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Abstract

Models trained for classification often assume that all

testing classes are known while training. As a result,

when presented with an unknown class during testing, such

closed-set assumption forces the model to classify it as one

of the known classes. However, in a real world scenario,

classification models are likely to encounter such exam-

ples. Hence, identifying those examples as unknown be-

comes critical to model performance. A potential solu-

tion to overcome this problem lies in a class of learning

problems known as open-set recognition. It refers to the

problem of identifying the unknown classes during testing,

while maintaining performance on the known classes. In

this paper, we propose an open-set recognition algorithm

using class conditioned auto-encoders with novel training

and testing methodologies. In this method, training proce-

dure is divided in two sub-tasks, 1. closed-set classification

and, 2. open-set identification (i.e. identifying a class as

known or unknown). Encoder learns the first task following

the closed-set classification training pipeline, whereas de-

coder learns the second task by reconstructing conditioned

on class identity. Furthermore, we model reconstruction er-

rors using the Extreme Value Theory of statistical modeling

to find the threshold for identifying known/unknown class

samples. Experiments performed on multiple image classi-

fication datasets show that the proposed method performs

significantly better than the state of the art methods. The

source code is available at: github.com/otkupjnoz/c2ae.

1. Introduction

Recent advancements in computer vision have resulted

in significant improvements for tasks such as image classi-

fication [16], [24], [17], [48], Detection [41], [40], [4], [49],

Clustering [19], [1], [8], [2], etc. Specifically, for classifi-

cation task the rise of Deep Convolutional Neural Network

has resulted in error rates surpassing the human-level per-

formance [15]. These promising results, enable their poten-

tial use in many real world applications. However, when
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Figure 1: Open-set recognition problem: Data samples

from Blue Jay, Seal, Dog and Penguin are from the known

class set (K). Also, many classes not known during train-

ing, will be present at testing, i.e., samples from unknown

class set (U ). The goal is to correctly classify any sample

coming from set K, as either Blue Jay, Seal, Dog or Penguin

and identify samples coming from U as unknown.

deployed in a real world scenario, such systems are likely

to observe samples from classes not seen during training

(i.e. unknown classes also referred as “unknown unknowns”

[44]). Since, the traditional training methods follow this

closed-set assumption, the classification systems observing

any unknown class samples are forced to recognize it as

one of the known classes. As a result, it affects the perfor-

mance of these systems, as evidenced by Jain et al. [18]

with digit recognition example. Hence, it becomes criti-

cal to correctly identify test samples as either known or un-

known for a classification model. This problem setting of

identifying test samples as known/unknown and simultane-

ously correctly classifying all of known classes, is referred

to as open-set recognition [44]. Fig. 1 illustrates a typical

example of classification in the open-set problem setting.

In an open-set problem setting, it becomes challenging to

identify unknown samples due to the incomplete knowledge

of the world during training (i.e. only the known classes

are accessible). To overcome this problem many open-set

methods in the literature [7], [45], [50], [47] adopt recog-
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nition score based thresholding models. However, when

using these models one needs to deal with two key ques-

tions, 1) what is a good score for open-set identification?

(i.e., identifying a class as known or unknown), and given a

score, 2) what is a good operating threshold for the model?.

There have been many methods that explore these questions

in the context of traditional methods such as Support Vec-

tor Machines [44], [45], [18], Nearest Neighbors [21], [6]

and Sparse Representation [50]. However, these questions

are relatively unexplored in the context of deep neural net-

works.

Even-though deep neural networks are powerful in learn-

ing highly discriminative representations, they still suffer

from performance degradation in the open-set setting [7].

In a naive approach, one could apply a thresholding model

on SoftMax scores. However, as shown by experiments in

[7], that model is sub-optimal for open-set identification. A

few methods have been proposed to better adapt the Soft-

Max scores for open-set setting. Bendale et al. proposed

a calibration strategy to update SoftMax scores using ex-

treme value modeling [7]. Other strategies, Ge et al. [11]

and Lawrence et al. [29] follow data augmentation tech-

nique using Generative Adversarial Networks (GANs) [13].

