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Abstract

Program transformation techniques have reached a maturity level that allows processing
high-level language sources in new ways. Not only do they revolutionize the implementation
of compilers and interpreters, but with modularity as a design philosophy, they also permit
the seamless extension of the syntax and semantics of existing programming languages. The
C-Transformers project provides a transformation environment for C, a language that proves
to be hard to transform. We demonstrate the effectiveness of C-Transformers by extending C’s
instructions and control flow to support Design by Contract. C-Transformers is developed by
members of the LRDE: EPITA undergraduate students.

1 Introduction

New trends in programming languages set a new challenge to the researcher: productivity.
One trend focuses on providing the programmers with more productive languages, to this end
program transformations techniques are extremely powerful. To implement these transformations,
language-specific frameworks are needed. To compose these frameworks, language agnostic tools are
needed that can be used to quickly address a particular issue in whatever language.

Program transformations encompass virtually every type of program processing. Data extrac-
tion from sources allow to perform code metrics (number of lines, statements, function arguments,
maintainability etc.), to generate documentation. Software renovation consists in improving ex-
isting code, possibly very large and ancient programs. Even when a thorough design was made,
when experienced programmers are involved, when high level development tools are used etc.
refactoring is needed to keep a program healthy: maintainable. Programmers are used to refactor
by hand, but today much can be mechanized, including the use of advanced constructs such
as Design Patterns [34]. The development of such refactoring tools for Integrated Development
Environments is an active topic of research. Optimization is another active field, including
domain-specific optimizations [3] and standard optimizations, possibly very high level ones such
as partial evaluation [26]. Translations, such as compilation, typically make use of program
transformation techniques, with several refining steps. Most of the time transformations are
written in a general language (C, C++, Caml...), but some exploit dedicated techniques (e.g., Tiger
in Stratego [31], or even the Stratego Compiler itself [30]). As a specific instance of translation,
language extension provides an existing language with additional features and write a transla-
tor that “compiles” (assimilation in the words of [7]) the extended language down to the host
language. As a running example, this paper will focus on such an application.

Language-specific frameworks. Writing a compiler is a tremendous task, and the implemen-
tation of a transformation framework makes no exception: one needs (i) a parser to read the
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input, (ii) possibly a disambiguation step, (iii) optionally a type checker, (iv) the core transforma-
tions themselves, and finally (v) a pretty printer to convert the program back to text. Every step
of this framework is language-specific. The infrastructure can outweigh the transformation by
far, therefore, in order to make the transformation implementation productive, language-specific
frameworks are needed. In this paper we present the C-Transformers project [19], a framework
enabling the seamless implementation of transformations programs in C— or C variations.

Language generic components. Vast research and many tools were developed to provide the
technology needed to implement each type of component of the framework, sometimes leading
to nice generalizations. It is well known for instance, that there are tools that generate parsers
from grammars; it is less known is that other steps also enjoy the existence of language generic
components that can easily be tailored to a specific language [16]. C-Transformers is using
Stratego/XT [15] [32] as its library of language generic components. These off-the-shelf tools
allow us to focus directly on C-specific issues (e.g., its disambiguation).

The C-Transformers is a free software project available on the Internet [19] developed by EPITA
undergraduate students. EPITA is a French private engineering school dedicated to computer
science. The Research and Development Laboratory of EPITA, LRDE, recruits amongst the best
students willing to follow a more academic curriculum, possibly leading to a PhD. While members
of the LRDE, they work on research topics supervised by assistant professors. V. David and A.
Borghi are members of this group working actively on disambiguation under the supervision of
Akim Demaille.

C-Transformers can be used to implement virtually any kind of C program transformation,
but currently, because of its lack of a reversible pre-processor (Section 6) it cannot be used for
software renovation.

The Olena [11, 20] and Vaucanson [18, 22] projects gave the LRDE a strong experience in
the development of C++ fast and generic libraries. New C++ programming techniques were then
invented [8], unfortunately resulting in somewhat obfuscated code. The Transformers project
was created to address this issue, for instance by adding syntactic sugar to C++.

The structure of this paper is as follows. Section 2 presents similar projects. Section 3
introduces the C-Transformers chain components. In Section 4, to demonstrate its use, this
C generic chain will be used to implement an extension of C, from its parsing down to its
compilation to (ISO) C. Section 5 is devoted to deeper discussion on the results. Then Section 6
concludes and presents leads for future work.

