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Abstract. Coordinated experimental design and implemen-

tation has become a cornerstone of global climate modelling.

Model Intercomparison Projects (MIPs) enable systematic

and robust analysis of results across many models, by reduc-

ing the influence of ad hoc differences in model set-up or ex-

perimental boundary conditions. As it enters its 6th phase,

the Coupled Model Intercomparison Project (CMIP6) has

grown significantly in scope with the design and documenta-

tion of individual simulations delegated to individual climate

science communities.

The Coupled Climate–Carbon Cycle Model Intercompar-

ison Project (C4MIP) takes responsibility for design, docu-

mentation, and analysis of carbon cycle feedbacks and in-

teractions in climate simulations. These feedbacks are poten-

tially large and play a leading-order contribution in determin-

ing the atmospheric composition in response to human emis-

sions of CO2 and in the setting of emissions targets to sta-

bilize climate or avoid dangerous climate change. For over

a decade, C4MIP has coordinated coupled climate–carbon

cycle simulations, and in this paper we describe the C4MIP

simulations that will be formally part of CMIP6. While the

climate–carbon cycle community has created this experimen-

tal design, the simulations also fit within the wider CMIP ac-

tivity, conform to some common standards including docu-

mentation and diagnostic requests, and are designed to com-

plement the CMIP core experiments known as the Diagnos-

tic, Evaluation and Characterization of Klima (DECK).

C4MIP has three key strands of scientific motivation and

the requested simulations are designed to satisfy their needs:

(1) pre-industrial and historical simulations (formally part

of the common set of CMIP6 experiments) to enable model

evaluation, (2) idealized coupled and partially coupled sim-

ulations with 1 % per year increases in CO2 to enable di-

agnosis of feedback strength and its components, (3) future

scenario simulations to project how the Earth system will re-
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spond to anthropogenic activity over the 21st century and be-

yond.

This paper documents in detail these simulations, explains

their rationale and planned analysis, and describes how to

set up and run the simulations. Particular attention is paid to

boundary conditions, input data, and requested output diag-

nostics. It is important that modelling groups participating

in C4MIP adhere as closely as possible to this experimental

design.

1 Introduction

Over the industrial era since about 1750, it is estimated

that cumulative anthropogenic carbon emissions from fos-

sil fuels and cement (405 ± 20 PgC) and land-use change

(190 ± 65 PgC) have been partitioned between the atmo-

sphere (255 ± 5 PgC), the ocean (170 ± 20 PgC), and the

terrestrial biosphere (165 ± 70 PgC) (values to the nearest

5 PgC, from Le Quéré et al., 2015). The carbon uptake by

land and ocean, since the start of the industrial era, has thus

slowed the rate of increase of atmospheric CO2 concentration

in response to anthropogenic carbon emissions. Had the land

and ocean not provided this “ecosystem service”, the atmo-

spheric CO2 concentration at present would be much higher.

The manner in which the land and ocean will continue to

absorb anthropogenic carbon emissions has both scientific

and policy relevance. Understanding the future partitioning

of anthropogenic CO2 emissions into the atmosphere, land

and ocean components, and the resulting climate change, ac-

counting for biogeochemical feedbacks requires a full Earth

system approach to modelling the climate and carbon cycle.

The primary focus of the Coupled Climate–Carbon Cy-

cle Model Intercomparison Project (C4MIP; http://www.

c4mip.net) is to understand and quantify future century-scale

changes in land and ocean carbon storage and fluxes and their

impact on climate projections. In order to achieve this, a set

of Earth system model (ESM) simulations has been devised.

As a consequence of the very high computational demand on

modelling centres to perform a multitude of simulations for

many different intercomparison studies as part of CMIP6, we

have carefully chosen a minimum set of targeted simulations

to achieve C4MIP goals. They comprise

– idealized experiments, which will be used to separate

and quantify the sensitivity of land and ocean carbon

cycle to changes in climate and atmospheric CO2 con-

centration;

– historical experiments, which will be used to evaluate

model performance and investigate the potential for us-

ing contemporary observations as a constraint on future

projections;

– future scenario experiments, which will be used to

quantify future changes in carbon storage and hence

quantify the atmospheric CO2 concentration and related

climate change for a given set of CO2 emissions, or,

conversely, to diagnose the emissions compatible with

a prescribed atmospheric CO2 concentration pathway.

The simulations are designed to complement those requested

in the CMIP6 Diagnostic, Evaluation and Characterization of

Klima (DECK) and the CMIP6 historical simulation (Eyring

et al., 2016a). They also align closely with simulations per-

formed as part of ScenarioMIP (O’Neill et al., 2016) by

quantifying the role of carbon cycle feedbacks in the evolu-

tion of atmospheric CO2 due to anthropogenic carbon emis-

sions. Synergies with other MIPs are discussed in Sect. 2.

