
C Versus Fortran-77 for Scientific

Programming

TOM lUACDONALD

Gray Research, Inc., Eagan, MN 55121

ABSTRACT

The predominant programming language for numeric and scientific applications is

Fortran-77 and supercomputers are primarily used to run large-scale numeric and

scientific applications. Standard C* is not widely used for numerical and scientific pro­

gramming, yet Standard C provides many desirable linguistic features not present in

Fortran-77. Furthermore, the existence of a standard library and preprocessor elimi­

nates the worst portability problems. A comparison of Standard C and Fortran-77 shows

several key deficiencies in C that reduce its ability to adequately solve some numerical

problems. Some of these problems have already been addressed by the C standard but

others remain. Standard C with a few extensions and modifications could be suitable for

all numerical applications and could become more popular in supercomputing environ­

ments. © 1993 John Wiley & Sons, Inc.

1 INTRODUCTION

Standard C and Fortran-?? are the two most

prevalent languages used on supercomputt'r,;. A

comparison of Standard C and Fortran-T! shows

that C contains a wider variety of data types, elo­

quent sequence controL a standard preprocessor.

wider variety of memory allocation options, com­

munication with the program's environment. and

additional operators not present in Fortran-77.

~lany desirable linguistic features provided by

Received February 1992

Revised :\o,·ernber 1992

* The term Standard C refers to the standards A:\Sl
X3.159-1989. Arneriean :\ational Stamlard for Information
Systems-Programming Language-C. approwd December 1-t.
1989 [t:, and the technically identical ISO/IEC 9399:1990.
Programming Languages-C. approved approximately 1 year
later.

© 1993 by John Wiley & Sons. Inc.

Scientific Programming. Yo!. L pp. 99-1 H (199:2)

CCC 1058-92-t-t/93/0:20099-16

Standard C are not present in Fortran--::. For­

tran's major strength i~ its optimization potential.

High performance capability is as important as

any language featurt' in the numerical and scien­

tific arena, and this is especially true for supn­

computing environment~. Additional a<h-antages

of Fortran-77 are support of a complex data type.

adjustable arrays. a,;,.;umed size arrays. and in­

trin~ic functions for the standard math function,.;.

The following is an analysis of the strengths and

weakne~se~ of Standard C and Fortran-77 from a

numerical programming perspective. The intent is

to provide useful information to someone trying to

decide which programming language to use for

numerical and scientific programming. There i~ a

Fortran-90 standard that is not considered in this

article because. unlike Fortran- "77. it does not vet

have a successful history against which to com­

pare. There is also a discussion of enhancements

being considered by committee X:3J11.1 the l\u­

merical C Extensions Group (l\CEG). Their goal is

to produce a quality technical report proYiding

99

100 MACDO.':ALD

implementers with a formal definition of several

new features. These features will enhance C's

support for numerical and scientific program­

ming, and will be upward compatible with the C

standard.

2 THE ADVANTAGES OF C

2.1 Data Types

Standard C defines a richer set of data types than

found in the Fortran-77 standard. Scalar types

not present in Fortran-?? include unsigned inte­

gers, pointers, and enumerated constants. The

follo-wing is a list of integer types in Standard C

(though there are other ways to declare these

types):

signed char unsigned char
signed short unsigned short
signed int unsigned int
signed long unsigned long
enumeration l_lpe

An enumeration type provides a mechanism for

specifying named integer constants. The following

example shows an enumeration type with four

members:

enum color { red, green, blue, none "" -1 };

The enumeration type also provides an automatic

numberin_g facility for each uninitialized named

member. The value of member red is 0, member

Example 1

struct s_tag {

green is 1, and member blue is 2. Furthermore.

the automatic numbering can be restarted by as­

signing a specific value to a member. Thus. mem­

ber none starts the sequence over with the value

-1. Yariables can be declared to have an enumer­

ation type and assigned the values of the enumer­

ation members.

enum color pixel = none;

Fortran-77 prm·ides only a single signed integer

type. l\amed constants can be specified in For­

tran-?? with the PARAMETER statement. but the

useful automatic numbering feature is not accom­

modated.

PARAMETER (NAME = 7)

l\o pointer type is found in Fortran-77, which lim­

its the expressiveness of the language but also

turns out to be an aid to optimizations. The se­

mantics of Standard C pointers introduces more

aliasing, that is hidden from the compiler. ~Iany

optimizations depend on the compiler's ability to

identify aliasing. Aliasing issues are explored in

detail in section "4.4 C Aliasing." Standard C

pointers provide easv access to dvnamicalh· allo­

cated memory and a~e discussed in more d~tail in

section '·2.6 ~lemory Allocation.,. Standard C

pointers turn out to be a blessing and a curse.

They provide expressive power but at consider­

able cost in lost efficiencY.

Standard C provides multiple aggregate types

also. There are structures. unions. and arravs. A

structure describes sequentially allocated ~~em­
bers with various types.

double memberl;
enum color member2;
int *member3;

I* floating-point type *I
I* integer type *I
I* pointer type *I

};

A union describes an overlapping set of members.

Unions appear to be very similar to structures, but

permit the same memory locations to be viewed

with the different types of its members. Fortran-

77 defines only one aggregate type, the array. The

Fortran EQUIVALENCE statement is less general

than a C union, but does allow overlapping to be

defined.

Standard C's typing mechanism can be used to

derive other more complicated types such as ar-

rays of structures. structures containin~ array

nwmhers. pointer,.; to structure,.;. pointer" to ar-

Example 2

/* pointer to function with one double

parameter that returns a dobule */

double (*ptr_to_func) (double) = sqrt;

double x;

C YEHSLS FOHTR\:\-7? 101

rays. and pointers to functions. The following ex­

ample wws a pointer to a function.

x = ptr_to_func(2.3); I* indirect call through a pointer */

Standard c· ~ method of con,.;tructin~ deri,·ed

types prm·ides a powerful capability for data rep­

re,..;t>ntation,..; that i,..; not pt>rmitted with Fortran­
-r-r

The physical layout of memory can be spt>cified

to a fine ~ranularity with Standard C"s structure:;.

lnte~ral memlwr:'i can be declared to occupy an

arbitran· number of bits within a memon· word . .
(callt>d a bitfiekn allowing table layouts to be

mapped preci,.;ely and portably. This control

makes it much eaiiit>r to conserYe memmT in a

standard portable manner.

2.2 Type Synonyms

Standard C supports the declaration of a synonym

for all declarable type,.; with thetypedefkeyword.

