReadBlock returns, the operator will reevaluate whether

it should return Over or Done to the user code or go back to the blocked state via another

markReadBlocked call to the scheduler.

Second, if there is a pending termination request and there are publishers to the input ports of

the operator that are in theWriteBlocked state, these upstream operators may never unblock as the

completed operator will no longer process any tuples from its input ports. For this purpose, the

scheduler puts them into the Ready state. Recall from Algorithm 3 that once themarkWriteBlock

returns, the operator will see the shutdown request and push the tuple to the downstream bu�ers

right away.

Moving operators into the ready state: A tuple being pushed into an input port bu�er can

potentially unblock the operator associated with that input port. This can happen if the opera-

tor is in the ReadBlocked state and its wait speci�cation includes the port in question. Similarly,

a tuple popped from an input port can potentially unblock upstream operators that are push-

ing tuples to this input port. This can happen if the upstream operators are in the WriteBlocked

state and their wait speci�cations include the port in question. These cases are handled by the

markInputPortWritten andmarkInputPortRead functions of the scheduler, whose pseudo-codes

are given in Algorithms 7 and 8. These two functions are called by the pushTuple and popTuple

functions of the input ports, respectively. An input port’s pushTuple function gets called by an

output port’s pushTuple function, as was shown earlier in Algorithm 3. An input port’s popTuple

function is called by the user code implementing an operator, as was shown earlier in Listing 2.

ThemarkInputPortWritten function iterates over the ReadBlocked operators whose wait spec-

i�cations include the input port that is written. It reevaluates their wait speci�cation and, if sat-

is�ed, puts them into Ready state. Otherwise, it checks whether the part of the wait speci�cation

related to the input port that is written is satis�ed and, if so, removes that input port from the

waiting speci�cation of the operator. ThemarkInputPortRead works similarly, with the exception

that it does not remove the current input port from the wait speci�cation when the condition is

partially satis�ed. This is because input ports can have multiple publishers; thus, the availability

of space has to be reevaluated the next time.
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3.2.6 Scheduler Plug-Ins. The scheduler consults the scheduler plug-in to decide on (i) whether

an operator needs to be preempted or not and (ii) which Ready operator a thread should execute

next. To help plug-ins implement this functionality, the scheduler makes available the following

information:

• last scheduled time of operators,

• status of input port bu�ers (including enqueue times of the tuples),

• recent read rates of input ports,

• recent write rates of output ports, and

• fraction of conjunctive and disjunctive wait calls made by the operator3.

Using this information, di�erent scheduler plug-ins can be implemented for di�erent goals, such

as low latency and high throughput. We have developed the following schedulers, all using a

con�gurable quanta-based preemption:

• RandomScheduling: Pick uniformly at random among Ready operators.

• MaxQueueLengthScheduling: Pick the operator with the maximum input queue size,

with the exception that if there is a source operator in the Ready state, then pick it. Ties are

broken randomly.

• MinLatencyScheduling: Scheduling decision is based on the timestamp of the front tuple

in the input port bu�ers of Ready operators. The operator whose front tuple has the mini-

mum timestamp value is picked. For source operators, their last scheduled time is used.

• LeastRecentlyRunScheduling: Pick the least recently scheduled operator among the

Ready ones.

• MaxRunningTimeScheduling: Scheduling decision is based on the estimation of how

long an operator can execute. To compute that, statistics such as port bu�er fullness, read

rate from input ports and write rate to output ports are used. The execution time of the

operator is computed as the minimum of how long it can read from its input port bu�ers

(bu�er tuple count divided by operator’s read rate from the input port) and how long it

can write to input port bu�ers of its subscriber operators (available space in port bu�er of

subscriber operator divided by operator’s write rate to the output port).

4 ADAPTATION

In this section, we describe the adaptation capabilities of C-Stream, which include two main func-

tionalities: (i) adjusting the number of threads used to schedule the operators and (ii) using data

parallelism to resolve bottlenecks.

4.1 Dynamic Thread Pool Size

C-Stream adjusts the number of threads used to schedule the operators based on a metric called

average utilization. The controller that manages thread-pool size tracks this metric periodically,

using an adaption period of ∆ seconds. At the end of each adaptation period, for each worker

thread a utilization value is computed as the fraction of time that the thread has spent running

operators during the last period. The average utilization, denoted by U , is then computed over

all threads and gives a value in range [0, 1]. A low threshold Ul is used to decrease the number of

threads when the average utilization is low (threads are mostly idle). That is, if U < Ul , then the

number of threads is decreased. A high threshold,Uh > Ul , is used to increase the number of threads

when average utilization is high. That is, if U > Uh , then the number of threads is increased. ∆,

3In practice, most operators make use of only one of these calls.
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Fig. 2. Elastic data parallelism.

