C Versus Fortran-77 for Scientific

Programming

TOM MACDONALD
Cray Research, Inc., Eagan, MN 55121

ABSTRACT

The predominant programming language for numeric and scientific applications is
Fortran-77 and supercomputers are primarily used to run large-scale numeric and
scientific applications. Standard C* is not widely used for numerical and scientific pro-
gramming, yet Standard C provides many desirable linguistic features not present in
Fortran-77. Furthermore, the existence of a standard library and preprocessor elimi-
nates the worst portability problems. A comparison of Standard C and Fortran-77 shows
several key deficiencies in C that reduce its ability to adequately solve some numericaol
problems. Some of these problems have already been addressed by the C standard but
others remain. Standard C with o few extensions and modifications could be suitable for
all numerical applications and could become more popular in supercomputing environ-

ments. © 1993 John Wiley & Sons, Inc.

1 INTRODUCTION

Standard C and Fortran-77 are the two most
prevalent languages used on supercomputers. A
compartson of Standard C and Fortran-77 shows
that C contains a wider variety of data types. elo-
quent sequence control, a standard preprocessor.
wider variety of memory allocation options, com-
munication with the program’s environment. and
additional operators not present in Fortran-77.
Many desirable linguistic features provided by

Received February 1992
Revised November 1992
* The term Standard C refers to the standards ANSI

X3.159-1989. American National Standard for Information
Systems—Programming Language—C. approved December 14.
1989 [17, and the technically identical ISO/IEC 9899:1990.
Programming Languages—C. approved approximartely 1 vear
later.

© 1993 by John Wiley & Sons. Inc.

Scientific Programming. Veol. 1, pp. 99114 (1992}

CCC 1058-9244/93/020099-16

Standard C are not present in Fortran-77. For-
tran’s major strength is its optimization potental.
High performance capabilitv is as important as
any language feature in the numerical and scien-
tific arena, and this is especially true for super-
computing environments. Additional advaniages
of Fortran-77 are support of a complex data type.
adjustable arravs. assumed size arravs. and in-
trinsic functions for the standard math functions.
The following is an analvsis of the strengths and
weaknesses of Standard C and Fortran-77 from a
numerical programming perspective. The intent is
to provide useful information to someone trving 1
decide which programming language to use for
numerical and scientific programming. There is a
Fortran-90 standard that is not considered in this
article because. unlike Fortran-77. it does not vet
have a successful history against which 1o com-
pare. There is also a discussion of enhancements
being considered by committee X3J11.1 the Nu-
merical C Extensions Group (NCEG). Their goal is
to produce a quality technical report providing

99

100 MACDONALD

implementers with a formal definition of several
new features. These features will enhance C’s
support for numerical and scientific program-
ming, and will be upward compatible with the C
standard.

2 THE ADVANTAGES OF C

2.1 Data Types

Standard C defines a richer set of data types than
found in the Fortran-77 standard. Scalar types
not present in Fortran-77 include unsigned inte-
gers, pointers, and enumerated constants. The
following is a list of integer types in Standard C
(though there are other ways to declare these
types):

signed char unsigned char
signed short unsigned short
signed int unsigned int

signed long unsigned long

enumeration type

An enumeration type provides a mechanism for
specifying named integer constants. The following
example shows an enumeration type with four
members:

enum color { red, green, blue, none = -1 };
The enumeration type also provides an automatic

numbering facility for each uninitialized named
member. The value of member red is 0, member

Example 1

struct s_tag {
double memberi;
enum color member?2;
int *member3;

%

A union describes an overlapping set of members.
Unions appear to be very similar to structures, but
permit the same memory locations to be viewed
with the different types of its members. Fortran-
77 defines only one aggregate type, the array. The

greenis 1, and member blue is 2. Furthermore.
the automatic numbering can be restarted by as-
signing a specific value to a member. Thus. mem-
ber none starts the sequence over with the value
—1. Variables can be declared to have an enumer-
ation type and assigned the values of the enumer-
ation members.

enum color pixel = none;

Fortran-77 provides only a single signed integer
type. Named constants can be specified in For-
tran-77 with the PARAMETER statement. but the
useful automatic numbering feature is not accom-
modated.

PARAMETER (NAME = 7)

No pointer type is found in Fortran-77, which lim-
its the expressiveness of the language but also
turns out to be an aid to optmizations. The se-
mantics of Standard C pointers introduces more
aliasing. that is hidden from the compiler. Many
optimizations depend on the compiler’s ability to
identify aliasing. Aliasing issues are explored in
detail in section 4.4 C Aliasing.”” Standard C
pointers provide easy access to dvnamically allo-
cated memory and are discussed in more detail in
section 2.6 Memory Allocation.”” Standard C
pointers turn out to be a blessing and a curse.
They provide expressive power but at consider-
able cost in lost efficiency.

Standard C provides multiple aggregate types
also. There are structures. unions. and arrays. A
structure describes sequentially allocated mem-
bers with various types.

/* floating-point type */
/* integer type
/* pointer type

*/
*/

Fortran EQUIVALENCE statement is less general
than a C union, but does allow overlapping to be
defined.

Standard C’s typing mechanism can be used to
derive other more complicated types such as ar-

rayvs of structures. structures containing array
members. I)()illt(:‘[‘b‘ Lo structures. p()inters to ar-

Example 2

/* pointer to function with one double
parameter that returns a dobule

double (*ptr_to_func) (double) = sqrt;
double x;

x = ptr_to_func(2.3);

Standard C’s method of constructing derived
tvpes provides a powerful capability for data rep-
resentations that is not permitted with Fortran-
77.

The physical layvout of memory can be specified
to a fine granularity with Standard C’s structures.
Integral members can be declared to occupy an
arbitrarv number of bits within a memory word
(called a bitlield) allowing table lavouts to be
mapped precisely and portably. This control
makes it much easier to conserve memory in a
standard portable manner.