This allow,.; a complicated type to be reprt>sented

with a sn1onnn.

Example 3

typedef struct

double real, i, j, k;

} QUATERNIONS[lOO]; I

QUATERNIONS a, *b;

Example 3 dt>fines an identifier QUATERNIONS

that is a synonym for the type. array of 100 struc­

tures containin~ four members. each with type

double. The variable a has the type QLA TER.\"I-

0.\"S, while variable b has the type pointer to

QUA TER.\JO.YS. This ability to encapsulate a

complicated concept with a single meaningful

name is very powerful, and an aid to both porta­

bility and maintainability. A single typedef dec-

laration can be changed (from say. an array of

100 elemt'nb to an array of 1,000 elements) and

t>very va1iable declared with that typedef name

is automatically changed. This expressive typing

mechani,..;m is a definite advantage that Standard

C has over Fortran-::.

2.3 Flow of Control

Standard C contains eloquent sequence control

,..;tatements alon~ with nested scopes that facilitate

the u,.;e of structured programming techniques.

Standard C contains if, if-else, for,

while, do-while, and switch statements.

This cadre of sequence control statements is com­

plemt'nted with the following statements that

nicely alter tht> flow of control through a program:

1. continue-branch to the top of the inner

loop

2. break-exit a loop or switch statement

:3. return-exit from a function.

Finally. Standard C supports recursi,·e function

calls.

Fortran-"?Ts primary flow of control state­

ments are limited to IF, IF-ELSE, GOTO, DO, and

RETURN. The proliferation of statement labels in

Fortran programs leads to highly unstructured al­

gorithms. Control flow constructs such as the

Arithmetic IF Statement and Assigned GOTO are

inherently unstructured, and often produce diffi­

cult to understand algorithms.

One advantage that Fortran-77 does have is a

DO statement that can be statically analyzed at

compile time. This allows the computation of the

loop's trip count (the number of times the loop

t 02 :\1:\CDO:\ALD

iterates) to be clone exactly once in a straightfor­

ward wav.

The for loop in Standard C does not have the

same guarantees because:

1. ~Iodification of the loop control variable i,;

allowed inside the loop body

Example 4

for (i=O; i<n i++)) {

a (i] b [i] + c [i];

2. Loop limit expressions are not nece,;sarih·

static

3. Trip count can be data dependent

The following show examples of loops who,.;e trip

count cannot be computed prior to executinl! the

loop.

i =ix [i]; I* modify loop control variable *I
n =iy [i]; I* modify loop limit expression *I
p = iz [i]; I IPI might alias IiI or

}

I* trip count is data dependent *I
for (p = head; p '= NULL; p = p->next l

p->data++;

}

Standard C semantics requires analysis of the en­

tire containintr function to compute a loop"s trip

count. Although trying to dPtPrmine if the trip

count can be computed prior to entering the loop

requires con,;iderable analysis. it is not an insur­

mountable problem. Iris not too onerous to adopt

a codinl! style that allows the compiler to precom­

pute the trip count. In the final analysis. the rich

flow of control mechanisms available with Stan­

dard C is another one of its advantages.

2.4 C Preprocessor

Standard C has a prPprocessor that permits

source code inclusion. conditional source ,,xclu-

In I *I

sion. and macro definition,;. Source inclu;;ion i,;

accomplished through the prepn>ces:-;ing directi\·e

#include. which cmbes the sow-ce line contain­

ing the directive to be replaced with the contenh

of the specified file. Sourct' inclu;;ion pt>nnih a

standard set of declaration,; to be included in all

compilation unih 'i.e .. sourct· files allm\·ing an

interface to a set of library function,;; tn he imple­

mentation dept>ndt>nt yet hiddPn from thP pro­

f!rammer.

#include "common.h" I* common library interface *I

Conditional soun·p exclusion allow;; source

code to be tailored to specific enYirnnments. The

#if. #el if. #else" and #end if directiye;; pro­

vide this conditional sourct' exclthion capability.

Example 5

The following exarnplt> ;;hows hmY to f!llcll"antee

that an intef!nd tyfw ha,; more than 16 l>it,; of prl"'­

cision.

#include <limits.h> see section 2.5 for limits.h discussion

#if INT_MAX = = 32767 I* 16 bit int *I
typedef long data_type;

#else
typedef

#end if

I* > 16 bits
int data_type;

.\lacro definitions allow a complicated operation

or set of statements to be defined with a function-

*I

C \ERSCS FORTRA:\1-77 103

like description that enhances portability and

maintainability. The following macro definition:

#define ROOT(a, b, c) (b + sqrt (b*b - 4*a*c)) I 2*a)

is an example of how a cryptic expression can be

f!iven a meaningful name through a macro defini­

tion. SimilarlY. access to critical data o;tructures

can Le encapsulated with macro definitions that

improve the flexibility and comprehensibility of

the program. The following example:

#define denom(X, I) (X->table[I).denom)

allows a complicated data reference to be given a

meaningful name that avoids using many long

cryptic expressions. In all fairness to Fortran-::.

it does permit the declaration of statement func­

tions that proYide a subset of the C macro defini­

tion capability. The presence of c· s built-in pre­

processor is a tremendous asset to writing both

portable and maintainable programs.

The C preprocessor is often Yiewed as an ad­

Yantage by Fortran programmers ro the extent

that C preprocessing directiYes and macros are

sometimes inserted into Fortran programs. How­

ever. the C preprocessor is not a part of the For­

tran-:: standard. The C preprocessor can easily

cau"<' problems for Fortran programs l)y expand­

in!! macro" such that a line is longer than 72 char­

acters. not recognizing Fortran comments. elimi­

nating sonwthing that looks like a C comnwnt.

and affecting the compiler· s ability to print the

correct line number when issuing a diagnostic.

The C preprocessor is well defined for C but not

necessarlly for other languages.

2.5 Standard Library

Standard C defines a standard set of liLrar\' fum:­

tions that must be supported by all conforminf!

implementations. The presence of this extensiYe

library is an aid to de,eJoping portable prof!ram;;.