GANs are used to synthesize open-set samples and later

used to fine-tuning to adapt SoftMax/OpenMax scores for

open-set setting. Shu et al. [47] introduced a novel sigmoid-

based loss function for training the neural network to get

better scores for open-set identification.

All of these methods modify the SoftMax scores, so that

it can perform both open-set identification and maintain

its classification accuracy. However, it is extremely chal-

lenging to find a single score measure, that can perform

both. In contrast to these methods, in the proposed approach

the training procedure for open-set recognition using class

conditional auto-encoders, is divided it into two sub-tasks,

1. closed-set classification, and 2. open-set identification.

These sub-tasks are trained separately in a stage-wise man-

ner. Experiments show that such approach provides good

open-set identification scores and it is possible to find a

good operating threshold using the proposed training and

testing strategy.

In summary, this paper makes following contributions,

• A novel method for open-set recognition is proposed with

novel training and testing algorithm based on class con-

ditioned auto-encoders.

• We show that dividing open-set problem in sub-tasks can

help learn better open-set identification scores.

• Extensive experiments are conducted on various image

classification datasets and comparisons are performed

against several recent state-of-the-art approaches. Fur-

thermore, we analyze the effectiveness of the proposed

method through ablation experiments.

2. Related Work

Open-set Recognition. The open-set recognition meth-

ods can be broadly classified in to two categories, tradi-

tional methods and neural network-based methods. Tra-

ditional methods are based on classification models such

as Support Vector Machines (SVMs), Nearest Neighbors,

Sparse Representation etc. Scheirer et al. [45] extended

the SVM for open-set recognition by calibrating the deci-

sion scores using the extreme value distribution. Specifi-

cally, Scheirer et al. [45] utilized two SVM models, one

for identifying a sample as unknown (referred as CAP

models) and other for traditional closed-set classification.

PRM Junior et al. [20] proposed a nearest neighbor-based

open-set recognition model utilizing the neighbor similar-

ity as a score for open-set identification. PRM Junior et

al. later also presented specialized SVM by constraining

the bias term to be negative. This strategy in the case of

Radial Basis Function kernel, yields an open-set recogni-

tion model. Zhang and Patel [50] proposed an extension

of the Sparse Representation-based Classification (SRC) al-

gorithm for open-set recognition. Specifically, they model

residuals from SRC using the Generalized-Pareto extreme

value distribution to get score for open-set identification.

In neural network-based methods, one of the earliest

works by Bendale et al. [7] introduced an open-set recog-

nition model based on “activation vectors” (i.e. penulti-

mate layer of the network). Bendale et al. utilized meta-

recognition for multi-class classification by modeling the

distance from “mean activation vector” using the extreme

value distribution. SoftMax scores are calibrated using

these models for each class. These updated scores, termed

as OpenMax, are then used for open-set identification. Ge

et al. [11] introduced a data augmentation approach called

G-OpenMax. They generate unknown samples from the

known class training data using GANs and use it to fine-

tune the closed-set classification model. This helps in im-

proving the performance for both SoftMax and OpenMax

based deep network. Along the similar motivation, Neal

et al. [29] proposed a data augmentation strategy called

counterfacutal image generation. This strategy also utilizes

GANs to generate images that resemble known class im-

ages but belong to unknown classes. In another approach,

Shu et al. [47] proposed a k-sigmoid activation-based novel

loss function to train the neural network. Additionally, they

perform score analysis on the final layer activations to find

an operating threshold, which is helpful for open-set identi-

fication. There are some related problems such as anomaly

detection [31], [32], [36] and novelty detection [34], [39],

[33], [43] etc., which are relaxed version of the open-set

recognition formulation. But, for this paper we only focus

on the open-set recognition problem.

