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ABSTRACT 

The predominant programming language for numeric and scientific applications is 

Fortran-77 and supercomputers are primarily used to run large-scale numeric and 

scientific applications. Standard C* is not widely used for numerical and scientific pro­

gramming, yet Standard C provides many desirable linguistic features not present in 

Fortran-77. Furthermore, the existence of a standard library and preprocessor elimi­

nates the worst portability problems. A comparison of Standard C and Fortran-77 shows 

several key deficiencies in C that reduce its ability to adequately solve some numerical 

problems. Some of these problems have already been addressed by the C standard but 

others remain. Standard C with a few extensions and modifications could be suitable for 

all numerical applications and could become more popular in supercomputing environ­

ments. © 1993 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Standard C and Fortran-?? are the two most 

prevalent languages used on supercomputt'r,;. A 

comparison of Standard C and Fortran-T! shows 

that C contains a wider variety of data types, elo­

quent sequence controL a standard preprocessor. 

wider variety of memory allocation options, com­

munication with the program's environment. and 

additional operators not present in Fortran-77. 

~lany desirable linguistic features provided by 
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Standard C are not present in Fortran--::. For­

tran's major strength i~ its optimization potential. 

High performance capability is as important as 

any language featurt' in the numerical and scien­

tific arena, and this is especially true for supn­

computing environment~. Additional a<h-antages 

of Fortran-77 are support of a complex data type. 

adjustable arrays. a,;,.;umed size arrays. and in­

trin~ic functions for the standard math function,.;. 

The following is an analysis of the strengths and 

weakne~se~ of Standard C and Fortran-77 from a 

numerical programming perspective. The intent is 

to provide useful information to someone trying to 

decide which programming language to use for 

numerical and scientific programming. There i~ a 

Fortran-90 standard that is not considered in this 

article because. unlike Fortran- "77. it does not vet 

have a successful history against which to com­

pare. There is also a discussion of enhancements 

being considered by committee X:3J11.1 the l\u­

merical C Extensions Group (l\CEG ). Their goal is 

to produce a quality technical report proYiding 
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implementers with a formal definition of several 

new features. These features will enhance C's 

support for numerical and scientific program­

ming, and will be upward compatible with the C 

standard. 

2 THE ADVANTAGES OF C 

2.1 Data Types 

Standard C defines a richer set of data types than 

found in the Fortran-77 standard. Scalar types 

not present in Fortran-?? include unsigned inte­

gers, pointers, and enumerated constants. The 

follo-wing is a list of integer types in Standard C 

(though there are other ways to declare these 

types): 

signed char unsigned char 
signed short unsigned short 
signed int unsigned int 
signed long unsigned long 
enumeration l_lpe 

An enumeration type provides a mechanism for 

specifying named integer constants. The following 

example shows an enumeration type with four 

members: 

enum color { red, green, blue, none "" -1 }; 

The enumeration type also provides an automatic 

numberin_g facility for each uninitialized named 

member. The value of member red is 0, member 

Example 1 

struct s_tag { 

green is 1, and member blue is 2. Furthermore. 

the automatic numbering can be restarted by as­

signing a specific value to a member. Thus. mem­

ber none starts the sequence over with the value 

-1. Yariables can be declared to have an enumer­

ation type and assigned the values of the enumer­

ation members. 

enum color pixel = none; 

Fortran-77 prm·ides only a single signed integer 

type. l\amed constants can be specified in For­

tran-?? with the PARAMETER statement. but the 

useful automatic numbering feature is not accom­

modated. 

PARAMETER (NAME = 7) 

l\o pointer type is found in Fortran-77, which lim­

its the expressiveness of the language but also 

turns out to be an aid to optimizations. The se­

mantics of Standard C pointers introduces more 

aliasing, that is hidden from the compiler. ~Iany 

optimizations depend on the compiler's ability to 

identify aliasing. Aliasing issues are explored in 

detail in section "4.4 C Aliasing." Standard C 

pointers provide easv access to dvnamicalh· allo­

cated memory and a~e discussed in more d~tail in 

section '·2.6 ~lemory Allocation.,. Standard C 

pointers turn out to be a blessing and a curse. 

They provide expressive power but at consider­

able cost in lost efficiencY. 

Standard C provides multiple aggregate types 

also. There are structures. unions. and arravs. A 

structure describes sequentially allocated ~~em­
bers with various types. 

double memberl; 
enum color member2; 
int *member3; 

I* floating-point type *I 
I* integer type *I 
I* pointer type *I 

}; 

A union describes an overlapping set of members. 

Unions appear to be very similar to structures, but 

permit the same memory locations to be viewed 

with the different types of its members. Fortran-

77 defines only one aggregate type, the array. The 

Fortran EQUIVALENCE statement is less general 

than a C union, but does allow overlapping to be 

defined. 

Standard C's typing mechanism can be used to 

derive other more complicated types such as ar-



rays of structures. structures containin~ array 

nwmhers. pointer,.; to structure,.;. pointer" to ar-

Example 2 

/* pointer to function with one double 

parameter that returns a dobule */ 

double (*ptr_to_func) (double) = sqrt; 

double x; 
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rays. and pointers to functions. The following ex­

ample wws a pointer to a function. 

x = ptr_to_func(2.3); I* indirect call through a pointer */ 

Standard c· ~ method of con,.;tructin~ deri,·ed 

types prm·ides a powerful capability for data rep­

re,..;t>ntation,..; that i,..; not pt>rmitted with Fortran­
-r-r 

The physical layout of memory can be spt>cified 

to a fine ~ranularity with Standard C"s structure:;. 

lnte~ral memlwr:'i can be declared to occupy an 

arbitran· number of bits within a memon· word . . 
(callt>d a bitfiekn allowing table layouts to be 

mapped preci,.;ely and portably. This control 

makes it much eaiiit>r to conserYe memmT in a 

standard portable manner. 

2.2 Type Synonyms 

Standard C supports the declaration of a synonym 

for all declarable type,.; with thetypedefkeyword. 

This allow,.; a complicated type to be reprt>sented 

with a sn1onnn. 