The library consists of a :'.et of functions. typedef

names. and macro definitions that are wouped

according to functionalitY and declared in "tan-

dard header files. The standard header files are

made amilable by usinl! the #include prepro­

cessing directive. The standard headers are:

assert.h
ctype.h
errno.h
float.h

limits.h
locale.h
math.h

setjmp.h
signal. h
stdarg.h

stddef.h
stdio.h

stdlib. h
string.h

time.h

generating program diagnostics

te,.,ting and mapping characters

recording error conditions

floating-point characteristics

sizes of integral types

supporting international locales

tran,.,cendental mathematical

functions

nonlocal jumps

exception handling

processing functions with a

,·ariable number of arguments

common definitions

input and output

general utilities

manipulating character arrays

manipulating time

This rich :'.et of functions prm·ides an excellent

interface to the underlying C implementation and

is another adnmtage of Standard C. The imple­

mentation is not required to actually proYide ex­

ternal source files for the standard headers. To

improve compile time they can be special binary

encoded files or even built into the irHPrnals of the

compiler. Fortran-:: prmide,; a limited set of

standard imrinsic functions that are primarily

mathematical functions. Fortran-77 does prm·ide

two ,·erv useful intrinsic functions that Standard C

does not: MAX and MIN.

2.6 Memory Allocation

Some of tlw mo"t useful lillraiT functions are the

dynamic memory support functions declared in

the stdlib. h header. The standard functions

malloc. calloc. realloc. and free define a

portable way to dynamically manage :ipace ao;so-

104 !\L\CDO:\ALD

ciated with a system heap. Heap space can be

allocated with malloc and calloc, the size of

allocated space can be increased or decreased

"\\ith realloc, and this space can be given back

to the heap manager with free. Standard C

pointers are used to reference dynamically allo­

cated memory. In addition to dynamically allo­

cated heap space, Standard C permits variables to

be declared with global static, local static, or local

stack space. Global variables can be either de­

clared to be externally visible to other compilation

units, or strictly local to the containing compila­

tion unit.

Fortran-77 only supports global COMMON

blocks and local variables. The Fortran-77 stan­

dard does not specify ic local variables are static or

stack allocations. However. the SAVE statement

allows variables to preserve their value across calls

to the same function. The absence of a portable

dynamic storage management system is a serious

deficiency in Fortran-T?. Often. vendors who pro­

vide scientific and numerical library package;.;

have to provide awkward interfaces that require

the programmer to specify additional argument,;

for temporary storage.

The wider variety of storage allocation methods

available in Standard C is a definitive advantage.

This makes Standard C more portable and con­

venient to use for many types of applications.

2.7 Additional Considerations

Another advantage that Standard C has over For­

tran-77 is the abilitv to directlv communicate with . .
the program ·s environment through the argv and

argc parameters of the main entry function.

Example 6

main (int argc, char *argv[]J {

/* argc: number of arguments */

/* argv: array of argument pointers */

The ability to pass arguments into a program at

start-up time allows communication with the em-i­

ronment in a portable way. Fortran-77 does not

provide any similar mechani,o;m. Either non port­

able features or indirect methods im·oh·ing source

files must be used for thi,; kind of communication.

Standard C ha,; explicit short circuit operators.

The && and II operator;; control the evaluation of

the second operand.

I* evaluate •right' only if •left' is true *I

left && right

I* evaluate •right' only if •left' is false *I

left II right

Because Fortran-77 does not mandate short cir­

cuit evaluation. a portable program cannot rely on

it.

Standard C has bitwise operators that manipu­

late the bits of integral values.

• one's complement

• binary and &

• binary or I
• exclusive or

• shift right >>

• shift left <<

Fonran-77 does not have any bitwise operators.

In many ways Standard C has clear advantages

over Fortran-77 that make problem solving easier.

3 STANDARD C ENHANCEMENTS

It should be noted that Traditional C (i.e .. C as it

exi:=;ted prior to the Al\"SI and ISO standards) was

used primarily for ;-;ystems applications. and the

language's developmt>nt reflected the needs of

;-;ystems programmers. Because C has grown in

popularity. the strengths of the language make it

appealing for different types of applications. The

C standard has been an aid to portability. There

are already many production quality Standard

conforming C compilers available for a variety of

svstems. There are several enhancements in the C

standard that make numerical programming eas­

ier. These enhancements are honoring parenthe­

ses. defining additional floating-point arithmetic.

defining a standard mathematical library, and de­

fining a set of floating-point characteristics.

3.1 Honoring Parentheses

One of the more surprising features of Traditional

C is that parentheses are not honored for certain

operators. Traditional C compilers may evaluate

the following expression:

(a + b) + c

as any one of the following:

a + (b + c)

(a + c) + b

(a + b) + c

The Traditional C compiler is free to reorder the

evaluation of orerators that are both commutative

and associative even in the presence of parenthe­

ses. Although the intent was to permit optimiza­

tions. it produces problems when trying to control

the amount of relative error accumulating in cer­

tain floating-point orerations. Cnlike the mathe­

matical real numbers, floating-point addition is

not associatin· because the infinite amount of in­

formation contained in a real number can onlv be

arproximated in a finite floating-point format.

Thi,;; is demonstrated by the following conuived

example. compiled with a Standard C Compiler

(SCCJ, and run on a Cray Y-~IP computer.

Example 7

#include <stdio.h>

double a, b;

double c = 524288.0;

main (J

a = c * (1 << 48J;

b -a;

printf("(a +b) + c

printf("a + (b + c1

!* 524288 * 2**48 */

%f \n" (a+bi +c);

%f \n", a+ (b+ci 1;

The output from this program i,;;:

(a + b) + c = 5:2-±288.000000

a + (b + c) = 0.000000

The numericallv accurate an,;;wer. 52-±288. is ob­

tained when the operation a+b is performed first.

C VERSUS FORTRA:'I-77 105

Thus there is a demonstrable need to control the

order of evaluation with floating-point arithmetic.

The only solution available in Traditional C is to

store intermediate results in explicit temporaries

(i.e., tmp=a+b). Thus, Traditional C imposes the

burden of writing a simple statement such as:

x = (a + b) + (c + d);

in an unnatural and more complicated way with

the following explicit temporaries:

tmpl = a + b;

tmp2 = c + d;

x = tmpl + tmp2;

A numerical programmer wants to be able to ex­

press mathematical concepts and needs to have

parentheses honored. The C standard now re­

quires an implementation to honor parentheses.

This change was made solely for the purpose of

making C more suitable for numerical applica­

tions. Fortran has always required parentheses to

be honored. and the X3J11 committee that de­

fined the C standard greatly enhanced C's useful­

ness for numerical programming by placing the

same requirement on C implementations.

3.2 Floating-point Arithmetic

Another deficiencv of Traditional C is the exis­

tence of only one type of floating-point arithmetic.