2.2 Type Synonyms

Standard C supports the declaration of a synonym
for all declarable tvpes with thetypedefkeyvword.
This allows a complicated type to be represented
with a synonym.

Example 3

typedef struct {
double real, i, j, k;
} QUATERNIONS[100] ;"

QUATERNIONS a, *b;

Example 3 defines an identifier QUATERNIONS
that is a synonvm for the tvpe. array of 100 struc-
tures containing four members. each with type
double. The variable a has the tvype QUATERNI-
ONS, while variable b has the tvpe pointer to
QUATERNIONS. This ability to encapsulate a
complicated concept with a single meaningful
name is very powerful, and an aid to both porta-
bility and maintainability. A single typedef dec-

C VERSUS FORTRAN-77 101

ravs. and pointers to functions. The following ex-
ample uses a pointer to a function.

/* indirect call through a pointer */

laration can be changed (from say. an array of
100 elements to an array of 1,000 elements) and
everv variable declared with that typedef name
is automatically changed. This expressive tvping
mechanism is a definite advantage that Standard
C has over Fortran-77,

2.3 Flow of Control

Standard C contains eloquent sequence control
statements along with nested scopes that facilitate
the use ol structured programming techniques.
Standard (C contains 1if, if-else, for,
while, do-while, and switch statements.
This cadre of sequence control statements is com-
plemented with the following statements that
nicely alter the flow of control through a program:

1. continue—branch to the top of the inner
loop

2. break-—exit a loop or switch statement

3. return—exit from a function.

Finally. Standard C supports recursive function
calls.

Fortran-77’s primary flow of control state-
ments are limited to IF, IF-ELSE, GOTO, DO, and
RETURN. The proliferation of statement labels in
Fortran programs leads to highly unstructured al-
gorithms. Control flow constructs such as the
Arithmetic IF Statement and Assigned GOTO are
inherently unstructured, and often produce diffi-
cult to understand algorithms.

One advantage that Fortran-77 does have is a
DO statement that can be statically analyzed at
compile time. This allows the computation of the
loop’s trip count (the number of times the loop

102 MACDONALD

iterates) to be done exactly once in a straightfor-
ward way. ’

The for loop in Standard C does not have the
same guarantees because:

1. Modification of the loop control variable is
allowed inside the loop body

Example 4

for (i=0; i<n ; 1i++)) {
afi] = b[i] + c[i];
i =ix[1];

n =iy[i];

p = 1z[i]; / 'p' might alias ‘'1i'

}

/* trip count is data dependent */

for (p = head; p != NULL; p = p->next) {

p—>data++;

Standard C semantics requires analysis of the en-
tire containing function to compute a loops trip
count. Although trving to determine if the wrip
count can be computed prior to entering the loop
requires considerable analysis. it is not an insur-
mountable problem. It is not 100 onerous 1o adopt
a coding stvle that allows the compiler to precom-
pute the trip count. In the final analvsis. the rich
flow of control mechanisms available with Stan-
dard C is another one of its advanrages.

2.4 C Preprocessor

Standard C has a preprocessor that permits
source code inclusion. conditional source exclu-

#include "common.h"

Conditional source exclusion allows source
code 1o be tailored to specific environments. The
#if . #elif. #else, and #endif directives pro-

vide this conditional source exclusion capability.

Example 5

2. Loop limit expressions are not necessarily
static
3. Trip count can be data dependent

The following show examples of loops whose trip
count cannot be computed prior to executing the

loop.

/* modify loop control variable */
/* modify loop limit expression */

n' */

sion. and macro definitions. Source inclusion is
accomplished through the preprocessing directive
#include. which causes the source line contain-
ing the directive to be replaced with the contents
of the specified file. Source inclusion permits a
standard ser of declarations to be included in all
compilation units i.e.. source files: allowing an
interface to a set of librarv functions to be imple-
mentaton dependent vet hidden from the pro-
grammer.

/* common library interface */

The following example shows how to guarantee
that an integral type has more than 16 bits of pre-
cision.

#include <limits.h> see section 2.5 for limits.h discussion

#1if INT_MAX = 32767 /* 16 bit int
typedef long data_.type;

#else /* > 16 bits */
typedef int data_type;
#endif

Macro definitions allow a complicated operation
or set of statements to be defined with a function-

#define ROOT(a, b, c) (

is an example of how a cryptic expression can be
given a meaningful name through a macro defini-
tion. Similarlv. access to critical data structures
can be encapsulated with macro definitions that
improve the flexibility and comprehensibility of
the program. The following example:

#define denom (X, I) (X->table[I].denom)

allows a complicated data reference to be given a
meaningful name that avoids using many long
cryvptic expressions. In all fairness to Fortran-77.
it does permit the declaration of statement func-
tions that provide a subset of the C macro defini-
tion capability. The presence of C’s built-in pre-
processor is a tremendous asset to writing both
portable and maintainable programs.

The C preprocessor is often viewed as an ad-
vantage bv Fortran programmers to the extent
that C preprocessing directives and macros are
sometimes inserted into Fortran programs. How-
ever. the C preprocessor is not a part of the For-
wan-77 standard. The C preprocessor can easily
cause problems for Fortran programs by expand-
ing macros such that a line is longer than 72 char-
acters. not recognizing Fortran comments. elimi-
nating something that looks like a C comment.
and affecting the compiler’s ability 10 print the
correct line number when issuing a diagnostic.
The C preprocessor is well defined for C but not
necessarily for other languages.