ALGORITHM 9: DetectBottleneck(candidates)

Param: candidates , list of single input/output operators; τ congestion threshold parameter

Result: bottleneck operator if exists, null otherwise

begin

foreach op ∈ candidates do

if not op.isReplicated then
if op.iport .writeBlockedRatio ≥ τ and

op.oport .writeBlockedRatio < τ then return op

else
avдIPortWriteBlockedRatio =

∑
op′∈op .r eplicas op

′.iport .writeBlockedRatio/|op.replicas |

if avgIPortWriteBlockedRatio ≥ τ and

op.oport .writeBlockedRatio < τ then return op

return null

Ul , and Uh are con�gurable parameters of the adaptation algorithm and C-Stream increases or

decreases the thread counts by 1 at each adaptation period.

4.2 Elastic Data Parallelism

C-Stream applies elastic data parallelism, wherein streaming operators are replicated to resolve

bottlenecks. For this purpose, C-Stream �rst detects bottleneck operators and then increases the

number of replicas for them. Increasing the number of replicas enables the replicated operators

to be executed by more than one thread. Also, it enables the bottleneck processing task to receive

additional scheduling time.

Figure 2 illustrates how C-Stream uses data parallelism to resolve bottlenecks. In the upper part

of the �gure, we see an operator that is determined as the bottleneck. Note that its downstream

input port is not experiencing congestion, yet its input port does. In the bottom part of the �gure,

we see that the bottleneck is resolved by replicating the operator in question. This is achieved by

using split and merge operators before and after the bottleneck operator, respectively. The split

operator partitions the stream over the replicas. It also assigns sequence numbers to the tuples

so that these tuples can be ordered later by the merge operator. If the bottleneck operator is a

partitioned stateful one, the splitting can be performed using hashing on the partitioning key.

Otherwise, it will be a round-robin distribution.
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4.2.1 Bo�leneck Detection. Stream-C performs bottleneck detection based on a simple princi-

ple: an operator that has no downstream input ports that are congested, yet at least one input port

that is congested is a bottleneck operator. The former condition makes sure that we do not include

operators that are blocked due to back-pressure in our de�nition. The second condition simply

�nds operators that are not processing their input tuples fast enough and, thus, are bottlenecks.

To de�ne congestion, we use ametric calledwrite blocked ratio. For an input port, it is the fraction

of time that the port bu�er stays full. For an output port, we de�ne it as themaximumwrite blocked

ratio of the subscribing downstream input ports. Algorithm 9 describes how bottleneck operators

are found using these metrics.

Stream-C applies data parallelism only for operators with single-input and single-output ports.

Bottleneck operators are selected from candidate operators with this property. Furthermore, con-

gestion threshold parameter τ is used to determine if a port is congested. Concretely, a port is

congested if and only if its write blocked ratio is greater than or equal to τ .

Among the candidates’ operators, if an operator is not replicated then it is a bottleneck if and

only if its input port is congested and its output port is not congested. If an operator is repli-

cated, then the same rule applies, with the exception that the write blocked ratio for the input

port is computed by averaging it over all of the replicas of the operator. There is no change for

the computation of the output port write blocked ratio, as there is only a single downstream in-

put port subscribing to the output ports of the replicas, which is the input port of the merge

operator.

4.2.2 Replica Controller. C-Stream has a replica controller that adjusts the number of replicas

of operators to improve the throughput. Every adaptation period, it runs the bottleneck detection

procedure to locate a bottleneck operator. If there are no bottleneck operators (all input ports have

write block ratios that are below the congestion threshold τ ), then it does not take any action. If

there are bottleneck operators, then their number of replicas are incremented by one. Increasing

the number of replicas for an operator results in the operator being scheduled more often. We

do not limit the number of replicas explicitly, assuming that additional computational resources

result in improving the throughput. To handle IO bound operators, simple blacklisting techniques

can be applied (Tang and Gedik 2013).

5 EXPERIMENTS

In this section, we present our experimental results. First, we provide base experiments studying

the performance and scalability of C-Stream under varying topologies, application sizes (number

of operators), operator costs, and scheduler plug-ins. Second, we provide experiments showcasing

the e�ectiveness of our adaptation module.

