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singularity due to identification τ = τ + 2πq in one isometric angle. We compute the

value of the spectral zeta-function at zero ζ̂(q) = ζ(0; q) that controls the coefficient of the

logarithmic UV divergence of the one-loop partition function on S4
q . While the value of

the conformal anomaly a-coefficient is proportional to ζ̂(1), we argue that in general the

second c ∼ CT anomaly coefficient is related to a particular combination of the second and

first derivatives of ζ̂(q) at q = 1. The universality of this relation for CT is supported also

by examples in 6 and 2 dimensions. We use it to compute the c-coefficient for conformal

higher spins finding that it coincides with the “r = −1” value of the one-parameter Ansatz

suggested in arXiv:1309.0785. Like the sums of as and cs coefficients, the regularized
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implying UV finiteness on S4
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6d Weyl invariants that has a (2, 0) supersymmetric extension.
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1 Introduction

In this paper we revisit the question about conformal anomaly c-coefficients for confor-

mal higher spin (CHS) fields previously addressed in [1, 2]. Conformal higher spins in

4d [3–8] have higher derivative kinetic terms hs∂
2shs (hs are totally symmetric rank s

tensors) and thus their generalization to a curved metric background is a non-trivial ques-

tion (cf. [1, 2, 9, 10]). A curved space generalization is required in order to compute the

corresponding conformal anomaly coefficients appearing in the (one-loop) effective action

Γ = − logZ = −B4 log ΛUV + finite , (1.1)

B4 =

∫
d4x

√
g b4(x), b4 = (4π)2b4 = −aR∗R∗ + cC2 . (1.2)

Here R∗R∗ is 32π2 times the Euler density and C2 is the square of the Weyl tensor. To

compute the as-coefficient for spin s field it is enough to know the corresponding Weyl-

covariant ∇2s + . . . operator on a 4-sphere where it takes a simple factorized form of a
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product of s “partially-massless” 2nd order Laplacians [1, 9, 11, 12]. As a result, one

finds [1, 13]

as =
1

720
ν
(
14 ν2 + 3ν

)
, ν ≡ s(s+ 1) , (1.3)

where ν is the number of dynamical degrees of freedom of a spin s CHS field. Remark-

ably, the total a-anomaly defined as the finite part of the regularized sum
∑∞

s=1 e
−ǫ sas

vanishes [1, 13].1 The factorization of the Weyl-covariant CHS kinetic operators applies

for any conformally flat background, e.g., on S1
q × S3, where at large q = 2πβ one finds

that the corresponding free energy proportional to the Casimir energy Ec on R × S3 is

given by [7]2

− logZ(S1
q × S3)

∣∣∣
q→∞

= 2πq Ec + . . . , Ec,s =
1

720
ν
(
18ν2 − 14ν − 11

)
. (1.4)

To determine the value of the c-coefficient in (1.2) (which is proportional to the coefficient

CT in the 2-point function of the flat-space stress tensor) one is to consider a more general

non conformally flat background. Assuming that cs has a similar cubic ν-polynomial

structure as as in (1.3) and reproduce the known values for s = 1 [16] and s = 2 [3, 17],

one is led to the following Ansatz [1]

cs =
1

1080
ν
[
43ν2 − 59ν + r (ν − 2)(ν − 6)

]
, (1.5)

where r is a free parameter. If one further assumes that all s > 2 CHS kinetic operators

factorize into 2nd-order Lichnerowitz-type operators also on a Ricci flat background (like

it happens for the s = 2 Weyl graviton) one then finds the expression (1.5) with r = 1
2 [1].

However, the assumption of factorization on a generic Ricci-flat background is expected

to fail in general [9]. Moreover, when the Weyl tensor is non-zero, different spins appear

to mix in the kinetic term [10] and the mixing terms lead to additional contributions to

the total c-anomaly [2]. Also, the sum of cs with r = 1
2 in (1.5) regularized with e−ǫ s

does not vanish; it vanishes if instead one chooses r = −1 value [1].3 The expression (1.5)

with r = −1 was also shown to be selected by the consistency with the AdS/CFT-related

correspondence between massless higher spin partition functions in (asymptotically) AdS5
space and the conformal higher spin partition functions at the 4d boundary [18].

Below we will provide a strong independent evidence that the r = −1 value of (1.5)

cs =
1

360
ν
(
14ν2 − 17ν − 4

)
, (1.6)

1This vanishing holds also in the more natural regularization
∑∞

s=1 e
−ǫ (s+ 1

2
)as consistent with

AdS/CFT [14]. Besides, the regularized finite part of the total CHS partition function on S4 is also

trivial, i.e. [15], i.e. logZCHS =
∑∞

s=1 logZs = 0.
2One finds again that the finite part of

∑∞

s=1 e
−ǫ (s+ 1

2
)Ec,s vanishes.

3In fact, the finite part of
∑∞

s=1 cs e
−ǫ (s+ 1

2
) vanishes for any value of r. However, the special value r = −1

is still selected by demanding the consistency in the results for the total a and total c in the “minimal” case

of a tower of even higher spins only where they should be opposite to the values for a complex 4d scalar for

consistency with what happens for massless higher spins in AdS5 (see footnote 9 in [14]).
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is indeed the correct value of the c-coefficient for the conformal higher spin fields. The main

idea will be to extract the value of cs from the CHS partition function on a 1-parameter

deformation of the 4-sphere S4
q which is an Einstein space with a conical singularity

ds2q = dθ2 + cos2 θ dτ2 + sin2 θ dΩ2 , dΩ2 = dα2
1 + sin2 α1 dα

2
2 , (1.7)

θ ∈ [0, π2 ], τ ∈ [0, 2π q], α1 ∈ [0, π], α2 ∈ [0, 2π] .

Here the deficit angle 2π (1 − q) of the τ coordinate implies the presence of a conical

singularity on a S2 submanifold. For q=integer this is a multiple cover of a sphere while

for γ ≡ q−1=integer this may be interpreted as an orbifold S4/Zγ .

The key observation is that since S4
q is locally conformally flat (away from conical

singularity), one may assume that the CHS kinetic operator defined on S4
q still factorizes as

it does on S4, so that the expression for the partition function in terms of the contributions

of determinants of 2nd order operators is then “inherited” from the S4 case.4 At the same

time, having the Weyl tensor being non-zero at the singular subspace should allow one to

extract the value of the c-coefficient from the q dependence of the B4 coefficient of the UV

divergence in (1.1).

Note that the expression for B4 in (1.2) applies to regular geometries while in the

presence of conical singularities there will be additional “surface” terms [19–21] with a

non-trivial dependence on q entering effectively through boundary conditions. As a result,

the coefficient B4 in (1.2) will become a non-trivial function of q. The log UV divergent con-

tribution of the determinant of a single 2nd order Laplace-type operator can be computed

as the value of the corresponding spectral zeta function at zero, i.e.5

B4(q) = ζ̂(q) , ζ̂(q) ≡ ζ(0; q) , ζ(z; q) =
∑

i

di
[
λi(q)

]−z
, (1.8)

where di are degeneracies of the eigenvalues λi. The general structure of ζ̂(q) for a bosonic

field will be as follows

ζ̂(q) = − ν

360 q3
+

p2
q2

+
p1
q

+ p0 − 2Ec q , (1.9)

where ν is the number of physical degrees of freedom (equal to 1 for a real ∂2 scalar

and s(s + 1) in the bosonic CHS field as in (1.3)) and Ec is the corresponding Casimir

energy on S3.

Assuming one is able to compute ζ̂(q) it remains to extract the conformal anomaly a-

and c- coefficients from it. Since the q = 1 case corresponds to the regular sphere S4 when

B4 = −2aχ(S4) = −4a we should have6

a = −1

4
ζ̂(1) . (1.10)

4Alternatively, one may define the corresponding heat kernel in terms of the one on S4 using Sommerfeld-

type “orbifold” or “sum over images” construction.
5Note that B4 as coefficient of the logarithmic divergence receives contribution from all (zero and non-

zero) modes on the Laplacian, so that ζ̂ may need to be corrected by the contribution of the zero modes;

here we formally assume that this correction is already taken into account.
6This relation is true for the final expression for ζ̂ taking into account possible zero modes arising from

decomposition of fields into transverse and longitudinal parts, see footnote 14.
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We shall propose that the expression for c in terms of ζ̂(q) should read

c = −1

4

[
q ζ̂(q)

]′′∣∣∣
q=1

= −1

4
ζ̂ ′′(1)− 1

2
ζ̂ ′(1) , (1.11)

where ζ̂ ′(q) ≡ d
dq ζ̂(q). As we shall see, the same relation (kd is dimension-dependent

normalization factor)

CT = kd
[
q ζ̂(q)

]′′∣∣∣
q=1

, (1.12)

is true also in d = 2 (C.4) and d = 6 (4.3) cases where c is replaced by the corresponding

CT coefficient (proportional to a = 1
3c in 2d and c3 in 6d). This suggests its universal

validity.

The relation (1.11) can be directly verified in all low-spin (s ≤ 1) cases. Since S4
q is

conformally related to S1
q × H

3 space, in the low-spin cases where ζ̂ ′(1) = 0, eq. (1.11)

becomes equivalent the relation derived in [22]. As it turns out, for higher-spin s ≥ 2 cases

ζ̂ ′(1) 6= 0 and thus it is the relation (1.11) that should be applied.7

Intuitively, the reason why c should be related to ζ̂ ′′(1) can be understood from the

fact that c ∼ CT should be proportional to the 2-point function of the stress tensor which

itself should be given by the second variation of the effective action over the metric, i.e.

the second term in the expansion in the small deformation of the metric (1.7) away from

the sphere q = 1 case.