2 Related Work

Program transformation draws a lot of attention these days, with several existing projects. Three
of them are specially close of ours, CIL addresses ISO C, MB has the exact same goals but
focuses on Java, and Proteus share goals, techniques, and target language.

CIL [24, 25] is an extremely complete and mature front end for the C language. It also
includes a type checker, and a normalization of C towards a clean and simpler subset of C.
This considerably eases the transformation of C programs by reducing the number of cases to
handle. Nevertheless CIL does not (and cannot) provide some of the features that prompted
the development of C-Transformers. (i) Transformations for CIL are more naturally expressed in
Caml, the language it is written in. This does not prevent using CIL as a front-end to a Stratego
program, but glue code is needed. (ii) CIL’s grammar is hardwired and thus cannot be easily
extended, especially not in a modular way. (iii) Using an Syntax Definition Formalism (SDF)
grammar and using SDF tools is mandated to enjoy concrete syntax in Stratego. (iv) CIL’s output
is not “syntactically faithful”, i.e., the output program is semantically equivalent but it is a deep
modification of the input program, with a complete loss of layout, comments, and preprocessor
directives. CIL is inadequate for code factoring.

In the words of its authors [6, 7], “MB provides generic technology for allowing a
host language (collective) to incorporate and assimilate external domains (cultures) in order to
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Given a C grammar written in SDF (Section 3.1), the SGLR parser reads the text and
yields a set of parse trees: a parse forest (Section 3.2). A disambiguation step keeps
a single parse tree (Section 3.3), transformed into an AST suitable for the transforma-
tion(s) (Section 3.4). Finally the AST is converted back into compiler-ready C source
text, a process named pretty-printing (Section 3.5).

Figure 1: The C-Transformers chain

strengthen itself. The ease of implementing embeddings makes resistance futile”. Basically the
MB project has exactly the same purpose as the Transformers project, but on a different
host language: while Transformers focuses on C and C++, MB started with Java. Java
is a much cleaner language than C, let alone C++ for which the development of a parser and
disambiguation filter proved to be a daunting task. The MB chain relies on the exact same
tools except for semantics driven disambiguation, which is written directly in Stratego (described
in 3.4). In [6] the power of the system is demonstrated by several extensions of Java to include
Domain Specific Languages (DSLs): seamless syntax and semantics for XML, Swing, and even
Java programs. Such a tour de force was made possible thanks to the modularity of the suite
(Section 5). Contrary to Transformers they already have a type checker, which allows to simplify
the syntax even further by taking types into account during the disambiguation.

The goals of the Proteus [33] are extremely similar to Transformers’: building a C transforma-
tion framework that makes it possible to preserve the programming style. These projects share
many tools (SDF, Scanner-less Generalized LR (SGLR), Stratego), but they differ on some aspects.
We strictly adhere to the standard grammar, they tailored theirs; we have a workable solution to
disambiguate C and extended C Abstract Syntax Trees (ASTs), but their paper does not mention
disambiguation; we stick to Stratego with C concrete syntax, they introduce an other language,
YATL, compiled into Stratego; we explicitly want to experiment grammar extensions, they focus
on standard C program refactoring, finally Transformers is free software [19]. The initial devel-
opment effort also differs: Transformers attacks the modular disambiguation of C (and C++) first,
and Proteus first made sure they can preserve the programming style — not only comments and
layout, but also preprocessor directives.

3 The Transformation Chain

In this section we present the C-Transformers framework, component by component. Figure 1
schematizes the whole process.
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module Declarators
imports ConstantExpressions TypeQualifiers ParameterDeclarations
exports

sorts Declarator DirectDeclarator Pointer PointerSeq
context-free syntax

PointerSeq? DirectDeclarator → Declarator
Identifier → DirectDeclarator
"(" Declarator ")" → DirectDeclarator
DirectDeclarator "[" TypeQualifierList? AssignmentExpression? "]"

→ DirectDeclarator
DirectDeclarator "[" "static" TypeQualifierList? AssignmentExpression "]"

→ DirectDeclarator
DirectDeclarator "[" TypeQualifierList "static" AssignmentExpression "]"

→ DirectDeclarator
DirectDeclarator "[" TypeQualifierList? "*" "]"

→ DirectDeclarator
DirectDeclarator "(" ParameterTypeList ")" → DirectDeclarator
DirectDeclarator "(" IdentifierList? ")" → DirectDeclarator
Pointer+ → PointerSeq
"*" TypeQualifierList? → Pointer

Contrary to the (E)BNF, production rules are rather oriented as “reduction rules”. This
excerpt of a C grammar module focuses on function “declarators”, i.e., signatures that
are used both to declare and to define functions. The interface of the module specifies
that it provides the symbols Declarator,. . . , PointerSeq, and requires from other
modules the symbols ConstantExpressions etc.