2.5 Standard Library

Standard C defines a standard set of library func-
tions that must be supported by all conforming
implementadons. The presence of this extensive
library is an aid to developing portable programs.
The lll.)ld[‘\' consists of a set of functions. wpedel
names, and macro definitions that are arouped
acu)ldulg 1o functionality and declared in sian-

C VERSUS FORTRAN-77 103

like description that enhances portability and
maintainability. The following macro definiton:

(b + sqrt(b*b — 4*a*c)) / 2*a)

dard header files. The standard header files are
made available by using the #include prepro-
cessing directive. The standard headers are:

assert.h generating program diagnostics

ctype.h testing and mapping characters

errno. h recording error conditions

float. h floating-point characteristics

limits.h sizes of integral wpes

locale.h supporting international locales

math. h transcendental mathematical
functions

setjmp.h nonlocal jumps

signal.h exception handling

stdarg.h processing functions with a
variable number of arguments

stddef.h common definitions

stdio.h input and ourput

stdlib.h general utilities

string.h manipulating character arrays

time. h manipulating time

This rich set of functions provides an excellent
interface to the underlving C implementation and
is another advantage of Standard C. The imple-
mentation is not required to actually provide ex-
ternal source files for the standard headers. To
improve compile time they can be special binary
encoded files or even built into the internals of the
compiler. Fortran-77 provides a limited set of
standard intrinsic functions that are primarily
mathematical functions. Fortran-77 does provide
two very useful intrinsic functions that Standard C
does not: MAX and MIN.

2.6 Memory Allocation

Some of the most useful library functions are the
dvnamic memory support functions declared in
the stdlib.h header. The standard functions
malloc. calloc. realloc. and free define a
portable wayv to dvnamically manage space asso-

104 MACDONALD

ciated with a system heap. Heap space can be
allocated with malloc and calloc, the size of
allocated space can be increased or decreased
with realloc, and this space can be given back
to the heap manager with free. Standard C
pointers are used to reference dvnamically allo-
cated memory. In addition to d\ namically allo-
cated heap space, Standard C permits variables to
be declared with global statie, local statie, or local
stack space. Global variables can be either de-
clared to be externally visible to other compilation
units, or strictly local to the containing compila-
tion unit.

Fortran-77 only supports global COMMON
blocks and local variables. The Fortran-77 stan-
dard does not specify i local variables are static or
stack allocations. However, the SAVE statement
allows variables to preserve their value across calls
to the same function. The absence of a portable
dynamic storage management system is a serious
deficiency in Fortran-77. Often, vendors who pro-
vide scientific and numerical library packages
have to provide awkward interfaces that require
the programmer to specify additional arguments
for temporary storage.

The wider variety of storage allocation methods
available in Standard C is a definitive advantage.

/* evaluate ‘right' only if ‘'left' is
left && right
/* evaluate ‘right' only if ‘left' is

left | right

Because Fortran-77 does not mandate short cir-
cuit evaluation. a portable program cannot rely on
it.

Standard C has bitwise operators that manipu-
late the bits of integral values.

one's complement
binary and
binary or
exclusive or
shift right
shift left

TTTe

>>
<<
Fortran-77 does not have any bitwise operators.

In many ways Standard C has clear advantages
over Fortran-77 that make problem solving easier.

This makes Standard C more portable and con-
venient to use for many types of applications.

2.7 Additional Considerations

Another advantage that Standard C has over For-
tran-77 is the ability to directly communicate with
the program’s environment thmu"h the argv and
argce parameters of the main entry function.

Example 6
main (int argc, char *argv([1} {

/* argc: number of arguments */
/* argv: array of argument pointers */

The ability to pass arguments into a program at
start-up time allows communication with the envi-
ronment in a portable way. Fortran-77 does not
provide anyv similar mechanism. Either nonport-
able features or indirect methods involving source
files must be used for this kind of communication.

Standard C has explicit short circuit operators.
The && and | rators control the evaluation of
the second operand.

true */

false */

3 STANDARD C ENHANCEMENTS

It should be noted that Traditional C {i.e.. C as it
existed prior to the ANSI and IS0 standards) was
used primarily for systems applications. and the
language’s development reflected the needs of
svstems programmers. Because C has grown in
popularity, the strengths of the language make it
appealing for different types of applications. The
C standard has been an aid to portabilitv. There
are already manv production quality Standard
conforming C compilers available for a variety of
syvstems. There are several enhancements in the C
standard that make numerical programming eas-
ier. These enhancements are honoring parenthe-
ses., defining additional floating-point arithmetic.

defining a standard mathematical library, and de-
fining a set of floating-point characteristics.

3.1 Honoring Parentheses

One of the more surprising features of Traditional
C is that parentheses are not honored for certain
operators. Traditional C compilers may evaluate
the following expression:

(a + b) + ¢
as any one of the following:

a-+ (b + 0¢)
(a + ¢c) + b
(a + b) + ¢

The Traditional C compiler is free to reorder the
evaluation ol operators that are both commutative
and associative even in the presence of parenthe-
ses. Although the intent was to permit optimiza-
tions. it produces problems when trving to control
the amount of relative error accumulating in cer-
tain floating-point operations. Unlike the mathe-
matical real numbers, floating-point addition is
not associative because the infinite amount of in-
formation contained in a real number can only be
approximated in a finite floating-point format.
This is demonstrated by the following contrived
example. compiled with a Standard C Compiler
(SCC). and run on a Crav Y-MP computer.

Example 7
#include <stdio.h>

double a, b;
double ¢ = 524288.0;

main() {

a=c¢* (1 << 48); /* 524288 * 2%%48 */

b = -a;

printf("(a + b) + ¢ = %f \n", (a+b)+c);
printf("a + (b + ¢) = %f \n", a+(b+c));

The output from this program is:

524288.000000
0.000000

(a+ b)+ec

a+ (b+ ¢

The numerically accurate answer. 524288. is ob-
tained when the operation a+b is performed first.

C VERSUS FORTRAN-77 105

Thus there is a demonstrable need to control the
order of evaluation with floating-point arithmetic.
The only solution available in Traditional C is to
store intermediate results in explicit temporaries
(i.,e., tmp=a+b). Thus, Traditional C imposes the
burden of writing a simple statement such as:

x = (a + b) + (¢ + d);

in an unnatural and more complicated way with
the following explicit temporaries:

tmpl = a + b;
tmp2 = ¢ + d;
X = tmpl + tmp2;

A numerical programmer wants to be able to ex-
press mathematical concepts and needs to have
parentheses honored. The C standard now re-
quires an implementation to honor parentheses.
This change was made solely for the purpose of
making C more suitable for numerical applica-
tions. Fortran has alwavs required parentheses to
be honored, and the X3}J11 commirttee that de-
fined the C standard greatly enhanced C’s useful-
ness for numerical programming by placing the
same requirement on C implementations.