Traditional C required all floating-point opera­

tions to be performed in type double. The type

float existed only to conserve memory. All oper­

ands of type float were converted to type double

before any arithmetic was performed. Clearly. the

bias in Traditional C was toward integer arith­

metic where arithmetic was defined for the four

integral types int. unsigned int. long. and

unsigned long.

The presence of four types of integer arithmetic

is now complemented by three types of floating­

point arithmetic. The C standard defines three

floating-point types: float. double. and long

double. The new long double type must be at

least as precise and contain at least as much range

in the exponent as type daub 1 e. The restriction

that all operands of type float be conwrted to

type double before any operation is performed

has been removed. The implementation may con­

vert floating-point operands to a wider precision if

that is desirable, but this conversion is not re­

quired. This important change provides a variety

of arithmetic types from which to choose.

t 06 .\L-\CDO.'\ALD

However, these are not the same rules that are

present in Fortran-77. The C standard permits an

implementation to map all three floating-point

types on the same underlying precision and range.

Fortran-77 requires that variables with type DOU­

BLE PRECISION occupy twice as much storage as

variables with type REAL. The implication is that

DOUBLE PRECISION provides greater precision

than REAL although the Fortran-77 standard does

not explicitly require this behavior. Regardless of

what the Fortran-77 standard requires the mar­

ketplace demands that all Fortran vendors pro­

vide greater precision for DOUBLE PRECISION. It

is not clear that all C vendors offer the same sup­

port, which again reflects the traditional use of C

for systems programming. Finally, Fortran-77

does not allow floating-point operations to be per­

formed in a wider precision.

3.3 Standard Mathematical Library

One optimization not permitted in Traditional Cis

the ability to recognize standard transcendental

functions and perform them inline or through a

fast interface. Traditional C allows a programmer

to redefine anv function in the librarv. This means
0 0

a programmer is at liberty to define a function

named tan and expect all calls to tan to use that

function in place of the standard library function.

Actually, a function named tan need not compute

a tangent at all, but could, for instance, return a

value that represents the color tan. Therefore,

there is no way in Traditional C to tell at compile

time that a particular function is a standard math­

ematical function. This can significantly affect

performance of the standard mathematical func­

tions (e.g., pow, exp, log. sqrt, etc.).

The C standard actuallv reserves the names of

all standard functions. This means that if the

function tan is called in the presence of the

<math. h> header, the compiler can assume that

the standard library function is being called. This

allows the implementation to replace calls to stan­

dard library functions with inline code or special

intrinsic versions with fast entry and exit se­

quences. Furthermore, the C standard permits

functions to be called with "assignment compati­

ble" arguments, which is not allowed in Tradi­

tional C. This means pow can, for instance, be

called with either of its actual arguments being an

integral type. The following statement is required

to behave as if the 2 were converted to 2. 0 (in the

presence of <math. h>) before the function Iii

called.

y = pow(x, 2):

This permits pow (X, 2) to be evaluated inline

and to be treated as x**2 when appropriate.

However, the Standard C rules are not quite as

convenient as the Fortran-77 rules from the nu­

merical programming point of view. !\"one of the

standard transcendentallibran· functions are de­

fined to return either long do~ble or float val­

ues. Additional names, such as tanl and

tanf that accept and return value,; with types

long double or float. respectively, are resen·ed

by the standard for future use. However. this

means any usage of these functions in programs is

not currently portable. Even if they become porta­

ble in a future standard the number of names that

must be remembered is inconvenient at best.

Fortran-77 defines a generic intrin,.;ic function

TAN that accepts arguments for the types REAL.

DOUBLE PRECISION, and COMPLEX. Fortran's

rules are more convenient because the generic in­

trinsic functions are overloaded to accept argu­

ments with different types. Finally Fonran-77

provides an exponentiation operator, while C only

provides a library function. There is no analogy to

the expression i * *n because Standard C forces

the result to have a floating-point result. Thi,; can

result in a serious performance penalty for any

application that performs a reasonable amount of

integer exponentiation.

3.4 Floating-Point Characteristics

Another floating-point enhancement provided by

Standard Cis the <float. h> header. This header

contains a set of macro names that provide useful

information about the floating-point characteris­

tics of the implementation. The following is the li,;t

of names prmided for type float and a brief de­

scription of their characteristics:

FLT_ROUNDS

FLT_RADIX

FLT_MANT_.DIG

FLT_DIG

FLT_MAX

rounding mode for

floating-point addition

base of the exponent

number of base digits m

mantissa

number of decimal digits

in mantissa

maximum positive

representable number

FLT_MIN rnuumum positive

representable number

FLT_MIN_EXP exponent of smallest

positive number

FLT_MIN_lQ_EXP smallest netrative X such

that 1 ox 2:: FL T -~Ill\'

FLT_MAX_EXP exponent of largest

positive number

FLT_MAX_lO_EXP largest positive X such

that 10x ~ FLT_~IAX

FLT_EPSILON smallest positive X such

that X + 1.0 =f. 1.0

There are identical sets of names for type double

that begin with DBL instead of FLT and for long

double that begin with LDBL. These macro

names can be used to interrogate the system at

run time about useful floating-point characteris­

tics. These floating-point characteristics are de­

fined in terms of a floating-point model and the

model is defined in terms of the following parame­

ters:

s sign (±1)

b base or radix of exponent representation

e exponent (integer between emin and emax)

p precision (number of base-b digits in signifi­

cand)

/k nonnegative integer < b

A normalized floating-point number x(/1 > 0 if
x =f. 0) is defined by the following model:

f'

X = s X be X L /k X b-k, emin ~ e ~ ernax

k~l

The Fortran-77 standard does not define anv

way to portably interrogate for floating-point

characteristics. However. the definition of the

Standard C floating-point model was taken from

the Fortran-90 standard to maintain some com­

monality across language standards. The addition

of the floating-point model to the C standard is a

valuable aid to writing portable numerical and sci­

entific applications.

4 REMAINING NUMERICAL
C DEFICIENCIES

Although the C standard contains features that

make C more desirable for numerical program­

ming than its predecessors, there are still deficien-

C n.:RSLS FORTR:\.\"-?? 107

cies that are severe enough to tilt the scales in

favor of Fortran-77 for certain types of applica­

tions. The severest deficiencies still present in

Standard C are the absence of complex and vari­

able length array types, error reporting through a

globally modifiable object (errno), and perfor­

mance problems associated with unrestricted

aliasing. These important issues are being exam­

ined bv committee X3.J11.1 (1\"CEG) and must be

resolved in order to make Standard C a viable al­

ternative to Fortran-77 as a numerical language.