C4MIP simulations and analyses will play a major role

contributing to the WCRP Carbon Feedbacks in the Cli-

mate System – Grand Challenge (http://www.wcrp-climate.

org/gc-carbon-feedbacks). This is the third generation of

C4MIP following the first coordinated experiments described

in Friedlingstein et al. (2006) and the carbon cycle simula-

tions that formed part of CMIP5 (Taylor et al., 2012).

In this paper we first briefly describe the scientific ra-

tionale and motivation for the C4MIP simulations and then

carefully document the experimental protocol in Sect. 3.

Modelling groups intending to participate in C4MIP should

follow the design described here as closely as possible. Par-

ticular attention should be given to the set-up of bound-

ary conditions in terms of atmospheric CO2 concentration

or emissions and which aspects of the model experience

changes in the fully coupled or partially coupled simulations.

Output requirements (diagnostics) are also carefully docu-

mented in Sect. 4.

Along with our science motivation (Sect. 2), we highlight

initial plans for the analyses of the carbon cycle and its inter-

actions with the physical climate system. Modelling groups

will be invited to contribute to the primary C4MIP analysis

papers. We anticipate, and hope, that many further studies

and analyses will also be conducted throughout the climate–

carbon cycle research community and that these simulations

provide a valuable resource to further carbon cycle research.

2 Background and science motivation

2.1 C4MIP history

The potential for a climate feedback on the carbon cycle

whereby carbon released due to warming would further el-

evate atmospheric CO2 and amplify climate change was

first discussed in the late 1980s–early 1990s (e.g. Lashof

et al., 1989; Jenkinson et al., 1991; Schimel et al., 1994;

Kirschbaum, 1995; Sarmiento and Le Quéré, 1996). On the

land side, dynamic global vegetation models were used to

study the impact of rising CO2 and climate change on the

carbon cycle (Cramer et al., 2001). There was a strong model

consensus that rising CO2 would stimulate additional vege-

tation growth and storage of carbon in terrestrial ecosystems,

Geosci. Model Dev., 9, 2853–2880, 2016 www.geosci-model-dev.net/9/2853/2016/

http://www.c4mip.net
http://www.c4mip.net
http://www.wcrp-climate.org/gc-carbon-feedbacks
http://www.wcrp-climate.org/gc-carbon-feedbacks


C. D. Jones et al.: The Coupled Climate–Carbon Cycle Model Intercomparison Project 2855

likewise warming climate would accelerate decomposition of

dead organic matter and may also reduce vegetation produc-

tivity in some (mainly tropical) ecosystems (Prentice et al.,

2001). Similarly for the ocean, there was also a model con-

sensus that warming would lead to reduced carbon uptake

(Prentice et al., 2001). This was due to both reduced solu-

bility in warmer waters and reduced rate of transport of an-

thropogenic carbon to the deep ocean as a consequence of in-

creasing stratification and shutdown of meridional overturn-

ing circulation. The processes behind the former (carbonate

chemistry and solubility) were reasonably well understood

(Bacastow, 1993), but the latter was much more uncertain

being sensitive to the underlying ocean model circulation

(Maier-Reimer et al., 1996; Sarmiento et al., 1998; Joos et

al., 1999). The role of ocean biology and the buffering ca-

pacity of the ocean were also seen to be important and not

well constrained or represented in models (Sarmiento and Le

Quéré, 1996).

These “offline” land and ocean experiments found poten-

tially high sensitivity of the carbon cycle to environmental

forcing but were not able to simulate the full effect of this

feedback onto climate. By the end of the 1990s some mod-

elling groups were beginning to implement interactive car-

bon cycle modules in their physical climate models. These

early studies (e.g. Cox et al., 2000; Friedlingstein et al., 2001;

Dufresne et al., 2002; Thompson et al., 2004) were able to

recreate an experimental setting more like the real world

where a climate change forced by anthropogenic CO2 emis-

sions would affect natural carbon sinks and stores, which in

turn would affect changes in atmospheric CO2 and hence cli-

mate.

It soon became apparent from the first publications that

there were substantial differences in the sensitivities of these

new models. The desire to understand and reduce this un-

certainty led to the development of a linearized feedback

framework to diagnose the sensitivity of different parts of

the system and their contribution to the overall feedback

(Friedlingstein et al., 2003), and also of a multi-model inter-

comparison activity (C4MIP: Coupled Climate–Carbon Cy-

cle Model Intercomparison; Fung et al., 2000). The result

was the first C4MIP intercomparison paper, (Friedlingstein et

al., 2006), which quantified the feedback components across

11 models for a common CO2 emissions scenario. All mod-

els agreed qualitatively that the sign of the carbon–climate

feedback was positive – i.e. the interaction of the carbon cy-

cle with climate led to reduced carbon uptake and hence an

increase in atmospheric CO2, which amplified the initial cli-

mate change. However, there was large quantitative model

spread in the total feedback and its sensitivity components.