Extreme Value Theory. Extreme value modeling is a

branch of statistics that deals with modeling of statistical
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Figure 2: Block diagram of the proposed method: 1) Closed-set training, Encoder (F) and Classifier (C) are trained with

the traditional classification loss. 2) Open-set Training, To train an open-set identification model, auto-encoder network

Encoder (F) with frozen weights, and Decoder (G), are trained to perfectly or poorly reconstruct the images depending on

the label condition vector. Reconstruction errors are then modeled using the extreme value distribution to find the operating

threshold of the method. 3) Open-set Testing, Open-set recognition model produces the classification prediction (ypred) and

k reconstruction errors, conditioned with each condition vector. If the minimum reconstruction error is below the threshold

value obtained from the EVT model, the test sample is classified as one of the k classes, or else it is classified as unknown.

extremes. The use of extreme value theory in vision tasks

largely deals with post recognition score analysis [35], [45].

Often for a given recognition model the threshold to re-

ject/accept lies in the overlap region of extremes of match

and non-match score distributions [46]. In such cases, it

makes sense to model the tail of the match and non-match

recognition scores as one of the extreme value distributions.

Hence, many visual recognition methods including some

described above, utilize extreme value models to improve

the performance further [50], [45].

3. Proposed Method

The proposed approach divides the open-set recognition

problem into two sub-tasks, namely, closed-set classifica-

tion and open-set identification. The training procedure

for these tasks are shown in Fig. 2 as stage-1 and stage-

2. Stage-3 in Fig. 2 provides overview of the proposed ap-

proach at inference. In what follows, we present details of

these stages.

3.1. Closedset Training (Stage 1)

Given images in a batch {X1, X2, ..., XN} ∈ K, and

their corresponding labels {y1, y2, ..., yN}. Here, N is the

batch size and ∀yi ∈ {1, 2, .., k}. The encoder (F) and the

classifier (C) with parameters Θf and Θc, respectively are

trained using the following cross entropy loss,

Lc({Θf ,Θc}) = −
1

N

N
∑

i=1

k
∑

j=1

Iyi
(j) log[pyi

(j)], (1)

where, Iyi
is an indicator function for label yi (i.e., one hot

encoded vector) and pyi
= C(F(Xi)) is a predicted prob-

ability score vector. pyi
(j) is probability of the ith sample

being from the jth class.

3.2. Openset Training (Stage 2)

There are two major parts in open-set training, condi-

tional decoder training, followed by EVT modeling of the

reconstruction errors. In this stage, the encoder and classi-

fier weights are fixed and don’t change during optimization.
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3.2.1 Conditional Decoder Training

For any batch described in Sec. 3.1, F is used to extract the

latent vectors as, {z1, z2, ..., zN}. This latent vector batch

is conditioned using the work by Perez et al. [37] called

FiLM. FiLM influences the input feature map by applying

a feature-wise linear modulations based on conditioning in-

formation. For an input feature z and vector lj containing

conditioning information we get following equations,

γj = Hγ(lj), βj = Hβ(lj), (2)

zlj = γj ⊙ z + βj , (3)

where,

lj(x) =

{

+1, x = j,

−1, x 6= j,
x, j ∈ {1, 2, ..., k}.

Here, Hγ and Hβ are neural networks with parameters

Θγ and Θβ . Tensors zlj , γj , βj have the same shape and ⊙
represents the Hadamard product. lj is used for condition-

ing, and referred to as label condition vector in the paper.

Also, the notation zlj is used to describe the latent vector z

conditioned on the label condition vector lj , i.e, z|lj .

The decoder (G with parameters Θg) is expected to per-

fectly reconstruct the original input when conditioned on

the label condition vector matching the class identity of

the input, referred here as the match condition vector (lm).

However, here G is additionally trained to poorly recon-

struct the original input when conditioned on the label con-

dition vector, that does not match the class identity of the in-

put, referred here as the non-match condition vector (lnm).