Figure 2: SDF excerpt of the C grammar

3.1 SDF Grammars

The Stratego/XT tool set uses SDF [28] as its backbone: the tools are parametrized by an SDF
grammar specifying the language at hand. In other words, grammars are contracts [16], therefore
it must be carefully crafted. This grammar syntax is modular, which improves maintainability
and extensibility, by splitting the grammar in several modules. It is also extensible: additional
information can be packed in the grammar via annotations.

Roughly the grammar can be written following two guide lines. It can be designed to be
simple, making full use of SDF capabilities to handle precedence, etc. This is an attractive way
since it results in rather short and elegant ASTs. We made “the” other choice: to stick rigorously to
the grammar defined in the ISO C standard [13] in order to guarantee our strict compliance with
the standard, and to provide an environment of choice to experiment extensions to the standard
(which is precisely the theme covered in Section 4). As a result our ASTs are somewhat more
convoluted — for instance the AST for a simple return 42; is 26 nodes deep.

The C grammar counts 126 symbols and 356 rules. To ease the maintenance, the grammar
is split into 53 small, manageable, sub-grammars. The boundaries of these sub-grammars were
chosen to address coherent, atomic, related issues; they are finer than those of the standard which
breaks the grammar in only 4 parts [13, Annex A].

Figure 2 demonstrates some of SDF features.
The running example of Section 4 will extend Declarator to support an additional form of

function declaration (Section 4.2).

3.2 SGLR and Parse Forests

A technology supporting ambiguity and yielding parse forests is needed. Amongst available
techniques Generalized LR (GLR) is most attractive [27]. Not only does a generalized parser
relieve us from obfuscating the grammar to cope with the limitations of the parsing technology
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#include <stdio.h>
int main (void)
{

printf ("Hello, world!\n");
return 0;

}

Figure 3: Hello world, the famous “first” C program

— such as the infamous shift/reduce or reduce/reduce conflicts — it is actually indispensable to
have the necessary level of modularity (see Section 5).

Stratego/XT uses the state-of-the-art SGLR [29] parser. It provides all the required features,
modularity and ambiguity support, and produces parse forests efficiently encoded thanks to the
ATerm library [4], sporting small memory footprint and maximal sharing of common subtrees.
Actually, it is an “ambiguous parse tree” that is built, with amb nodes grouping alternative (sub-)
parses in a more useful way than genuine parse forests.

As another consequence from having chosen to use the ISO C99 standard grammar verbatim,
we inherit its syntactic ambiguities, some of them being “gratuitous”, others requiring more
powerful context sensitive disambiguation techniques. The most typical context sensitivity of C
is its dependency on identifier types. For instance depending on the kind of entity the identifier a
was associated with, (a) * (b)might cast *b to type a, or, multiply a by b— symbols denoting
unary and binary operators exhibit the same ambiguity, e.g., -, + and &.

Consider Figure 3 as a running example. This program (text) is the input provided to SGLR,
which will result in a parse forest. Besides the numerous ambiguities within the stdio.h file,
there is one in the main part: printf, according to the ISO C99 standard grammar, can be
either the name of an enumeration constant, or an identifier (i.e., for a variable, type, or function).
Figure 4 precisely shows the two production rules in competition.

3.3 Disambiguation

In the tradition of Yacc, context-sensitive ambiguities are addressed by an elaborate cooperation
between the parser and the scanner, maintaining a common table of symbols — was the identifier
a declared to denote a type, or a variable? This results in a deterministic parsing: at most one
parse tree is found. On the contrary, in the SGLR approach the ambiguous AST is traversed to
gather context-sensitive information used to prune invalid parses (an approach called “semantics
driven disambiguation” by [5]).