Example 3 

typedef struct 

double real, i, j, k; 

} QUATERNIONS[lOO]; I 

QUATERNIONS a, *b; 

Example 3 dt>fines an identifier QUATERNIONS 

that is a synonym for the type. array of 100 struc­

tures containin~ four members. each with type 

double. The variable a has the type QLA TER.\"I-

0.\"S, while variable b has the type pointer to 

QUA TER.\JO.YS. This ability to encapsulate a 

complicated concept with a single meaningful 

name is very powerful, and an aid to both porta­

bility and maintainability. A single typedef dec-

laration can be changed (from say. an array of 

100 elemt'nb to an array of 1,000 elements) and 

t>very va1iable declared with that typedef name 

is automatically changed. This expressive typing 

mechani,..;m is a definite advantage that Standard 

C has over Fortran-::. 

2.3 Flow of Control 

Standard C contains eloquent sequence control 

,..;tatements alon~ with nested scopes that facilitate 

the u,.;e of structured programming techniques. 

Standard C contains if, if-else, for, 

while, do-while, and switch statements. 

This cadre of sequence control statements is com­

plemt'nted with the following statements that 

nicely alter tht> flow of control through a program: 

1. continue-branch to the top of the inner 

loop 

2. break-exit a loop or switch statement 

:3. return-exit from a function. 

Finally. Standard C supports recursi,·e function 

calls. 

Fortran-"?Ts primary flow of control state­

ments are limited to IF, IF-ELSE, GOTO, DO, and 

RETURN. The proliferation of statement labels in 

Fortran programs leads to highly unstructured al­

gorithms. Control flow constructs such as the 

Arithmetic IF Statement and Assigned GOTO are 

inherently unstructured, and often produce diffi­

cult to understand algorithms. 

One advantage that Fortran-77 does have is a 

DO statement that can be statically analyzed at 

compile time. This allows the computation of the 

loop's trip count (the number of times the loop 
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iterates) to be clone exactly once in a straightfor­

ward wav. 

The for loop in Standard C does not have the 

same guarantees because: 

1. ~Iodification of the loop control variable i,; 

allowed inside the loop body 

Example 4 

for (i=O; i<n i++)) { 

a ( i] b [i] + c [i]; 

2. Loop limit expressions are not nece,;sarih· 

static 

3. Trip count can be data dependent 

The following show examples of loops who,.;e trip 

count cannot be computed prior to executinl! the 

loop. 

i =ix [i]; I* modify loop control variable *I 
n =iy [i]; I* modify loop limit expression *I 
*p = iz [i]; I* IPI might alias IiI or 

} 

I* trip count is data dependent *I 
for (p = head; p '= NULL; p = p->next l 

p->data++; 

} 

Standard C semantics requires analysis of the en­

tire containintr function to compute a loop"s trip 

count. Although trying to dPtPrmine if the trip 

count can be computed prior to entering the loop 

requires con,;iderable analysis. it is not an insur­

mountable problem. Iris not too onerous to adopt 

a codinl! style that allows the compiler to precom­

pute the trip count. In the final analysis. the rich 

flow of control mechanisms available with Stan­

dard C is another one of its advantages. 

2.4 C Preprocessor 

Standard C has a prPprocessor that permits 

source code inclusion. conditional source ,,xclu-

In I *I 

sion. and macro definition,;. Source inclu;;ion i,; 

accomplished through the prepn>ces:-;ing directi\·e 

#include. which cmbes the sow-ce line contain­

ing the directive to be replaced with the contenh 

of the specified file. Sourct' inclu;;ion pt>nnih a 

standard set of declaration,; to be included in all 

compilation unih 'i.e .. sourct· files allm\·ing an 

interface to a set of library function,;; tn he imple­

mentation dept>ndt>nt yet hiddPn from thP pro­

f!rammer. 

#include "common.h" I* common library interface *I 

Conditional soun·p exclusion allow;; source 

code to be tailored to specific enYirnnments. The 

#if. #el if. #else" and #end if directiye;; pro­

vide this conditional sourct' exclthion capability. 

Example 5 

The following exarnplt> ;;hows hmY to f!llcll"antee 

that an intef!nd tyfw ha,; more than 16 l>it,; of prl"'­

cision. 

#include <limits.h> see section 2.5 for limits.h discussion 

#if INT_MAX = = 32767 I* 16 bit int *I 
typedef long data_type; 



#else 
typedef 

#end if 

I* > 16 bits 
int data_type; 

.\lacro definitions allow a complicated operation 

or set of statements to be defined with a function-

*I 
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like description that enhances portability and 

maintainability. The following macro definition: 

#define ROOT(a, b, c) (b + sqrt (b*b - 4*a*c)) I 2*a ) 

is an example of how a cryptic expression can be 

f!iven a meaningful name through a macro defini­

tion. SimilarlY. access to critical data o;tructures 

can Le encapsulated with macro definitions that 

improve the flexibility and comprehensibility of 

the program. The following example: 

#define denom(X, I) (X->table[I).denom) 

allows a complicated data reference to be given a 

meaningful name that avoids using many long 

cryptic expressions. In all fairness to Fortran-::. 

it does permit the declaration of statement func­

tions that proYide a subset of the C macro defini­

tion capability. The presence of c· s built-in pre­

processor is a tremendous asset to writing both 

portable and maintainable programs. 

The C preprocessor is often Yiewed as an ad­

Yantage by Fortran programmers ro the extent 

that C preprocessing directiYes and macros are 

sometimes inserted into Fortran programs. How­

ever. the C preprocessor is not a part of the For­

tran-:: standard. The C preprocessor can easily 

cau"<' problems for Fortran programs l)y expand­

in!! macro" such that a line is longer than 72 char­

acters. not recognizing Fortran comments. elimi­

nating sonwthing that looks like a C comnwnt. 

and affecting the compiler· s ability to print the 

correct line number when issuing a diagnostic. 

The C preprocessor is well defined for C but not 

necessarlly for other languages. 

2.5 Standard Library 

Standard C defines a standard set of liLrar\' fum:­

tions that must be supported by all conforminf! 

implementations. The presence of this extensiYe 

library is an aid to de,eJoping portable prof!ram;;. 