The importance of this additional constraint on the decoder

is discussed in Sec. 3.2.3 while modeling the reconstruction

errors using EVT. For the rest of this paper, we use super-

script m and nm to indicate match and non-match, respec-

tively.

For a given input Xi from the batch and lm = lym
i

and

lnm = lynm
j

, for any random ynmi 6= ymi sampled from

{1, 2, .., k}, be its corresponding match and non-match con-

dition vectors, the feed forward path for stage-2 can be sum-

marized through the following equations,

zi = F(Xi),

γym
i

= Hγ(lym
i
), γynm

i
= Hγ(lynm

i
),

βym
i

= Hβ(lym
i
), βynm

i
= Hβ(lynm

i
),

zilm = γym
i
⊙ zi + βym

i
, zilnm

= γynm
i

⊙ zi + βynm
i

,

X̃m
i = G(zlm). X̃nm

i = G(zlnm
).

Following the above feed-forward path, the loss func-

tions in the second stage of training to train the decoder (G
with parameters Θg) and conditioning layer (with parame-

ters Θγ and Θβ) are given as follows,

Lm
r ({Θg,Θγ ,Θβ}) =

1

N

N
∑

i=1

||Xi − X̃m
i ||1, (4)

Lnm
r ({Θg,Θγ ,Θβ}) =

1

N

N
∑

i=1

||Xnm
i − X̃nm

i ||1, (5)

min
{Θg,Θγ ,Θβ}

αLm
r ({Θg,Θγ ,Θβ})

+(1− α)Lnm
r ({Θg,Θγ ,Θβ}).

(6)

Here, the loss function Lm
r corresponds to the constraint

that output generated using match condition vector X̃m
i ,

should be perfect reconstruction of Xi. Whereas, the loss

function Lnm
r corresponds to the constraint that output gen-

erated using non match condition vector X̃nm
i , should have

poor reconstruction. To enforce the later condition, another

batch {Xnm
1 , Xnm

2 , ..., Xnm
N }, is sampled from the train-

ing data, such that new batch does not have class identity

consistent with the match condition vector. This in effect

achieves the goal of poor reconstruction when conditioned

lynm
i

. This conditioning strategy in a way, emulates open-

set behavior (as will be discussed further in Sec. 3.2.3).

Here, the network is specifically trained to produce poor

reconstructions when class identity of an input image does

not match the condition vector. So, when encountered with

an unknown class test sample, ideally none of the condi-

tion vector would match the input image class identity. This

will result in poor reconstruction for all condition vectors.

While, when encountered with the known test sample, as

one of the condition vector will match the input image class

identity, it will produce a perfect reconstruction for that par-

ticular condition vector. Hence, training with the non-match

loss helps the network adapt better to open-set setting. Here,

Lnm
r and Lm

r are weighted with α ∈ [0, 1] to get the the fi-

nal training objective.

3.2.2 EVT Modeling

Extreme Value Theory. Extreme value theory is often used

in many visual recognition systems and is an effective tool

for modeling post-training scores [45], [46]. It has been

used in many applications such as finance, railway track in-

spection etc. [28], [3], [12] as well as open-set recogni-

tion [7], [45], [50]. In this paper we follow the Picklands-

Balkema-deHaan formulation [38], [5] of the extreme value

theorem. It considers modeling probabilities conditioned

on random variable exceeding a high threshold. For a given

random variable W with a cumulative distribution function

(CDF) FW (w) the conditional CDF for any w exceeding

the threshold u is defined as,

FU (w) = P(w−u ≤ w|w > u) =
FW (u+ w)− FW (u)

1− FW (u)
,

where, P(·) denotes probability measure function. Now,

given I.I.D. samples, {Wi, ...,Wn}, the extreme value the-
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Figure 3: (a) Normalized histogram of match and non-match reconstruction errors. The match histogram in yellow shows

distribution of elements in set Sm in Sec. 3.2.3. The non-match histogram showed in blue shows distribution of elements

in set Snm. (b) Normalized histogram of known and unknown reconstruction errors. The known histogram in green shows

the distribution of known class and unknown histogram in red shows the distribution of unknown class reconstruction errors.