All of our experiments were performed on a host with 2 × 2 GHz Intel Xeon processors, each

containing 6 cores. In total, we have a machine with 12 cores, running Linux with kernel version

2.6. In the base experiments, the default value for the number of threads is set as 4 and the default

selectivity is set as 1, even though we experiment with varying values for both. In adaptation ex-

periments, the default selectivity value is 1, and the default scheduler plug-in is RandomScheduling.

In all of our experiments, quanta value is set as 50 milliseconds.

5.1 Base Experiments

Our base evaluations are performed on applications with varying topologies under varying appli-

cation sizes, operator costs, and selectivity values. The selectivity of an operator is the number of

tuples that it produces for each tuple that it consumes. Usually, this is a number in the range [0, 1],

representing operators performing �ltering.
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Fig. 3. Application topologies.

For this purpose, we generate parameterized topologies, which consist of chain, data parallel,

tree, and reverse tree topologies. Structures of these topologies are shown in Figure 3. In these

experiments, our adaptation module is disabled and we use throughput and average latency as

performance metrics to evaluate scalability of the system as well as the impact of di�erent sched-

uling plug-ins on these metrics.

In all of our experiments, we use busy operators that are parametrized by cost and selectivity

values. For each incoming tuple, a busy operator performs a busy loop for the time speci�ed by its

cost parameter and forwards the tuple with the probability speci�ed by its selectivity parameter.

We have 12 busy operators in our chain and data parallel experiments. In tree and reverse tree

experiments, we set the tree depth to 6, and branching factor to 2, resulting in 63 busy operators in

total. Unless otherwise stated, costs of the busy operators are equal to 100 microseconds per tuple.

Number of threads: In our �rst experiment, we show the e�ect of the number of threads on the

throughput and latency for each scheduler plug-in and for each topology. For the chain topology,

as we increase the number of threads, throughput increases linearly and average latency decreases,

as shown in Figures 4(a) and 5(a). Throughput that we obtain from di�erent scheduler plug-ins are

nearly the same. The reason is that, since we have 12 busy operators of equal cost and 12 threads at

most, roughly speaking, all operators require the same amount of scheduling, which is a scheduling

requirement that can be satis�ed by all the scheduler plug-ins with ease. Despite having similar

throughput, we observe that the LeastRecently plug-in provides the best latency results.

Figures 4(b) and 5(b) show the e�ect of the number of threads on throughput and latency, re-

spectively, for the data parallel topology. While throughput increases as we increase the number

of threads, it starts decreasing after some value between 9 and 11 threads, depending on the sched-

uler plug-in used. The reason is that the merge operator eventually becomes a bottleneck since it

is sequential. Having more threads than actually needed makes the problem worse owing to the

scheduling overhead.

After closer examination, we have found that signi�cant drops in performance are due to having

too many threads. These threads pick up operators that were recently executed just because they

are again in the ready state after little space opens up in their downstream port bu�ers. However,

once these operators resume execution, they would quickly move into the waiting state after doing

just a little work, causing signi�cant scheduling overhead. This experiment shows the importance

of setting the number of threads correctly, which we address via our adaptation module. We study
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Fig. 4. Number of threads versus throughput.

the e�ectiveness of our adaptation module in Section 5.2. From these experiments, we also observe

thatMaxQueue provides slightly higher throughput compared to other alternatives but at the cost

of signi�cantly increased latency, especially for small numbers of threads.MaxTupleWait and Leas-

tRecently plug-ins provide the lowest latencies.

Figures 4(c) and 5(c) show the e�ect of the number of threads on throughput and latency,

respectively, for the tree topology. Similar to data parallel topology, throughput increases only

up to a certain number of threads, after which a downward trend in throughput starts. However,

unlike the data parallel scenario, the decrease in throughput is less steep. In the tree topology, the

input rates of operators decrease as we go deeper down in the tree since the tuples are distributed

nondeterministically across the downstream ports. Concretely, if the input rate for an operator is

r , then the input rate for its downstream operators is r/b, where b is the branching factor. This

causes upstream busy operators to become bottlenecks. The MaxQueue plug-in provides higher

throughput compared to other alternatives, but only up to 4 threads, reaching as high as 3 times

the throughput of Random. However, this comes at the cost of increased latency, as high as 3.5

times that of Random. Lowest latency is again provided by the LeastRecently plug-in.

Figures 4(d) and 5(d) show the e�ect of the number of threads on throughput and latency,

respectively, for the reverse tree topology. Results are similar to the data-parallel and tree scenarios,

wherein throughput increases up to a certain number of threads and then starts decreasing. It is

surprising that Random plug-in provides the best throughput (10% higher than other alternatives).