3.2 Floating-point Arithmetic

Another deficiency of Traditional C is the exis-
tence of only one type of floating-point arithmetic.
Traditional C required all floating-point opera-
tions to be performed in tyvpe double. The tvpe
float existed only to conserve memory. All oper-
ands of type float were converted to type double
before any arithmetic was performed. Clearly. the
bias in Traditional C was toward integer arith-
metic where arithmetic was defined for the four
integral tvpes int. unsigned int. long. and
unsigned long.

The presence of four types of integer arithmetic
is now complemented by three tvpes of floating-
point arithmetic. The C standard defines three
floating-point tvpes: float. double. and long
double. The new long double type must be at
least as precise and contain at least as much range
in the exponent as tvpe double. The restriction
that all operands of tvpe float be converted to
type double before any operation is performed
has been removed. The implementation may con-
vert floating-point operands to a wider precision if
that is desirable, but this conversion is not re-
quired. This important change provides a variety
of arithmetic types from which to choose.

106 MACDONALD

However, these are not the same rules that are
present in Fortran-77. The C standard permits an
implementation to map all three floating-point
types on the same underlying precision and range.
Fortran-77 requires that variables with tvpe DOU-
BLE PRECISION occupy twice as much storage as
variables with type REAL. The implication is that
DOUBLE PRECISION provides greater precision
than REAL although the Fortran-77 standard does
not explicitly require this behavior. Regardless of
what the Fortran-77 standard requires the mar-
ketplace demands that all Fortran vendors pro-
vide greater precision for DOUBLE PRECISION. It
is not clear that all C vendors offer the same sup-
port, which again reflects the traditional use of C
for systems programming. Finally, Fortran-77
does not allow floating-point operations to be per-
formed in a wider precision.

3.3 Standard Mathematical Library

One optimization not permitted in Traditional C is
the ability to recognize standard transcendental
functions and perform them inline or through a
fast interface. Traditional C allows a programmer
to redefine any function in the librarv. This means
a programmer is at liberty to define a function
named tan and expect all calls to tan to use that
function in place of the standard library function.
Actually, a function named tan need not compute
a tangent at all, but could, for instance, return a
value that represents the color tan. Therefore,
there is no way in Traditional C to tell at compile
time that a particular function is a standard math-
ematical function. This can significantly affect
performance of the standard mathematical func-
tions (e.g., pow, exp, log. sqrt, etc.).

The C standard actually reserves the names of
all standard functions. This means that if the
function tan is called in the presence of the
<math. h> header, the compiler can assume that
the standard library function is being called. This
allows the implementation to replace calls to stan-
dard library functions with inline code or special
intrinsic versions with fast entry and exit se-
quences. Furthermore, the C standard permits
functions to be called with ‘‘assignment compati-
ble’” arguments, which is not allowed in Tradi-
tional C. This means pow can, for instance, be
called with either of its actual arguments being an
integral type. The following statement is required
to behave as if the 2 were converted to 2. 0 (in the

presence of <math.h>) before the function is
called.

v = pow(x, 2):

This permits pow(x, 2) to be evaluated inline
and to be treated as x**2 when appropriate.

However, the Standard C rules are not quite as
convenient as the Fortran-77 rules from the nu-
merical programming point of view. None of the
standard transcendental library functions are de-
fined to return either long double or float val-
ues. Additional names, such as tanl and
tanf that accept and return values with types
long double or float. respectively, are reserved
by the standard for future use. However, this
means any usage of these functions in programs is
not currently portable. Even if they become porta-
ble in a future standard the number of names that
must be remembered is inconvenient at best.

Fortran-77 defines a generic intrinsic function
TAN that accepts arguments for the tvpes REAL.
DOUBLE PRECISION, and COMPLEX. Fortran's
rules are more convenient because the generic in-
trinsic functions are overloaded to accept argu-
ments with different tvpes. Finally Fortran-77
provides an exponentiation operator, while C only
provides a library function. There is no analogy to
the expression i**n because Standard C forces
the result to have a floating-point result. This can
result in a serious performance penalty for anv
application that performs a reasonable amount of
integer exponentiation.

3.4 Floating-Point Characteristics

Another floating-point enhancement provided by
Standard C is the <float. h> header. This header
contains a set of macro names that provide useful
information about the floating-point characteris-
tics of the implementation. The following is the list
of names provided for tvpe float and a brief de-
scription of their characteristics:

FLT_ROUNDS rounding mode for
floating-point addition
FLT_RADIX base of the exponent

FLT_MANT_DIG number of base digits in

mantissa

FLT_DIG number of decimal digits
in mantissa
FLT_MAX maximum positive

representable number

FLT_MIN minimum positive
representable number
exponent of smallest
positive number
smallest negative X such
that 10 = FLT_MIN
exponent of largest
positive number

largest positive X such
that 10Y = FLT_MAX
smallest positive X such
that X + 1.0 # 1.0

FLT_MIN_EXP
FLT_MIN_10_EXP
FLT_MAX_ EXP
FLT_MAX 10_EXP

FLT_EPSILON

There are identical sets of names for type double
that begin with DBL instead of FLT and for long
double that begin with LDBL. These macro
names can be used to interrogate the system at
run time about useful floating-point characteris-
tics. These floating-point characteristics are de-
fined in terms of a floating-point model and the
model is defined in terms of the following parame-
ters:

sign (= 1)
base or radix of exponent representation
exponent (integer between ey, and en,)
precision (number of base-b digits in signifi-
cand)

Jf« nonnegative integer < b

T 0o

A normalized floating-point number x{f; > 0 if
x # 0) is defined by the following model:

’)
xr=sX bP X z ﬁ\ X b'/\" €min =e= €max
k=1

The Fortran-77 standard does not define any
way to portably interrogate for floating-point
characteristics. However. the definition of the
Standard C floating-point model was taken from
the Fortran-90 standard to maintain some com-
monality across language standards. The addition
of the floating-point model to the C standard is a
valuable aid to writing portable numerical and sci-
entific applications.