The library consists of a :'.et of functions. typedef 

names. and macro definitions that are wouped 

according to functionalitY and declared in "tan-

dard header files. The standard header files are 

made amilable by usinl! the #include prepro­

cessing directive. The standard headers are: 

assert.h 
ctype.h 
errno.h 
float.h 

limits.h 
locale.h 
math.h 

setjmp.h 
signal. h 
stdarg.h 

stddef.h 
stdio.h 

stdlib. h 
string.h 

time.h 

generating program diagnostics 

te,.,ting and mapping characters 

recording error conditions 

floating-point characteristics 

sizes of integral types 

supporting international locales 

tran,.,cendental mathematical 

functions 

nonlocal jumps 

exception handling 

processing functions with a 

,·ariable number of arguments 

common definitions 

input and output 

general utilities 

manipulating character arrays 

manipulating time 

This rich :'.et of functions prm·ides an excellent 

interface to the underlying C implementation and 

is another adnmtage of Standard C. The imple­

mentation is not required to actually proYide ex­

ternal source files for the standard headers. To 

improve compile time they can be special binary 

encoded files or even built into the irHPrnals of the 

compiler. Fortran-:: prmide,; a limited set of 

standard imrinsic functions that are primarily 

mathematical functions. Fortran-77 does prm·ide 

two ,·erv useful intrinsic functions that Standard C 

does not: MAX and MIN. 

2.6 Memory Allocation 

Some of tlw mo"t useful lillraiT functions are the 

dynamic memory support functions declared in 

the stdlib. h header. The standard functions 

malloc. calloc. realloc. and free define a 

portable way to dynamically manage :ipace ao;so-
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ciated with a system heap. Heap space can be 

allocated with malloc and calloc, the size of 

allocated space can be increased or decreased 

"\\ith realloc, and this space can be given back 

to the heap manager with free. Standard C 

pointers are used to reference dynamically allo­

cated memory. In addition to dynamically allo­

cated heap space, Standard C permits variables to 

be declared with global static, local static, or local 

stack space. Global variables can be either de­

clared to be externally visible to other compilation 

units, or strictly local to the containing compila­

tion unit. 

Fortran-77 only supports global COMMON 

blocks and local variables. The Fortran-77 stan­

dard does not specify ic local variables are static or 

stack allocations. However. the SAVE statement 

allows variables to preserve their value across calls 

to the same function. The absence of a portable 

dynamic storage management system is a serious 

deficiency in Fortran-T?. Often. vendors who pro­

vide scientific and numerical library package;.; 

have to provide awkward interfaces that require 

the programmer to specify additional argument,; 

for temporary storage. 

The wider variety of storage allocation methods 

available in Standard C is a definitive advantage. 

This makes Standard C more portable and con­

venient to use for many types of applications. 

2.7 Additional Considerations 

Another advantage that Standard C has over For­

tran-77 is the abilitv to directlv communicate with . . 
the program ·s environment through the argv and 

argc parameters of the main entry function. 

Example 6 

main (int argc, char *argv[ ]J { 

/* argc: number of arguments */ 

/* argv: array of argument pointers */ 

The ability to pass arguments into a program at 

start-up time allows communication with the em-i­

ronment in a portable way. Fortran-77 does not 

provide any similar mechani,o;m. Either non port­

able features or indirect methods im·oh·ing source 

files must be used for thi,; kind of communication. 

Standard C ha,; explicit short circuit operators. 

The && and II operator;; control the evaluation of 

the second operand. 

I* evaluate •right' only if •left' is true *I 

left && right 

I* evaluate •right' only if •left' is false *I 

left II right 

Because Fortran-77 does not mandate short cir­

cuit evaluation. a portable program cannot rely on 

it. 

Standard C has bitwise operators that manipu­

late the bits of integral values. 

• one's complement 

• binary and & 

• binary or I 
• exclusive or 

• shift right >> 

• shift left << 

Fonran-77 does not have any bitwise operators. 

In many ways Standard C has clear advantages 

over Fortran-77 that make problem solving easier. 

3 STANDARD C ENHANCEMENTS 

It should be noted that Traditional C (i.e .. C as it 

exi:=;ted prior to the Al\"SI and ISO standards) was 

used primarily for ;-;ystems applications. and the 

language's developmt>nt reflected the needs of 

;-;ystems programmers. Because C has grown in 

popularity. the strengths of the language make it 

appealing for different types of applications. The 

C standard has been an aid to portability. There 

are already many production quality Standard 

conforming C compilers available for a variety of 

svstems. There are several enhancements in the C 

standard that make numerical programming eas­

ier. These enhancements are honoring parenthe­

ses. defining additional floating-point arithmetic. 



defining a standard mathematical library, and de­

fining a set of floating-point characteristics. 

3.1 Honoring Parentheses 

One of the more surprising features of Traditional 

C is that parentheses are not honored for certain 

operators. Traditional C compilers may evaluate 

the following expression: 

(a + b) + c 

as any one of the following: 

a + (b + c) 

(a + c) + b 

(a + b) + c 

The Traditional C compiler is free to reorder the 

evaluation of orerators that are both commutative 

and associative even in the presence of parenthe­

ses. Although the intent was to permit optimiza­

tions. it produces problems when trying to control 

the amount of relative error accumulating in cer­

tain floating-point orerations. Cnlike the mathe­

matical real numbers, floating-point addition is 

not associatin· because the infinite amount of in­

formation contained in a real number can onlv be 

arproximated in a finite floating-point format. 

Thi,;; is demonstrated by the following conuived 

example. compiled with a Standard C Compiler 

(SCCJ, and run on a Cray Y-~IP computer. 

Example 7 

#include <stdio.h> 

double a, b; 

double c = 524288.0; 

main ( J 

a = c * (1 << 48J; 

b -a; 

printf("(a +b) + c 

printf("a + (b + c1 

!* 524288 * 2**48 */ 

%f \n" (a+bi +c); 

%f \n", a+ (b+ci 1; 

The output from this program i,;;: 

(a + b) + c = 5:2-±288.000000 

a + (b + c) = 0.000000 

The numericallv accurate an,;;wer. 52-±288. is ob­

tained when the operation a+b is performed first. 
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Thus there is a demonstrable need to control the 

order of evaluation with floating-point arithmetic. 

The only solution available in Traditional C is to 

store intermediate results in explicit temporaries 

(i.e., tmp=a+b). Thus, Traditional C imposes the 

burden of writing a simple statement such as: 

x = (a + b) + (c + d); 

in an unnatural and more complicated way with 

the following explicit temporaries: 

tmpl = a + b; 

tmp2 = c + d; 

x = tmpl + tmp2; 

A numerical programmer wants to be able to ex­

press mathematical concepts and needs to have 

parentheses honored. The C standard now re­

quires an implementation to honor parentheses. 