The following is a discussion of proposals to ex­

tend Standard C that are being considered by

committee X3.J11. 1.

4.1 Complex Arithmetic

The absence of a predefined complex type in

Standard C forces programmers to define their

own complex type. The most common way of ac­

complishing this is through a typedeL similar to

the following:

typedef struct { double re, im; } complex;

Although this allows declarations of objects with a

complex type. it inhibits the use of standard infix

operators such as: I. *, -. +. Instead functions or

macros must he defined to perform these opera­

tions. This means that using natural infix expres­

sions such as:

a = (b + c)* (d + e);

is not accommodated. Instead, programmers are

forced to write with a functional notation such as:

a= CMUL(CADD(b,c), CADD(d,e));

Substituting a functional notation for the elegant

infix operators makes the expression harder to de­

cipher. An application requiring extensive use of

complex arithmetic is difficult to code in C. Stan­

dard C needs a complex type. Fortran has sup­

ported a complex type for many years. An appli­

cation that requires a complex type if probably

going to be much easier to develop in Fortran-77

than in Standard C.

Adding a new type to a language is difficult to

get "right" because of the complexity associated

with closure on the language. Committee X3.J11.1

is attempting to define a complex extension to C

and has identified a number of issues that must be

108 MACDO~ALD

resolved before this language extension is ap­

proved. For instance, an obvious approach to this

extension is to add a new keyword. complex, to

typedef struct { double re, 1m; } complex;

and branding these programs as nonconforming

by carelessly adding a new keyword. is unaccepta­

ble. The solution is to add a new header com­

plex. h that introduces the new type. Existing

programs will not include this header and there­

fore \\ill not be affected.

Because there are three floating-point types.

there should be three corresponding complex

types. These types are declared: float complex.

double complex. and long double complex.

Complex constants are provided by introducing a

new suffix. i. A constant with an i suffix has a

complex type, the real part has the value 0, and

imaginary part has the value of the constant.

3. 14fi float complex

3. 14i double complex

3. 14Li long double complex

A complex constant with a non-zero real part is

created with an expression like: 2.3 + -i.5i (real

part is 2. 3 and imaginary part is 4 .. S).

With the addition of complex types in C. new

arithmetic conversion rules are needed to define

the result type of expressions that contain both

real and complex operands. For instance. if one

operand has type long double and the other op­

erand has type float complex. the rule,; ,.;lwuld

be such that the most information i'i preserved.

Therefore. the rules are enhanced to produce a

result type of long double complex. The proposed

rules are described below.

All types haw three type attributes called the

dimension, the formal. and the length. The di­

mension attribute specifies whether the values of

the type can be represented on a one-dimensional

line (i.e., real numbers) or on a two-dimensional

plane (i.e., complex numbers). The format attrib­

ute specifies whether the values of thf' type are

represented with an exponent part (i.e .. floating

numbers) or without an exponent part (i.e .. inte­

gral numbers). The length attribute specifit's how

many bits are used to represent the magnitude

and precision of the type. The values of each of

the language. permitting declarations of complex

types. However, too many programs already exist

that use:

these attributes are ranked, from highest to lowest

(Table 1). For example. complex ranks higher

than real for the dimension attribute.

.\lany binary operators that have operands of

arithmetic types cause implicit conversions of one

or both operands. The purpose of the conversions

is to yield a common format and length for the two

operands and the type of the result. These implicit

conversions of the operands are called the usual

arithmetic conversions.

The conversions shall preserve the ori¢nal

magnitude and precision of both operands except

that precision may he lost when an integral type is

converted to a floating type. This will occur if the

magnitude of the integer is too greater for the

mantissa of the floating type to represent exactly.

The rules for the usual arithmetic conversions are:

1. The dimension of the result type is that of

the higher ranking dimension of the oper­

ands.

2. The format of the result type is that of the

higher ranking format of the operand,.;.

3. If the format of the result type is floating.

then the length of the result type is that of

the higher ranking floating length of the op­

erand,;. If the format of the result t ypt> i,.,

integraL then the integral promotion,.; are

performed on both operands.

Complex library function,; need to be defined

for the complex type>i. HowPver. tlw lack of intrin­

sic functions in C is again a serious impediment.

Defining complt>x library functions ,;uch as sin.

cos. exp. log. pow. sqrt. and abs rPquire,;

Table 1. Values of Each Attribute

Floatinl! [ntegTal

Dimen~ion Format Length Lent-'lh

Complex Floating Long double L niiigned long

numbers numbers Sigrwd long

Real Integral Double Lnsigrwd int

numbers numlwrs Float Sigrwd int

three additional names for each function. For ex­

ample:

csinf

csin

csinl

complex sine for float complex

complex sme for double complex

complex sme for long double complex

This is in addition to sinf, sin, and sinl that

are alread\· reserved bv the C standard for float-. .
ing-point numbers. The proliferation of names i:;

extreme and again it is apparent that some form of

generic intrinsic name is needed.

4.2 Variable Length Arrays

Another deficiency that might inhibit the use of C

is the absence of variable length arrays. Because

arravs must be defined with a constant dimension.

there is no wa\· inC to declare an arrm· whose size . .
is dynamic. Function arguments that are arrays

are implicitly converted to pointers to the first ele­

ment before the function is callPd. This pointer

can he used to access all of the arrav elements. It

is easy to define a function that operates on single

dimensioned array,; of any length. However. a

problem still exists with multidimensional arrays.

For instance. a two-dimensional arrav is con­

verted to be a pointer to an array and the array

portion of the type must still contain a constant

dimen;;ion. This prevents a simple definition of a

function that perform:-; a matrix operation on arhi­

trarv ~I X !\" matrice,;. Idealh·. Standard C would . .
permit a declaration of a function performing a

matrix multiply to look similar to the following:

C \"ERSCS FORTRAI\-77 109

I* a = b x c *I
void mxm(int n, int m,

double a [n1 [m1 , double b [n1 [m1 ,

double c [n1 [m1) ;

The size of each array is dynamically determined

each time the function is called. Because an arrav

is always converted to a point to the first element

of the array whenever it is passed as a function

argument. the problems seems to exist only for

multidimensional arrays. However, the inability to

declare a one-dimensional stack arrav that is the

same size as a formal parameter suggests that this

feature is desirable for all array types that reside

on the stack. This would permit:

f(int n, double ary[n]) {

double tmp [n1;

I* . . . *I
}

to declare both the formal parameter ary and the

stack array tmp to be variably dimensioned arrays

with the same size. This approach is analogous to

the Fortran notion of adjustable and automatic

arravs.