Here, the histograms are computed using SVHN dataset.

orem [38] states that, for large class of underlying distribu-

tions and given a large enough u, FU can be well approxi-

mated by the Generalized Pareto Distribution (GPD),

G(w; ζ, µ) =

{

1− (1 + ζ·w
µ
)

1

ζ , if ζ 6= 0,

1− e
w
µ , if ζ = 0,

(7)

such that −∞ < ζ < +∞, 0 < µ < +∞, w > 0 and

ζw > −µ. G(.) is CDF of GPD and for ζ = 0, reduces to

the exponential distribution with parameter µ and for ζ 6= 0
takes the form of Pareto distribution [10].

Parameter Estimation. When modeling the tail of any

distribution as GPD, the main challenge is in finding the

tail parameter u to get the conditional CDF. However, it is

possible to find an estimated value of u using mean excess

function (MEF), i.e., E[W − u|W > u] [46]. It has been

shown that for GPD, MEF holds a linear relationship with

u. Many researchers use this property of GPD to estimate

the value of u [46], [35]. Here, the algorithm for finding u,

introduced in [35] for GPD is adopted with minor modifi-

cations. See [35], [46] for more details regarding MEF or

tail parameter estimation. After getting an estimate for u,

since from extreme value theorem [38], we know that set

{w ∈ W | w > u}, follows GPD distribution, rest of the

parameters for GPD, i.e. ζ and µ can be easily estimated

using the maximum likelihood estimation techniques [14],

except for some rarely observed cases [9].

3.2.3 Threshold Calculation

After the training procedure described in previous sec-

tions, Sec. 3.1 and Sec. 3.2, a set of match and non-

match reconstruction errors are created from training set,

{X1, X2, ..., XNtrain
} ∈ K, and their corresponding

match and non match labels, {ym1 , ym2 , ..., ymNtrain
} and

{ynm1 , ynm2 , ..., ynmNtrain
}. Let, rmi be the match reconstruc-

tion error and rnmi be the non match reconstruction error for

the input Xi, then the set of match and non match errors can

be calculated as,

X̃m
i = G(Hγ(lym

i
)⊙F(Xi) +Hβ(lym

i
)),

X̃nm
i = G(Hγ(lynm

i
)⊙F(Xi) +Hβ(lynm

i
)),

Sm = {rmi ∈ R
+ ∪ {0} | rmi = ||Xi − X̃m

i ||1 },

Snm = {rnmi ∈ R
+ ∪ {0} | rnmi = ||Xi − X̃nm

i ||1 },

∀i ∈ {1, 2, ..., Ntrain}.

Typical histograms of Sm (set of match reconstruction

errors) shown in Fig. 3a with color yellow, and Snm (set

of non-match reconstruction errors) shown in Fig. 3a with

color blue. Note that the elements in these sets are calcu-

lated solely based on what is observed during training (i.e.,

without utilizing any unknown samples). Fig. 3b shows the

histogram of reconstruction errors observed during infer-

ence from the test samples of known class set (K) (shown

in green), and unknown class set (U) (shown in red). Com-

paring Fig. 3a and Fig. 3b, it can be observed that the distri-

bution of Sm and Snm computed during training, provides

a good approximation for the error distributions observed

during inference, for test samples from known set (K) and

unknown set (U). This observation also validates that non

match training emulates an open-set test scenario (also dis-

cussed in Sec. 3.2) where the input does not match any of

the class labels. This motivates us to use Sm and Snm to

find an operating threshold for open-set recognition to make

a decision about any test sample being known/unknown.