One may be tempted to represent B4(q) as in (1.2), i.e. as a curvature integral with

the a and c as coefficients of different geometrical invariants. However, S4
q has a singular

curvature on S2, and at best one may hope to get B4(q) = q
∫
S4\S2 b

bulk
4 +

∫
S2 b

surf.
4 (q),

where bbulk4 is as in (1.2) and is evaluated on a smooth metric, while bsurf.4 (q) non-trivially

depends on q and invariants of S2. Ref. [19] gave an explicit analysis of the conformal

scalar operator on a singular manifold Mq = Cq × Σ, where Cq is a flat cone with metric

ds2 = dr2 + r2dϕ2, 0 ≤ ϕ < 2π q, while Σ does not depend on ϕ. The above splitting

of B4(q) into “bulk” and “surface” parts can then be proved and also checked to be in

agreement with the expression of B4(q) in terms of the spectral zeta-function [21] (see also

appendix F below). It is important to stress that in general the surface term bsurf.(q) has

coefficients depending on q in a non-universal way, i.e. its dependence on the spin of the

field is only partly encoded in the values of the a and c coefficients. A major simplification

occurs at first order in expansion in small 1− q and for low spin s = 0, 12 , 1. In these cases

it is possible to use the integral density in (1.2) and take the singular manifold into account

by a delta-function contribution to the curvature [20, 23] (see also [24–26]). However, this is

not true at higher orders in 1−q (and even at leading order for bosons with spin s ≥ 2 [27])

7One feature that distinguishes the cases with s ≤ 1 from s ≥ 2 conformal fields is that according to

appendix D of [2] for s ≥ 2 CHS field in flat space it is necessary to use the equations of motion to prove

gauge invariance of the improved symmetric traceless stress tensor. This may be related to a non zero value

of the one-point function 〈Tµν〉 on S4
q or to ζ̂′(1) 6= 0, suggesting a modification of the argument in [22] for

s ≥ 2.
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and this seems to prevent one from obtaining the general expression for the c-coefficient in

this approach in a straightforward way.8

The rest of this paper is organized as follows. In section 2 we shall find ζ̂(q) (1.8) for

the Laplace-type spin s operators on S4
q that enter the partition function of CHS fields.

We shall first explicitly determine the eigenvalues and their degeneracies for s = 0, 1, 2, 3, 4

cases (with generalization to s ≥ 5 discussed in appendix B). We shall then compute ζ̂(q)

following the method discussed in appendix A. The total expressions for the s = 1, 2, 3, 4, 5

CHS fields are presented in (2.24)–(2.27), (B.6). In subsection 2.3 we shall discuss the

general structure (1.9) of ζ̂(q) relating it to the free energy on S1
q ×H

3.

In section 3 we shall use ζ̂(q) to determine the conformal anomaly coefficients corre-

sponding to the CHS fields. We shall discuss the relations (1.10) and (1.11) and comment

on similar relations following from Rényi entropy. We shall also determine the general ex-

pression for ζ̂s(q) for any value of CHS spin s satisfying non-trivial consistency conditions.

Like for the sums of as and cs coefficients the regularized sum of ζ̂s(q) over the whole

tower of conformal higher spins is found to vanish, implying that the full CHS theory is

one-loop UV finite on S4
q space and thus implying as well the vanishing of the total Rényi

entropy. Similar conclusions apply to the standard 2-derivative massless higher spin tower

(see appendix E).

In section 4 we shall discuss generalization to 6 dimensions. We shall compute the

corresponding ζ̂(q) for low-spin s = 0, 1, 2 CHS fields on S6
q space and show that the

expected relation (4.3) for the c3 ∼ CT conformal anomaly coefficient is fully consistent not

only with the previously known 2-derivative scalar and 4-derivative vector results but also

with the new result for the 6d Weyl graviton conformal anomaly computed independently

from the Seeley-DeWitt coefficient in appendix D.

The universality of the relation for CT (1.12) is further supported by the discussion of

the d = 2 case in appendix C. In appendix F we shall comment on the relation between

the expressions for ζ̂(q) for spin s = 0, 1, 2, 3 Laplacians and some previous results [27] for

the B2 Seeley-DeWitt coefficient found in the “geometrical” approach.

2 Zeta-function of generalized spin s Laplacian on S4

q

To compute the function ζ̂(q) in (1.8) for conformal higher spin fields on S4
q and thus the

corresponding a and c anomaly coefficients using (1.10) and (1.11) , our starting point will

be the CHS partition function on S4 [1]. It is expressed in terms of the determinants of

generalized Laplace (or Lichnerowitz-type) operators on unit-radius S4 defined on a totally

symmetric transverse traceless (TT) rank s tensor

∆s⊥(M
2) ≡ (−D2 +M2)s⊥ , (2.1)

whereM2 is a constant parameter that need not be positive (the scalar curvature isR = 12).

For example, the one-loop S4 partition functions of the standard 2-derivative massless

8For completeness, let us mention that if the expression of ζ̂(q) for a certain field were available as a

function of the space dimension, then (1.11) could be cross checked against the representation of the surface

contribution as a linear combination of specific conformal invariants on Σ, see for instance [28].
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conformally coupled scalar,9 s = 1 Maxwell vector, s = 2 Weyl graviton and s = 3 and

s = 4 CHS fields read

Z0 =

[
1

det∆0(2)

]1/2
, Z1 =

[
det∆0(0)

det∆1⊥(3)

]1/2
, (2.2)

Z2 =

[
det∆1⊥(−3) det∆0(−4)

det∆2⊥(4) det∆2⊥(2)

]1/2
, (2.3)

Z3 =

[
det∆2⊥(−8) det∆1⊥(−9) det∆0(−10)

det∆3⊥(5) det∆3⊥(3) det∆3⊥(−1)

]1/2
, (2.4)

Z4 =

[
det∆3⊥(−15) det∆2⊥(−16) det∆1⊥(−17) det∆0(−18)

det∆4⊥(6) det∆4⊥(4) det∆4⊥(0) det∆4⊥(−6)

]1/2
. (2.5)

We will assume that these partition functions extended to S4
q have the same product

structure with each operator now defined on S4
q . Thus the problem of computing them

reduces to finding the dependence of the spectrum of the operator (2.1) on the conical

deformation parameter q.

We will closely follow the approach of [28] where the scalar and vector operators were

discussed, generalizing it to the s > 1 case. We will first assume that q = 1/γ ≤ 1 where

for an integer γ the space S4
q becomes the γ-quotient of S4. For q = γ = 1 the spectrum

should reduce to the regular S4 one found in [29].

As explained later, for γ > 1 the spectrum will in general be different in the intervals

γ ∈ [n, n + 1). Starting from a certain n, depending on the spin s, the structure of the

spectrum will be independent of γ. The relevant range for us will be γ ∈ [1, 2) since to

find the conformal anomaly coefficients in (1.10), (1.11) we will interested in the expansion

near q → 1.10

The eigenvalues λn,m of ∆s⊥(M2) in (2.1) will be parametrized by the two integers

n,m ≥ 0 as

λn,m(γ) = (n+ γ m)(n+ γ m+ 3)− s+M2 . (2.6)

The degeneracies d
(s)
n,m may be found using the correspondence between ∆s⊥(M2) and the

Laplacian on the ambient flat space with coordinates (x1, x2, x3;x4, x5) and the constraint

|x|2 ≡ xaxa = 1 with the conical singularity implemented by the identification xa(τ) =

xa(τ + 2πq) where τ is the coordinate in (1.7) (see [28]).

The explicit spectrum for γ 6= 1 can be constructed by starting with a suitable Ansatz

for the eigenstates consistent with periodicity on S4
1/γ generalizing to s > 1 the discussion

of the scalar and vector cases in [28].

9The s = 0 member of CHS tower in d = 4 is non-dynamical, i.e. Z0 = 1, but it is useful to consider

also the 2-derivative conformally coupled scalar to be able to compare with previous results on S4
q . In what

follows the s = 0 case will stand for the ∂2 scalar field.
10If γ < 1, there may be a finite number of normalizable eigenmodes that are, however, singular on some

subspace. This has been noticed to happen already in the scalar case [28]. If only regular eigenmodes are

considered, then our results extend to a neighbourhood of γ = q−1 = 1.
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2.1 Eigenvectors and degeneracies

In general, the eigenvectors of the Laplacian on the flat ambient space (x1, . . . , x5) will be

tensors (Φa1...as)n,m corresponding to the eigenvalues (cf. (2.6))

λ̂n,m(γ) = (n+ γ m)(n+ γ m+ 3) . (2.7)

They must be symmetric, traceless, and also tangential and transverse in the ambient space

xaΦ i2...is
a = 0, ∂xa Φ i2...is

a = 0. (2.8)

Here we split the coordinate indices as a = (i,+,−) where i = 1, 2, 3 and x± = 1√
2
(x5±i x4).