Because the C-Transformers projects aims at modularity and extensibility, we wanted to (i)
embed the disambiguation filters in the SDF grammar (thus enjoying modularity for free), (ii) be
declarative, and (iii) relieve as much as possible the programmer from specifying the order and
types of tree traversals. Attribute Grammars (AGs) fit very well these constraints.

Attribute grammars [17] is a formalism that supports syntax directed semantic analysis:
each (grammar) rule is decorated with a set of equations that relate a node’s attributes with
those of its neighbors. AGs allow to focus on local aspects, leaving the global evaluation order
aside, under the responsibility of a generic engine. Although AGs cannot modify the trees, their
use for disambiguation is straightforward. Attributes convey information, e.g., a symbol table.
Conflicting branches of the parse forest are flagged, and a (language generic) filter is run afterward
on the parse forest, pruning inconsistent alternatives.

Since no AG engine existed for SDF, we developed one. Attribute rules are embedded in the
SDF grammar as additional annotations.

Figure 4 demonstrates the use of AG to disambiguate C. The performances of the system
are very satisfying (see Section 5): disambiguation is negligible compared to the whole parsing
(including conversion into AST).
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Identifier → PrimaryExpression
{attributes(disamb:

root.ok := <lookup> (Identifier.string, root.lr_table_in)
; (Variable <+ Function)

)}

Identifier → EnumerationConstant
{attributes(disamb:

root.ok := <lookup> (Identifier.string, root.lr_table_in)
; Enum

)}

Identifier → TypedefName
{attributes(disamb:

root.ok := <lookup> (Identifier.string, root.lr_table_in)
; Typedef

)}

This example focuses on an ambiguity of C: an identifier foo might denote a variable,
a function, a value of an enumeration type, or a type name. When traversing a node
of the first kind, make sure that the Identifier was declared to be a variable or
a function. If not, mark the node root’s attribute ok to be failed. This will prune
this (incorrect) alternative from the associated ambiguity node. The other cases are
similar. Note that the table lr_table_in is automatically propagated from Left to
Right.

Figure 4: AG-driven disambiguation

In our Figure 3 example, each ambiguity branch of the ambiguity will be evaluated. The inter-
pretation of printf is one such ambiguity according to the rules of Figure 4. During the traversal
of thestdio.hpart, printfwill be recorded inlr_table_in as declaring aFunction; during
the traversal of the main part, the disambiguation rules of Figure 4 will therefore flag as valid the
derivation Identifier → PrimaryExpression, and invalid the one with Identifier →
EnumerationConstant because the lookup for printf inlr_table_in will not match the
Enum kind.

A small auxiliary tool will prune all the invalid options afterward, yielding a unique parse
tree. This parse tree (which includes all the details about the layout, comments, exact characters
that were used etc.) is then simplified into a much more compact AST (freed from the layout,
lexical details, etc.).

3.4 Transformations

The C-Transformers project, and its peer C++-Transformers, is somewhat ill-named, since it does
not directly address transformation; rather it is a workshop for implementing C program transforma-
tions. Any transformation system is suitable, provided it supports our format for ASTs.

Amongst the possible engines to express transformations, we particularly like the Stratego
programming language [1]. Because Section 4.3 demonstrates a transformation written in Strat-
ego, it is worth being described here.

In Stratego every piece of data is a term, i.e., a (abstract syntax) tree. Conditional rewriting
rules specify how a particular tree matching a specific shape should be transformed. A specific
transformation, such as translating extended C to C, involves several rewriting rules to apply at
different places of the tree, and in a specific order. Rewriting strategies provide an elegant means
to control when and where to apply rewriting rules. In addition, a rich set of operators allows to
build arbitrarily complex transformations (i.e., strategies) from simple atomic ones.

Many transformations are sensitive to the static scoping rules of the target language. For in-

6



stance α-conversion, the renaming of variables, must assign different names to the same identifier
occurring in different scopes. Dynamic (rewriting) rules handle scopes gracefully: they can be
created at any time but have their existence bound by scopes. To perform α-conversion, traverse
from left to right, and for each variable declaration create a rewriting rule that maps the identifier
to a fresh one. Entries and exits of scopes trigger the creation and destruction of the associated
dynamic rules. This is much simpler than having to write generic (static) rules dealing with tables
of symbols.

Finally, thanks to a tight integration with SDF, Stratego features concrete syntax: although
rewriting rules do transform abstract syntax trees, rules can be written in the target’s language
concrete syntax. Examples of Stratego are given in Section 4.3.