WhileMaxQueue has shown solid performance for all other topologies with respect to throughput,

it performs poorly for the reverse topology. In particular, the highest throughout it could achieve

is 40% lower than that of Random. At peak throughput, latencies provided by di�erent plug-ins are

close to each other, except for MaxTupleWait, which shows higher latency.
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Fig. 5. Number of threads versus latency.

We summarize our observations from these experiments as follows:

• Stream-C, without elastic adaptation, scales well with increasing threads only up to a certain

point. For certain topologies, such as data-parallel topology, the throughput signi�cantly

decreases if the number of threads becomes higher than the ideal.

• While theMaxQueue scheduler plug-in can provide improved throughput for certain topolo-

gies, such as data-parallel and tree topologies, the Random is quite robust across all topolo-

gies in terms of throughput.

• While the LeastRecently scheduler plug-in can provide improved latency for certain

topologies—such as chain, data-parallel, and tree topologies—the Random is quite robust

across all topologies in terms of latency.

Operator Cost: In this experiment, we show the e�ect of busy operator costs on throughput

and latency, using data-parallel topology of 12 busy operators. We �x the number of threads to

4. Figure 6(a) shows that the throughput decreases as we increase the cost of the busy operators

and the decrease in throughput is linear in the increase in operator costs. Figure 6(b) shows that

latency increases as we increase the busy operator cost and, again, we see a mostly linear trend.

The only exception is theMaxQueue scheduler plug-in, whose initial rate of latency increase shows

an increasing trend, but as the operator cost increases, the rate of increase stabilizes. Furthermore,

its rate of latency increase is higher than other plug-ins.

Application Size: This experiment shows the e�ect of application size (in terms of the num-

ber of operators) on throughput and latency for the data-parallel topology. Figure 7(a) shows that

for most of the scheduler plug-ins, throughput does not change signi�cantly since the number of
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Fig. 6. Data-parallel cost experiments.

Fig. 7. Data parallel application size experiments.

data parallel operators is at least equal to the number of threads, which is 4. The MaxQueue plug-

in shows increasing throughput as a result of an increasing number of data parallel operators,

whereas others show a slight decrease. The slight decrease can be explained by increased operator

management and scheduling overhead. The reason for the increase inMaxQueue plug-in’s perfor-

mance is a surprising one: an increased number of data-parallel operators results in smaller input

queue sizes for them; this, in turn, increases the amount of scheduling time that the merger gets.

Figure 7(b) shows the e�ect of the number of data-parallel operators on latency. We observe that

MaxQueue and MaxRunningTime have linearly increasing latencies, whereas other plug-ins show

more stable results.

Selectivity: In this experiment, we show the e�ect of operator selectivity on throughput and

latency using the chain topology of 12 busy operators. Each busy operator has the same cost

and same selectivity value. Selectivity determines the number of output tuples generated by an

operator per input tuple consumed. As shown in Figure 8(a), throughput decreases and, as shown

in Figure 8(b), latency increases as we increase operator selectivity.

5.2 Adaptation Experiments

In this section, we look at the performance of the elastic parallelization module of C-Stream. First,

we perform our experiments using the chain topology. The chain topology with adaptation is simi-

lar to the data-parallel topology, but the number of replicas for bottleneck operators (i.e., busy oper-

ators) is adjusted automatically. Furthermore, with adaptation, we resolves bottlenecks in multiple
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Fig. 8. Chain selectivity experiments.

Fig. 9. Adaptation 1 busy experiment.

busy operators. In these experiments, we compare throughput values obtained from elastic scaling

against the throughput values from the single-thread, single-replica scenario. Next, we compare

the throughput values obtained from elastic scaling against the case inwhich the number of threads

and replicas are set manually to obtain the best throughput. For all the experiments in this section,

the maximum number of threads is set to 12. The scheduler plug-in used is Random. τ (congestion

threshold) is set to 0.01, low-threshold Ul is set to 0.90, and high-threshold Uh is set to 0.95. Our

adaptation period is 10 seconds.

We have a single busy operator in our �rst experiment. The throughput results from this exper-

iment are presented in Figure 9(a), where the x axis represents the busy operator cost, y axis the

�nal thread and replica count, and the secondaryy axis the throughput. The �gure shows that both

the number of threads used and the number of replicas of the busy operator increase as the cost of

the busy operator is increased. Furthermore, while the throughput value decreases dramatically

in the single-thread, single-replica scenario, the adaptation module of C-Stream prevents that, and

throughput values remain stable as the operator cost increases.

