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Abstract

It is shown that the AI=2 staggering effect recently discovered in superde-
formed rotational bands could be explained by a phenomenological theory of
C4, bifurcation. In this scenario, the energy staggering is associated with the
alignment of the total nuclear angular momentum along the axis perpendic-

ular to the long deformation axis of the prolate nucleus.
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The development of large 7-ray detector arrays has allowed experimentalists to find
new nuclear phenomena at high angular momentum. For example, it has recently been
discovered [1,2] that rotational bands built on superdeformed intrinsic configurations may
exhibit weak AJI=2 energy oscillations where states differing by 4k of angular momentum
are perturbed in the same direction. The magnitude of the staggering effect is extremely
small and only the analysis of high-fold y-ray coincidences has allowed the determination
of the y-ray energies with the precision required to reveal a systematic effect. It has been
proposed [1] that this staggering effect could be due to the presence of a perturbation which
has C4 symmetry. The experimental data suggest an increase of the staggering amplitude
with spin. This feature is also a characteristic of the C,, bifurcation in normal-deformed
rotational bands of odd-A nuclei [3]. In this case, a small-amplitude Al=1 staggering at
low spin results from the tunneling of the angular-momentum vector between two equivalent
energy minima; after a critical spin, a large-amplitude staggering involves the precession of
the angular-momentum vector around the C;-symmetry axis. In this Rapid Communication,
we will use the phenomenological theory of the Cj, bifurcation in rotational spectra [3] in
order to explain the experimental data.

Let us consider only the perturbation terms of the rotational Hamiltonian, which accord-

ing to the Cy, symmetry can be written as an expansion

[*S) 2k
k=0 m=04,...

in terms of irreducible spherical tensor operators T'. These operators depend on the body-
fixed components (I, with « = 1,2,3) of the total angular momentum operator. In order to
describe collective rotation and the alignment of I along the 1-axis which is perpendicular

to the long 3-axis of the prolate nuclear shape, the tensor operators are most conveniently

taken as
Tl,—m = I"Um (12’11) = (_1)mTITm’ m 2 0, (2)

where Iy = I, +i]5 are the ladder operators. The explicit expressions for the real functions
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u are given, for example, in Ref. [4]. Considering the 1-axis, which coincides with the Clj-

symmetry axis, as the axis of quantization, we can regroup the terms of the sum (1) and
rewrite it in the form
~
He,, = kz;) [ £z (12, 0) + £ (B, 1) 1% (3)
where the f; functions depend on the coefficients ¢. The operator (3) represents the general
Hamiltonian which is invariant with respect to time reversal, inversion of the body-fixed
frame, and rotation by 90° around the 1-axis.
The classical rotation energy surface defined on the space of dynamical variables (phase
space) is a fundamental tool in the investigation of rotational dynamics [5]. The phase space

of the rotational motion is a sphere of radius I centered at the origin. The spherical angles

6 and ¢ of a point on this sphere determine the direction of the vector I in the body-fixed

frame
I, =Icosf,I, = Isinfcosp, I3 = Isinfsinp. 4)

With the help of the Hamiltonian (3) we can express the rotational energy surface

e(8,0) = 2fo(I,cos8) + 2, [f1(I, cos B)e**e
(3)
+ fe(I, cos B)e~ %] sin** 6,
as a function of the spherical angles (8,p) and the angular momentum I. The lines at
constant energy on this surface represent the classical trajectories of the tip of the vector L.

They coincide with the trajectories obtained from the equation of motion

dl,

—d'i_ = {HC“’ Ia}a (6)

where {...} is the Poisson bracket. We will investigate the motion in a small region of the
phase space near the 1-axis. In other words, we will consider the rotation of a nucleus around
an axis whose direction is very close to that of the Cy-symmetry axis. The rotation around

such an axis is stationary because {Hg,,,I} = 0. The aligned stationary state I(I,0,0)

3



corresponds to the fixed point § = 0 of the classical energy surface (5). Considering this

surface near the fixed point, we can expand the energy €(6, ) in a power series of the small

angle 0
(6, p) = eo(I) — a16% + (a2 + 2ccos 4¢) 6%, (7

~ where eo(I) is the energy of rotation around the 1-axis. The coefficients a1, a; and ¢ depend
on the angular momentum I. The polar angle 6 plays the role of a symmetry parameter
according to the Landau theory of second-order phase transitions [6]. The aligned stationary
state has a higher symmetry because it is invariant under the Cy, transformation. Assuming
that the angular-momentum vector I becomes parallel to the l-axis at the critical value
I = I, then, for the stationary states with the minimal energy, a; < 0 and a; > 0for I > I.
and I < I., respectively. Before the critical angular momentum, the stationary states with
the minimal energy correspond to an angle § > 0. Since it has different sign on either side
of I,, the coeficient a; must vanish at the critical point I = I.. Near the critical angular
momentum we can approximate a; by a(I — I.) with a < 0. The spin I, corresponds to the