Initial analysis of the causes of this uncertainty concluded

that the land played a greater role than the ocean, in partic-

ular its sensitivity to climate. Regionally, the tropics were

seen to be particularly different between models (Raddatz

et al., 2007), bearing in mind that none of these models in-

cluded representation of permafrost carbon. The CMIP5 ex-

perimental design for carbon cycle feedback diagnosis (Tay-

lor et al., 2012) closely followed the C4MIP protocol. Mod-

elling centres around the world contributed results to CMIP5

and their analysis led to many key papers including a special

collection of 15 papers published in the Journal of Climate

(http://journals.ametsoc.org/topic/c4mip).

The C4MIP activity under CMIP5 was central to Working

Group 1 of the IPCC 5th Assessment. Several of the main

findings from C4MIP studies were included in the Summary

for Policymakers of WG1, such as the positive feedback be-

tween climate and carbon cycle – “climate change will af-

fect carbon cycle processes in a way that will exacerbate the

increase of CO2 in the atmosphere”; the impact of elevated

CO2 on ocean acidification – “further uptake of carbon by

the ocean will increase ocean acidification”; the emissions

compatible with given CO2 concentrations – “by the end of

the 21st century, [for RCP2.6] about half of the models in-

fer emissions slightly above zero, while the other half infer

a net removal of CO2 from the atmosphere”; and the very

policy relevant relationship between cumulative CO2 emis-

sions and global warming – “cumulative emissions of CO2

largely determine global mean surface warming by the late

21st century and beyond”.

2.2 Key science motivation and analysis plans for

C4MIP

The key science motivations behind C4MIP are (1) to quan-

tify and understand the carbon-concentration and carbon–

climate feedback parameters which respectively, capture the

modelled response of land and ocean carbon cycle compo-

nents to changes in atmospheric CO2 and the associated cli-

mate change; (2) to evaluate models by comparing histori-

cal simulations with observation-based estimates of climato-

logical states of carbon cycle variables, their variability, and

long-term trends; (3) to assess the future projections of the

components of the global carbon budget for different scenar-

ios, including atmospheric CO2 concentration, atmosphere–

land and atmosphere–ocean fluxes of CO2, diagnosed CO2

emissions compatible with future scenarios of CO2 path-

way and crucially to provide new estimates of the cumu-

lative CO2 emissions compatible with specific climate tar-

gets. In light of the COP21 Paris agreement (https://unfccc.

int/resource/docs/2015/cop21/eng/l09r01.pdf), these experi-

ments will quantify carbon cycle feedbacks in low emissions

scenarios and inform cumulative budgets consistent with a

1.5 or 2 ◦C stabilization objective.

Relative to CMIP5 there are three key areas where we ex-

pect CMIP6 models to have made substantial progress and

hence may cause significant differences in the simulated re-

sponse of the carbon cycle to anthropogenic forcing.

i. In CMIP5, only two participating ESMs included a land

surface component (CLM4) that explicitly considered

constraints of terrestrial N availability on primary pro-

duction and net land carbon storage (Lindsay et al.,

www.geosci-model-dev.net/9/2853/2016/ Geosci. Model Dev., 9, 2853–2880, 2016
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2014; Tjiputra et al., 2013). An increasing number of

land models now include a prognostic representation of

the terrestrial N cycle and its coupling to the land C cy-

cle (Zaehle and Dalmonech, 2011). Some of these prog-

nostic N cycle representations are expected to be used

in land components of ESMs participating in CMIP6.

Coupling of carbon and nitrogen dynamics changes the

response of the terrestrial biosphere to global change in

four ways: (1) it generally reduces the response of net

primary production and carbon storage to elevated lev-

els of atmospheric CO2 because of an increasing limit of

nitrogen availability for carboxylation enzymes and new

tissue construction; (2) it allows for changes in plant al-

location in response to changing nutrient availability;

(3) it generally decreases net ecosystem C losses as-

sociated with soil warming, because increased decom-

position leads to increased plant N availability, which

can potentially increase plant productivity and C stor-

age in N-limited ecosystems; and (4) it alters primary

production due to anthropogenic N deposition and fer-

tilizer application, which may regionally enhance net C

uptake. The magnitude of each of these processes is un-

certain given strong natural gradients in the natural N

availability in ecosystems and sparse ecosystem data to

constrain these models (Thornton et al., 2009; Zaehle et

al., 2014; Meyerholt and Zaehle, 2015) but offline anal-

ysis of CMIP5 simulations suggests significant overes-

timation of terrestrial carbon uptake in models that ne-

glect the role of nitrogen (Wieder et al., 2015; Zaehle et

al., 2015). The new generation of models will provide

a more comprehensive assessment of the attenuating ef-

fect of nitrogen on carbon cycle dynamics compared to

CMIP5 and in particular provide a better constrained

estimate of the carbon storage capacity of land ecosys-

tems.