Figure 9(b) plots the number of operator replicas and thread count, as a function of time, for the

operator cost of 80 microseconds. The time represents the duration since the start of the applica-

tion. The �gure shows that the numbers of threads and replicas increase and eventually stabilize.

In this particular case, stabilization happens at 5 replicas and 7 threads. For the sake of brevity,

further datapoints are not shown.

ACM Transactions on Parallel Computing, Vol. 4, No. 3, Article 15. Publication date: April 2018.



C-Stream: A Co-routine-Based Elastic Stream Processing Engine 15:21

Fig. 10. Adaptation 2 busy experiment.

Fig. 11. Adaptation data-parallel experiment.

In the second experiment, we use 2 busy operators with the same cost. The throughput results

from this experiment are presented in Figure 10(a). This �gure shows that, together with the num-

ber of active threads, the number of replicas for each of the busy operators increases as the costs

of the busy operators increase. Also, it shows that while throughput value decreases in the base

case, the adaptation module of C-Stream maintains a stable throughput.

Figure 10(b) plots the number of operator replicas and thread count, as a function of time, for

the operator cost of 60 microseconds. It shows that the adaptation module resolves the bottleneck

and increments the replica count for one of the busy operators �rst and increments the replica

count for the other busy operator next; this pattern continues until there is no congestion left in

the �ow. The congestion goes away when both busy operators gain 4 replicas. The number of total

threads stabilizes at 10.

In the third adaptation experiment, we use a data-parallel topology of 12 busy operators for

evaluating the e�ectiveness of the adaptation module with respect to adjusting the number of

threads. High threshold Uh is tried with two di�erent values in this experiment: 0.95 and 0.90.

Figure 11 plots the throughput obtained as a function of the number of threads for the case inwhich

the adaptation module is disabled and the �nal throughput achieved via the adaptation module for

di�erent high thresholds. The �gure shows that settingUh to 0.90 increases the number of threads

more aggressively than the case of Uh = 0.95, and obtains the maximum throughput achievable

with the system.
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Fig. 12. C-Stream versus Storm, base experiments—adaptation disabled.

Fig. 13. C-Stream versus Storm—adaptation enabled.

5.3 C-Stream vs. Apache Storm

In this section, we compare the performance of C-Stream with Apache Storm version 1.1.0. The

goal of the comparison is to see if C-Stream introduces any overhead beyond that of a production-

ready system when using the same number of threads. We should note that the parallelism level is

set for the entire topology in C-Stream. In contrast, Storm creates one thread (executor) for each

operator in the topology.

In the �rst set of experiments, we disabled the elastic parallelism module in C-Stream as we did

in Section 5.1 and evaluated the performance of both systems in 4 di�erent topologies: chain, data

parallel, tree, and reverse tree. We have 12 busy operators in our chain and 8 busy operators in

the data-parallel topology. In the tree and reverse-tree experiments, we set the tree depth to 6 and

branching factor to 2, resulting in 63 busy operators in total. We set the cost of busy operators to

100 microseconds and selectivity to 1.

Figure 12 shows that C-Stream presents comparable results to Storm. Results also show that

the programming model that we present in C-Stream does not create any overhead while making

operator development easier compared to a popular open-source stream processing system that

follows the event-based model.

In the second set of experiments, we compare C-Stream, with the adaptation module enabled,

to Storm, using the same setup we used in Section 5.2. In the �rst scenario, we have a chain topol-

ogy with 1 busy operator of cost 100 microseconds. Figure 13(a) shows that C-Stream outperforms

Storm by 6.2x by increasing the number of replicas and threads dynamically. Similarly, in the sec-

ond scenario, in which we have 2 busy operators of cost 140 microseconds, C-Stream outperforms

Storm by 3.8x .

6 RELATEDWORK

Stream processing has been an active area of research and development over the last decade.

Systems such as STREAM (Arasu et al. 2003), Borealis (Abadi et al. 2005), TelegraphCQ

(Chandrasekaran et al. 2003), IBM InfoSphere Streams (Gedik and Andrade 2012), and
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StreamBase (2015) are examples of academic and industrial stream processingmiddleware. Inmany

cases, these systems provide declarative languages for developing streaming applications as well.

StreamIt (Thies et al. 2002), Aspen (Upadhyaya et al. 2007), and SPL (Hirzel et al. 2013) are domain-

speci�c programming languages for high-level stream programming, which shield users from

the complexity of parallel and distributed systems. There are also open-source stream processing

platforms such as Storm (2015), Apache S4 (S4 2015), and Apache Samza (Samza 2015).