critical point of the energy surface (7) because the second derivative
2

(g@é) . = —2a;(I) = —2a(I — L), (8)
vanishes in this point. Eq. (7) is the canonical form of a catastrophe function for the
Hamiltonian system with the Cy, symmetry [7]. It properly describes the behavior of the
energy surface near the fixed point § = 0 as I varies.

The catastrophe function (7) is a useful guide for the determination of the quantum
Hamiltonian that describes the staggering phenomenon. Accordingly, we will consider the

four-parameter Hamiltonian

He,, = o(I-1.)

212 2—1\* It +14

where «, as, and ¢ are assumed to be independent of I. This Hamiltonian is invariant

under the Cj, point-symmetry group and also under the transformation ¢ — —c with the
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simultaneous rotation of 45° around the 1-axis. The latter invariance allows us to consider
only the positive values of c. The catastrophe Hamiltonian (9) can be used to describe the
states in yrast region, which corresponds to the small area of the phase space previously
discussed. The energy of these states is calculated relative to eo([).

The classical trajectories obtained with the Hamiltonian (9) have a different topology
depending on the coefficients a; and ¢ [3]). If | a; |> 2¢, the trajectories correspond to the
precession of I in the small region confined near the north pole (6 = 0) of the phase sphere,
and the bifurcation has a local character which involves a modification of the precessional
motion. As the spin decreases, the precession around the l-axis transforms itself into a
precession around four equivalent axes located symmetrically near the north pole and rotated
by an angle of 90° relative to each other. The classical energy surfaces corresponding to the
Hamiltonian (9) depicted in Figs. 1a and 1b demonstrate this critical phenomenon. In the
quantum case, the bifurcation manifests‘itself in the rearrangement of the lowest levels of
the rotational multiplets. For even values of I, the lowest levels of the Hamiltonian (9)
form a quartet of states with symmetry A (4, + A;), B (By + B:), and E of the C4,
point-symmetry group. The bifurcation transforms a system of approximately equidistant
quasi-degenerate doublets A; + A2, By + B; and degenerate doublets F into the six-fold
quasi-degenerate clusters of states A; + Az + By + Bz + E or regroups them in the initial
structure of doublets (e.g. see Fig. 3.5 of Ref. [3]). The six-fold quasi-degenerate clusters are
the result of the delocalized quantum precession, which involves the tunneling of I across
the potential barriers that separate the four stable precessional axes. For | a2 |[< 2¢, the
bifurcation is non-local and cannot explain the increase of the staggering amplitude with
spin. Therefore, this range of coefficients will not be discussed in this Rapid Communication.

The local bifurcation is accompanied by the alignment of I along the Cy,-symmetry axis
as I increases. In this case a < 0. As a first step, we will suppose that the (4, quantum
numbers are good. To form the AI=2 staggering pattern for a superdeformed band we can
consider only the fully symmetric A; states. Fig. 2 shows the result of a x? minimization

for the staggering data of the yrast superdeformed band in 149Gd. The four parameters

)



of the Hamiltonian (9) have been varied and the calculated points have been obtained by
diagonalizing this Hamiltonian for integer spins. The lowest A; eigenvalues have been used
to form the theoretical staggering pattern. All the important features of the experimental
data are reproduced: 1) there is a spin region where the staggering effect is small followed
by 2) large AI=2 oscillations and 3) an inversion of the oscillating pattern at high spin.
As pointed out in Ref. [1], in the experimental data this inversion could simply be due to
an accidental degeneracy with another band having the same parity and signature; such
a degeneracy has already been observed in a superdeformed band (band c) of 1*°Gd and
three points were affected in AE, [8]. However, such a scenario is improbable in the case
of the yrast superdeformed band of *°Gd since the configuration of this band is expected
to remain yrast up to the highest spins populated in the experiment. The theoretical result
shown in Fig. 2 should be considered as an example of calculation and not as a rigorous
fit to the experimental data, since the calculation was performed for integer spins and the
Hamiltonian (9) is expected to be valid only when the total angular momentum I is close
to its critical value I,. Furthermore, due to the magnitude of the experimental uncertainties
there could be acceptable x? values with different sets of parameters.