This change was made solely for the purpose of 

making C more suitable for numerical applica­

tions. Fortran has always required parentheses to 

be honored. and the X3J11 committee that de­

fined the C standard greatly enhanced C's useful­

ness for numerical programming by placing the 

same requirement on C implementations. 

3.2 Floating-point Arithmetic 

Another deficiencv of Traditional C is the exis­

tence of only one type of floating-point arithmetic. 

Traditional C required all floating-point opera­

tions to be performed in type double. The type 

float existed only to conserve memory. All oper­

ands of type float were converted to type double 

before any arithmetic was performed. Clearly. the 

bias in Traditional C was toward integer arith­

metic where arithmetic was defined for the four 

integral types int. unsigned int. long. and 

unsigned long. 

The presence of four types of integer arithmetic 

is now complemented by three types of floating­

point arithmetic. The C standard defines three 

floating-point types: float. double. and long 

double. The new long double type must be at 

least as precise and contain at least as much range 

in the exponent as type daub 1 e. The restriction 

that all operands of type float be conwrted to 

type double before any operation is performed 

has been removed. The implementation may con­

vert floating-point operands to a wider precision if 

that is desirable, but this conversion is not re­

quired. This important change provides a variety 

of arithmetic types from which to choose. 
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However, these are not the same rules that are 

present in Fortran-77. The C standard permits an 

implementation to map all three floating-point 

types on the same underlying precision and range. 

Fortran-77 requires that variables with type DOU­

BLE PRECISION occupy twice as much storage as 

variables with type REAL. The implication is that 

DOUBLE PRECISION provides greater precision 

than REAL although the Fortran-77 standard does 

not explicitly require this behavior. Regardless of 

what the Fortran-77 standard requires the mar­

ketplace demands that all Fortran vendors pro­

vide greater precision for DOUBLE PRECISION. It 

is not clear that all C vendors offer the same sup­

port, which again reflects the traditional use of C 

for systems programming. Finally, Fortran-77 

does not allow floating-point operations to be per­

formed in a wider precision. 

3.3 Standard Mathematical Library 

One optimization not permitted in Traditional Cis 

the ability to recognize standard transcendental 

functions and perform them inline or through a 

fast interface. Traditional C allows a programmer 

to redefine anv function in the librarv. This means 
0 0 

a programmer is at liberty to define a function 

named tan and expect all calls to tan to use that 

function in place of the standard library function. 

Actually, a function named tan need not compute 

a tangent at all, but could, for instance, return a 

value that represents the color tan. Therefore, 

there is no way in Traditional C to tell at compile 

time that a particular function is a standard math­

ematical function. This can significantly affect 

performance of the standard mathematical func­

tions (e.g., pow, exp, log. sqrt, etc.). 

The C standard actuallv reserves the names of 

all standard functions. This means that if the 

function tan is called in the presence of the 

<math. h> header, the compiler can assume that 

the standard library function is being called. This 

allows the implementation to replace calls to stan­

dard library functions with inline code or special 

intrinsic versions with fast entry and exit se­

quences. Furthermore, the C standard permits 

functions to be called with "assignment compati­

ble" arguments, which is not allowed in Tradi­

tional C. This means pow can, for instance, be 

called with either of its actual arguments being an 

integral type. The following statement is required 

to behave as if the 2 were converted to 2. 0 (in the 

presence of <math. h>) before the function Iii 

called. 

y = pow(x, 2): 

This permits pow (X, 2) to be evaluated inline 

and to be treated as x**2 when appropriate. 

However, the Standard C rules are not quite as 

convenient as the Fortran-77 rules from the nu­

merical programming point of view. !\"one of the 

standard transcendentallibran· functions are de­

fined to return either long do~ble or float val­

ues. Additional names, such as tanl and 

tanf that accept and return value,; with types 

long double or float. respectively, are resen·ed 

by the standard for future use. However. this 

means any usage of these functions in programs is 

not currently portable. Even if they become porta­

ble in a future standard the number of names that 

must be remembered is inconvenient at best. 

Fortran-77 defines a generic intrin,.;ic function 

TAN that accepts arguments for the types REAL. 

DOUBLE PRECISION, and COMPLEX. Fortran's 

rules are more convenient because the generic in­

trinsic functions are overloaded to accept argu­

ments with different types. Finally Fonran-77 

provides an exponentiation operator, while C only 

provides a library function. There is no analogy to 

the expression i * *n because Standard C forces 

the result to have a floating-point result. Thi,; can 

result in a serious performance penalty for any 

application that performs a reasonable amount of 

integer exponentiation. 

3.4 Floating-Point Characteristics 

Another floating-point enhancement provided by 

Standard Cis the <float. h> header. This header 

contains a set of macro names that provide useful 

information about the floating-point characteris­

tics of the implementation. The following is the li,;t 

of names prmided for type float and a brief de­

scription of their characteristics: 

FLT_ROUNDS 

FLT_RADIX 

FLT_MANT_.DIG 

FLT_DIG 

FLT_MAX 

rounding mode for 

floating-point addition 

base of the exponent 

number of base digits m 

mantissa 

number of decimal digits 

in mantissa 

maximum positive 

representable number 



FLT_MIN rnuumum positive 

representable number 

FLT_MIN_EXP exponent of smallest 

positive number 

FLT_MIN_lQ_EXP smallest netrative X such 

that 1 ox 2:: FL T -~Ill\' 

FLT_MAX_EXP exponent of largest 

positive number 

FLT_MAX_lO_EXP largest positive X such 

that 10x ~ FLT_~IAX 

FLT_EPSILON smallest positive X such 

that X + 1.0 =f. 1.0 

There are identical sets of names for type double 

that begin with DBL instead of FLT and for long 

double that begin with LDBL. These macro 

names can be used to interrogate the system at 

run time about useful floating-point characteris­

tics. These floating-point characteristics are de­

fined in terms of a floating-point model and the 

model is defined in terms of the following parame­

ters: 

s sign (±1) 

b base or radix of exponent representation 

e exponent (integer between emin and emax) 

p precision (number of base-b digits in signifi­

cand) 

/k nonnegative integer < b 

A normalized floating-point number x(/1 > 0 if 
x =f. 0) is defined by the following model: 

f' 

X = s X be X L /k X b-k, emin ~ e ~ ernax 

k~l 

The Fortran-77 standard does not define anv 

way to portably interrogate for floating-point 

characteristics. However. the definition of the 

Standard C floating-point model was taken from 

the Fortran-90 standard to maintain some com­

monality across language standards. The addition 

of the floating-point model to the C standard is a 

valuable aid to writing portable numerical and sci­

entific applications. 