Storm (2015), Apache S4 (S4 2015), Apache Samza (Samza 2015), SPL (Hirzel et al. 2013), and

many other systems adopt an event-driven model for operator development. In this model, pro-

cess function of an operator is �red for each incoming tuple. The problem with this approach is

that development of multiport operators requires additional e�ort to provide port synchroniza-

tion and to handle back-pressure resulting from the di�erence in incoming stream rates at the

input ports. In C-Stream, operators have their own driver loop and tuple access is orchestrated via

our data availability API. To manage operator termination, punctuations are used in InfoSphere

Streams (Andrade et al. 2014). In C-Stream, termination is handled by our base scheduler, separat-

ing the termination control from the operator’s tuple execution logic. These features signi�cantly

simplify operator development in C-Stream.

Scheduling relies on operator grouping in SPADE (Gedik et al. 2008), in which a set of operators

are grouped and assigned to a processing element. Within a single processing element there could

be multiple threads, but the assignment of operators to threads is not dynamic. In their work on

Aurora, Carney et al. (2003) use superboxes for scheduling, which are sequences of operators that

are executed as an atomic group. However, no results are given on throughput scalability with

increasing number of worker threads. In C-Stream, our scheduling relies on using one co-routine

per operatorwhile keeping the number of worker threads �exible. Furthermore, C-Stream supports

elastic parallelization, adjusting the number of threads to resolve bottlenecks.

The StreamIt compiler auto-parallelizes operators using a round robin split to guarantee order-

ing, but only for stateless operators with static selectivity. In Schneider et al. (2015) and Gedik et

al. (2014), stateful operators are parallelized by partitioning the state by keys. Similar techniques

can also be found in distributed database systems (DeWitt et al. 1990; Graefe 1990). It is also the

main technique behind the success of batch processing systems such as Map/Reduce (Dean and

Ghemawat 2008) and Isard et al. (2007). Brito et al. (2008) describe how to apply auto-parallelization

using software transactional memory, but only if selectivity is 1 and memory is shared.

To exploit the parallelization opportunities contained within streaming applications, an auto-

pipelining solution is proposed in Tang and Gedik (2013) for multicore processors. While the as-

sumptions and goals are similar to that of C-Stream’s, this technique cannot take advantage of

data parallelism.

In Storm (2015), data parallelism can be achieved by requesting multiple copies of operators.

However, preserving order is left to the developers. In S4 (2015), creating processing element

replicas enables data parallelism. Again, safety is left to the developer. In C-Stream’s elastic paral-

lelization module, split and merge operators are automatically inserted before and after operator

replicas to maintain the tuple order.

Elasticity under distributed streaming environments or in the Cloud introduces additional re-

search issues, which is beyond the scope of this work. It requires operator to machine mapping

(placement), and operator state migration as a result of scaling in and out. FUGU (Heinze et al.

2013) is an allocation component for distributed complex event processing systems, which is able

to elastically scale in and out under varying system loads. In Heinze et al. (2014), auto-scaling

techniques are presented on top of FUGU, including local thresholds, global thresholds, and rein-

forcement learning. StreamMine3G (Martin et al. 2014) is another elastic stream processing system
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that supports both vertical and horizontal scalability. Stormy (Loesing et al. 2012), on the other

hand, is an elastic stream processing engine running in the Cloud. As part of elasticity, migration

protocols are proposed for operators in Heinze et al. (2014) and Gedik et al. (2014). In Gedik et al.

(2014), an incremental migration protocol that relies on consistent hashing is proposed. In Heinze

et al. (2014), a migration algorithm that aims at reducing migration latency is proposed. It is based

on operator movement cost estimation. In contrast to these systems, C-Stream is a single-node,

multicore stream processing system, with a focus on �exible scheduling and elastic streaming ex-

ecution.

In the general area of auto-parallelization (not speci�c to streaming), dynamic multithreaded

concurrency platforms—such as Cilk++ (2015), OpenMP (2015), and x10 (Charles et al. 2005)—

decouple expressing a program’s innate parallelism from its execution con�guration. OpenMP

and Cilk++ are widely used language extensions for shared memory programs, in which parallel

execution in a program is expressed at development time and the system takes advantage of it

at runtime. Kremlin (Garcia et al. 2011) is an auto-parallelization framework that complements

OpenMP. Kremlin recommends to programmers a list of regions for parallelization, which is or-

dered by achievable program speedup.