The staggering mechanism is different before and after the critical angular momentum
I,. In the region I < I, the staggering is due to the tunneling of I between the four minima
of the energy surface. A qualitative analysis of this mechanism has been performed in Ref.
[9] by evaluating the tunneling matrix element between adjacent minima. The imaginary
part of this matrix element gives the staggering amplitude. In our case, it is proportional
to exp{—sI(I. — I)} where s is independent of I. The fact that the amplitude depends on
I, — I explains the increase of the oscillations when I approaches .. The real part of the
matrix element produces the modulation of the amplitude and can generate inversions of
the staggering pattern. It should be noted that the inversion point close to critical spin I,
is always the last inversion point in a staggering pattern.

The region I > I involves a non-tunneling staggering mechanism. As can be seen in Fig.

1b, there is only one energy minimum in this region and there is no delocalized precession.
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The total nuclear angular-momentum vector precesses around the Cy axis which coincides
with the minimum of the rotational energy surface. The precessional motion has a simple
form where the spin projection K; on the 1-axis is approximately a good quantum number.

The energy of the lowest levels inside a multiplet is approximately given by
EIK = w(I)(I - Kl), (10)

where the precessional frequency is equal to w = 2a(I.—I)/I in the high-spin limit. Eq. (10)
means that the energy splitting between the two lowest levels is equal to w. Depending on
I, these levels have different quantum numbers of the C4,-symmetry group. For even values
of I, the lowest level is A for the sequence of spins I = 4n and B for I = 4n+2 [10], where n
is integer. Thus, the alternating order of the A and B states produces the AI=2 staggering
and the amplitude of this type of staggering is approximately equal to 4a(l. — I)/I. Fig.
3 shows the spin dependence of the energy spacing between the two lowest levels involved
in the staggering phenomenon. The two staggering regions and the inversion point can be
seen in this figure.

The Hamiltonian (9) allows us to consider another rotational regime recently studied by
Hamamoto and Mottelson [9]. In this regime, the axis of rotation is perpendicular to the Cy-
symmetry axis i.e. the Cy-symmetry axis is parallel to the long 3-axis of the superdeformed
prolate nuclear shape. The parameters of the Hamiltonian have to be constrained in order
to ensure that the angular momentum vector remains perpendicular to the 3-axis at all spins
[11]:

I-1 21 -5

T =2 (11)

where the parameter a; has been used instead of the expression (I — I;). There is no

a1 > 2a2

bifurcation in this rotational regime and the angular-momentum vector is localized in the
neighborhood of four energy minima in the plane perpendicular to the Cy axis. The tun-
neling mechanism results in a staggering amplitude proportional to exp(—sI). It should be
pointed out that the same mechanism is responsible for the formation of clusters in molecu-

lar rotational spectra [5]. An example of staggering pattern calculated with the Hamiltonian
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(9) in this rotational regime can be seen in Fig. 4. It presents a fast damping of the stagger-
ing amplitude with increasing spin which is not observed in the experiment. However, this
feature could be related to our parameterization of the He,, Hamiltonian. For the moment,
we do not know the microscopic origin of the C,; perturbation and it is therefore impossible
to deduce the spin dependence of the parameters.

The two different rotational regimes of the Hamiltonian (9) suggest different microscopic
origins for the AI=2 staggering. On one hand, the Hamamoto and Mottelson regime could
be realized by the presence of a static hexadecapole deformation €44 in the nuclear shape. The
I i + I* term in the effective Hamiltonian would be a direct consequence of this deformation.
However, calculations for superdeformed bands in '*°Gd performed by Ragnarsson with the
modified oscillator potential suggest that the hexadecapole deformation €44 is very small at
all spins [12].

On the other hand, the rotational regime investigated in the present Rapid Communi-
cation suggests a dynamical origin for the Cy, perturbation. As suggested by Aberg and
Nazarewicz [1,13], it could be related to nuclear shape fluctuations. In this case, the I i e
term in the Hamiltonian (9) would originate from the presence of a hexadecapole phonon
with an angular momentum J which becomes aligned along the rotation axis in the high-spin

limit. The corresponding rotation-vibration effective Hamiltonian would have the form
H = Ay(I1-13)* 4 (As— A1)(Is—J5)* + He,, (J), (12)

where A; and Ajs are rotational constants and Hg,, is the Cy,-invariant vibrational Hamil-
tonian (not the effective Hamiltonian (9)). The Hamiltonian (12) is not four-fold invariant.
The term proportional to (I3 — J3)? violates the Cy, symmetry and mixes the states A and
B. This perturbation would be reduced when considering only the motion with small values
of I3 — Ja, i.e. with the rotational angular momentum R = I — J close to the direction
of the 1-axis. The corresponding classical trajectories in the phase space would be quasi-
symmetrical. In the quantum case, these orbits produce the scars of the Cy, symmetry in