4 REMAINING NUMERICAL
C DEFICIENCIES

Although the C standard contains features that
make C more desirable for numerical program-
ming than its predecessors, there are still deficien-

C VERSUS FORTRAN-77 107

cies that are severe enough to tilt the scales in
favor of Fortran-77 for certain types of applica-
tions. The severest deficiencies still present in
Standard C are the absence of complex and vari-
able length array types. error reporting through a
globally modifiable object (errno), and perfor-
mance problems associated with unrestricted
aliasing. These important issues are being exam-
ined by committee X3J11.1 (NCEG) and must be
resolved in order to make Standard C a viable al-
ternative to Fortran-77 as a numerical language.
The following is a discussion of proposals to ex-
tend Standard C that are being considered by
committee X3J11.1.

4.1 Complex Arithmetic

The absence of a predefined complex tvpe in
Standard C forces programmers to define their
own complex type. The most common way of ac-
complishing this is through a typedef, similar to
the following:

typedef struct { double re, im; } complex;

Although this allows declarations of objects with a
complex type. it inhibits the use of standard infix
operators such as: /. *, —. +. Instead functions or
macros must be defined to perform these opera-
tions. This means that using natural infix expres-
sions such as:

a=(b+e)*(d+ ek

is not accommodated. Instead, programmers are
forced to write with a functional notation such as:

a = CMUL (CADD(b,c), CADD(d,e));

Substituting a functional notation for the elegant
infix operators makes the expression harder to de-
cipher. An application requiring extensive use of
complex arithmetic is difficult to code in C. Stan-
dard C needs a complex type. Fortran has sup-
ported a complex type for many years. An appli-
cation that requires a complex type if probably
going to be much easier to develop in Fortran-77
than in Standard C.

Adding a new type to a language is difficult to
get “‘right”” because of the complexity associated
with closure on the language. Committee X3J11.1
is attempting to define a complex extension to C
and has identified a number of issues that must be

108 MACDONALD

resolved before this language extension is ap-
proved. For instance, an obvious approach to this
extension is to add a new keyword. complex, to

typedef struct { double re, im; } complex;

and branding these programs as nonconforming
by carelessly adding a new keyword. is unaccepta-
ble. The solution is to add a new header com-
plex. h that introduces the new tvpe. Existing
programs will not include this header and there-
fore will not be affected.

Because there are three floating-point tvpes.
there should be three corresponding complex
types. These types are declared: float complex.
double complex. and long double complex.
Complex constants are provided by introducing a
new suffix, i. A constant with an i suffix has a
complex type, the real part has the value 0, and
imaginary part has the value of the constant.

3.14fi. float complex
3.14i double complex
3.14Li long double complex

A complex constant with a non-zero real part is
created with an expression like: 2.3 + 1.5i (real
part is 2.3 and imaginary part is 4.5).

With the addition of complex types in C. new
arithmetic conversion rules are needed to define
the result type of expressions that contain both
real and complex operands. For instance. if one
operand has type long double and the other op-
erand has type float complex. the rules should
be such that the most information is preserved.
Therefore. the rules are enhanced to produce a
result type of long double complex. The proposed
rules are described below.

All types have three tvpe attributes called the
dimension, the format. and the length. The di-
mension attribute specifies whether the values of
the type can be represented on a one-dimensional
line (i.e., real numbers) or on a two-dimensional
plane (i.e., complex numbers). The format attrib-
ute specifies whether the values of the tvpe are
represented with an exponent part (i.e.. floating
numbers) or without an exponent part (i.e.. inte-
gral numbers). The length attribute specifies how
many bits are used to represent the magnitude
and precision of the tvpe. The values of each of

the language. permitting declarations of complex
types. However, too many programs already exist
that use:

these attributes are ranked, from highest to lowest
(Table 1). For example. complex ranks higher
than real for the dimension attribute.

Many binary operators that have operands of
arithmetic types cause implicit conversions of one
or both operands. The purpose of the conversions
is to vield a common format and length for the two
operands and the type of the result. These implicit
conversions of the operands are called the usual
arithmetic conversions.

The conversions shall preserve the original
magnitude and precision of both operands except
that precision may be lost when an integral tvpe is
converted to a floating tvpe. This will occur if the
magnitude of the integer is too greater for the
mantissa of the floating type to represent exactly.
The rules for the usual arithmetic conversions are:

1. The dimension of the result tvpe is that of
the higher ranking dimension of the oper-
ands.

2. The format of the result type is that of the
higher ranking format of the operands.

3. If the format of the result type is floating.
then the length of the result type is that of
the higher ranking floating length of the op-
erands. If the format of the result wvpe is
integral, then the integral promotions are
performed on both operands.

Complex library functions need to be defined
for the complex tvpes. However. the lack of intrin-
sic functions in C is again a serious impediment.
Defining complex library functions such as sin.
cos. exp. log. pow. sqrt. and abs requires

Table 1. Values of Each Attribute

Integral
Length

Floating

Dimension Format Length

Complex Floating Long double Unsigned long

numbers numbers Signed long
Real Integral Double Unsigned int
numbers numbers Float Signed int

three additional names for each function. For ex-
ample: '

csinf complex sine for float complex
csin complex sine for double complex
csinl complex sine for long double complex

This is in addition to sinf, sin, and sinl that
are already reserved by the C standard for float-
ing-point numbers. The proliferation of names is

extreme and again it is apparent that some form of

generic intrinsic name is needed.