In the Figure 3 example, a transformation could be performed on the AST, e.g., replacing the
call to printf by a call to the faster fputs function.

3.5 Pretty-Printing

Pretty-printing, i.e., conversion from an abstract syntax tree to concrete syntax (text), is performed
by Generic Pretty-Printer (GPP) [10], driven by language specific tables. These tables are generated
from the SDF grammar, with embedded handcrafted directives to improve the result.

In the Figure 3 example, the final pretty-printed result of our chain would be very different
from its input since instead of #include <stdio.h> one would have the whole content of the
file. This issue is discussed in Section 6.

4 Case Study

C-Transformers provides a simple and powerful framework to transform C programs. To demon-
strate its capabilities, we extend C into ContractC: C with “design by contract” support. The
C-Transformers framework will be used to compile ContractC down to ISO C.

4.1 Design by Contract

Design by Contract is a software design and implementation methodology invented and pro-
moted by Bertrand Meyer for his language, Eiffel [23]. The starting point is to consider that a
function call involves two parties, the supplier and the client. The signature of the function is a
(weak) form of a contract:

• the types of the incoming argument(s) are requirements put on the client (the caller) by the
supplier (the callee);

• the type of the outgoing result(s) are guarantees given to the client by the supplier.

A successful function call requires that both parties respect their part of the contract. Statically
typed programming languages enable statical checks, i.e., at compile time, while dynamically
typed languages delay the verification until execution time. Note that in addition the signature
of the function is a (weak) form of documentation. For instance, the signature of the square-root
function, double -> double, specifies that it requires and returns a floating point number.
Such information is always provided either in the documentation, or in comments, in dynamically
typed languages.

Design by Contract extends signatures to include predicates between incoming and outgoing
arguments. For instance the square-root function requires a non negative argument (a precondi-
tion) and ensures that the square of its result equals the incoming argument (a postcondition).
Support for and use of pre-/postconditions dramatically improve the safety of programs, in partic-
ular when reusing components [12] — as an extreme example, Eiffel promoters claim that design
by contract could have avoided the failure of the Ariane 501 launcher [14].

7



double sqrt (double r)
precondition
{

r >= 0.;
}
postcondition (result)
{

result >= 0.;
equal_within_precision (result * result, r);

};

Figure 5: An function declaration example in ContractC

module PrePostConditions

imports Declarators

exports
sorts

DirectDeclarator ReturnValueDeclaration
Assertion PostCondition PreCondition

context-free syntax
DirectDeclarator "(" ParameterTypeList ")"

PreCondition? PostCondition? → DirectDeclarator

This rule is based on [9, Section 2.3].

Figure 6: Extension of the C grammar to support pre- and postconditions

To demonstrate the use of C-Transformers, in the following we add support for pre- and
postconditions to the ISO standard of C, based on the proposal of [9] for a C++ standard extension.
The resulting language is here named ContractC.

4.2 Syntax

The adaption of the C++ extension proposal [9] to C results in adding support for pre- and
postconditions to function declarations, not implementation. Indeed, since pre- and postconditions
are pieces of formal documentation, they belong to the header file, which corresponds to the
interface of a module in C parlance. Nevertheless, when compiled, the contract is to be integrated
in the implementation of the function: it is the callee which will ensure that pre- and postconditions
are properly met.

See Figure 5 for an example of ContractC: a set of pre- and postconditions put on the function
sqrt.

To implement ContractC in Transformers, the first step is to extend its grammar with an
additional rule for function declarations: Figure 6.

4.3 Compilation to C

The ContractC compiler (towards C) translates the contract into code run by the supplier — the
function called. As an example, the ContractC declaration of Figure 5 transforms the regular C
implementation of Figure 7 into that Figure 8. Writing such a transformation in Stratego is simple:
see Figure 9, Figure 10, and Figure 11.
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double sqrt (double r)
{

return _libc_sqrt (r);
}

Figure 7: A C function implementation

double sqrt (double r)
{

double result;
{

assert(r >= 0.);
}
{

result = _libc_sqrt (r));
goto end;

}
end:

{
assert (result >= 0.);
assert equal_within_precision (result * result, r);

}
return result;

}

This is the final result, when the contract specified in the function declaration (Figure 5)
is inserted in the body of the function implementation (Figure 7).