the rotational bands of some superdeformed nuclei. The symmetry property is no longer
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associated with a particular state, but is reflected in the modulation of the whole spectrum.
This phenomenon is typical of non-linear dynamics. As an example, the simplest system
exhibiting the scars of the SO(2,2) symmetry is the hydrogen atom in a magnetic field [14].
The magnetic field plays an analogous role to the C4,-symmetry breaking term (I3 — J3)*
in Eq. (12). If this scenario is responsible for the staggering effect in superdeformed bands,
then one could expect to observe the scars of the Cs, symmetry in nuclei with well-developed
octupole vibrations.

In summary, the AI=2 staggering observed in superdeformed bands has been inter-
preted in terms of a phenomenological theory of Cy, bifurcation. The comparison of the
two possible rotational regimes of superdeformed nuclei that occur in the presence of Cy,
symmetry tends to suggest that the staggering effect does not originate from a static hex-
adecapole 'deforma,tion. Rather, it arises from a dynamical effect that involves the alignment
of an angular-momentum vector. The concept of the scars of the Cy, symmetry provides a
promising scenario for pursuing the investigation of this staggering effect.

We gratefully thank I. Hamamoto, B. Mottelson, and 1. Ragnarsson for the communica-

tion of their results prior to publication.
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FIGURES
FIG. 1. Typical rotational energy surfaces of the effective Hamiltonian (9) a) before and b)

after the critical point I.. The parameter a; = oI — I.) was fixed to ¢; = 10 and a; = ~10 for

I < I.and I > I., respectively. In both cases, the remaining parameters were fixed to a; = 15 and

c=2.

FIG. 2. Energy differences AE., between two consecutive y-ray transitions of the superdeformed
band in 14°Gd as a function of angular momentum after subtraction of a smooth reference given by
AE™(I) = [AE,(I +2)+2AE(I)+ AEL(I - 2)]/4 [1]. Empty squares refer to the experimental
data assuming the theoretical spin assignments of Ragnarsson [15]. Filled circles correspond to a
calculation performed with the effective Hamiltonian (9) with the parameters a = —0.6, I. = 45,

ag = 725, and ¢ = 354.

FIG. 3. Energy difference between the two lowest levels of the rotational multiplet. Filled
(empty) circles correspond to states with angular momentum I = 4n (I = 4n + 2), where n is
integer. In the calculation, the parameters of the Hamiltonian (9) were the same as those used in

Fig. 2.

FIG. 4. Example of staggering pattern (see Fig. 2) in the Hamamoto and Mottelson regime
of rotation. The calculation has been performed with the Hamiltonian (9) with the parameters

a1 = oI — I.) = 2, az = 2000, and c = 1000.

12



o O

i . ,/,//.':
—_ . ., ]
0. i ) , ,{////,4////////////// )
] \ Ml
] R (LR Ry 700
e —19 Wl
1 W
- “\\ Y A’///// () '
1 B S AN\ S
—_ -1 ! 0 i '%’0‘0‘0’0‘0’00 S
R E M
- s gty
i 5 M) sl Il ”’
—27 il
. 114
[I/
0.5
- O 4 5 —0'5
\3
o

- Re

LEYNYL




N . e
NP> OO NPOO®

IllIllI|Ill|lll|l|l|ll|IlLIllIlllllIl_L

- ol
ittty
\\\\\\\\\\\\\\\\\\\\\\‘-‘!‘\‘\\‘\‘\\\‘\:\‘\““
T

X

2R RS
%5 550 A
O OOy
K3

v,
LR
",
e,
» N,
&y,

&,

DAY
CALH

252
422
CAZ

GRS

.,':

2

7,
&
),

0,
0920
2520 5%
""o:'

052
",:v
A

',
Sy
ALY

&2
(2

4

O
R

50

2
%
4, %,
1),
24400,
L
QRYA
LA
Sl
LS
Ay

i

i

e




AEy - Ref. (keV)

O
S

=
)

0.5

|-
30 40 50 60
Angular Momentum (h)

—

|5



T IR R U R R R
30 40 50 60 70 80
Angular Momentum (h)

le



AEY - Ref. (keV)

> L
0L
Al i
4L i
e
- ! | . | ! |
20 30 40 50
Angular Momentum (h)

['7