The ansatz for the tensor components with all indices from the 3-subspace reads11

(Φi1...is)n,m = |x|−n+γ m (x+)γ m
∑

p≥0

(Bi1...is)mi1...is−2p
xi1 · · ·xis−2p (x+x−)p . (2.9)

The sum over p involves a finite number of terms, i.e. monomials of total degree s with

some explicit power of x+x−. In the case of one ± index we have instead

(Φi1...is−1±)n,m = |x|−n+γ m (x+)γ m±1
∑

p≥0

(Bi1...is−1±)mi1...is−1+2p
xi1 · · ·xis−1+2p (x+x−)p,

(2.10)

and similar expression is assumed when there are more indices of the + or − type. The

regularity of the eigentensor components with one or more ”−” indices, i.e. the absence of

negative powers of x+, requires the sum over p to start at some positive value depending

on the value of γm. This is the unique source of the γ-dependence of the spectrum. In

practice, this is a feature that starts being relevant for s ≥ 2.

All eigenvectors of the form (2.9), (2.10) or with more ± indices, appear together with

a mirror copy where x+ ↔ x− when m > 0. The solutions with m = 0 are automatically

symmetric under this exchange. By an explicit enumeration, we can then determine the

degeneracies d
(s)
n,m. For the s = 0 and 1 cases we reproduce the results of [28] for Sd

q

with any d:

scalar: n+m ≥ 0

d
(0)
n,m>0 = 2

(
n+ d− 2

d− 2

)
d=4→ (n+ 1)(n+ 2),

d
(0)
n,0 =

(
n+ d− 2

d− 2

)
d=4→ 1

2
(n+ 1)(n+ 2). (2.11)

spin 1: n+m ≥ 1

d
(1)
n,m>0 = 2 (d− 1)

(
n+ d− 2

d− 2

)
d=4→ 3 (n+ 1)(n+ 2),

d
(1)
n,0 =

1

n+ 1

(
n+ d− 3

d− 2

)[
d2 + (n− 4)d+ 5− n

] d=4→ 1

2
n (3n+ 5) . (2.12)

11The constraint |x| ≡
√
xaxa = 1 is imposed after taking the derivatives when imposing the transversality

condition and applying the Laplacian [28].
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For s = 2, 3, 4 and γ ∈ [1, 2) we find the following results for the degeneracies in d = 4:12

spin 2: n+m ≥ 2

d
(2)
n,0 =

1

2
(n− 1) (5n+ 8), d

(2)
n,1 = n(5n+ 11), d

(2)
n,m>1 = 5 (n+ 1)(n+ 2). (2.13)

spin 3: n+m ≥ 3

d
(3)
n,0 =

1

2
(n− 2) (7n+ 11), d

(3)
n,1 = (n− 1)(7n+ 16),

d
(3)
n,2 = n(7n+ 17), d

(3)
n,m>2 = 7 (n+ 1)(n+ 2). (2.14)

spin 4: n+m ≥ 4

d
(4)
n,0 =

1

2
(n− 3) (9n+ 14), d

(4)
n,1 = 3 (n− 2) (3n+ 7),

d
(4)
n,2 = 3 (n− 1) (3n+ 8), d

(4)
n,3 = n (9n+ 23),

d
(4)
n,m>3 = 9 (n+ 1) (n+ 2). (2.15)

We suggest a generalization of these expressions for degeneracies to any integer s > 4 in

appendix B.

2.2 Computation of ζ̂(q)

To find the spectral zeta-function and thus ζ̂(q) it remains to perform the sum in (1.8).

Representing the eigenvalue (2.6) for particular s and M2 as

λn,m = (n+ γ m)(n+ γ m+ 3)− s+M2 = (n+ γ m+ µ)(n+ γ m+ µ′) , (2.16)

we thus need to compute

∑

n≥0

∑

m≥0

d(s)n,m

[
(n+ γ m+ µ)(n+ γ m+ µ′)

]−z
. (2.17)

One possible approach is to follow [30] and expand [λn,m]−z in powers of the n,m inde-

pendent term −1
4(µ − µ′)2.13 Doing the sum over n, one can then reduce the expression

for the spectral ζ function of ∆⊥ s on S4
1/γ to a sum of terms with coefficients being the

Hurwitz zeta functions ζR(a, b). Using the integral representation for ζR(a, b)

ζR(a, b) =
1

Γ(a)

∫ ∞

0
dy

ya−1 e−b y

1− e−y
, (2.18)

one can then do the sum over m in the integrand, expand in γ, integrate term by term

in y, and finally send z → 0 to obtain ζ̂(q) in (1.8) with q = 1/γ. An alternative more

12It is useful to check the correspondence with the known results in the regular S4 limit of γ = 1. For

general spin s and γ = 1, setting N = n+m we have in 4d: d
(s)
N = 1

6
(2s+1) (2N+3)(N+s+2)(N−s+1).

We have checked that indeed in all cases
∑

s≤n+m≤N d
(s)
n,m = d

(s)
N .

13Only a finite number of terms will give a non-zero contribution in the limit z → 0 so that the final

result is stable for a sufficiently long expansion.
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straightforward approach (described in appendix A in the s = 0 case) is to use the heat

kernel representation taking into account the factorized form of the eigenvalues in (2.17).

Applying this procedure, the general expressions for ζ̂s⊥(q;M2) corresponding to the op-

erator (2.1) defined on S4
q with s = 0, 1, 2, 3, 4 are then found to be

ζ̂0(q;M
2) = − 1

360 q3
+

2−M2

12 q
+

1

120
(19− 30M2 + 10M4) q,

ζ̂1⊥(q;M
2) = − 1

120 q3
+

3−M2

4 q
+M2 − 7

3
+

1

40
(59− 50M2 + 10M4) q, (2.19)

ζ̂2⊥(q;M
2) = − 1

72 q3
− 2

q2
+

68− 5M2

12 q
+ 5M2 − 26

3
+

1

24
(119− 70M2 + 10M4) q,

ζ̂3⊥(q;M
2) = − 7

360 q3
− 14

q2
− 7 (M2 − 53)

12 q
+ 14M2 − 14

3
+

7

120
(199− 90M2 + 10M4) q,

ζ̂4⊥(q;M
2) = − 1

40 q3
− 54

q2
− 3 (M2 − 150)

4 q
+ 30M2 + 56 +

3

40
(299− 110M2 + 10M4) q.

To obtain the total values of ζ̂(q) for CHS fields it remains to sum up the contributions

from different factors in the partition functions (2.2)–(2.5). When combining ζ̂(q) (2.19)

for the operators ∆s⊥ one needs to account for the contribution of the number nz of the

artificial zero modes introduced by the splitting of the fields into transverse parts, i.e. the

corrected expression is14

ζ̂(q) =
∑

s′

ζ̂s′ ⊥(q)− nz . (2.20)

The number of zero modes associated to a TT spin s tensor is equal to the number of rank

s− 1 conformal Killing tensors on S4 [33]15

ks =
1

12
s2(s+ 1)2(2s+ 1) . (2.21)

Explicitly, for the partition functions in (2.2)–(2.5) we get

s = 0 : nz = 0, s = 1 : nz = k1 = 1,

s = 2 : nz = 2k2 − k1 = 29, s = 3 : nz = 3k3 − k2 − k1 = 236,

s = 4 : nz = 4k4 − k3 − k2 − k1 = 1100. (2.22)

14As the original action and thus the partition function is expressed in terms of unconstrained fields one

has to remove spurious zero modes related to splitting the rank s tensor into its transverse plus longitudinal

parts (see [31, 32] for the case of s ≤ 2 in d = 4). This splitting introduces additional nz zero modes of the

Jacobian of the change of variables. These modes were not present in the original unconstrained operator

and their number must be subtracted from ζ̂⊥ leading to B4 = ζ̂ = ζ̂⊥ − nz.
15In general d, this is the dimension of the (s− 1, s− 1, 0, . . . , 0) representation of SO(d+ 1, 1).
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As a result, we find the following expressions for ζ̂(q) for the ∂2 (M2 = 2) and ∂4 (M2 =

0, 2) conformal scalars and s = 1, 2, 3, 4 CHS fields

ζ̂ϕ(q) =− 1

360 q3
− 1

120
q , ζ̂ϕ(4)(q) = − 1

180 q3
+

1

6 q
+

3

20
q, (2.23)

ζ̂1(q) =− 1

180 q3
− 1

6 q
− 1

3
− 11

60
q , (2.24)

ζ̂2(q) =− 1

60 q3
− 4

q2
+

41

6 q
− 11− 553

60
q , (2.25)

ζ̂3(q) =− 1

30 q3
− 40

q2
+

227

3 q
− 92− 2413

30
q , (2.26)

ζ̂4(q) =− 1

18 q3
− 200

q2
+

1165

3 q
− 1300

3
− 2303

6
q . (2.27)

The standard scalar and spin 1 cases were discussed in [28, 34]. The 4-derivative scalar

expression was found in [35]. The vector expression in (2.24) agrees with the result of [36].

Similar analysis can be repeated in the case of the fermionic CHS fields with kinetic

terms ∂2s with s = 1
2 ,

3
2 , . . . [1]. For s =

1
2 fermion with the standard ∂-action or conformal

∂3-action we find, using the results of [35]16

ζ̂ψ(q) = − 7

1440 q3
− 1

48 q
− 17

480
q, ζ̂ψ(3)(q) = − 7

480 q3
+

5

48 q
+

29

480
q . (2.28)

While in this paper we are interested in fields defined on Sd
q with even d, let us note

that in the case of odd d one may expect the coefficient of the log UV divergence in (1.1)

to vanish (as the space has no boundary all log UV divergences should be bulk ones and

thus should be built out of curvature invariants). Thus in odd d one may expect to find

that ζ̂(q) = 0. Indeed, one can check that this is the case for a scalar or spin 1 field

using (2.11) and (2.12) (for any M2 parameter in the operator and after subtracting as

in (2.20) the constant nz = 1 in the s = 1 case). However, in the s = 2, d = 3 case, i.e.

for the operator ∆2⊥(M2) defined on S3
q one finds ζ̂(q) = 4 q−1 + 6. Subtracting nz = 10

gives ζ̂(q) = 4 q−1 − 4. This vanishes as expected for q = 1, i.e. for a round 3-sphere, but

is non-zero in general. The same is then expected to happen also for s > 2 and requires an

explanation.