4 REMAINING NUMERICAL 
C DEFICIENCIES 

Although the C standard contains features that 

make C more desirable for numerical program­

ming than its predecessors, there are still deficien-
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cies that are severe enough to tilt the scales in 

favor of Fortran-77 for certain types of applica­

tions. The severest deficiencies still present in 

Standard C are the absence of complex and vari­

able length array types, error reporting through a 

globally modifiable object (errno ), and perfor­

mance problems associated with unrestricted 

aliasing. These important issues are being exam­

ined bv committee X3.J11.1 (1\"CEG) and must be 

resolved in order to make Standard C a viable al­

ternative to Fortran-77 as a numerical language. 

The following is a discussion of proposals to ex­

tend Standard C that are being considered by 

committee X3.J11. 1. 

4.1 Complex Arithmetic 

The absence of a predefined complex type in 

Standard C forces programmers to define their 

own complex type. The most common way of ac­

complishing this is through a typedeL similar to 

the following: 

typedef struct { double re, im; } complex; 

Although this allows declarations of objects with a 

complex type. it inhibits the use of standard infix 

operators such as: I. *, -. +. Instead functions or 

macros must he defined to perform these opera­

tions. This means that using natural infix expres­

sions such as: 

a = (b + c)* (d + e); 

is not accommodated. Instead, programmers are 

forced to write with a functional notation such as: 

a= CMUL(CADD(b,c), CADD(d,e)); 

Substituting a functional notation for the elegant 

infix operators makes the expression harder to de­

cipher. An application requiring extensive use of 

complex arithmetic is difficult to code in C. Stan­

dard C needs a complex type. Fortran has sup­

ported a complex type for many years. An appli­

cation that requires a complex type if probably 

going to be much easier to develop in Fortran-77 

than in Standard C. 

Adding a new type to a language is difficult to 

get "right" because of the complexity associated 

with closure on the language. Committee X3.J11.1 

is attempting to define a complex extension to C 

and has identified a number of issues that must be 
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resolved before this language extension is ap­

proved. For instance, an obvious approach to this 

extension is to add a new keyword. complex, to 

typedef struct { double re, 1m; } complex; 

and branding these programs as nonconforming 

by carelessly adding a new keyword. is unaccepta­

ble. The solution is to add a new header com­

plex. h that introduces the new type. Existing 

programs will not include this header and there­

fore \\ill not be affected. 

Because there are three floating-point types. 

there should be three corresponding complex 

types. These types are declared: float complex. 

double complex. and long double complex. 

Complex constants are provided by introducing a 

new suffix. i. A constant with an i suffix has a 

complex type, the real part has the value 0, and 

imaginary part has the value of the constant. 

3. 14fi float complex 

3. 14i double complex 

3. 14Li long double complex 

A complex constant with a non-zero real part is 

created with an expression like: 2.3 + -i.5i (real 

part is 2. 3 and imaginary part is 4 .. S). 

With the addition of complex types in C. new 

arithmetic conversion rules are needed to define 

the result type of expressions that contain both 

real and complex operands. For instance. if one 

operand has type long double and the other op­

erand has type float complex. the rule,; ,.;lwuld 

be such that the most information i'i preserved. 

Therefore. the rules are enhanced to produce a 

result type of long double complex. The proposed 

rules are described below. 

All types haw three type attributes called the 

dimension, the formal. and the length. The di­

mension attribute specifies whether the values of 

the type can be represented on a one-dimensional 

line (i.e., real numbers) or on a two-dimensional 

plane (i.e., complex numbers). The format attrib­

ute specifies whether the values of thf' type are 

represented with an exponent part (i.e .. floating 

numbers) or without an exponent part (i.e .. inte­

gral numbers). The length attribute specifit's how 

many bits are used to represent the magnitude 

and precision of the type. The values of each of 

the language. permitting declarations of complex 

types. However, too many programs already exist 

that use: 

these attributes are ranked, from highest to lowest 

(Table 1). For example. complex ranks higher 

than real for the dimension attribute. 

.\lany binary operators that have operands of 

arithmetic types cause implicit conversions of one 

or both operands. The purpose of the conversions 

is to yield a common format and length for the two 

operands and the type of the result. These implicit 

conversions of the operands are called the usual 

arithmetic conversions. 

The conversions shall preserve the ori¢nal 

magnitude and precision of both operands except 

that precision may he lost when an integral type is 

converted to a floating type. This will occur if the 

magnitude of the integer is too greater for the 

mantissa of the floating type to represent exactly. 

The rules for the usual arithmetic conversions are: 

1. The dimension of the result type is that of 

the higher ranking dimension of the oper­

ands. 

2. The format of the result type is that of the 

higher ranking format of the operand,.;. 

3. If the format of the result type is floating. 

then the length of the result type is that of 

the higher ranking floating length of the op­

erand,;. If the format of the result t ypt> i,., 

integraL then the integral promotion,.; are 

performed on both operands. 

Complex library function,; need to be defined 

for the complex type>i. HowPver. tlw lack of intrin­

sic functions in C is again a serious impediment. 

Defining complt>x library functions ,;uch as sin. 

cos. exp. log. pow. sqrt. and abs rPquire,; 

Table 1. Values of Each Attribute 

Floatinl! [ntegTal 

Dimen~ion Format Length Lent-'lh 

Complex Floating Long double L niiigned long 

numbers numbers Sigrwd long 

Real Integral Double Lnsigrwd int 

numbers numlwrs Float Sigrwd int 



three additional names for each function. For ex­

ample: 

csinf 

csin 

csinl 

complex sine for float complex 

complex sme for double complex 

complex sme for long double complex 

This is in addition to sinf, sin, and sinl that 

are alread\· reserved bv the C standard for float-. . 
ing-point numbers. The proliferation of names i:; 

extreme and again it is apparent that some form of 

generic intrinsic name is needed. 