4.2 Variable Length Arrays

Another deficiency that might inhibit the use of C
is the absence of variable length arravs. Because
arravs must be defined with a constant dimension.
there is no way in C to declare an array whose size
is dvnamic. Function arguments that are arrays
are implicitly converted to pointers to the first ele-
ment before the function is called. This pointer
can be used to access all of the array elements. It
is easv to define a {unction that operates on single
dimensioned arravs of any length. However. a
problem still exists with multidimensional arrays.
For instance. a iwo-dimensional arrav is con-
verted to be a pointer to an array and the array
portion of the type must stll contain a constant
dimension. This prevents a simple definition of a
function that performs a matrix operation on arbi-
trary M X N matrices. Ideally. Standard C would
permit a declaration of a function performing a
matrix multiply to look similar to the following:

void func (double (*desc) [?][?])

declares a parameter desc that is a descriptor
with three pieces of information: address of the
base. length of the first dimension. and length of
the second dimension. The tvpe of parameter
desc is pointer to adjustable array of adjustable
array of double. This descriptor can be used to
reference arravs whose dimension sizes vary at ex-
ecution time.

Fortran-77 does not support variable length
stack arravs. It is a very common extension to
most Fortran implementations. however. One ad-
ditional advantage available with Fortran-77
arrays is the ability to specifyv both upper and
lower bounds for each dimension. C arravs are
alwavs zero based and the length of the dimen-

C VERSUS FORTRAN-77 109

/* a =b X ¢ */

void mxm(int n, int m,

double a[n] [m], double b(n] [m],
double c[n] [m]);

The size of each array is dynamically determined
each time the function is called. Because an array
is always converted to a point to the first element
of the array whenever it is passed as a function
argument, the problems seems to exist only for
multidimensional arravs. However, the inability to
declare a one-dimensional stack array that is the
same size as a formal parameter suggests that this
feature is desirable for all array types that reside
on the stack. This would permit:

f (int n, double ary[n]) {
double tmp[n];

to declare both the formal parameter ary and the
stack array tmp to be variably dimensioned arrays
with the same size. This approach is analogous to
the Fortran notion of adjustable and automatic
arrays.

Committee X3J11.1 is looking at two proposals
that extend C along these lines. The first approach
is the one described above. A second approach
involves the use of descriptors that are capable of
representing the address of the array and the size
of each dimension. For example:

/* tentative syntax */

sion is specified (not the bounds). Some prob-
lems are more naturally viewed as non-zero
based.

For completeness sake it should be noted that
there is an existing solution to the variable length
array problem that is standard conforming. Es-
sentallv. this solution involves using the library
function malloc to dvnamically allocate an array
of pointers. Each pointer element of the array
points to a different row of the matrix. This array
of pointers permits access to the entire matrix
through multiple indirection. The following exam-
ple demonstrates this technique by performing a
matrix multiply with dvnamically allocated arravs
of pointers.

110 MACDONALD

Example 8
#include <stdlib.h>

#define M 10
#define N 20

double a [N] [N], b([N][M], c[M] [N];
void mxm(int n, int m, double **a,

main () {
double **pa, **pb, **pc;
int i;

pa = malloc (N*sizeof (double *));
pb = malloc (N*sizeof (double *));
pc = malloc (M*sizeof (double *))

’

/* setup array of pointers */
for (i=0; i<N; i++) {

mxm (N, M, pa, pb, pc);
} /* main */

int i, j, k;

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {
a(ij[j1 = 0;
for (k = 0; k < m k ++)

}

} /% mxm */

/* allocate arrays of pointers */

/¥ a = b X ¢ (for arbitrary NXM shapes)
void mxm(int n, int m, double **a, double **b, double **c) {

a[il [j1 += b[i] (k] * c(kI[J];

double **b, double **c);

pafi] = al[i]; /* pa[i] points to i-th row of a */
pb[i] = b[i]; /* pb[i] points to i-th row of b */
}
for (i = 0; i < M; i++)
pcli] = c¢lil; /* pc[i] points to i-th row of ¢ */

free(pa); free(pb); free(pc); /* free allocated arrays */

*/

/* double indirection */

The following method describes the high level al-
gorithm used in Example 8.

1. The pointers pa, pb, and pc each point at
an array of pointers dynamically allocated
by malloc.

2. Each pointer element pa[i], pb[i], and
pc[i] is assigned to point at each row of
matrices a, b, and ¢, respectively.

3. pa, pb, and pc are passed to the function
mxm, which performs the matrix muliiply
using double indirection.

4. The memory for the dynamically allocated
arrays is freed.

The problems associated with this approach are
complexity and extensibility. The soluton is nei-
ther intuitive nor easy to understand. Finally, the
solution does not extend easily to three or four
dimensions. The three-dimensional solution re-
quires an array of pointers each pointing at a two-
dimensional array of pointers, each pointing at a
row of the three-dimensional array. The complex-
ity grows rapidly with each new dimension.

4.3 The errno Macro

The errno macro expands into an lvalue expres-
sion that specifies a storage location that the C
environment modifies under exceptional condi-
tions. The worst problem with errno is its inter-
action with the standard transcendental functions
defined in the <math.h> header. Standard C
prevents any mathematical library functions from
causing a visible exception. That is. the program
cannot stop execution or pass control to a signal
handler. just because a mathematical function
cannot compute its result. There are two reasons
why these functions might not be able to compute
their results: domain error or range error. A do-
main error occurs if an input argument is outside
the domain over which a mathematical funetion is
defined {e.g., sqrt (—1)). When a domain erroris
detected the value of a macro named EDOM is
stored in errno. A range error occurs when the
result of a mathematical function cannot be repre-
sented as a double value (e.g.. pow (DBL_MAX,
DBL_MAX}}. When a range error is detected the
value of a macro named ERANGE is stored inio
errno. and if the funecton result overflows the
function returns the value of another macro
named HUGE_VAL. This means that in the expres-
sion:

pow (X1, yl) * pow(x2, ¥2)

neither call 1o pow is allowed to cause an excep-
tion but the multiplication operator is! Typicallv,
the value of HUGE_VAL is large in magnitude,
meaning the multiplication can easily overflow
and cause an exception. This implies that the pre-
ferred technique is to use explicit temporaries as
follows:

errnoc =0;
tmpl = pow(xl, yl);

C VERSUS FORTRAN-77 111

tmp2 = pow(x2, y2);
if (errno != 0) panic(errno);

This technique proliferates the unnatural use of
temporaries.