Committee .'\.:3111.1 is looking at two proposals

that ext<>ncl C alon;.r these lines. The first approach

is the one described above. A. second approach

invoh·es the w;e of descriptors that are capable of

representing the address of the array and the size

of each dimension. For example:

void func (double (*desc) [? 1 [? 1) I* tentative syntax *I

declares a parameter desc that is a descriptor

with three pieces of information: addre:;s of the

bast'. lt>n;.rth of the first dimension. and len;.rth of

the second dimension. The type of parameter

desc is pointer to adjustable array of adjustahlt>

array of double. This descriptor can be used to

rPference arra,·,; whose dinwnsion sizes van· at ex-. .
ecution time.

Fo11ran- "?"? does not support variable len;.rth

stack arravs. It is a ven· common extension to . .
most Fortran implementations. howe,·er. One ad-

ditional advanta~t' available with Fortran-"?"?

arrays is the ability to specify both upper and

lower hounds for each dimension. C arra\·s art'

alwm·s zero based and the length of the dimen-

sion is specified (not the bounds:i. Some prob­

lems are more naturalh· vie\\·ed a;; non-zero

based.

For completeness sake it should be noted that

there is an existin~ solution to the variable length

array problem that is standard conforming. Es­

sentially. this solution inmlves using the library

function mall oc to dvnamicallv allocate an arrav . . .
of pointers. Each pointer element of the array

points to a different row of the matrix. This array

of pointers permits access to the entire matrix

through multiple indirection. The following exam­

ple dt>monstrates this technique by performing a

matrix multiply with dynamically allocated arrays

of pointer;;.

Example 8

#include <stdlib.h>

#define M 10

#define N 20

double a [N] [N] , b [N] [M] , c [M] [N] ;

void mxm(int n, int m, double **a, double **b, double **c);

main() {

double **pa, **pb, **pc;

int i;

I* allocate arrays of pointers *I
pa malloc(N*sizeof(double *));

pb malloc(N*sizeof(double *));

pc malloc(M*sizeof(double *));

I* setup array of pointers *I
for (i = 0 ; i <N; i + +) {

pa [i] a [i];

pb [i l = b [i l ;
I* pa[i] points to i-th row of a *I
I* pb[i] points to i-th row of b *I

}

for (i = 0; i < M; i + +)

pc[i] = c[i]; I* pc[i] points to i-th row of c *I

mxm(N, M, pa, pb, pc);

free(pa); free(pb); free(pc); I* free allocated arrays *I

} I* main *I

I* a = b x c (for arbitrary NXM shapes) *I
void mxm(int n, int m, double **a, double **b, double **c) {

inti, j, k;

for (i 0; i < n; i++)

for (j = 0; j < n; j + +)

a[i] [j] = 0;

for (k = 0; k < m; k ++)

a[i][j] += b[i][k] * c[k][j]; I* double indirection *I
}

} I* mxm *I

The following method describes the high level al­

gorithm used in Example 8.

1. The pointers pa, pb, and pc each point at

an array of pointers dynamically allocated

by malloc.

2. Each pointer element pa [i], pb [i], and

pc [i] is assigned to point at each row of

matrices a, b, and c, respectively.

3. pa, pb, and pc are passed to the function

mxm, which performs the matrix multiply

using double indirection.

-t. The memorv for the dynamical!~· allocated

arravs is freed.

The problems associated with this approach are

complexity and extensibility. The solution is nei­

ther intuith·e nor easv to understand. Finallv. the . .
solution does not extend easily to three or four

dimensions. The three-dimensional solution re­

quires an array of pointers each pointing at a two­

dimensional array of pointers, each pointing at a

row of the three-dimensional array. The complex­

ity grows rapidly with each new dimension.

4.3 The errno Macro

The errno macro expands into an !value expres­

sion that specifies a storage location that the C

environment modifies under exceptional condi­

tions. The worst problem with errno is its inter­

action with the standard transcendental functions

defined in the <math. h> header. Standard C
prevents any mathematical library functions from

causing a visible exception. That is. the program

cannot stop execution or pass control to a signal

handler. just because a mathematical function

cannot compute its result. There are two reasons

why these functions might not be able to compute

their results: domain error or range error. A do­

main error occurs if an input argument is outside

the domain over which a mathematical function is

defined (e.g., sqrt (-1)). When a domain erroris

detected the value of a macro named EDOM is

stored in errno. A range error occurs when the

result of a mathematical function cannot be repre­

sented as a double value (e.g .. pow (DBL....MA.X.

DBLMAX~). \n1en a rantre error is detected the

value of a macro named ERANGE is stored into

errno. and if the function result overflows the

function returns the value of another macro

named HUGE_ VAL. This means that in the expres­

siOn:

pow (xl, y1) * pow(x2, y2)

neither call to pow is allowed to cause an excep­

tion but the multiplication operator is! Typicalh-,

the value of HUGE_ VAL is large in magnitude,

meaning the multiplication can easily overflow

and cause an exception. This implies that the pre­

ferred technique is to use explicit temporaries as

follows:

errno =0;

tmp1 = pow(x1, yl);

C \"ERSLS FORTR\'i-T? 111

tmp2 = pow(x2, y2);

if (errno != 0) panic(errno);

This technique proliferates the unnatural use of

temporaries.

Another problem with errno semantics is that

it inhibits automatic vectorization and paralleliza­

tion of loops containing calls to math functions as

the following example demonstrates:

Example 9

for (i = 0; i < 100; i ++) {

errno = 0;

x(i] = sqrt(y[i]);

if (errno != 0) panic(errno);

}

This for loop cannot be vectorized because if. for

example, the seventh iteration contained a range

error then the first six values must have been fullv

computed before the error was detected. A pipe­

lined architecture does not necessarily guarantee

that the first six vector elements are fullv evalu­

ated if the seventh element produces an excep­

tion. ~ow if errno is omitted from the example.

as follows:

for (i = 0; i < 100; i++l {
x [i] = sqrt (y [i 1) ;

}

then the error condition goes undetected because

the sqrt function cannot fail. This affects both

automatic vectorization and parallelization. This

is such a limiting condition that vendors who pro­

vide high-performance systems are forced to pro­

vide two environments: a strictly conforming envi­

ronment that supports errno but does not

vectorize or parallelize loops containing calls to

math functions, and an environment that disasso­

ciates errno from the math library. ~lodern su­

percomputers can often times compute the results

faster than the code needed to detect the error

and update the memory location designated by

errno. Attempting to define error conditions in

terms of a globally modifiable object creates many

problems including severe performance degrada­

tions. Committee X3J11.1 is exploring a new

mathematical library definition without the pres­

ence of errno.