4.2 Variable Length Arrays 

Another deficiency that might inhibit the use of C 

is the absence of variable length arrays. Because 

arravs must be defined with a constant dimension. 

there is no wa\· inC to declare an arrm· whose size . . 
is dynamic. Function arguments that are arrays 

are implicitly converted to pointers to the first ele­

ment before the function is callPd. This pointer 

can he used to access all of the arrav elements. It 

is easy to define a function that operates on single 

dimensioned array,; of any length. However. a 

problem still exists with multidimensional arrays. 

For instance. a two-dimensional arrav is con­

verted to be a pointer to an array and the array 

portion of the type must still contain a constant 

dimen;;ion. This prevents a simple definition of a 

function that perform:-; a matrix operation on arhi­

trarv ~I X !\" matrice,;. Idealh·. Standard C would . . 
permit a declaration of a function performing a 

matrix multiply to look similar to the following: 
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I* a = b x c *I 
void mxm(int n, int m, 

double a [n1 [m1 , double b [n1 [m1 , 

double c [n1 [m1 ) ; 

The size of each array is dynamically determined 

each time the function is called. Because an arrav 

is always converted to a point to the first element 

of the array whenever it is passed as a function 

argument. the problems seems to exist only for 

multidimensional arrays. However, the inability to 

declare a one-dimensional stack arrav that is the 

same size as a formal parameter suggests that this 

feature is desirable for all array types that reside 

on the stack. This would permit: 

f(int n, double ary[n]) { 

double tmp [n1; 

I* . . . *I 
} 

to declare both the formal parameter ary and the 

stack array tmp to be variably dimensioned arrays 

with the same size. This approach is analogous to 

the Fortran notion of adjustable and automatic 

arravs. 

Committee .'\.:3111.1 is looking at two proposals 

that ext<>ncl C alon;.r these lines. The first approach 

is the one described above. A. second approach 

invoh·es the w;e of descriptors that are capable of 

representing the address of the array and the size 

of each dimension. For example: 

void func (double (*desc) [? 1 [? 1) I* tentative syntax *I 

declares a parameter desc that is a descriptor 

with three pieces of information: addre:;s of the 

bast'. lt>n;.rth of the first dimension. and len;.rth of 

the second dimension. The type of parameter 

desc is pointer to adjustable array of adjustahlt> 

array of double. This descriptor can be used to 

rPference arra,·,; whose dinwnsion sizes van· at ex-. . 
ecution time. 

Fo11ran- "?"? does not support variable len;.rth 

stack arravs. It is a ven· common extension to . . 
most Fortran implementations. howe,·er. One ad-

ditional advanta~t' available with Fortran-"?"? 

arrays is the ability to specify both upper and 

lower hounds for each dimension. C arra\·s art' 

alwm·s zero based and the length of the dimen-

sion is specified (not the bounds:i. Some prob­

lems are more naturalh· vie\\·ed a;; non-zero 

based. 

For completeness sake it should be noted that 

there is an existin~ solution to the variable length 

array problem that is standard conforming. Es­

sentially. this solution inmlves using the library 

function mall oc to dvnamicallv allocate an arrav . . . 
of pointers. Each pointer element of the array 

points to a different row of the matrix. This array 

of pointers permits access to the entire matrix 

through multiple indirection. The following exam­

ple dt>monstrates this technique by performing a 

matrix multiply with dynamically allocated arrays 

of pointer;;. 



Example 8 

#include <stdlib.h> 

#define M 10 

#define N 20 

double a [N] [N] , b [N] [M] , c [M] [N] ; 

void mxm(int n, int m, double **a, double **b, double **c); 

main() { 

double **pa, **pb, **pc; 

int i; 

I* allocate arrays of pointers *I 
pa malloc(N*sizeof(double *)); 

pb malloc(N*sizeof(double *)); 

pc malloc(M*sizeof(double *)); 

I* setup array of pointers *I 
for ( i = 0 ; i <N; i + + ) { 

pa [i] a [i]; 

pb [ i l = b [ i l ; 
I* pa[i] points to i-th row of a *I 
I* pb[i] points to i-th row of b *I 

} 

for ( i = 0; i < M; i + +) 

pc[i] = c[i]; I* pc[i] points to i-th row of c *I 

mxm(N, M, pa, pb, pc); 

free(pa); free(pb); free(pc); I* free allocated arrays *I 

} I* main *I 

I* a = b x c (for arbitrary NXM shapes) *I 
void mxm(int n, int m, double **a, double **b, double **c) { 

inti, j, k; 

for (i 0; i < n; i++) 

for ( j = 0; j < n; j + +) 

a[i] [j] = 0; 

for (k = 0; k < m; k ++) 

a[i][j] += b[i][k] * c[k][j]; I* double indirection *I 
} 

} I* mxm *I 

The following method describes the high level al­

gorithm used in Example 8. 

1. The pointers pa, pb, and pc each point at 

an array of pointers dynamically allocated 

by malloc. 

2. Each pointer element pa [ i], pb [ i], and 

pc [ i] is assigned to point at each row of 

matrices a, b, and c, respectively. 

3. pa, pb, and pc are passed to the function 

mxm, which performs the matrix multiply 

using double indirection. 



-t. The memorv for the dynamical!~· allocated 

arravs is freed. 

The problems associated with this approach are 

complexity and extensibility. The solution is nei­

ther intuith·e nor easv to understand. Finallv. the . . 
solution does not extend easily to three or four 

dimensions. The three-dimensional solution re­

quires an array of pointers each pointing at a two­

dimensional array of pointers, each pointing at a 

row of the three-dimensional array. The complex­

ity grows rapidly with each new dimension. 

4.3 The errno Macro 

The errno macro expands into an !value expres­

sion that specifies a storage location that the C 

environment modifies under exceptional condi­

tions. The worst problem with errno is its inter­

action with the standard transcendental functions 

defined in the <math. h> header. Standard C 
prevents any mathematical library functions from 

causing a visible exception. That is. the program 

cannot stop execution or pass control to a signal 

handler. just because a mathematical function 

cannot compute its result. There are two reasons 

why these functions might not be able to compute 

their results: domain error or range error. A do­

main error occurs if an input argument is outside 

the domain over which a mathematical function is 

defined (e.g., sqrt (-1)). When a domain erroris 

detected the value of a macro named EDOM is 

stored in errno. A range error occurs when the 

result of a mathematical function cannot be repre­

sented as a double value (e.g .. pow (DBL....MA.X. 