2.3 General structure of ζ̂(q)

The leading small q and large q asymptotics of the ζ̂(q)-functions on S4
q in (2.23)–(2.28)

have the universal structure (1.9), i.e.

ζ̂(q) = − ν

360 q3
+ . . .+ (−2Ec) q , (2.29)

where ν is the number of dynamical degrees of freedom in bosonic case (rescaled by 7
8 in the

fermionic case) and Ec is the Casimir energy on R×S3. Indeed, the metric (1.7) effectively

simplifies in these limits: for q → 0 the τ -direction shrinks to zero (or the transverse 3-space

16One is to set k = 1
2
and 3

2
in eqs. (18), (19) in [35]. Note that q in [35] corresponds to our γ = q−1.
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blows up) so we get effectively S1
q × R

3, while for q → ∞ the τ -direction decompactifies

and the space becomes similar to R×S3. This suggests that logZ should be related to the

free energy on S1
q × R

3 for q → 0 and on R× S3 for q → ∞.17

To make this connection more explicit we may use that the metric of Sd
q is related by

a conformal rescaling (by cos2 θ in (1.7)) to the metric of S1
q ×H

d−1 where H
d−1 is a real

hyperbolic space of unit curvature radius.18 The effective actions on Sd
q and on S1

q ×H
d−1

are then related by a finite integrated conformal anomaly term. This allows one to relate

ζ̂(q) on Sd
q to the thermal free energy of a CFT on S1

q × H
d−1 where the length of the

thermal circle is β = 2πq.

In the case of the homogeneous space S1
q ×H

3 the free energy F (q) is proportional to

its volume 2πqVol(H3). Extracting the IR divergent factor in the volume, we may define

the IR finite “free energy” F(q) by

F (q) ≡ F(q) log ΛIR . (2.30)

Recalling that ζ̂(q) is the coefficient of the log of the UV cutoff (cf. (1.1), (1.8)), restoring

the dependence on the curvature radius r and comparing the coefficients of log r suggests

a direct relation between ζ̂(q) and F(q), or explicitly ζ̂(q) = −F(q). For q → ∞ the

free energy of S1
q × H

3 should approach the one on R × H
3.19 Since H

3 is related by the

analytic continuation to S3, that implies that F(q ≫ 1) → 2Ecq where Ec is the Casimir

energy on S3.20

In general, F (q) computed on S1
q ×S3 or S1

q ×H
3 contains a non-universal (UV power-

divergent) part proportional to the volume and thus linear in q and a universal finite part.

One may define F (q) in a particular scheme where all non-universal power UV divergences

are subtracted out and the linear in q part is the Casimir energy, i.e.

ζ̂(q) = −F(q) = −F(q)− 2Ec q , (2.31)

where F(q) contains only non-positive powers of q. The function F(q) was computed for

free conformal fields with spins s ≤ 1, including higher derivative cases, in [38, 39].21

In general, the definition of Ec on S3 is scheme-dependent — it depends on the defini-

tion of the stress tensor or the coefficient g of the total derivative D2R term in 〈Tm
m 〉, i.e.

Ec =
3
4

(
a + 1

2g
)
[40]. A natural scheme is the one when Ec is determined from the single

particle partition function of the corresponding CFT using the standard zeta-function def-

inition (see, e.g., [7, 18]). It is this Ec that appears as the q-coefficient in ζ̂(q) (1.9), (2.29)

(ζ̂(q) itself is scheme-independent being the coefficient of log UV divergence on S4
q ).

17Let us mention in this connection a discussion [37] of an interesting duality between the q → 0 and

q → ∞ limits of the partition function on S1
q × S3/Zn.

18This conformally mapping has an important role in the discussions of Rényi entropy, see, e.g., [38].
19Note that in a conformal theory the partition function depends on the ratio of the scales of S1 and H

3.
20The proportionality coefficient can be understood as follows [35]: as Vol(H3) = −2π log ΛIR and

Vol(S3)=2π2, there is a relative − 1
π
factor that free energy on S1

q×S3 in (1.4) should be multiplied by.
21The relation (2.31) is valid also for a generic GJMS conformal higher derivative scalars [35]. Note that

F(q) was not so far computed directly on S1 ×H
3 for s ≥ 2: it is non trivial to extend the analysis of [39]

to spins higher than 1 due to several ambiguities discussed there.
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One can indeed check that the order q coefficients in (2.23)–(2.28) are the corresponding

values of Ec for the conformal ∂2 and ∂4 scalars, ∂ and ∂3 fermions and s = 1, 2, 3, 4 CHS

fields summarized below (see also (1.4))

ϕ ϕ(4) ψ ψ(3) CHS1 CHS2 CHS3 CHS4

Ec
1

240 − 3
40

17
960 − 29

960
11
120

553
120

2413
60

2303
12

(2.32)

In the opposite q → 0 limit the free energy on S1
q × H

3 should approach the one on

S1
q ×R

3, i.e. should have the same q → 0 asymptotics as the thermal free energy on S1
q ×S3

(see, e.g., [41]). Thus it should simply be proportional to the free energy of a single scalar

or single fermion times the number of degrees of freedom. This pattern is indeed directly

seen in (2.23)–(2.28). Note that this relation implies that in d dimensions the maximal

power of q−1 in ζ̂(q) in (2.29) should be d− 1.

3 Conformal anomaly coefficients from ζ̂(q)

Having found ζ̂(q) for a CFT on S4
q one should be able to extract the information about

the corresponding conformal anomaly coefficients a and c in (1.2). The a-coefficient is the

one appearing in the log divergent part of the partition function on S4. It is thus simply

proportional to ζ̂(1) as in (1.9),

a = −1

4
ζ̂(1) . (3.1)

Starting with (2.23)–(2.28) we indeed match the known values of the a-coefficient for the

∂2 and ∂4 conformal scalars, ∂ and ∂3 fermions and spin s = 1, 2, 3, 4 CHS fields from (1.3)

ϕ ϕ(4) ψ ψ(3) CHS1 CHS2 CHS3 CHS4

a 1
360 − 7

90
11
720 − 3

80
31
180

87
20

171
5

1415
9

c 1
120 − 1

15
1
40 − 1

120
1
10

199
30

914
15 + 2 r

3
890
3 + 14 r

3

(3.2)

Here we included also the known values of the c-coefficient for the same s ≤ 2 fields and

also the s = 3, 4 values from (1.5) depending on the a priori unknown parameter r.

While the value of the function ζ̂(q) at q = 1 gives the a-coefficient, one observes

from (2.23), (2.24), (2.28) that its first derivative vanishes at q = 1 for all low spin s = 0, 12 , 1

conformal fields (ζ̂ ′(q) = d
dq ζ̂(q))

ζ̂ ′ϕ(1) = 0 , ζ̂ ′
ϕ(4)(1) = 0 , ζ̂ ′ψ(1) = 0 , ζ̂ ′

ψ(3)(1) = 0 , ζ̂ ′1(1) = 0 . (3.3)

Surprisingly, this is no longer true for CHS fields with s ≥ 2, i.e. ζ̂ ′s(1) 6= 0.

The second derivative of ζ̂(q) at q = 1 is expected to be related to the conformal

anomaly c-coefficient. We propose the following general expression for c (and also similar

relation for CT in other dimensions)

c = −1

4

d2

dq2
[
q ζ̂(q)

]∣∣∣
q=1

= −1

4
ζ̂ ′′(1)− 1

2
ζ̂ ′(1) . (3.4)
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In the low-spin cases when the first derivative vanishes (3.3), c is then given just by the

second derivative term. Using the expressions for ζ̂(q) in (2.23)–(2.28) we indeed reproduce

the known values of c for fields with s ≤ 1 in (3.2).

For s = 2, i.e. the Weyl graviton, where ζ̂ ′2(1) = −8 is no longer zero, we get from (3.4)

precisely the known value c = 199
30 [17]. The same agreement is found in the case of d = 6

Weyl graviton as will be discussed in section 4 and appendix D.

Note that as follows from (3.4) and the general form of ζ̂(q) in (1.9), (2.29) one has

c = Ec +
1

240
ν − 1

2
p2 , (3.5)

where p2 is the coefficient of the 1
q2

term in ζ̂(q). Interestingly, p2 = 0 for all lower-spin

fields (see (2.23), (2.24), (2.28)) but is non-zero for higher spin CHS fields starting with

Weyl graviton (cf. (2.25)–(2.27)).

In the case of CHS fields with s = 3 and 4 we find cs in (3.2) corresponding to the

value of the parameter r in (1.5) equal to -1, i.e.

r = −1 : c3 =
904

15
, c4 = 292 . (3.6)

This provides a strong evidence that the correct value of the c-coefficient of the CHS fields

is given by (1.6).