We can assume that the optimal operating threshold (τ∗)

lies in the region Sm ∩ Snm. The underlying distributions
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of Sm and Snm are not known. However, as explained in

Sec. 3.2.2, it is possible to model the tails of Sm (right tail)

and Snm (left tail) with GPD as Gm and Gnm with G(·) be-

ing a CDF. Though, GPD is only defined for modeling max-

ima, before fitting Gnm left tail of Snm we perform inverse

transform as S′
nm = −Snm. Assuming the prior probabil-

ity of observing unknown samples is pu, the probability of

errors can be formulated as a function of the threshold τ ,

τ∗ = min
τ

Perror(τ)

= min
τ

[(1− pu) ∗ Pm(r > τ) + pu ∗ Pnm(−r < −τ)]

= min
τ

[(1− pu) ∗ (1−Gm(τ)) + pu ∗ (1−Gnm(τ))].

Solving the above equation should give us an operating

threshold that can minimize the probability of errors for a

given model and can be solved by a simple line search algo-

rithm by searching for τ∗ in the range {Sm ∩ Snm}. Here,

the accurate estimation of τ∗ depends on how well Sm and

Snm represent the known and unknown error distributions.

It also depends on the prior probability pu, effect of this

prior will be further discussed in Sec. 4.3.

3.3. Openset Testing by kinference (Stage 3)

Here, we introduce the open-set testing algorithm for

proposed method. The testing procedure is described in

Algo. 1 and an overview of this is also shown in Fig. 2. This

testing strategy involves conditioning the decoder k-times

with all possible condition vectors to get k reconstruction

errors. Hence, it is referred as k-inference algorithm.

4. Experiments and Results

In this section we evaluate performance of the proposed

approach and compare it with other open-set recognition

methods. The experiments in Sec. 4.2, we measure the

ability of algorithm to identify test samples as known or

unknown without considering operating threshold. In sec-

ond set of experiments, we measure overall performance of

open-set recognition algorithm. Additionally through abla-

tion experiments, we analyze contribution from each com-

ponent of the proposed method.

4.1. Implementation Details

We use Adam optimizer [22] with learning rate 0.0003
and batch size, N=64. The parameter α, described in

Sec. 3.2, is set equal to 0.9. For all the experiments, condi-

tioning layer networks Hγ and Hβ are a single layer fully

connected neural networks. Another important factor af-

fecting open-set performance is openness of the problem.

Defined by Scheirer et al. [44], it quantifies how open the

problem setting is,

Algorithm 1 k-Inference Algorithm

Require: Trained network models F , C, G, Hγ , Hβ

Require: Threshold τ from EVT model

Require: Test image X , k condition vectors {l1, . . . , lk}
1: Latent space representation, z = F(X)
2: Prediction probabilities, py = C(z)
3: predict known label, ypred = argmax(py)
4: for i = 1, . . . , k do

5: zli = Hγ(li)⊙ z +Hβ(li)

6: X̃i = G(zli)
7: Rec(i) = ||X − X̃i||1
8: end for

9: Recmin = sort(Rec)
10: if Recmin < τ do

11: predict X as Known, with label ypred
12: else do

13: predict X as Unknown

14: end if

O = 1 −

√

2×Ntrain

Ntest +Ntarget

, (8)

where, Ntrain is the number of training classes seen dur-

ing training, Ntest is the number of test classes that will

be observed during testing, Ntarget is the number of target

classes that needs to be correctly recognized during testing.

We evaluate performance over multiple openness value de-

pending on the experiment and dataset.

4.2. Experiment I : Openset Identification

The evaluation protocol defined in [29] is considered and

area under ROC (AUROC) is used as evaluation metric.

AUROC provides a calibration free measure and character-

izes the performance for a given score by varying threshold.

The encoder, decoder and classifier architecture for this ex-

periment is similar to the architecture used by [29] in their

experiments. Following the protocol in [29], we report the

AUROC averaged over five randomized trials.

4.2.1 Datasets

MNIST, SVHN, CIFAR10. For MNIST [26], SVHN [30]

and CIFAR10 [23], openness of the problem is set to O =
13.39%, by randomly sampling 6 known classes and 4 un-

known classes.