The Fonran-77 standard wisely chose to say

nothing about exceptional conditions. This allows

the compiler to optimize statements containing

calls to the transcendental functions in a standard

112 MACDONALD

conforming way. One of Fortran's greatest asset;;;

is its potential for optimization.

4.4 C Aliasing

Many numerical programs are computationally

intensive and benefit from optimizations. The op­

timization capability of a vendor's Fortran com­

piler is often times crucial to pnwiding access to

the full capabilities of the hardware from a high­

level language. This is especially true for super­

computer environments where compilers perform

automatic vectorization and automatic parallel­

ization. Supercomputer sales are largely based on

the performance the system can deliver.

C pointers present problems for optimizing

compilers because they introduce hidden aliases.

Essentially, whenever an object is modified

through a pointer, the compiler must make worst

case assumptions if it cannot determine which ob­

ject is being modified. Parallel processing is one

current approach being taken to increase perfor­

mance of many computationally intensh·e appli­

cations. The hidden aliases introduced by C

pointers make automatic compile time detection

of parallelism an intractable problem. Aliases

mu:;t be resolved before a compiler can determine

that a loop is safe to parallelize. For instance. it is

important to know how the elements of an array

are accessed and modified. Consider the following

loop:

Example 10

int a[5] = {0, 2, 4, 6, 8};

void f () {

int i;

for (i

a [i]

I* f */

1; i < 5; i++J

= a[i-1] + 1;

The semantics of this loop dictate the followin~

execution order that produces scalar results.

Example 11

01 #include <stdio.h>
02

03 int a [6] = {0, 1, 2,

04 int b [6] = {9, 8, 7,

05 int c [6];

a[1]=a[0]+1;

a[2]=a[1]+1;

a[3] =a[2] +1;

a[4]=a[3]+1;

Vectorization results require the orde-r of ac-cesses

and modifications to be rearranf!ed. The following

reordering allows several array elements to be ac­

cessed and modified simultaneouslY.

V[O] =a[O];

V[1] =a[1l;

V[2] =a[2];

V[3]=a[3];

a[1}=V[0]+1;

a[2] =V[1] +1;

a[3] =V[2J +1;

a [4] =V [3] + 1;

One common parallel optimization technique is to

simultaneouslv execute different iterations of a

loop on multiple processors. This mean;; the order

of references 10 objects occurring in different loop

iterations is undefined. The following results are

obtained for arrav a bv each method.

scalar results:
vector results:
parallel results:

0, 1, 2, 3, 4

0, 1, 3, 5, 7

indeterminate

The scalar re,;;ults are always correct because that

is what is dictated bv both the Fortran-77 and C

standards. Any parallelization that is performed

must preserw the scalar re!'iults. In f!eneral. if an

object referenced in a particular iteration of the

loop i,; al:so modified in a different iteration of the

loop. then automatic \·ectorization and parallel­

ization must somehow preserve the order of the

accesses and modilication!'i of that object. Exam­

ple 5 eontains the easily detectable aliasps a [i J
and a [i -1;. c\ compiler ean dt'tt>t't thi;; alias at

compile time and generate a scalar loop. Hnwen~r.

the following example demonstrates that C

pointers can introduce hidden aliases that are not

detectable at compile time.

3, 4, 5};

6, 5, 4};

C YERSCS FOHTRA:\-77 113

06

07 void blackbox(int *pl, int *p2, int *p3, int n);

08

09 main (l {

10 int i;

11

12 blackbox(c, b, a, 6); /*no aliases*/
13 for (i = 0; i < 6; i + +)

14 printf (" c [%dJ = %d " i, c [i] l;
15 putchar ('\n');

16

17

18

19

20

21 }

blackbox(&a[lJ, &a[lJ, a, 5); /*aliases*/
for (i=O; i<6; i++J

printf(" a[%d] = %d ",i, a[i]J;
putchar ('\n');

/* main */
22

23 void blackbox(int *pl, int *p2, int *p3, int n) {
24 int i;

25

26 for (i=O; i<n; ++i)

27 *p1 ++ = *p2+ + + *p3++;

28 } /* blackbox */
--~-~--

The following output is produced when the program i~ t'Xet'lll!'d in sealar ra~hion.

c [0]

a[OJ

= 9 C[1];: 9 C[2]

= o a[1J = 1 a[2]

= 9 c [3]

3 a (3]

= 9 c [4]

6 a [4]

g c [5] 9

10 a{5] = 15

The function blackbox. whost:' definition starh

011 line 2:3., appear.-; to add the correspondiug ele­

Illf'nts of two arrays together, storing the re!"iulls

into u third array. This is pxuetly what happens

when blackbox is called without auy aliases at

line llllllll>er 12. TIIP result in!! army c contain~ !lw

sum of a and b. Thi,.; make,.; the loop illc;idt'

blackbox appear to lw a candidate for parullel­
izution. However, w1Jen blackbox i,.; called with

alimws at litw nttmber 17 c;o!lwthill!-[different

happens. Each elenwnt of the resttltint: anH:· a

t'OliiHins partial sums of the \ alw:'s in the pn•n·d­

inf!: elt•nwnls. This tinw tlw loop nut~! lw t>xecuted

as u s('alar loop to obtain tlw corn·ct result.-;. Be­

caww blackbox is not declared static it ean be
called from a separatt>ly compiled UHHlule. There­

fon•. the compiler must make the \\·orst case as­

sumption that thi;, loop might contain aliac;t';,. C

doP~ not pro\·idt• any way to l't'stricl dtt' aliasitlf! of

formal paramett•rs that art> pointers.