Figure 8: A C function implementation with contracts installed

prepost = io-wrap(alltd(FunDecl <+ Contract))

In a single top-down traversal (alltd), for each function declaration with contract
create a rule to install the contract, or for each function definition, install the contract.

Figure 9: The top-level of the transformation

FunDecl:
Decl|[ ret fn (args) pre post ; ]| ->
Decl|[ ret fn (args) ; ]|

where
rules (Contract :

FunDef|[ ret’ fn (args’) cpstm ]| ->
FunDef|[ ret’ fn (args’) cpstm’ ]|

where <transform(|ret’, pre, post)> cpstm => cpstm’)

Each function declaration with a contract must be rewritten without, and create an
additional instance of InstallContract dedicated to the current function name fn.

Figure 10: Handling a ContractC function declaration
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InstallContract(|as1, as2, type, res):
CmpdStm|[ body ]| ->
CmpdStm|[

{
type res;
{

as1
}
body’

end:
{

as2
}
return res;

}
]|

where <alltd(ReturnToGoto(|res))> body => body’

Installing the contract takes more code to take several details into account: pass
conditions to assert, gather the return type to declare the result variable, handle
possible name clashes with its name, replace return with assignment-and-goto etc.
Ultimately, once converted the pre-/postconditions assertions as1/as2, the return
in the body, and the name of the result variable res, the function declaration is
transformed.

Figure 11: Installing the contract in the function implementation

5 Discussion

To be effective, the C-Transformers tool chain must be easily extensible, i.e., every component
must be easily configurable. In other words, featuring modularity is not merely satisfying with
regards to current programming mottos, it is a must-have for every single tool involved in the
chain.

In order to support modularity, the parsing technique virtually needs to support the full class
of context-free grammars — for usual proper subclasses such as LL and LR are known not to be
stable under union. The scanner-less generalized LR parser, SGLR supports the full context-free
class of grammars — and actually some more. In addition SDF provides powerful and convenient
means to compose modules. The built-in support for (possibly ambiguous) AST construction also
enable to focus on actual issues, instead of having to code lengthy AST support classes or to fight
parser conflicts.

The disambiguation also requires modularity in its strongest sense: a simple disjunctive “union”
of disambiguation tools won’t suffice. For instance, the sample ambiguities cited in the introduc-
tion, (a) * (b), obviously affect the pre- and postconditions. Not only do we need to be able to
add new disambiguation rules to those of the host language, but we also need to intermix them
— just as freely as for SGLR modules. Attribute grammars handle this gracefully, being modular
by nature, and better yet, sharing the exact same definition of modularity as the grammar itself.

The transformation needs to focus on specific spots; it is not concerned by most of the nodes.
Stratego provides generic traversal operators that not only relieve the programmer from tedious
work, but also guarantee the independence of the transformation from changes in the host
grammar. In other words, Stratego also meets the modularity requirements.

Finally the pretty printing engine needs to support plug-ins to express the visual structure of the
additional constructs. While GPP does support such add-ons, we find embedded pretty-printing
rules more convenient. Being bound to the grammar, they share its modularity in the exact same
sense, like attribute rules do.

If any of these components were to lack modularity support, or even slightly deviates from
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Type Length Comment
Grammar 6 rules Pre-/postconditions, function declaration

Disambiguation 6 lines Same as for regular function declaration
Pretty Printing 4 rules Pre-/postconditions, function declaration
Meta-variables 3 rules Pre-/postconditions, assertions
Transformation 60 lines 20 of which obey C formatting rules

Figure 12: ContractC implementation effort

the standard set by SDF and SGLR, then the transformation might become undoable, or would
require massive infrastructure. The result would also become extremely fragile: any change in the
host grammar or in the extension can possibly require a full overhaul. C-Transformers features
the full concept of modularity, allowing concise and robust implementations of transformations.

Although still young, C-Transformer is already very usable: Thanks to modularity the imple-
mentation of ContractC is quite straightforward and very compact. The volume of the full project
is given in Figure 12.

The whole processing chain is composed of several steps, each one adding its own overhead
to the actual transformations.

Preprocessing We run a home-grown preprocessor, equivalent to POSIX cpp, but producing
slices of the input.

Parsing The execution of SGLR on each slice.

Concatenation All the different slices are pasted together.