CIFAR+10, CIFAR+50. For CIFAR+M experiments, 4

known classes are sampled from CIFAR10. M non over-

lapping classes are used as the unknowns, sampled from the

CIFAR100 [23]. Openness of the problem for CIFAR+10

and CIFAR+50 is O = 33.33% and 62.86%, respectively.

TinyImageNet. For experiments with the TinyImageNet
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Method MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

SoftMax 0.978 0.886 0.677 0.816 0.805 0.577

OpenMax [7] (CVPR’16) 0.981 0.894 0.695 0.817 0.796 0.576

G-OpenMax [11] (BMVC’17) 0.984 0.896 0.675 0.827 0.819 0.580

OSRCI [29] (ECCV’18) 0.988 0.910 0.699 0.838 0.827 0.586

Proposed Method 0.989 0.922 0.895 0.955 0.937 0.748

Table 1: AUROC for open-set identification, values other than the proposed method are taken from [29].

[25], 20 known classes and 180 unknown classes with open-

ness O = 57.35% are randomly sampled for evaluation.

4.2.2 Comparison with state-of-the-art

For comparing the open-set identification performance, we

consider the following methods:

I. SoftMax : SoftMax score of a predicted class is used for

open-set identification.

II. OpenMax [7]: The score of k+1th class and score of

the predicted class is used for open-set identification.

III. G-OpenMax [11]: It is a data augmentation technique,

which utilizes the OpenMax scores after training the

network with the generated data.

IV. OSRCI [29]: Another data augmentation technique

called counterfactual image generation is used for training

the network for k+1 class classification. We refer to this

method as Open-set Recognition using Counterfactual

Images (OSRCI). The score value P (yk+1) − max
i≤k

P (yi)

is used for open-set identification.

Results corresponding to this experiment are shown in

Table 1. As seen from this table, the proposed method out-

perform the other methods, showing that open-set identifi-

cation training in proposed approach learns better scores for

identifying unknown classes. From the results, we see that

our method on the digits dataset produces a minor improve-

ment compared to the other recent methods. This is mainly

do the reason that results on the digits dataset are almost

saturated. On the other hand, our method performs signif-

icantly better than the other recent methods on the object

datasets such as CIFAR and TinyImageNet.

4.3. Experiment II : Openset Recognition

This experiment shows the overall open-set recognition

performance evaluated with F-measure. For this experiment

we consider LFW dataset [27]. We extend the protocol in-

troduced in [44] where, 12 classes containing more than 50

images are considered as known classes and divided into

80/20 train-test split. Image size is kept to 64×64. We vary

the openness from 0% to 93% by taking 18 to 5705 un-

known classes during testing. Since, many classes contain

only one image, instead of random sampling, we sort them

according to the number of images per class and add it se-

quentially to increase the openness. It is obvious that with

the increase in openness, the probability of observing un-

known will also increase. Hence, it is reasonable to assume

that prior probability pu will be a function of openness. For

this experiment we set pu = 0.5 ∗O.

4.3.1 Comparison with state-of-the-art

For comparing the open-set recognition performance, we

consider the following methods:

I. W-SVM (PAMI’14) : W-SVM is used as formulated

in [44], which trains Weibull calibrated SVM classifier for

open set recognition.

II. SROR (PAMI’16) : SROR is used as formulated in [50].

It uses sparse representation-based framework for open-set

recognition.

III. DOC (EMNLP’16) : It utilizes a novel sigmoid-based

loss function for training a deep neural network [47].

To have a fair comparison with these methods, we use

features extracted from the encoder (F) to train W-SVM

and SROR. For DOC, the encoder (F) is trained with the

loss function proposed in [47]. Experiments on LFW are

performed using a U-Net [42] inspired encoder-decoder ar-

chitecture. More details regarding network architecture is

included in the supplementary material.