Fortran-77. lwwt•n•r, does not permit aliasing

through formal pammete1·s if tht· aetual object is

modified. This Hwans that a formal paranwter

cannot wfen'nee the snme object refen•nct~d by

another formal parameter, nor a global object that

is part of a COMMON block. Fortran-77 rules re­

quire subroutine argumentEo to behave as if they

are eopieJ in when the subroutine is ealled and

copied ou1 when 1he subrowine returns cont rolto

its caller. BPcause the order in which ari!umenh

are copied in aud out if' unspecified .. aliac;e::; pro­

dul'f• unpn·dictablt~ results. Fortran-77 is a

proven perfornwr that provid.-s reasouable se­

nwutics for exploiting automatic parallelism.

C aliasillf! is not ouly the mo,;t critical remnining

deficiency, it is one of the most diflicult to resolve.

\lany ideas han:• been proposed that sohe part of

the prohlem hut none hm·e provided a p-eneral so­

lution dmt encompa,;ses all poiutt•rs. One promis­

illf! proposal tltm is currently beintr explon~d by

C01Jll11ittee X:3J 11.1 j,.; a llt~W kind of pointer called

a n~,;triett'd point.-r. A restrieted pointer f.(iH~ii tbe

compilt'r the liberty to assume that the pointer be­

haves like an array for aliasin~ purposes. That is,

because the colllpiler can assume that two differ­

etll anavi" are not ·alim;l:'s with each other. it can

also assume that two different restricted pointers

are uot aliases.

t 14 ~L\CDO.\ALD

void func(double *restrict p, double *restrict ql

This example shrnvs how formal pm·amf'lt'J'!'i p and

q can be dednred as restricted pointt•rs by usinl! H

new keyword restrict. The compiler can a,.;­
sume d~nt p and q point to diffen,nt objects.

Another useful application of rt~:·nrictetl

pointers is to point at spnce allocated by the dy-

nami(: mPmory alhwation functions. calloc.
malloc. and real lee. The C s:;mdanl! l J l!wrr­

antet>s dwt .. euch such allocation shall \'ield a

pointt·r to an object disjoint from am· otlwr ob­

jPct.

double * restrict p malloc(N * sizeof(double));

The simplieity of tbi;; proposal makes it easy w

comprehend. This is important lwcause incorrect

usal!e re,.;ults in undefined hehaviol'. The simplic­

ity of this proposal al~o makes it Pasy for an op­

tirnizer to exploit, because the same lo~ic eur­

rently being applied to arrays can now he applied

to restricted pointers. Finally, it is trivial to port au

application that uses the new restrict keyword

to other environments ht><'<li!St~ tlw l'ollowin~ pre­

proce!'ising directive:

#define restrict

harmlesslv diminates all oo·currences of the key­

word.

The C-aliasin~ problem was identiHt>d as the

highest priority issue facing committe<' X:3.r11.1 at

its initialmeetin~ but is also reeognizt>d as mw ol'

the most difficult issut>s on which to rt>ach const'n-

sus.

5 CONCLUSIONS

C is an important languag•· that is not wwd Yf'rY

often as a numerical or ;-;cientilic proFrmnminl'

languagP. Ewn if C i~ the language of dwin· for

somP people they might h~:• dissuadPd from tJ,..;ing it

for a particular application because of the defi­

ciencies documented above . .\lany of C\; advan­

tageous features could he put to good use in nu­

merical codes if the current limitations are

overcome. Certainly Fortran-77 will be a popular

numrrical language Cor a long time. C, on the

other hand, must continue to evolve Bml impnwe

or it will remain a secondary language for numeri­

cal and scientific programming. Committee

x:.U11.1 is a vehicle for exploring the evolution of

C i11to a lwtltT mmwrintl lnnp:uap:.-.. \\'h.-.tlwr tlw

resulting lanl!liH/!'' l!in•s prop:nunnwrs a !lsable

lanp:uage I'Pllli!ill,..; to lw ,..;e{'lt,

REFERENCES

1] :\.\!:'! .\:3j 11 Cmmnitt<'<'. .lmerinm .\ational

Strmrlanl s:r /59' 9 ... 9. !'l'll!f.l'fllfllllifl{! LWI{!IIfl{!t'

(' fappron·d ().,c,·mlwr 1-t. 19fN;. Sama :\na.

f•)l
L-J

r -t' ' J

[7]

'81
I .

[10]

C.\: Clokd E11p:irwni11f! Docwrw11b. lrw.

:\'\Sl X:3j.'{ Cormnittt><', :lnwrir·rm .\'utinmd :·itan·

dard .\".'1. () J()';'.,, l'mgmmminu l.m'l<""W' f'()lf-

TIU.\ iapprovt>d .\pril :.l. 1lJ7H). Santa :\na. C.\:

Global Enp:irwering- Dw·•mwnt,;. hw.

ISO/II·:C JTC 1 /SC:2:2/\\"<;;) For11ar1 \\'orkin;r

Croup. lntemational Standard I:):)(): J<JlJ I Pm­

r.::rmnmin!f. Lwtgtw!f.r FOHTH:l.\'. Santa :\na. (::\:

Global Enl!irwninl! Documt•nb. lnl'.

T. ~l<wDonald, •·c for llHtn<.Tical computinl'."' J.

SupermmJmlin!f.. vnl. ? . pp. :.11--tR. 1991.

T. ~lad)onald. "C languag-t· and tlllllll'rit·al pro­

grmnmin,!!. · · ./. (' Long. Tmnslutiou. pp. 9-1 ().

I ()}\l) (,;atlltJI" j,.,,.,u,· ;.

T. :\lacDonald. ":\ddillg t·ompiP:x arillmwrir to

C ... }. C Lon !f.. Tmnslotion. \of. 1. pp. :!0-:H,
I<)(}').

T. \lad)onalcl. ".\lia,.;ing i;;~w·s in<:. .. ./. C /,onp.

'lhlllslulion. \'ol. 1. pp. ~U-tG. 1 ()i:\<1.

P . .1. Plaug•T and J. Brodit>. Standard C: Pm­

grrtnurters {Juick Heji•rem·r· f:uid1•. HPdmond.
WA: \1i('ro,.;oft Pn•s;;, 1 989.

H. Jaeschkt", Portaln'litywu/ tiw C Langut~ge. In­
dianapolis. t:\: llaydt•n. 1 'J89.

B. \\'. KPrnighan and IJ. \1. Ritchit>. The C Pro­
gramming Langllage (2nd ed .) . Engl•·wood Cliff\;.

.\J: Premict' llall. 1988.

[11] S. llarhi;;on and (;. Stet•le. C, A Rffi'rence .\!an­

twl :3rd ed. ;. Englt~wwHl (:lilT~ • .\.I: Prentiet" I lull,

1991.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