Evaluation The attributes are computed on the parse tree.

Pruning Removal of the alternatives of ambiguities flagged as incorrect by the evaluation.

Checking Making sure no ambiguity remains.

Implosion Conversion to a suitable form for transformations (construction of an AST from the
parse tree).

Transformation Compilation of ContractC to C.

Pretty-printing The AST is converted back to a concrete syntax program.

Three examples were chosen to measure the contributions of each step, see Figure 13.
The great variation of the figures is due to the fact that these samples are quite small, the last one

being the only significant example. Then the whole processing is dominated by the conversion of
the parse tree in an AST. We conclude that the cost of our technology AG-driven disambiguation
is negligible, and there is not even reasons to try to optimize it further. Unfortunately we also
conclude that, currently, parsing ambiguously grammars as ambiguous as those of C and C++ and
then disambiguating is somewhat prohibitive.

We have been told that future versions of SGLR might perform the implosion during the
parsing. Maybe some of the cost will be lowered, but unless SGLR is also able to run AG-
driven disambiguation, it will still have to build massive (ambiguous) ASTs that will be pruned
afterward.
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Queens Hello, World Lemon
Lines of code 76 448 3550

Duration s % s % s %
Preprocessing 0.11 15 0.13 1 0.18 0

Parsing 0.09 12 2.41 25 8.11 4
Concatenation 0.01 1 1.3 13 2.73 1

Evaluation 0.12 16 1.14 12 14.16 6
Pruning 0.08 11 0.8 8 8.15 4

Checking 0.01 1 0.2 2 1.53 1
Implosion 0.13 18 3.15 33 179.5 81

Transformation 0 0 0.02 0 0.35 0
Pretty-printing 0.18 25 0.53 5 6.95 3

Total 0.73 100 9.68 100 211.66 100

“Queens” is extremely short and includes no header. “Hello, World” is presented in
Figure 3. “Lemon” is a parser generator that fits in a single C file.

Figure 13: Running time of the C-Transformers chain

6 Conclusion

We have presented modern program transformation techniques using C-Transformers as an
example. To demonstrate the intrinsic power of these techniques, we implemented an extension
to ISO C in an extremely reduced number of lines without sacrificing readability. We have
emphasized how essential modular and language generic tools are.

In the future, several issues deserve more work.
The current AG system works perfectly well with very satisfying performance, but many im-

provements are expected. The most notable addition will be... additional syntactic sugar to cover
the most common idioms we find during the implementation of semantics driven disambigua-
tion filters: currently the attribute rules are lengthy and repetitive. Up to date AG engines, e.g.
Utrecht University Attribute Grammar System (UU-AG) [2], abstract attributes from production
rules, which allows shorter and more readable declarations. Because our AGs are written in SDF
and transformed with Stratego/XT, the methodology described in this paper can be applied to
them.

The most severe issue with C-Transformers is that it “disrupts the programming style” [33]: it
processes and produces preprocessed C, i.e., with all the #include and other #define expanded.
For instance, the simple “hello world” 4 liner program (see Figure 3) actually contains 450 lines
of code coming from #include <stdio.h>. Not only does this clutter the result, it also makes
it non portable. Indeed, much of the portability of C is handled by system headers that make
wide use of operating system and/or architecture-specific code. This issue can be a show stopper
to some possible applications of the C-Transformers project, for instance when users wish to ship
the product but not the producer, or when the result is meant to be maintained by humans — as
opposed to pre-processing phases. This limitation is a deliberate temporary choice: our limited
resources were assigned to address the disambiguation first, and then programming style will be
preservable. To cope with this issue we planned to develop a reversible preprocessor that embeds
annotations in the AST to allow their reversal, very much in the spirit of Proteus project in fact
[33].

Once C completely tamed, we will focus (again) on C++. C++ inherits ambiguities from C such
as (a) * (b), but it also adds ambiguities of its own, even when identifier kinds are known.
For instance, let T be a type, depending on the context T(a); denotes either the declaration of the
variable a, or a call to the constructor T::T(a). The template mechanism makes the process
complex ad nauseam, requiring not only to carry symbols in tables, but also arbitrarily long ASTs!
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Our C++ grammar is complete and the disambiguation filter is almost completed. In a foreseeable
future, also making use of the reversible preprocessor, developing useful transformations with
C++-Transformers should be possible.
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