Results corresponding to this experiment is shown in

Fig. 4a. From this figure, we can see that the proposed ap-

proach remains relatively stable with the increase in open-

ness, outperforming all other methods. One interesting

trend noticed here is, that DOC initially performs better than

the statistical methods such as W-SVM and SROR. How-

ever with openness more than 50% the performance suffers

significantly. While the statistical methods though initially

perform poor compared to DOC, but remain relatively sta-

ble and performs better than DOC as the openness is in-

creased (especially over O >50%).

4.3.2 Ablation Study

In this section, we present ablation analysis of the proposed

approach on the LFW dataset. The contribution of individ-

ual components is reported by creating multiple baselines of

the proposed approach. Starting with the most simple base-

line, i.e., thresholding SoftMax probabilities of a closed-

set model, each component is added building up to the pro-
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(a) F-measure comparisons for the open-set recognition experiment.
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(b) F-measure comparisons for the ablation study.

Figure 4: Performance evaluation on the LFW dataset.

posed approach and are described as follows,

I. CLS : Encoder (F) and the classifier (C) are trained for

k-class classification. Samples with probability score pre-

diction less than 0.5 are classified as unknown.

II. CLS+DEC : In this baseline, only the networks F , C and

the decoder (G) are trained as described in Sec. 3, except G
is only trained with match loss function, Lm

r . Samples with

more than 95% of maximum train reconstruction error ob-

served, are classified as unknown.

III. Naive : Here, the networks F , C and G and the condi-

tioning layer networks (Hγ and Hβ) are trained as described

in Sec. 3, but instead of modeling the scores using EVT as

described in Sec. 3.2.3, threshold is directly estimated from

the raw reconstruction errors.

IV. Proposed method (pu = 0.5) : F , C, G and condi-

tion layer networks (Hγ and Hβ) are trained as described

in Sec. 3 and to find the threshold prior probability of ob-

serving unknown is set to pu = 0.5.

V. Proposed method: Method proposed in this paper, with

pu set as described in Sec. 4.3.

Results corresponding to the ablation study are shown

in Fig. 4b. Being a simple SoftMax thresholding baseline,

CLS has weakest performance. However, when added with

a match loss function (Lm
r ) as in CLS+DEC, the open-

set identification is performed using reconstruction scores.

Since, it follows a heuristic way of thresholding, the perfor-

mance degrades rapidly as openness increases. However,

addition of non match loss function (Lnm
r ), as in the Naive

baseline, helps find a threshold value without relying on

heuristics. As seen from the Fig. 4b performance of Naive

baseline remains relatively stable with increase in openness,

showing the importance of loss function Lnm
r . Proposed

method with pu fixed to 0.5, introduces EVT modeling on

reconstruction errors to calculate a better operating thresh-

old. It can be seen from the Fig. 4b, such strategy improves

over finding threshold based on raw score values. This

shows importance applying EVT models on reconstruction

errors. Now, if pu is set to 0.5 ∗ O, as in the proposed

method, there is a marginal improvement over the fixed pu
baseline. This shows benefit of setting pu as a function of

openness. It is interesting to note that for large openness

values (as 0.5 ∗O → 0.5), both fixed pu baseline and pro-

posed method achieve similar performance.

5. Conclusion

We presented an open-set recognition algorithm based

on class conditioned auto-encoders. We introduced train-

ing and testing strategy for these networks. It was also

shown that dividing the open-set recognition into sub tasks

helps learn a better score for open-set identification. During

training, enforcing conditional reconstruction constraints

are enforced, which helps learning approximate known

and unknown score distributions of reconstruction errors.

Later, this was used to calculate an operating threshold for

the model. Since inference for a single sample needs k

feed-forwards, it suffers from increased test time. How-

ever, the proposed approach performs well across multi-

ple image classification datasets and providing significant

improvements over many state of the art open-set algo-

rithms. In our future research, generative models such as

GAN/VAE/FLOW can be explored to modify this method.

We will revise the manuscript with such details in the con-

clusion.
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