ii. In CMIP5, all land models used a single-layer, verti-

cally integrated representation of soil biogeochemistry

(Luo et al., 2016). Such an approach necessarily ignores

vertical variation in soil carbon turnover times, which

can be very important in governing ecosystem carbon

storage. This omission is most notable in the extreme

case of permafrost soils, where there exists a depth at

which soils remain frozen year-round and, because of

the abrupt change in decomposition rates in frozen vs.

unfrozen soils, otherwise highly decomposable carbon

can be preserved indefinitely until it is thawed. The

majority of global soil carbon is in permafrost-affected

ecosystems, which creates the possibility for permafrost

climate feedbacks (Burke et al., 2013). Some of the

models in CMIP6 are expected to include representa-

tion of permafrost soil carbon dynamics, either explic-

itly by representing soil biogeochemistry along the full

soil depth axis (Koven et al., 2013), or by means of

reduced-complexity methods to incorporate permafrost

dynamics. IPCC Fifth Assessment Report (AR5) con-

cluded that permafrost carbon release was likely, and

therefore would increase the climate–carbon cycle feed-

back, but with low confidence in the magnitude (Ciais et

al., 2013). Assessing the role of this process in govern-

ing fully coupled climate feedbacks will be an important

contribution to CMIP6.

iii. Representation of ocean dynamics in the ESMs is an-

other important constraint affecting the oceanic carbon

uptake and storage. There is evidence that by shifting

to an eddy-permitting grid configuration of the ocean

general circulation model, the representation of some

key features of oceanic circulation, such as the interior

water-mass properties and surface ocean current sys-

tems, are improved (Jungclaus et al., 2013). The in-

creased horizontal resolution of the underlying ocean

model has a positive impact on the performance of the

marine biogeochemistry model in the deeper layers (Ily-

ina et al., 2013). Spatial resolution of some ESMs is

expected to increase as they move into CMIP6. The

increased resolution of the oceanic components of the

ESMs is expected to have some explicit advantages for

projections of the oceanic carbon uptake. First, it al-

lows us to estimate the role of previously unresolved

small-scale ocean hydrodynamical process on projec-

tions of marine biogeochemistry. Second, by improving

the representation of coastal processes and ocean–shelf

exchange, their contribution to the global carbon cycle

can be assessed.

2.2.1 Carbon cycle feedback parameters

The first key motivation for C4MIP is to document the

changes in magnitude of the feedback parameters that char-

acterize the response of the carbon cycle and their spread

across models through time. In this respect, C4MIP aims

to calculate the magnitude of the carbon-concentration and

carbon–climate feedbacks in a manner similar to Friedling-

stein et al. (2006) or Arora et al. (2013) and as discussed in

Sect. 3.1 using results from the idealized 1 % per year in-

creasing CO2 experiments.

The 1pctCO2 experiment has gained recognition as a stan-

dard CMIP simulation and it is one of the DECK simulations

for CMIP6 (Eyring et al., 2016a). The 1pctCO2 experiment

is now routinely used to characterize the transient climate

response (TCR) defined as the change in globally averaged

near-surface air temperature at the time of CO2 doubling as

well as the transient climate response to cumulative emis-

sions (TCRE) defined as change in globally averaged near-

surface air temperature per unit cumulative CO2 emissions

at the time of CO2 doubling (Gillett et al., 2013). In addi-

tion, since the 1pctCO2 simulation does not include the con-

founding effects of changes in land use, non-CO2 greenhouse

gases, and aerosols it provides a clean controlled experiment

Geosci. Model Dev., 9, 2853–2880, 2016 www.geosci-model-dev.net/9/2853/2016/
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with which to compare carbon–climate interactions across

models. Its backwards compatibility enables direct compari-

son of models with previous generations, which has been hin-

dered previously as the scenario-dependence of the feedback

metrics has prevented a like-for-like comparison (Gregory et

al., 2009).