Let us now compare (3.1) and (3.4) with similar relations for a and c expected from

the free energy (2.30), (2.31) on S1
q × H

3. Let us first recall the expression for the Rényi

entropy in terms of the free energy on S1
q ×H

3

S(q) = F(q)− qF(1)

q − 1
. (3.7)

Then the expected expressions for the a and c anomaly coefficients are [22]

a = −1

4
S(1) =

1

4
F(1)− 1

4
F ′(1) , (3.8)

c =
1

2
S ′(1) =

1

4
F ′′(1) . (3.9)

Using the relation (2.31) between ζ̂(q) for the conformal theory on S4
q and F(q) on S1

q ×H
3

we conclude that in all low-spin cases when ζ̂ ′(1) = −F ′(1) = 0 (3.3) the expressions (3.8)

and (3.9) are indeed equivalent to (3.1) and (3.4).22 In particular, for the s = 1 case the

conformal anomaly coefficients are reproduced correctly in both S4
q and S1×H

3 approaches

(see also [39]).

22The expression for a-coefficient in terms of the entanglement entropy S(1) is assumed to incorporate the

required edge mode contribution adding a constant term to F(q) (see [42–44]) which is effectively included

in the systematic computation of ζ̂(q) on S4
q . Recent work [36] extends this to the case of a conformally

invariant p-form field in d = 2p+ 2. As in the case of the Maxwell field in d = 4 the correct a-coefficient is

found directly from the spectral computation on Sd
q , while a constant shift is needed in the computation on

S1
q × H

d−1. This shift is predicted [36] to be minus the entanglement entropy of a conformal (p − 1)-form

field, in agreement with [43].
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The first novel case is the s = 2 Weyl graviton when ζ̂ ′(1) = −F ′(1) 6= 0 and the

relation (3.9) is to be replaced by (3.4). The consistency of (3.4) for all three s = 2, 3, 4 CHS

cases discussed explicitly above provides a strong evidence for its universal applicability. A

similar expression is true also in d = 6 (where it leads to the correct CT ∼ c3 coefficient for

the 6d conformal graviton, see section 4 and appendix D) and in d = 2 (see appendix C).

It would be important to derive (3.4) in general using the approach analogous to the one

in [22], taking fully into account the special features of stress tensor for higher spin fields.

Using the expected general structure (2.29) of ζ̂(q) with the expression (1.4) for Ec for

spin s CHS field as well as the explicit results for ζ̂s(q) with s = 1, 2, 3 in (2.24)–(2.26) it

is possible determine the general form of ζ̂s(q) for any value of s. Starting with an ansatz

(with ν = s(s+ 1))

ζ̂s(q) = − ν

360 q3
+

p2(ν)

q2
+

p1(ν)

q
+ p0(ν)−

ν (18 ν2 − 14ν − 11)

360
q, (3.10)

where pi(ν) = ν(ki2ν
2 + ki1ν + ki0) are cubic polynomials in ν (so that ζ̂s is at most cubic

in ν and vanishes for ν = 0 as required to match the structure of conformal anomaly

coefficients) one is able to fix the 9 unknown coefficients kij by matching to the s = 1, 2, 3

expressions in (2.24)–(2.27). As a result,

ζ̂s(q) = − ν

360 q3
− ν2 (ν − 2)

36 q2
+

ν (2 ν2 − 5 ν − 1)

36 q
− ν2(2ν − 1)

36
− ν (18 ν2 − 14ν − 11)

360
q.

(3.11)

Then a highly non-trivial consistency check is that for s = 4 and 5 this expression repro-

duces also ζ̂4(q) in (2.27) and ζ̂5(q) in (B.6). Furthermore, applying (3.1) we then match

the known a-coefficient in (1.3), while applying (3.4) we get the r = −1 expression for the

c-coefficient in (1.6).23 Note also that

ζ̂ ′s(1) = − 1

60
ν(ν − 2)(3ν + 2) , (3.12)

is a non-zero integer for all s > 1 CHS fields and thus contributes to c in (3.4).

We observe also that not only the regularized sums of as and cs but also the sum of

the full ζ̂s(q) functions over all s = 1, 2, . . . vanishes, i.e.

∞∑

s=1

e−ǫ(s+ 1
2
) ζ̂s(q)

∣∣∣
ǫ→0, finite

= 0 , (3.13)

so that the full CHS theory is one-loop UV finite on S4
q space.

This implies also the vanishing of the total free energy on S1
q ×H

3 (2.31) and thus of

the associated Rényi entropy (3.7). This vanishing appears to be consistent with the “topo-

logical” nature of the CHS theory [15]. Similar conclusions are reached for the massless

higher spin tower in appendix E.

23The analog of (2.20) here contains nz = s ks −
∑s−1

s′=0 ks′ =
1
36
ν2 (5 ν − 1), generalizing the expressions

in (2.22).
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Let us note also that as the (one-loop) logarithmic UV divergences cancel in the

full CHS theory, the finite part of the corresponding partition function Z is scheme-

independent. As was shown in [15], Z = 1 in flat space (assuming the same regularization

as in (3.13), in which the total number of degrees of freedom vanishes) and also on S4

(which could be expected given the cancellation of conformal a-anomalies). One may ex-

pect that since S4
q has a non-zero Weyl tensor it is likely that Z(S4

q ) is a non-trivial function

of q. It would be interesting to compute it using the heat-kernel method in appendix A.

4 Generalization to six dimensions

Let us now demonstrate how similar computations of ζ̂(q) and related conformal anomaly

coefficients can be performed in six dimensions. In 6d for a classically Weyl invariant theory

one gets instead of (1.2)

B6 =
1

(4π)3

∫
d6x

√
g b̄6(x) , b̄6 = −aE6 + c1 I1 + c2 I2 + c3 I3 , (4.1)

where E6 = −ǫ6ǫ6RRR is proportional to the 6d Euler density and the 3 indepen-

dent Weyl invariants are I1 = Cαµνβ C
µρσν C αβ

ρ σ , I2 = C µν
αβ C ρσ

µν C αβ
ρσ and I3 =

Cµαβγ D
2Cµαβγ + . . . (see for details [45] and appendix D).

The aim will be to consider the conical deformation S6
q of 6-sphere (with the metric as

in (1.7) with S2 singularity replaced by S4 one), compute the spectral ζ-function at z = 0

or ζ̂(q) = B6 as in (1.8) and then extract the values of the conformal anomaly coefficients

from it. As the log divergent part of the free energy on S6 should be proportional to a, we

should have again ζ̂(1) ∼ a. The c3 coefficient proportional to CT in the 2-point function

of stress tensors should be determined, as in 4d case, by the 2nd derivative of ζ̂(q) at q = 1.

The coefficients c3 and c4 related to 3-point functions of stress tensor may be possible to

extract from the 3rd (or higher) derivative of ζ̂(q) but we will not attempt this here.

Taking into account normalizations, the expected relations are then the direct analogs

of (3.1) and (3.4) in 4d case:

a = − 1
96 ζ̂(1) , (4.2)

c3 =
1
12

d2

dq2

[
q ζ̂(q)]

∣∣∣
q=1

= 1
12 ζ̂

′′(1) + 1
6 ζ̂

′(1) . (4.3)

The bosonic totally symmetric rank s conformal higher spins in 6d have kinetic terms

hs�
s+ d−4

2 hs = hs�
s+1 hs. Below we shall consider only the lowest spin cases: s = 0 —

the standard ∂2 conformal scalar, s = 1 — the higher derivative ∂4 vector [39, 46, 47]

and s = 2 — the ∂6 conformal graviton (see appendix D). The corresponding partition

functions on S6 are [48] (cf. (2.2), (2.3))

Z0 =

[
1

det∆0(6)

]1/2
, Z1 =

[
det∆0(0)

det∆1⊥(7) det∆1⊥(5)

]1/2
, (4.4)

Z2 =

[
det∆1⊥(−5) det∆0(−6)

det∆2⊥(8) det∆2⊥(6) det∆2⊥(2)

]1/2
, (4.5)
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where ∆s⊥(M2) = (−D2 + M2)s⊥ are defined on S6. Assuming as in 4d case that the

these partition functions have the same structure on S6
q , their computation requires the

knowledge of the spectrum of ∆s⊥(M2) on this space.

The analysis of the spectrum goes along the same lines as in section 2. The analogs of

the eigenvalues in (2.6) and (2.7) are obtained after the replacement n+γm+3 → n+γm+5.

The degeneracies of the spectrum for the conformal scalar and the 4-derivative spin 1 field

are found from (2.11) and (2.12) where now d → 6. The spin 2 degeneracies turn out to

be (n+m ≥ 2)

d
(2)
n,0 =

1

12
(n− 1)(n+ 2)(n+ 3)(7n+ 22), d

(2)
n,1 =

1

6
n(3 + n)(4 + n)(7n+ 17),

d
(2)
n,m>1 =

7

6
(n+ 1)(n+ 2)(n+ 3)(n+ 4). (4.6)

As a result, ζ̂s⊥(q) in (1.8) for the operators ∆s⊥(M2) on S6
q are given by (cf. (2.19))

ζ̂0(q;M
2) = 1

15120 q5
+ 6M2−35

4320 q3
+ 24−10M2+M4

144 q + 4315−3990M2+1050M4−84M6

30240 q,

ζ̂1⊥(q;M
2) = 1

3024 q5
+ 6M2−41

864 q3
+ 5 (35−12M2+M4)

144 q

− 553−210M2+15M4

180 + 9439−6342M2+1302M4−84M6

6048 q, (4.7)

ζ̂2⊥(q;M
2) = 1

1080 q5
− 1

6 q4
+ 1111+42M2

2160 q3
+ 6M2−55

6q2
+ 1560−242M2+7M4

72 q

− 3166−1860M2+105M4

180 + 17167−9198M2+1554M4−84M6

2160 q.