DBLMAX~). \n1en a rantre error is detected the 

value of a macro named ERANGE is stored into 

errno. and if the function result overflows the 

function returns the value of another macro 

named HUGE_ VAL. This means that in the expres­

siOn: 

pow (xl, y1) * pow(x2, y2) 

neither call to pow is allowed to cause an excep­

tion but the multiplication operator is! Typicalh-, 

the value of HUGE_ VAL is large in magnitude, 

meaning the multiplication can easily overflow 

and cause an exception. This implies that the pre­

ferred technique is to use explicit temporaries as 

follows: 

errno =0; 

tmp1 = pow(x1, yl); 
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tmp2 = pow(x2, y2); 

if (errno != 0) panic(errno); 

This technique proliferates the unnatural use of 

temporaries. 

Another problem with errno semantics is that 

it inhibits automatic vectorization and paralleliza­

tion of loops containing calls to math functions as 

the following example demonstrates: 

Example 9 

for (i = 0; i < 100; i ++) { 

errno = 0; 

x(i] = sqrt(y[i]); 

if (errno != 0) panic(errno); 

} 

This for loop cannot be vectorized because if. for 

example, the seventh iteration contained a range 

error then the first six values must have been fullv 

computed before the error was detected. A pipe­

lined architecture does not necessarily guarantee 

that the first six vector elements are fullv evalu­

ated if the seventh element produces an excep­

tion. ~ow if errno is omitted from the example. 

as follows: 

for (i = 0; i < 100; i++l { 
x [ i] = sqrt (y [ i 1) ; 

} 

then the error condition goes undetected because 

the sqrt function cannot fail. This affects both 

automatic vectorization and parallelization. This 

is such a limiting condition that vendors who pro­

vide high-performance systems are forced to pro­

vide two environments: a strictly conforming envi­

ronment that supports errno but does not 

vectorize or parallelize loops containing calls to 

math functions, and an environment that disasso­

ciates errno from the math library. ~lodern su­

percomputers can often times compute the results 

faster than the code needed to detect the error 

and update the memory location designated by 

errno. Attempting to define error conditions in 

terms of a globally modifiable object creates many 

problems including severe performance degrada­

tions. Committee X3J11.1 is exploring a new 

mathematical library definition without the pres­

ence of errno. 

The Fonran-77 standard wisely chose to say 

nothing about exceptional conditions. This allows 

the compiler to optimize statements containing 

calls to the transcendental functions in a standard 
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conforming way. One of Fortran's greatest asset;;; 

is its potential for optimization. 

4.4 C Aliasing 

Many numerical programs are computationally 

intensive and benefit from optimizations. The op­

timization capability of a vendor's Fortran com­

piler is often times crucial to pnwiding access to 

the full capabilities of the hardware from a high­

level language. This is especially true for super­

computer environments where compilers perform 

automatic vectorization and automatic parallel­

ization. Supercomputer sales are largely based on 

the performance the system can deliver. 

C pointers present problems for optimizing 

compilers because they introduce hidden aliases. 

Essentially, whenever an object is modified 

through a pointer, the compiler must make worst 

case assumptions if it cannot determine which ob­

ject is being modified. Parallel processing is one 

current approach being taken to increase perfor­

mance of many computationally intensh·e appli­

cations. The hidden aliases introduced by C 

pointers make automatic compile time detection 

of parallelism an intractable problem. Aliases 

mu:;t be resolved before a compiler can determine 

that a loop is safe to parallelize. For instance. it is 

important to know how the elements of an array 

are accessed and modified. Consider the following 

loop: 

Example 10 

int a[5] = {0, 2, 4, 6, 8}; 

void f ( ) { 

int i; 

for (i 

a [i] 

I* f */ 

1; i < 5; i++J 

= a[i-1] + 1; 

The semantics of this loop dictate the followin~ 

execution order that produces scalar results. 

Example 11 

01 #include <stdio.h> 
02 

03 int a [6] = {0, 1, 2, 

04 int b [6] = {9, 8, 7, 

05 int c [6]; 

a[1]=a[0]+1; 

a[2]=a[1]+1; 

a[3] =a[2] +1; 

a[4]=a[3]+1; 

Vectorization results require the orde-r of ac-cesses 

and modifications to be rearranf!ed. The following 

reordering allows several array elements to be ac­

cessed and modified simultaneouslY. 

V[O] =a[O]; 

V[1] =a[1l; 

V[2] =a[2]; 

V[3]=a[3]; 

a[1}=V[0]+1; 

a[2] =V[1] +1; 

a[3] =V[2J +1; 

a [ 4] =V [ 3] + 1; 

One common parallel optimization technique is to 

simultaneouslv execute different iterations of a 

loop on multiple processors. This mean;; the order 

of references 10 objects occurring in different loop 

iterations is undefined. The following results are 

obtained for arrav a bv each method. 

scalar results: 
vector results: 
parallel results: 

0, 1, 2, 3, 4 

0, 1, 3, 5, 7 

indeterminate 

The scalar re,;;ults are always correct because that 

is what is dictated bv both the Fortran-77 and C 

standards. Any parallelization that is performed 

must preserw the scalar re!'iults. In f!eneral. if an 

object referenced in a particular iteration of the 

loop i,; al:so modified in a different iteration of the 

loop. then automatic \·ectorization and parallel­

ization must somehow preserve the order of the 

accesses and modilication!'i of that object. Exam­

ple 5 eontains the easily detectable aliasps a [ i J 
and a [ i -1;. c\ compiler ean dt'tt>t't thi;; alias at 

compile time and generate a scalar loop. Hnwen~r. 

the following example demonstrates that C 

pointers can introduce hidden aliases that are not 

detectable at compile time. 