7 CONCLUSION

In this article, we presented C-Stream—a co-routine-based scalable, highly customizable, and

elastic stream processing engine. Unlike traditional event-based stream processing operators, C-

Stream operators have their own driver loop and can decide when to perform their computations

by employing data availability APIs provided by the runtime. This property of C-Stream simpli-

�es the development of operators that require multiport synchronization. As part of C-Stream, we

introduced a customizable scheduler that handles back-pressure, provides data availability APIs,

and manages preemption and termination handling. It can be con�gured via plug-ins to achieve

di�erent goals, such as high throughput or low latency. We described the adaptation module in

C-Stream, which adjusts the level of parallelism by detecting bottleneck operators, incrementing

the replica counts until bottlenecks are resolved, and adjusting the number of threads used. We

showcased the e�ectiveness of C-Stream via an extensive experimental evaluation.
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APPENDIX

Listing 3. Barrier operator—event-driven implementation, assuming that di�erent input ports are driven by
di�erent threads.

ACM Transactions on Parallel Computing, Vol. 4, No. 3, Article 15. Publication date: April 2018.



15:26 S. Şahin and B. Gedik

REFERENCES

Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S.

Maskey, Er Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. 2005. The design of the Borealis stream

processing engine. In Biennial Conference on Innovative Data Systems Research (CIDR’05). 277–289.

Henrique Andrade, Buğra Gedik, and Deepak Turaga. 2014. Application development–data �ow programming. In Funda-

mentals of Stream Processing: Application Design, Systems, and Analytics. Cambridge University Press, New York, NY.

Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa, Justin Rosenstein, and Jennifer

Widom. 2003. STREAM: The Stanford stream data manager. In Proceedings of the ACM SIGMOD International Conference

on Management of Data (SIGMOD’03). 665–665.

Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. 2008. Speculative out-of-order event processing with

software transaction memory. In Proceedings of the ACM International Conference on Distributed Event-based Systems

(DEBS’08). 265–275.

Don Carney, Uğur Çetintemel, Alex Rasin, and Stan Zdonik. 2003. Operator scheduling in a data stream manager. In

Proceedings of the International Conference on Very Large Databases (VLDB’03).

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh

Krishnamurthy, Samuel R. Madden, Fred Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous data�ow process-

ing. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’03). 668–668.

Philippe Charles, Christian Grotho�, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von

Praun, and Vivek Sarkar. 2005. X10: An object-oriented approach to non-uniform cluster computing. In Proceedings

of the ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA’05).

519–538.

Cilk++. 2015. Cilk++. Retrieved May 2015 from https://cilkplus.org.

Je�rey Dean and Sanjay Ghemawat. 2008. MapReduce: Simpli�ed data processing on large clusters. Communications of the

ACM 51, 1, 107–113.

David J. DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider, Allan Bricker, Hui-I Hsiao, and Rick Rasmussen. 1990.

The gamma database machine project. IEEE Transactions on Knowledge and Data Engineering 2, 1, 44–62.

Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and Michael Bedford Taylor. 2011. Kremlin: Rethinking and

rebooting gprof for the multicore age. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’11). 458–469.

Manoj K. Garg, Duk-Jin Kim, Deepak S. Turaga, and Balakrishnan Prabhakaran. 2010. Multimodal analysis of body sensor

network data streams for real-time healthcare. In Multimedia Information Retrieval. 469–478.

Buğra Gedik andHenrique Andrade. 2012. Amodel-based framework for building extensible, high performance stream pro-

cessing middleware and programming language for IBM infosphere streams. Software: Practice and Experience Journal

11, 42.

Buğra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol Doo. 2008. SPADE: The system s declar-

ative stream processing engine. In Proceedings of the ACM SIGMOD International Conference on Management of Data

(SIGMOD’08). 1123–1134.

Buğra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2014. Elastic scaling for data stream processing. IEEE

Transactions on Parallel and Distributed Systems 25, 6, 1447–1463.

Goetz Graefe. 1990. Encapsulation of parallelism in the volcano query processing system. In Proceedings of the ACMSIGMOD

International Conference on Management of Data (SIGMOD’90). 102–111.

Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof Fetzer. 2014. Latency-aware elastic scaling for dis-

tributed data stream processing systems. In Proceedings of the ACM International Conference on Distributed Event-based

Systems (DEBS’14). 13–22.