Forming the combinations of these functions corresponding to the partition func-

tions (4.4), (4.5) taking into account as in (2.20) the zero mode contributions24

s = 0 : nz = 0; s = 1 : nz = 2k1 = 2; s = 2 : nz = 3k2 − k1 = 83 , (4.8)

we find that the total coefficients ζ̂s(q) of the log UV divergence of the CHS partition

functions (4.4), (4.5) on S6
q are given by (cf. (2.23)–(2.25))

ζ̂0(q) =
1

15120 q5
+

1

4320 q3
+

31

30240
q, (4.9)

ζ̂1(q) =
1

1680 q5
− 1

288 q3
− 1

6 q
− 14

15
− 39

224
q (4.10)

ζ̂2(q) =
1

420 q5
− 1

2 q4
+

703

360 q3
− 23

2 q2
+

49

3 q
− 181

9
− 4143

280
q . (4.11)

As in the 4d case (2.29) the q → 0 and q → ∞ asymptotics of ζ̂(q) are controlled by free

energies on S1
q × R

5 and R× S5 respectively, i.e.

ζ̂s(q) =
ν

15120

1

q5
+ . . .+ (−2Ec) q , (4.12)

24The number of zero modes associated with a transverse traceless totally symmetric rank s field on S6

is (see [48] and refs. there) ks = 1
4320

(2s+ 3)s(s+ 1)3(s+ 2)3(s+ 3), i.e. k0 = 0, k1 = 1, k2 = 28, etc.
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where the number of dynamical degrees of freedom ν [48] and the Casimir energy on

R× S5 [7] for 6d CHS fields are given by

ν =
1

4
(s+ 1)2(s+ 2)2, s = 0, 1, 2, . . . (4.13)

Ec,s =
1

60480
ν (96 ν3/2 − 232ν − 12ν1/2 + 117) . (4.14)

The values of ζ̂s at q = 1 reproduce (4.2) the known a-coefficients [48]25

as =
1

1814400
ν (88 ν3/2 − 110ν − 4ν1/2 + 1) . (4.15)

We also observe that as in the 4d case (3.3), (3.12) the first derivative ζ̂ ′(1) vanishes for

s = 0 and s = 1 but not for s = 2:

ζ̂ ′0(1) = 0 , ζ̂ ′1(1) = 0 , ζ̂ ′2(1) = −12 . (4.16)

Using (4.3) we get the following values for the c3,s coefficients

c3,0 =
1

2520
c3,1 = − 5

168
c3,2 = −1639

420
. (4.17)

The s = 0 and s = 1 values match the known ones found earlier in [39, 45]. Remarkably,

the s = 2 result for c3,2 agrees with the direct computation of the corresponding 6d Seeley-

DeWitt coefficient for the 6d Weyl graviton that we present in appendix D where we also

determine the values of the two other conformal anomaly coefficients c1 and c2 in (4.1)

(see (D.10)). This provides a non-trivial check of the consistency of the relation (4.3) for

the CT ∼ c3 coefficient in 6d.

For completeness, let us summarize the values of the conformal anomalies for the 6d

s = 0, 1, 2 CHS fields below:

s a c1 c2 c3

0 − 5
72×7! − 1

540
1

3024
1

2520

1 275
8×7!

97
180

911
5040 − 5

168

2 3005
2×7!

1507
45

635
126 −1639

420

(4.18)
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A Details of computation of ζ̂(q) for 4d massive scalar

Here we provide some details of the computation of ζ̂(q) in section 2 on the example of 4d

scalar operator ∆0(M
2) = −D2 +M2. The case of the conformal coupling on unit-radius

S4 corresponds to M2 = 2. Introducing the parameter µ related to M2 by M2 = 9−µ2

4 and

setting γ = 1/q we then have for the corresponding spectral ζ-function in (1.8)

ζ(z; γ) =

∞∑

n,m=0

d(0)n,m

[(
3
2 + n+mγ

)2
− µ2

4

]−z
. (A.1)

We used (2.6) and (2.11), i.e. d
(0)
n,0 =

1
2 (n+1) (n+2), d

(0)
n,m>0 = (n+1) (n+2). The evalu-

ation of (A.1) was first considered in [34] where it allowed to obtain the finite-temperature

one-loop effective potential for a scalar field in de Sitter space-time. The result revealed

an unexpected dependence of the logarithmic divergences on the temperature associated

to the presence of a horizon which is directly related to q-dependence of ζ̂(q) = ζ(0; q) we

discussed in section 2.26

We will compute ζ(0; γ) in (A.1) by using a somewhat more direct method than em-

ployed in [34]. We first split the contribution from the m = 0 and m > 0 modes as

ζ(z; q) = ζ(a)(z; q) + ζ(b)(z; q), ζ(a)(z; q) =
∞∑

n=0

1
2(n+ 1) (n+ 2)

[ (
3
2 + n

)2 − µ2

4

]−z
,

ζ(b)(z; γ) =
∞∑

n=0

∞∑

m=1

(n+ 1)(n+ 2)
[ (

n+mγ + 3−µ
2

)(
n+mγ + 3+µ

2

) ]−z
. (A.2)

As we are interested only in the value at z = 0 each of the two terms ζ(a) and ζ(b) can be

computed by expanding to quadratic order in µ2 only (higher order terms in µ will give

vanishing contributions in the z → 0 limit, cf. also footnote 13). For the first term we get

ζ(a)(z; q) =1
8

[
4ζR

(
2z − 2, 32

)
− ζR

(
2z, 32

)]
+ 1

32µ
2z

[
4ζR

(
2z, 32

)
− ζR

(
2z + 2, 32

)]

+ 1
256µ

4z(z + 1)
[
4ζR

(
2z + 2, 32

)
− ζR

(
2z + 4, 32

)]
+O(µ6) , (A.3)

where ζR(a, b) is the Hurwitz zeta-function (2.18). Dropping the contributions that mani-

festly vanish at z → 0 (due to explicit factors of z that multiply analytic terms) we find

ζ(a)(z; q) = 1
8

[
4 ζR

(
2z − 2, 32

)
− ζR

(
2z, 32

)]
+O(z) . (A.4)

This vanishes at z = 0

ζ(a)(0; q) = 1
8

[
4×

(
−1

4

)
− (−1)

]
= 0. (A.5)

Instead of following the same strategy in the case of ζ(b)(0; q) we shall use a simpler approach

by relating it to the t0 coefficient in the expansion of the corresponding heat kernel replaced

26In the present context the parameter γ = q−1 of the conical singularity corresponds to the ratio of the

temperature and the Hawking temperature in [34].
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by the sum of the kernels corresponding to the “1-st order” factors in (A.2)27

K(t; γ) =
∞∑

n=0

∞∑

m=1

(n+ 1)(n+ 2)
[
e−t (n+mγ+ 3−µ

2 ) + e−t (n+mγ+ 3+µ
2 )

]

t→0∼
∞∑

k=−4

hk t
k , ζ(b)(0; q) = 1

2h0 . (A.6)

Computing the two sums, we readily obtain

K(t; γ) =
e−

1
2
(µ−3)t

(
eµt + 1

)

(et − 1)3 (eγt − 1)
=

2

γ

1

t4
− 1

t3
+
(µ2 − 1

4γ
+

γ

6

) 1

t2
+

1

8

(
1− µ2

) 1

t

− γ3

360
+

µ2 − 1

48
γ +

5µ4 − 30µ2 + 17

960γ
+O(t) . (A.7)

The t0 term here gives (using (A.5) and γ = 1/q)

ζ(0; q) = ζ(a)(0; q) + ζ(b)(0; q) = − 1

360 q3
+

µ2 − 1

48 q
+

5µ4 − 30µ2 + 17

960
q , (A.8)

which is equivalent to the expression in (2.19) after we recall that µ2 = 9 − 4M2. For

example, for the conformally coupled scalar with µ = 1 we get, in agreement with (2.23),

ζ(0; q) = − 1

360 q3
− q

120
. (A.9)

B Degeneracies of eigenvalues of bosonic spin s Laplacian on S4

q

The degeneracies for γ ∈ [1, 2) for spin s ≤ 4 in (2.12)–(2.15) admit a natural generalization

to all integer s > 0 (here n+m ≥ s)

d
(s)
n,0 =

1
2 (n− s+ 1) [(2s+ 1)n+K0], d

(s)
n,1 = (n− s+ 2) [(2s+ 1)n+K1],

d
(s)
n,2 = (n− s+ 3) [(2s+ 1)n+K2], . . .

d
(s)
n,s−1 = n [(2s+ 1)n+Ks−1], d

(s)
n,m>s−1 = (2s+ 1) (n+ 1)(n+ 2) , (B.1)

where the integers Kp are

Kp = 2 (1 + 2 p) + (3 + 2 p) (s− p), p = 0, . . . , s− 1. (B.2)

One can check that the degeneracies in (B.1) are always non-negative and also even when

m > 0 as follows from the expected symmetry of the spin s Laplacian eigenstates under

the exchange x+ ↔ x− in this case. The total degeneracy

s−1∑

m=0

d
(s)
N−m,m +

N∑

m=s

d
(s)
N−m,m = 1

6 (2s+ 1) (2N + 3)(N + s+ 2)(N − s+ 1) (B.3)

27As the eigenvalues factorize, the same applies to the corresponding determinant, and thus the heat

kernel can be replaced by a sum of heat kernels corresponding to the factors. The origin of the 1
2
factor

in the relation for ζ(0; q) may be understood by comparing dimensions of the proper-time cutoffs in the

original heat kernel and its “factor” analogs, cf. also [30].
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is equal as it should to the degeneracy of the level N eigenvalue for the regular sphere S4

(cf. footnote 12).