C4MIP will use partially coupled simulations to isolate

and quantify the sensitivity of carbon cycle components to

climate and CO2 separately and also the potentially large

non-linear combination of these two components (Gregory

et al., 2009; Schwinger et al., 2014). Simulations with only

the carbon cycle model components experiencing rising CO2

(biogeochemically (BGC) coupled) and the radiation model

components experiencing rising CO2 (radiatively (RAD)

coupled) are used to quantify the carbon-concentration and

carbon–climate feedbacks. Spatial patterns of these metrics

can also be calculated (e.g. Roy et al., 2011; or Fig. 6.22 of

the last IPCC WG1 assessment report Ciais et al., 2013) to

establish areas of model agreement or disagreement.

2.2.2 Evaluation of global carbon cycle models

The historical simulations will be used for evaluation of the

components of the carbon cycle (ocean and terrestrial car-

bon fluxes, anthropogenic carbon storage in the ocean, at-

mospheric CO2 growth rate and variability). ESMs have in-

creased rapidly in complexity but evaluation has not kept

pace. Some evaluation of the carbon cycle was already per-

formed in CMIP5 (e.g. Anav et al., 2013; Bopp et al., 2013;

Hoffman et al., 2014), highlighting significant biases in key

quantities in many ESMs. There is increasing need to develop

evaluation techniques and activities, applied consistently and

routinely across models, at both fine scales (process-level,

“bottom-up” evaluation) and large scales (system-level, “top-

down” evaluation”), as well as using complementary data

streams relating to (bio)physical and biogeochemical pro-

cesses to evaluate the ensemble of simulated processes (e.g.

Luo et al., 2012; Foley et al., 2013).

Evaluation of ocean carbon cycle components of ESMs

has been classically based on the use of the monthly sur-

face pCO2 climatology of Takahashi et al. (2009), derived

from more than 3 million in situ ocean pCO2 measurements,

as in Pilcher et al. (2015) for an evaluation of pCO2 sea-

sonality of the CMIP5 ESMs. This evaluation is comple-

mented by the use of additional climatological gridded prod-

ucts, as in Anav et al. (2013), with model–data comparison

for related physical variables (e.g. mixed layer depth) or bi-

ological variables (e.g. net primary production). In the past

few years, ESM evaluation has extended in many directions,

making use of advanced observation-based gridded products

(e.g. the three-dimensional distribution of anthropogenic car-

bon in the ocean from Khatiwala et al., 2013) and ocean

databases with millions of in situ point measurements (e.g.

with the Surface Ocean CO2 Atlas (SOCAT) as in Tjiputra et

al. (2014) for CMIP5 ESMs), or developing new techniques

for model–data comparisons (e.g. water-mass framework; Iu-

dicone et al., 2011).

In the coming years, the increasing complexity of marine

biogeochemical schemes used in ESMs will call for more ad-

vanced model–data comparison strategies. These will include

the use of new data sets, such as biomass data for plank-

ton functional types (MAREDAT; Buitenhuis et al., 2013)

or ocean distribution of the micro-nutrient iron (Tagliabue et

al., 2012).

Evaluations of land surface components of ESMs have of-

ten used gridded flux products (e.g. Bonan et al., 2011; Anav

et al., 2013; Piao et al., 2013) obtained by extrapolating the

FLUXNET measurement network of biosphere–atmosphere

exchanges (e.g. Jung et al., 2011), for instance to constrain

modelled spatial and seasonal distribution of gross primary

production (GPP). Such products are convenient for such

model evaluations because those are available at a resolu-

tion comparable to that of the models and because they re-

tain the pertinent patterns of the observed fluxes while ab-

stracting from measurement noise, local site representative-

ness and other possible site-specific features. Yet it is impor-

tant to bear in mind the limitations of the “upscaled” flux and

stock products and to tailor the model evaluation to robust

patterns that the individual products are ideally suited for. In-

sights may also be gained from evaluation of functional pat-

terns and sensitivities to certain climate forcing variables. For

example the spatial sensitivity of GPP with mean annual pre-

cipitation in the water-limited domain, and the temperature

sensitivity of ecosystem respiration (Mahecha et al., 2010).

While data-model comparisons of fluxes are important,

they alone cannot constrain longer-term dynamics and asso-

ciated climate–carbon cycle feedbacks. In addition, consider-

ation of residence times is crucial, which together with car-

bon fluxes jointly determine the stores. Analysis of CMIP5

ESMs revealed unacceptably large errors in land carbon

stores (both in living biomass and soil organic matter) (Anav

et al., 2013). Future simulation results were found to depend

on the initial conditions as well as the model sensitivity to

changes (Todd-Brown et al., 2014) and therefore better eval-

uation and constraint of carbon stores is seen as vital. Xia

et al. (2013) showed the importance of residence time in de-

termining carbon stores and Carvalhais et al. (2014) showed

the mismatch between CMIP5 ESMs and an observationally

derived data set of land-carbon residence times. As more ob-

servations become available (Saatchi et al., 2011; Baccini et

al., 2012; Avitabile et al., 2015; FAO, 2012; Batjes et al.,

2012; Hengl et al., 2014) as well as data constrained prod-

ucts such as residence time (Bloom et al., 2016), we stress

the importance of rapid development and application of eval-

uation techniques to ESMs.