Another problem with errno semantics is that
it inhibits automatic vectorization and paralleliza-
tion of loops containing calls to math functions as
the following example demonstrates:

Example 9

for (i = 0; 1 < 100; 1 ++) {
errnc = 0;
x[i] = sqrt(ylil);
if (errno != () panic{errno);

}

This for loop cannot be vectorized because if. for
example, the seventh iteration contained a range
error then the first six values must have been fully
computed before the error was detected. A pipe-
lined architecture does not necessarily guarantee
that the first six vector elements are fully evalu-
ated if the seventh element produces an excep-
ton. Now if errno is omitted from the example.
as follows:

for (i = 0; i < 100; i++) {
x{i] = sqrt(y[il);
}

then the error condition goes undetected because
the sqrt function cannot fail. This affects both
automatic vectorization and parallelization. This
is such a limiting condition that vendors who pro-
vide high-performance systems are forced to pro-
vide two environments: a strictly conforming envi-
ronment that supports errno but does not
vectorize or parallelize loops econtaining calls o
math functions, and an environment that disasso-
ciates errno from the math library. Modern su-
percomputers can often times compute the results
faster than the code needed 1o detect the error
and update the memory location designated by
errno. Attempting to define error conditions in
terms of a globally modifiable object creates many
problems including severe performance degrada-
tions. Committee X3J11.1 is exploring a new
mathematical library definition without the pres-
ence of errno.

The Fortran-77 standard wisely chose to say
nothing about exceptional conditions. This allows
the compiler to optimize statements containing
calls to the transcendental functions in a standard

112 MACDONALD

conforming way. One of Fortran’s greatest assets
is its potential for optimization.

4.4 C Aliasing

Many numerical programs are computationally
intensive and benefit from optimizations. The op-
timization capability of a vendor’s Fortran com-
piler is often times crucial to providing access to
the full capabilities of the hardware from a high-
level language. This is especially true for super-
computer environments where compilers perform
automatic vectorization and automatic parallel-
ization. Supercomputer sales are largely based on
the performance the system can deliver.

C pointers present problems for opimizing
compilers because they introduce hidden aliases.
Essentially, whenever an object is modified
through a pointer, the compiler must make worst
case assumptions if it cannot determine which ob-
ject is being modified. Parallel processing is one
current approach being taken to increase perfor-
mance of many computationally intensive appli-
cations. The hidden aliases introduced by C
pointers make automaric compile time detection
of parallelism an intractable problem. Aliases
must be resolved before a compiler can determine
that a loop is safe to parallelize. For instance. it is
important to know how the elements of an array
are accessed and modified. Consider the following
loop:

Example 10
int a[51 = {0, 2, 4, 6, 8}

void f() {
int i;

for (i = 1; i < 5; i++)
afi] = af{i-1] + 1;
}o/x £ ox/

The semantics of this loop dictate the following
execution order that produces scalar results.

afi}=al0]+1,;
al2]=all]+1;
af3]j=al2]+1;
ald4l=a[3]+1;

Vectorization results require the order of accesses
and modifications to be rearranged. The following
reordering allows several array elements to be ac-
cessed and maodified simultaneously.

V[0]=a(0];
V[l]=a[1l};
vVizl=a[2];
Vi3]=al3];

a[l]=V[0]+1;
a[2]=vi1]+1;
a[3]=v[2]+1;
af4]=V[3]+1;

One common parallel optimization technique is to
simultaneously execute different iterations of a
loop on multiple processors. This means the order
of references to objects occurring in different loop
iterations is undefined. The following results are
obtained for arrav a by each method.

scalar results: 0, 1, 2, 3, 4
vector results: 0, 1, 3, 5, 7
parallel results: indeterminate

The scalar results are always correct because that
is whart is dictated by both the Fortran-77 and C
standards. Any parallelizaton that is performed
must preserve the scalar results. In general. if an
object referenced in a particular iteration of the
loop is also modified in a different iteration of the
loop. then automatic vectorization and parallel-
ization must somehow preserve the order of the
accesses and modifications of that object. Exam-
ple 5 contains the easily detectable aliases afi]
and a[i—1%. A compiler can detect this alias at
compile time and generate a scalar loop. However.
the following example demonstrates that C
pointers can introduce hidden aljases that are not
detectable at compile time.

Example 11

02

|
e
©

04 int b[6]
05 int c[6];

01 #include <stdio.h>

03 int a[6] = {0, 1, 2,
8, 7

, 4k

C VERSUS FORTRAN-77 113
06
07 void blackbox (int *pl, int *p2, int *p3, int n);
08
09 main(){
10 int i;
11
12 blackbox(c, b, a, 6), /* no aliases */
13 for (i=0; 1<6; i++)
14 printf (" c(%d] = %d ", i, c[i]);
15 putchar ('n');
16
17 blackbox (&a {1}, &a{l}, a, 5); /* aliases */
18 for (i=0; i<6; i++)
19 printf (" a[%d] = %d ",i, afil);
20 putchar('\n';;
21 } /* main */
22
23 void blackbox (int *pl, int *p2, int *p3, int n) {
24 int i,
25
26 for (i=0; i<n; ++1i)
27 *plt+ = *p2++ + *p3++;
28 } /* blackbox */

The lollowing cutput is produced when the program is exeeuted in scalar lashion.

c{0] = 9 ¢[1] = 9 ¢[2] =
ajo] = o

&
oy

i
[y
j2d
D

i

The funection blackbox. whose delinition starts
on line 23, appears 10 add the corresponding ele-
ments of two arravs together, storing the results
into a third arrav. This is exactly what happens
when blackbox is called without anv aliases at
line number 12, The resulting arrav ¢ contains the
sum of a and b. This makes the loop inside
blackbox appear (o be a candidate for parallel-
ization. However, when blackbox is called with
aliases at line number 17 something different
happens. Each element of the resulting array a
contains partial sums of the values in the preced-
ing elements. This tme the loop must be executed
as a sealar loop 1o obtain the correct results. Be-
cause blackbox is not declared statie it ean be
called from a separately compiled module. There-
fore. the compiler must make the worst case as-
sumption that this foop might contain aliases. ¢
does not provide any way to restrict the aliasing of
formal parameters that are pointers.