3, 4, 5}; 

6, 5, 4}; 
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06 

07 void blackbox(int *pl, int *p2, int *p3, int n); 

08 

09 main ( l { 

10 int i; 

11 

12 blackbox(c, b, a, 6); /*no aliases*/ 
13 for ( i = 0; i < 6; i + +) 

14 printf (" c [%dJ = %d " i, c [i] l; 
15 putchar ( '\n'); 

16 

17 

18 

19 

20 

21 } 

blackbox(&a[lJ, &a[lJ, a, 5); /*aliases*/ 
for (i=O; i<6; i++J 

printf(" a[%d] = %d ",i, a[i]J; 
putchar ( '\n'); 

/* main */ 
22 

23 void blackbox(int *pl, int *p2, int *p3, int n) { 
24 int i; 

25 

26 for (i=O; i<n; ++i) 

27 *p1 ++ = *p2+ + + *p3++; 

28 } /* blackbox */ 
--~-~----------------------------------------

The following output is produced when the program i~ t'Xet'lll!'d in sealar ra~hion. 

c [0] 

a[OJ 

= 9 C[1];: 9 C[2] 

= o a[1J = 1 a[2] 

= 9 c [3] 

3 a (3] 

= 9 c [4] 

6 a [ 4] 

g c [5] 9 

10 a{5] = 15 

The function blackbox. whost:' definition starh 

011 line 2:3., appear.-; to add the correspondiug ele­

Illf'nts of two arrays together, storing the re!"iulls 

into u third array. This is pxuetly what happens 

when blackbox is called without auy aliases at 

line llllllll>er 12. TIIP result in!! army c contain~ !lw 

sum of a and b. Thi,.; make,.; the loop illc;idt' 

blackbox appear to lw a candidate for parullel­
izution. However, w1Jen blackbox i,.; called with 

alimws at litw nttmber 17 c;o!lwthill!-[ different 

happens. Each elenwnt of the resttltint: anH:· a 

t'OliiHins partial sums of the \ alw:'s in the pn•n·d­

inf!: elt•nwnls. This tinw tlw loop nut~! lw t>xecuted 

as u s('alar loop to obtain tlw corn·ct result.-;. Be­

caww blackbox is not declared static it ean be 
called from a separatt>ly compiled UHHlule. There­

fon•. the compiler must make the \\·orst case as­

sumption that thi;, loop might contain aliac;t';,. C 

doP~ not pro\·idt• any way to l't'stricl dtt' aliasitlf! of 

formal paramett•rs that art> pointers. 

Fortran-77. lwwt•n•r, does not permit aliasing 

through formal pammete1·s if tht· aetual object is 

modified. This Hwans that a formal paranwter 

cannot wfen'nee the snme object refen•nct~d by 

another formal parameter, nor a global object that 

is part of a COMMON block. Fortran-77 rules re­

quire subroutine argumentEo to behave as if they 

are eopieJ in when the subroutine is ealled and 

copied ou1 when 1he subrowine returns cont rolto 

its caller. BPcause the order in which ari!umenh 

are copied in aud out if' unspecified .. aliac;e::; pro­

dul'f• unpn·dictablt~ results. Fortran-77 is a 

proven perfornwr that provid.-s reasouable se­

nwutics for exploiting automatic parallelism. 

C aliasillf! is not ouly the mo,;t critical remnining 

deficiency, it is one of the most diflicult to resolve. 

\lany ideas han:• been proposed that sohe part of 

the prohlem hut none hm·e provided a p-eneral so­

lution dmt encompa,;ses all poiutt•rs. One promis­

illf! proposal tltm is currently beintr explon~d by 

C01Jll11ittee X:3J 11.1 j,.; a llt~W kind of pointer called 

a n~,;triett'd point.-r. A restrieted pointer f.(iH~ii tbe 

compilt'r the liberty to assume that the pointer be­

haves like an array for aliasin~ purposes. That is, 

because the colllpiler can assume that two differ­

etll anavi" are not ·alim;l:'s with each other. it can 

also assume that two different restricted pointers 

are uot aliases. 
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void func(double *restrict p, double *restrict ql 

This example shrnvs how formal pm·amf'lt'J'!'i p and 

q can be dednred as restricted pointt•rs by usinl! H 

new keyword restrict. The compiler can a,.;­
sume d~nt p and q point to diffen,nt objects. 

Another useful application of rt~:·nrictetl 

pointers is to point at spnce allocated by the dy-

nami(: mPmory alhwation functions. calloc. 
malloc. and real lee. The C s:;mdanl! l J l!wrr­

antet>s dwt .. euch such allocation shall \'ield a 

pointt·r to an object disjoint from am· otlwr ob­

jPct. 

double * restrict p malloc( N * sizeof(double) ); 

The simplieity of tbi;; proposal makes it easy w 

comprehend. This is important lwcause incorrect 

usal!e re,.;ults in undefined hehaviol'. The simplic­

ity of this proposal al~o makes it Pasy for an op­

tirnizer to exploit, because the same lo~ic eur­

rently being applied to arrays can now he applied 

to restricted pointers. Finally, it is trivial to port au 

application that uses the new restrict keyword 

to other environments ht><'<li!St~ tlw l'ollowin~ pre­

proce!'ising directive: 

#define restrict 

harmlesslv diminates all oo·currences of the key­

word. 

The C-aliasin~ problem was identiHt>d as the 

highest priority issue facing committe<' X:3.r11.1 at 

its initialmeetin~ but is also reeognizt>d as mw ol' 

the most difficult issut>s on which to rt>ach const'n-

sus. 

5 CONCLUSIONS 

C is an important languag•· that is not wwd Yf'rY 

often as a numerical or ;-;cientilic proFrmnminl' 

languagP. Ewn if C i~ the language of dwin· for 

somP people they might h~:• dissuadPd from tJ,..;ing it 

for a particular application because of the defi­

ciencies documented above . .\lany of C\; advan­

tageous features could he put to good use in nu­

merical codes if the current limitations are 

overcome. Certainly Fortran-77 will be a popular 

numrrical language Cor a long time. C, on the 

other hand, must continue to evolve Bml impnwe 

or it will remain a secondary language for numeri­

cal and scientific programming. Committee 

x:.U11.1 is a vehicle for exploring the evolution of 

C i11to a lwtltT mmwrintl lnnp:uap:.-.. \\'h.-.tlwr tlw 

resulting lanl!liH/!'' l!in•s prop:nunnwrs a !lsable 

lanp:uage I'Pllli!ill,..; to lw ,..;e{'lt, 
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