Carbon isotopes (carbon-13 and carbon-14) provide

unique insights into the mechanisms and timescales of car-

bon cycling. Differences between the isotopic fractionation

of carbon from dissolution in the ocean and from photo-

synthetic assimilation on land have enabled atmospheric ob-

www.geosci-model-dev.net/9/2853/2016/ Geosci. Model Dev., 9, 2853–2880, 2016
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servations of the 13C / 12C ratio (δ13C) in atmospheric CO2

to be used in differentiating land and ocean carbon fluxes

(Ciais et al., 1995; Joos et al., 1998; Rubino et al., 2013).

The perturbation of the 14C / C ratio (114C) in atmospheric

CO2 from nuclear weapons testing in the 1950s and 60s has

provided a valuable tracer of carbon turnover rates in ter-

restrial carbon pools (Trumbore, 2000; Naegler and Levin,

2009), and the rates of air–sea exchange and ocean mixing,

including constraints on ocean CO2 uptake (Matsumoto et

al., 2004; Sweeney et al., 2007; Graven et al., 2012). Inte-

gration of carbon isotopes into ESMs is an emerging activity

and we request the reporting of carbon isotopic variables for

the first time in C4MIP. Carbon isotopes are also included in

OMIP (Orr et al., 2016). ESMs that simulate carbon isotopes

are requested to report fluxes and stocks of carbon isotopes

in their land and ocean components. This will enable com-

parison between models currently simulating carbon isotopes

and their evaluation by observations, as well as encourage

future development of carbon isotopes in ESMs. Simulation

of carbon isotopes in C4MIP is expected to provide novel in-

sights on ocean mixing and air–sea exchange, marine ecosys-

tem change, plant water use efficiency and stomatal closure

especially during drought periods, and terrestrial carbon res-

idence times.

Historical simulations will be needed to explore poten-

tial emergent constraints from observations on the future re-

sponse of the carbon cycle, with a particular focus on car-

bon cycle feedbacks. Recent studies showed the potential of

observed interannual CO2 variability to constrain the future

tropical land carbon cycle sensitivity to climate change (Cox

et al., 2013; Wenzel et al., 2014).

In the same way that Earth system modelling has become

an internationally collaborative activity involving shared ex-

pertise and development of tools, we also expect that evalu-

ation techniques will evolve in this way. Community evalu-

ation activities such as ILAMB (http://www.ilamb.org/) and

ESMValTool (Eyring et al., 2016b) look likely to become in-

creasingly useful for addressing the complexities of multi-

model ESM evaluation.

2.2.3 Future projections of the components of the

global carbon budget

While idealized experiments are useful for intercompari-

son of climate–carbon interactions across multiple models,

they do not take into account the effect of non-CO2 GHGs,

aerosols, and land-use change, all of which affect the be-

haviour of the carbon cycle in the real world. In contrast, the

scenarios considered by the ScenarioMIP are internally co-

herent in all aspects of anthropogenic forcings. Within each

socio-economic storyline, changes in fossil fuel CO2 emis-

sions are consistent with those in aerosols emissions, N depo-

sition, and changes in land-use areas, all of which are based

on plausible assumptions of demographic and economic de-

velopment in the future. This plausibility is of special interest

to policymakers. Scenarios also indicate the range of possi-

ble future developments and opportunities for mitigation and

adaptation; this information is used widely in climate impact

analyses.

The scenario simulations, therefore, provide more realis-

tic conditions compared to the idealized 1 % experiments due

to their plausibility of anthropogenic forcings as well as the

longer timescale over which the CO2 increase occurs. Since

shared socio-economic pathway (SSP) scenarios include all

forcings, their climate and biogeochemical effects are able

to influence the atmosphere–surface carbon exchange for

both land and ocean components. Emission-driven historical

and the future SSP5-8.5 simulations replicate a more real-

istic model setting where ESMs are directly forced by an-

thropogenic CO2 emissions, allowing for the carbon cycle

feedbacks to impact on atmospheric CO2 and simulated cli-

mate change. These will be compared with the concentration-

driven equivalents in ScenarioMIP and additionally will form

a baseline control experiment for analysis of alternative fu-

ture land-use scenarios in LUMIP (Lawrence et al., 2016).