A further test of (B.1) is provided by the explicit calculation of the zeta function ζ̂s(q)

for the CHS field with spin s. For instance, for s = 5 (B.1) gives (n+m ≥ 5)

d
(5)
n,0 =

1
2 (n− 4) (11n+ 17), d

(5)
n,1 = (n− 3) (11n+ 26),

d
(5)
n,2 = (n− 2) (11n+ 31), d

(5)
n,3 = (n− 1) (11n+ 32),

d
(5)
n,4 = n (11n+ 29), d

(5)
n,m>4 = 11 (n+ 1) (n+ 2). (B.4)

Generalizing the spin 5 CHS partition function on S4 [1]

Z5 =

[
det∆4⊥(−24) det∆3⊥(−25) det∆2⊥(−26) det∆1⊥(−27) det∆0(−28)

det∆5⊥(7) det∆5⊥(5) det∆5⊥(1) det∆5⊥(−5) det∆5⊥(−13)

]1/2
, (B.5)

to S4
q we find that the associated ζ̂5(q) function determined using (B.4) is given by

ζ̂5(q) = − 1

12q3
− 700

q2
+

8245

6 q
− 1475− 15769

12
q . (B.6)

This expression is in perfect agreement with our general proposal in (3.11) (here ν = 30).

C Two-dimensional case

In two dimensions there is just the “a” coefficient of the Weyl anomaly that also has

the interpretation of the coefficient CT in the 2-point function of stress tensor, i.e. is the

Virasoro central charge and thus is usually denoted as c. In standard normalization where

a real ∂2 scalar has c = 1 we have for the coefficient of the log UV divergence of the

partition function (cf. (1.1))

B2 =
1

4π

∫
d2x

√
g b2 , b2 = aR , a ≡ 1

6 c . (C.1)

On S2 one thus finds B2 =
1
3c. For a conformal field defined on a conical deformation S2

q of

the 2-sphere we expect the corresponding spectral zeta-function at z = 0 to have a similar

general form as in 4d (2.29) and in 6d (4.12), i.e.

ζ̂(q) =
ν

6 q
+ p0 − 2Ec q, (C.2)

where the first and the last terms are fixed by the asymptotics corresponding to S1
q × R

(q → 0) and R × S1 (q → ∞). Here ν is the number of effective degrees of freedom

with ν = 1 for a real ∂2 scalar and ν = −2 for the 2d conformal higher spin fields with

kinetic terms hs�
s+d−4

2 hs = hs�
s−1hs with s = 1, 2, . . . [48]. The Casimir energy Ec on

unit-radius S1 should in general be related to the central charge c by [49, 50] Ec = − 1
12c.

Since B2(S
2) = ζ̂(1) we then conclude that

c = 3 ζ̂(1) = −12Ec . (C.3)
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As follows from (C.2) and Ec = − 1
12c we then have also the following representation for c

c = 3 d2

dq2

[
q ζ̂(q)

]∣∣∣
q=1

. (C.4)

Remarkably, this relation for c = CT in 2d case is a direct counterpart of the similar 4d (3.4)

and 6d (4.3) relations we proposed above. This supports their common origin and implies

a universal applicability of CT ∼ ζ̂”(1) + 2ζ̂ ′(1) relation in any dimension.

In the case of the standard ∂2 scalar field (C.2), (C.3) imply that

ζ̂(q) =
1

6 q
+

1

6
q . (C.5)

In the case of d = 2 CHS fields one finds [13, 14, 48]

cs = −2
[
1 + 6 s(s− 1)

]
, s ≥ 2 . (C.6)

As a result, the function ζ̂(q) for the 2d CHS fields consistent with the above rela-

tions (C.3), (C.6) turns out to be

ζ̂s(q) = − 1

3 q
− 2 s (s− 1)− 1

3

[
1 + 6 s(s− 1)

]
q = −1

3

(
1

q
− 1

)
+

cs
6

(
q + 1

)
. (C.7)

Note that while for a standard scalar (C.5) we find that ζ̂ ′(1) = 0, for the CHS fields

ζ̂ ′s(1) = −2 s (s− 1) so that for s ≥ 2 it is again non-zero as in the 4d and 6d cases.

D Conformal anomaly coefficients for the Weyl graviton in six dimen-

sions

In 6d there are three dimension 6 non-trivial Weyl invariants I1, I2, I3 that appear in (4.1)

I1 = Cαµνβ C
µρσν C αβ

ρ σ , I2 = C µν
αβ C ρσ

µν C αβ
ρσ ,

I3 = Cµαβγ (D
2 δµν + 4Rµ

ν − 6
5 Rδµν )C

ναβγ + total derivatives. (D.1)

A candidate Weyl-invariant gravity action is then an integral of a linear combination of

these 3 invariants.

There is a particular choice [51] W6 = −I3 + 3I2 + 12I1 that has special properties:

(i) it vanishes on a Ricci flat background, and (ii) it admits (2, 0) locally superconformal

extension [46, 52, 53]. Related to (i) and (ii) is that W6 appears, respectively, as the

coefficient of the logarithmic IR divergence of the Einstein action in AdS7 evaluated on the

solution of Dirichlet problem [54] and also as the log UV divergence of the (2, 0) tensor

multiplet [45]. The resulting action may be written as

S =

∫
d6x

√
g
[
RµνD2Rµν − 3

10 RD2R− 2Rµνρσ RνρRµσ −RµνRµν R+ 3
25 R

3
]
. (D.2)

The fact that it is expressed in terms of the Ricci tensor and is at most linear in the Weyl

tensor implies that it can be rewritten as a 2nd derivative action involving several tensors

of rank ≤ 2 and it is uniquely selected by this requirement [55].

– 21 –



J
H
E
P
0
9
(
2
0
1
7
)
1
2
3

The quadratic part of (D.2) expanded around a curved space is governed by the

6-order differential operator that factorizes, as it is easy to see, into the product of

three 2nd order Lichnerowitz-type operators if the background is an Einstein one. Re-

stricted to transverse traceless hµν the kinetic operator in (D.2) is (cf. (4.5)) −D6 + . . . =

∆2⊥(8) ∆2⊥(6) ∆2⊥(2) with

∆2(M
2)hµν =

(
−D2 + 1

30M
2R

)
hµν − 2Cµρνσ h

ρσ , (D.3)

where R is the scalar curvature and C is the Weyl tensor. On a unit-radius S6 where

R = 30 and C = 0 we then get the one-loop partition function in (4.5).

This factorization implies that the one-loop conformal anomaly coefficients in (4.1)

corresponding to (D.2) can be computed following [45] by using directly the general expres-

sion [56] for the b6 Seeley-DeWitt coefficient of the corresponding 2nd order Laplace-type

operator ∆ = −D2 + X defined on k ≤ 2 tensors that enter the generalization of the S6

partition function in (4.5).

To simplify the computation one may use a shortcut and consider several special back-

grounds. Considering S6 case one can easily determine the value of a-coefficient. For a

symmetric-space Einstein background with a non-zero Weyl tensor (where Ii invariants

satisfy one linear relation) one is able to find c1 and c3 in terms of c2 [57]:

a = 3005
2×7! , c1 =

5633
105 − 4 c2, c3 = −35543

5040 + 5
8 c2. (D.4)

The value of c2 may be fixed by considering the case of a Ricci flat background where the

partition function takes a simple form

Z2 =
[(det∆1)

4

(det∆2)3

]1/2
, (D.5)

with ∆1,∆2 being the standard Laplacians acting on unconstrained vector and traceless

tensor with Rµν = 0,28 ∆1hµ = −D2hµ , ∆2 hµν = −D2 hµν − 2Cµρνσ h
ρσ. To find

the corresponding b6 coefficient for the vector Laplacian ∆1 from the general expressions

in [45, 56] one is to use that here the covariant derivative contains an extra “internal”

vector connection part with the curvature (Fµν)
β

α = C β
µνα . Then one finds

7! b̄6

[
∆1

]
= 80

9 Cα
µ
γ
νCαβγδ Cβµδν − 164

3 Cαβ
µνCαβγδ Cγδµν

− 96CαβγδD2Cαβγδ − 58(DµCαβγδ)
2. (D.6)

In the case of spin 2 operator −D2 +X one has (Fµν)αβ,ρσ = 1
2Cµναρgβσ + . . . (dots stand

for 3 similar terms that symmetrize in (αβ) and (ρσ)) and Xµν,ρσ = −Cµρνσ − Cµσνρ. A

straightforward computation then gives

7! b6

[
∆2

]
= 49984

9 Cα
µ
γ
νCαβγδ Cβµδν − 1388

9 Cαβ
µνCαβγδ Cγδµν

+ 1416CαβγδD2Cαβγδ + 544 (DµCαβγδ)
2. (D.7)

28To compare, the usual Einstein theory partition function on a Ricci flat background is

Z2E =
[

det∆1

det∆2 det∆0

]1/2
.
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The full Seeley-DeWitt coefficient corresponding to (D.5) is given by the combination

3 b6[∆2] − 4 b6[∆1] and thus contains one of the total derivative terms discussed in [45].