Thomas Heinze, Yuanzhen Ji, Yinying Pan, Franz Josef, Grueneberger Zbigniew, and Jerzak Christof Fetzer. 2013. Elas-

tic complex event processing under varying query load. In International Workshop on Big Dynamic Distributed Data

(BD3’13). 25.

Thomas Heinze, Valerio Pappalardo, Zbigniew Jerzak, and Christof Fetzer. 2014. Auto-scaling techniques for elastic data

stream processing. In Proceedings of the ACM International Conference on Distributed Event-based Systems (DEBS’14).

318–321.

Martin Hirzel, Henrique Andrade, Buğra Gedik, Gabriela Jacques-Silva, Rohit Khandekar, Vibhore Kumar, Mark Mendell,

Howard Nasgaard, Scott Schneider, Robert Soule, and Kun-Lung Wu. 2013. Streams processing language: Analyzing

big data in motion. IBM Journal of Research and Development 57, 3/4, 7:1–7:11.

Martin Hirzel, Robert Soule, Scott Schneider, Buğra Gedik, and Robert Grimm. 2014. A catalog of streaming optimizations.

ACM Computing Surveys 4, 46.

ACM Transactions on Parallel Computing, Vol. 4, No. 3, Article 15. Publication date: April 2018.

https://cilkplus.org


C-Stream: A Co-routine-Based Elastic Stream Processing Engine 15:27

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007. Dryad: Distributed data-parallel programs

from sequential building blocks. In Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Systems

(EuroSys’07). 59–72.

Simon Loesing,Martin Hentschel, TimKraska, andDonald Kossmann. 2012. Stormy: An elastic and highly available stream-

ing service in the cloud. In EDBT/ICDT Workshops. 55–60.

André Martin, Andrey Brito, and Christof Fetzer. 2014. Scalable and elastic realtime click stream analysis using stream-

mine3G. In DEBS’14. 198–205.

OpenMP. 2015. OpenMP. Retrieved May 2015 from http://openmp.org.

S4. 2015. S4 project. Retrieved May 2015 from http://incubator.apache.org/s4.

Samza. 2015. Apache Samza project. Retrieved May 2015 from http://incubator.apache.org/samza.

Douglas L. Schales, Mihai Christodorescu, Josyula R. Rao, Reiner Sailer, Marc Ph. Stoecklin, Wietse Venema, and Ting

Wang. 2014. Stream computing for large-scale, multi-channel cyber threat analytics. In IEEE International Conference

on Information Reuse and Integration (IRI’14). 8–15.

Scott Schneider, Martin Hirzel, and Buğra Gedik an Kun-Lung Wu. 2015. Safe data parallelism for general streaming. IEEE

Transactions on Computers 64, 2, 504–517.

Storm. 2015. Apache Storm project. Retrieved May 2015 from http://storm-project.net/.

StreamBase. 2015. Tibco Streambase. Retrieved May 2015 from http://www.streambase.com.

Yuzhe Tang and Buğra Gedik. 2013. Autopipelining for data stream processing. IEEE Transactions on Parallel and Distributed

Systems 24, 12, 2344–2354.

William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002. StreamIt: A language for streaming applications. In

Proceedings of the International Conference on Compiler Construction (CC’02). 179–196.

Gautam Upadhyaya, Vijay S. Pai, and Samuel P. Midki�. 2007. Expressing and exploiting concurrency in networked ap-

plications in Aspen. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’07). 13–23.

Petros Zerfos, Mudhakar Srivatsa, Hao Yu, D. Dennerline, Hubertus Franke, and Dakshi Agrawal. 2013. Platform and ap-

plications for massive-scale streaming network analytics. IBM Journal of Research and Development 57, 3/4, 11:1–11:13.

Xiaolan J. Zhang, Henrique Andrade, Buğra Gedik, Richard King, John Morar, Senthil Nathan, Yoonho Park, Raju

Pavuluri, Edward Pring, Randall Schnier, Philippe Selo, Michael Spicer, Chitra Venkatramani, Andy Frenkiel, Wim De

Pauw, Michael P�efer, Paul Allen, Norman Cohen, and Kun-Lung Wu. 2009. Implementing a high-volume, low-latency

market data processing system on commodity hardware using IBM middleware. In Workshop on High-Performance

Computational Finance at Supercomputing.

Received September 2015; revised May 2017; accepted January 2018

ACM Transactions on Parallel Computing, Vol. 4, No. 3, Article 15. Publication date: April 2018.

http://openmp.org
http://incubator.apache.org/s4
http://incubator.apache.org/samza
http://storm-project.net/
http://www.streambase.com