The proposed biogeochemically coupled versions of the

historical and future SSP5-8.5 in Sect. 3.1, in which CO2

induced warming is not accounted for, when compared to

their fully coupled versions will allow us to investigate the

effect of CO2 induced warming on atmosphere–land and

atmosphere–ocean CO2 fluxes over the 20th and 21st century

and beyond (Randerson et al., 2015). An important objective

with these simulations will be to identify how land and ocean

contributions to feedbacks and compatible emissions evolve

century by century from sustained increases in ocean heat

content and thawing of permafrost soils.

ScenarioMIP (O’Neill et al., 2016) acknowledges scien-

tific and policy interest in a scenario with a substantial over-

shoot in radiative forcing during the 21st century. As such

they include a tier-2 concentration-driven scenario called

SSP5-3.4-OS: an overshoot pathway, which follows SSP5-

8.5 up to 2040, followed by aggressive mitigation to reduce

emissions to zero by about 2070, and by substantial nega-

tive global emissions thereafter. The carbon cycle response

to peak-and-decline CO2 levels is likely to differ from the

response to continued strong increases in CO2. The 21st

century airborne fraction from CMIP5 models varied sub-

stantially between RCPs, with RCP2.6 in particular having

a much lower airborne fraction than the 20th century or

other RCPs (Jones et al., 2013). However, to date there have

been no coordinated experiments to quantify the carbon-

cycle feedback components in such a scenario. Hence, for

C4MIP we include a BGC simulation of the SSP5-3.4-OS

scenario.

2.3 Links to and requirements from other MIPs

The Ocean Model Intercomparison Project (OMIP; Griffies

et al., 2016; Orr et al., 2016) will provide a baseline for

assessment of ocean component model biogeochemical and
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historical carbon uptake fidelity. Ocean carbon cycle analy-

sis has previously been conducted under the OCMIP (Ocean

carbon-cycle model intercomparison project) intercompari-

son (Orr et al., 2001). In response to the WGCM (Work-

ing Group on Coupled Modelling) request, the OMIP and

OCMIP have been merged under the OMIP umbrella. One

main objective of OMIP is to coordinate CMIP6 ocean di-

agnostics including ocean physics, inert chemical tracers,

and biogeochemistry for all CMIP6 simulations that include

an ocean component. The second objective is to perform a

global ocean–sea-ice simulation forced with common atmo-

spheric data sets. In this way, ocean models including online

biogeochemistry components will be part of “Path-II” sim-

ulation, (whereas “Path-I” is designated to models without

the biogeochemistry). Within OMIP, ocean-only simulations

will be performed as described in Griffies et al. (2016).

Analysis of changes in terrestrial carbon stocks for histor-

ical and future scenarios as result of changes in atmospheric

CO2, climate, and land-use and land-use-induced land cover

change (LULCC) will be done in coordination with LUMIP

(Lawrence et al., 2016). The emission-driven future scenario

performed within C4MIP serves as control simulation for

LUMIP. By replacing the LULCC forcing of SSP5-8.5 by the

one from SSP1-2.6 under otherwise identical forcings the ef-

fect of LULCC can thus be isolated. This also implies that

output provided for the emission-driven simulation should

account for the additional requirements of LUMIP such as

tile-level reporting of variables. Offline land-surface process

studies form part of LS3MIP (van den Hurk et al., 2016) and

offline simulations to quantify the contemporary land carbon

budget are performed under the TRENDY intercomparison

(Sitch et al., 2015).

The scientific scope of the Detection and Attribution in-

tercomparison (DAMIP) includes attempting some observa-

tional constraint on the transient climate response to cumu-

lative emissions (TCRE) (Gillett et al., 2016), whose assess-

ment is also an important target of C4MIP. Collaborative op-

portunities exist between C4MIP and DAMIP for analyses of

TCRE with C4MIP covering carbon cycle aspects of the his-

torical runs. Furthermore, results from DAMIP analysis runs

will provide insights on the mechanism of fluctuations of

past CO2 growth rate. Synergies also exist between DAMIP

and LUMIP, and also RFMIP (Radiative Forcing Model In-

tercomparison Project), regarding the biophysical effects of

land-use change.

3 C4MIP Experiments

3.1 Overview of simulations and their purpose

The C4MIP protocol for CMIP6 builds on DECK and his-

torical CMIP6 simulations, which are documented in detail

in Eyring et al. (2016a). The following experiments are not

formally C4MIP simulations but are considered prerequisite

simulations for C4MIP analyses:

– CMIP DECK pre-industrial control simulation (piCon-

trol), with specified CO2 concentration (“concentration

driven”).

– CMIP DECK pre-industrial control simulation (esm-

piControl), with interactively simulated atmospheric

CO2 (“emissions driven”, but with zero emissions).