Ignoring total derivative terms and using the relations between the invariants in (4.1) that

exist in the Ricci flat case (E6 = 32(2I1 + I2), I3 = 4I1 − I2) one has in general

b̄6

∣∣∣
Rµν=0

= −
[
a− 1

192 (c1 + 4 c2)
]
E6 + (c1 − 2c2 + 6c3) I1 . (D.8)

As a result, we find

a− 1
192 (c1 + 4 c2) =

377
20160 , c1 − 2c2 + 6c3 = − 1

210 . (D.9)

Combining (D.9) with (D.4) we conclude that the first relation is satisfied identically while

the second one determines c2. Thus finally

c1 =
1507
45 , c2 =

635
126 , c3 = −1639

420 . (D.10)

E Massless higher spins on S4

q

One may define free massless higher spin (MHS) fields on S4 and consider, as in the case

of AdS4 [58], the corresponding partition function built out of the determinants of the

operators ∆s⊥(M2) on spin s TT tensors (2.1)29

Z0 =

[
1

det∆0(2)

]1/2
, Zs =

[
det∆s−1⊥(1− s2)

det∆s⊥(2 + 2s− s2)

]1/2
. (E.1)

Then extending these MHS partition functions to S4
q we may use the results in (2.19) and

appendix B to compute the corresponding total ζ̂(q) function which is the coefficient of the

log UV divergence. The expressions for the scalar and spin 1 field are the same as in (2.23)

and (2.24), while for s = 2, 3, 4 we obtain (cf. (2.24)–(2.27))

ζ̂2(q) =− 1

180 q3
− 2

q2
+

10

3 q
− 22

3
− 401

60
q ,

ζ̂3(q) =− 1

180 q3
− 12

q2
+

45

2 q
− 39− 2251

60
q , (E.2)

ζ̂4(q) =− 1

180 q3
− 40

q2
+

232

3 q
− 376

3
− 7361

60
q .

Here we used (2.20) with the number of zero modes being (cf. (2.21))

nz,s = ks − ks−1 =
1
6 s

2 (1 + 5 s2) . (E.3)

A natural generalization to any s > 0 is then (cf. (3.11))

ζ̂s(q) = − 1

180 q3
+

s2(1− s2)

6 q2
− s2(3− 2s2)

6 q
+

s2(1− 3s2)

6
− 1

60
(1− 20 s2 +30 s4) q. (E.4)

This has the expected general structure (2.29) with the number of degrees of freedom ν = 2

and Ec,s being the Casimir energy of the MHS field on R× S3 (see eq. (5.7) in [59]).30

29The analytic continuation from AdS4 to S4 corresponds to changing the sign of the square of the

curvature radius or M2 → −M2. Note that the s = 0 case is a special case of Zs assuming one drops the

ghost contribution. Here we set the radius of S4 to 1.
30One can obtain Ec,s from the single particle partition function Zs(x) = xs+1

(1−x)3

[
2s + 1 − (2s − 1)x

]

where x = e−β using eq. (5.16) in [59].
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The coefficient of the total UV log divergence of the tower of massless higher spin fields

on S4 is given by ζ̂0(1) +
∑∞

s=1 ζ̂s(1) and vanishes when regularized with an exponential

cutoff or zeta-function [58, 60]. The same is true for the sum of the Casimir energies [59].

Similarly, on the conical S4
q space we find that the total ζ̂(q) function also vanishes,

i.e. the regularized sum31

ζ̂0(q) +
∞∑

s=1

e−ǫ s ζ̂s(q)

=
− 4

q2
− 12q + 8

q + 8

ǫ5
+

1
3q2

+ 2q
3 − 1

q +
2
3

ǫ3
+

− 1
180q3

− q
60

ǫ
+ 0 +O(ǫ), (E.5)

has zero finite part. Then the sum of free energies on S1
q × H

3 (2.31) and thus the Rényi

entropies (3.7) also vanish. Such formally defined Rényi entropy may be associated to

the tower of massless higher spins in flat space and thus its vanishing is consistent with

“topological” nature of such higher spin theory [15].

F B2 Seeley-DeWitt coefficient for 4d spins s ≤ 3

It is of interest to compare consequences of our expressions for the zeta-functions in sec-

tion 2 with some previous results in [27]. Given a spectral zeta-function ζ(z; q) for the

operators ∆s⊥(M2) we can also extract the B2 Seeley-DeWitt coefficient (of quadratic

UV divergences) that appears in the t → 0 expansion of the heat kernel in 4 dimensions,

K(t) = B0t
−2 +B2t

−1 +B4 +O(t). After a convenient rescaling we have

B̃2 ≡
(4π)2

Vol(S4)
B2 = 6B2 = 6 lim

z→1
(z − 1) ζ(z; q) . (F.1)

Reintroducing the factors of the scalar curvature (equal to 12 for a unit-radius S4) we have

from (2.19)

B̃
(0)
2 (q,M2) =

R

24 q
+ q

(
R

8
−M2

)
, B̃

(1⊥)
2 (q,M2) = −R

2 + R
8 q + q

(
5R
8 − 3M2

)
,

B̃
(2⊥)
2 (q,M2) = −5R

2
+

5R

24 q
+ q

(
35R

24
− 5M2

)
, (F.2)

B̃
(3⊥)
2 (q,M2) = −7R+

7R

24 q
+ q

(
21R

8
− 7M2

)
.

31Note that for massless higher spins in d dimensions the regularization prescription is with cutoff factor

e−ǫ(s+ d−4

2
) [14]. For conformal higher spins one has instead e−ǫ(s+ d−3

2
) as they are effectively associated

with the boundary, i.e. one is to replace d → d− 1.
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Using the relations in appendix A of [1], we then find for the coefficients in heat kernels of

operators ∆s(M
2) defined on fields without the transversality condition

B̃
(1)
2 (q,M2) = B̃

(1⊥)
2 (q,M2) + B̃

(0)
2 (q,M2 − 3) = −R

2 + R
6 q + q

(
−4M2 +R

)
, (F.3)

B̃
(2)
2 (q,M2) = B̃

(2⊥)
2 (q,M2) + B̃

(1⊥)
2 (q,M2 − 5) + B̃

(0)
2 (q,M2 − 8)

= −3R+ 3R
8 q + q

(
−9M2 + 33R

8

)
, (F.4)

B̃
(3)
2 (q,M2) = B̃

(3⊥)
2 (q,M2) + B̃

(2⊥)
2 (q,M2 − 7) + B̃

(1⊥)
2 (q,M2 − 12) + B̃

(0)
2 (q,M2 − 15)

= −10R+ 2R
3 q + q

(
−16M2 + 12R

)
. (F.5)

It is convenient to split the coefficient B̃2 into a regular “bulk” part and “surface” part

coming from the conical singularity (cf. also discussion in Introduction)

B̃2(q,M
2) = q B̃2(1,M

2)︸ ︷︷ ︸
“bulk”

+
[
B̃2(q,M

2)− q B̃2(1,M
2)
]

︸ ︷︷ ︸
“surface”

. (F.6)

The “bulk” part is given by the usual Seeley-DeWitt coefficient evaluated on S4
q with the

singular region excised: it is given by the standard S4 (i.e. q = 1) expression

B̃2(1,M
2) = Ns

(
R
6 −M2

)
, Ns = (s+ 1)2 , (F.7)

times the q-factor which accounts for the volume of S4
q . The “surface” part in (F.6) vanishes

for q = 1 by construction.32 The splitting (F.6) then takes the form

B̃
(0)
2 (q,M2) = q

(
R
6 −M2

)
+ R

24

(
1
q − q

)
,

B̃
(1)
2 (q,M2) = q

(
2R
3 − 4M2

)
+
(
− R

2 + R
6 q +

R
3 q

)
,

B̃
(2)
2 (q,M2) = q

(
3R
2 − 9M2

)
+
(
− 3R+ 3R

8 q + 21R
8 q

)
,

B̃
(3)
2 (q,M2) = q

(
8R
3 − 16M2

)
+
(
− 10R+ 2R

3 q + 28R
3 q

)
. (F.8)

32In the approaches that represent the conical singularity in terms of a singular part in the curvature the

“surface” term originates from an integral over S2 as near the cone singularity S4
q ∼ Cq × S2.
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The spin 0,1,2 “surface” terms in (F.8) may be compared with the results of [27] (see

eqs. (2.8), (2.11), (2.13) there with β = 2πq)33

s = 0 : β
6

[ (
2π
β

)2
− 1

]
Vol(S2)
Vol(S4)

=
1

2q
− q

2
,

s = 1 :

[
N1

β
6

[ (
2π
β

)2
− 1

]
+ 2 (β − 2π)

]
Vol(S2)
Vol(S4)

= −6 +
2

q
+ 4q,

s = 2 :

[
N2

β
6

[ (
2π
β

)2
− 1

]
+ 12 (β − 2π)

]
Vol(S2)
Vol(S4)

= −36 +
9

2q
+

63

2
q . (F.9)

These match the “surface” terms in (F.8) after setting R = 12. The extension of the

pattern in the l.h.s. of (F.9) to the spin 3 case that matches the s = 3 expression in (F.8) is

s = 3 :
[
N3

β
6

[
(2πβ )2 − 1

]
+ 40 (β − 2π)

]
Vol(S2)
Vol(S4)

= −120 + 8
q + 112 q. (F.10)
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