Fortran-77, however, does not permit aliasing
through formal parameters if the actual object is
maodified. This means that a formal parameter
cannot reference the same object referenced by

9 ¢[3]
3 af{3j

i

9 c[4]
6 af4]

9 c[5] =9
10 af5] = 15

il
fi

another formal parameter, nor a global object that
is part of a COMMON block. Fortran-77 rules re-
quire subroutine arguments to behave as if they
are copied in when the subroutine is called and
copied out when the subrowine returns control to
its caller. Because the order in which arguments
are copied in and owt is unspecified, aliases pro-
duce unpredictable results. Fortran-77 s a
proven performer that provides reasonable se-
mantics for exploiting automatic paralielism.

C aliasing is not only the most critical remaining
deficiency. it is one of the most difficult to resolve.
Many ideas have been proposed that solve part of
the problem but none have provided a general so-
lution that encompasses all pointers. One promis-
ing proposal that is currently being explored by
committee X3J11.1 is a new kind of pointer called
a restricted pointer. A restricted pointer gives the
compiler the liberty (o assume that the poinier be-
haves like an array for aliasing purposes. That is,
because the compiler can assume that two differ-
ent arravs are not-aliases with each other. it can
also assume that two dilferent restiicted pointers
are not aliases.

114 MACDONALD

void func(double *restrict p, double *restrict q)

This example shows how {ormal parameters p and
a can be declared as restricted pointers by using a
new keyword restrict. The compiler can as-
sume that p and g point to different objects,
Another useful application of resuricted
pointers is to point at space allocated by the dy-

namic memory allocation {unctions, calloc.
malloc. and realloc. The € siandard [1} guar-
antees that “each such allocadon shall vield a
pointer to an object disjoint from any other ob-
ject.”

double * restrict p = malloc(N * sizeof (double) };

The simplicity of this proposal makes it easy 10
comprehend. This is important because incorrect
usage results in undefined hehavior. The simplic-
ity of this proposal also makes it easy for an op-
timizer to exploit, because the same logic cur-
rently being applied to arravs can now be applied
to restricted pointers. Finally, itis trivial to port an
application that uses the new restrict keyword
to other environments because the following pre-
processing directive:

#define restrict

harmlessly eliminates all occurrences of the key-
word.

The C-aliasing problem was identified as the
highest priority issue facing committee X3J11.1 at
its initial meeting but is also recognized as one of
the most difficult issues on which to reach consen-

SUS.

5 CONCLUSIONS

C is an important language that is not used very
often as a numerical or scientific programming
language. Even if C is the language of choice for
some people they might be dissuaded from using it
for a particular application because of the defi-
ciencies documented above. Many of C’s advan-
tageous features could be put ta good use in nu-
merical codes if the current limitatons are
overcome. Certainly Fortran-77 will be a popular
numerical language for a long time. C, on the
other hand. must continue to evolve and improve
or it will remain a secondary language {or numeri-
cal and scientific programming. Committee
X3J11.1 is a vehicle for exploring the evolution of

C into a bever numerical language. Whether the
resulting language gives programmers a usable

1&{!1;_’.11“5_’:{? remains to l)(‘ =OCI

REFERENCES

[1] ANSE X301 Committee. American Nationa
Stanelard X3.1591959, Programming Language
C fapproved December 14, 1989 Sanm Ana,
CA: Global Engineering Documents. e,

121 ANSI X313 Comnittee, American National Stan-
dard X3. Q197N Programming Langrage FOR-
TRAN {approved April 3. 19781 Santa Ana. CA:
Global Engineering Documents. Ine,

(31 ISO/IEC JTCH/8C22/W6EH Fortran Working
Group. International Standard 1339: 1991 Pro-
gramming Language FORTRAN, Santa Ana. CA:
Global Engineering Documents. Ine.

[4] T. MacDonald, € for numerical computing.”” J.
Supercomputing. vol. 7. pp. 31—48. 1991,

51 T, MacDonald. ~C language and numerical pro-
gramming. " J. O Lang, Translation, pp. 9106,
1989 {sample issue).

f6] T. MacDonudd. ~Adding complex anithmeric to
G JC Lang, Translation, vol. 1. pp. 20-31,
1989,

[71 T, MacDonald, Ahasing issues in .77 . C Lang.
Translation, vol. 1. pp. 83-U5. 1989,

81 P L Plauger and 1. Brodie, Standard C: Pro-
grammers Quick Reference Guide. Redmond.
WA: Microsoft Press, 1989,

[01 R. Yaeschke, Portability:and the C Language. In-
dignapolis. IN: Havden, 1989,

[10] B. W. Kernighan and D. M. Ritchie. The C Pro-
gramming Language (2nd ¢d). Englewood Cliffs,
Nl Prentice Hall, 1988,

[11] 8. Harbison and G. Steele. C, A Reference Man-
nal 3rd ed.). Englewood Cliffs, NI Prentice Hall,
1961,

Journal of))
Industrial Engineering

Applied
Computational
Intelligence and Soft
Computing—

. A International Journal of
The Scientific Dictione. S
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Ll T Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networkhs
and Communications /1 Advances in

Artificia
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, = Neural Systems
- 2 \ i

International Journal of
Computer Games . in
Technology re Engineering

Reconfigurable
Computing

e Computational L g
Journal of Human-Computer Intelligence and Electrical and Computer
Robotics Interaction Neuroscience Engineering