– CMIP DECK 1 % per year increasing CO2 simulation

(1pctCO2) initialized from pre-industrial CO2 concen-

tration until quadrupling. In C4MIP terminology this is

“fully coupled” meaning that both the model’s radiation

and carbon cycle components see the increasing CO2

concentration.

– CMIP6 concentration-driven historical simulation for

1850–2014 (historical).

– CMIP6 emissions-driven historical simulation with

interactively simulated atmospheric CO2 (esm-hist)

forced by anthropogenic emissions of CO2. Other forc-

ings such as non-CO2 GHGs, aerosols, and land-

cover change are being prescribed as in the CMIP6

concentration-driven historical simulation.

These simulations are documented in detail in Eyring et

al. (2016a), but here we emphasise some carbon-cycle-

specific aspects and requirements.

The simulations specifically identified as C4MIP simula-

tions are separated into two tiers. We require only a minimal-

istic two experiments for C4MIP tier-1 analysis. These are

– biogeochemically coupled version of the 1 % per year

increasing CO2 simulation (1pctCO2-bgc);

– emissions-driven future scenario based on the SSP5-8.5

scenario (esm-ssp585).

The rationale for these two required simulations is that they

form a minimum set of outputs required to quantify the

climate–carbon cycle feedback in a model and to simulate the

full effects of this feedback on future climate under a high-

end emissions scenario. The emissions scenario also provides

a control for the LUMIP esm-ssp585-ssp126Lu simulation.

Further simulations are then requested under C4MIP tier-

2, which allow a more complete investigation of the feedback

components, their non-linearities, their sensitivity to nitrogen

limitations (if included in the model) and the role of their

effects on future scenarios including sustained CO2 increases

and a peak-and-decline in forcing. It is highly desirable that

as many of these as possible are performed to accompany the

tier-1 simulations. They are divided into two categories:

i. Idealized simulations

– RAD version of the 1 % per year increasing CO2

simulation (1pctCO2-rad);
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– COU (fully coupled) 1 % per year increas-

ing CO2 simulation with nitrogen deposition

(1pctCO2Ndep);

– BGC version of the 1 % per year increas-

ing CO2 simulation with nitrogen deposition

(1pctCO2Ndep-bgc).

ii. Scenario simulations

– biogeochemically coupled version of the

concentration-driven historical CMIP6 simu-

lation (hist-bgc);

– biogeochemically coupled version of the

concentration-driven future SSP5-8.5 scenario

(ssp585-bgc);

– biogeochemically coupled version of the

concentration-driven future extension of the

SSP5-8.5 scenario (ssp585-bgcExt);

– biogeochemically coupled version of the

concentration-driven future SSP5-3.4-over scenario

(ssp534-over-bgc);

– biogeochemically coupled version of the

concentration-driven future extension of the

SSP5-3.4-over scenario (ssp534-over-bgcExt),

Note that 1pcCO2Ndep and 1pcCO2Ndep-bgc are only

applicable to models whose simulation will be affected by

the deposition of reactive nitrogen either due to terres-

trial or marine nitrogen cycle effects on carbon fluxes and

stores. Similarly, the biogeochemically forced scenario sim-

ulations (ssp585-bgc and ssp534-over-bgc) are only required

if the coupled ScenarioMIP counterpart has been performed

(ssp585 and ssp534-over). If computing resource limits the

number of simulations performed we recommend prioritis-

ing ssp585-bgc over ssp534-over-bgc.

The simulations required for C4MIP are summarized in

Table 1 and the CO2 concentration is shown schematically in

Fig. 1 in the context of the CMIP6 DECK, historical simu-

lations, and the ssp585 future scenario, which is a tier 1 ex-

periment of the ScenarioMIP (O’Neill et al., 2016). Table 2

shows the main simulations from other MIPs, which form

crucial counterparts to C4MIP simulations. The rest of this

section documents detailed instructions on how to set up and

perform the C4MIP simulations. Detailed definitions of the

output requirements are listed in Sect. 4.

3.2 Experimental details

3.2.1 Model requirements and spin-up

To participate in C4MIP a climate model must have the ca-

pability to run with an interactive carbon cycle. This means

it must simulate both terrestrial and marine carbon cycle pro-

cesses, and it must simulate the exchange of CO2 between

the land/ocean and the atmosphere in order to prognostically

Figure 1. Relation of C4MIP simulations to CMIP6 DECK and his-

torical simulations and the ssp585 and ssp5-34-over future scenario

simulation proposed for the ScenarioMIP. Note that at the time of

preparing this manuscript the details of the SSP5-3.4-OS-Ext exten-

sion to 2300 are not available; hence, it could not be included in the

figure, but it is still requested as a C4MIP tier-2 simulation.

simulate the evolution of atmospheric CO2. Some C4MIP

simulations prescribe a concentration of CO2 in the atmo-

sphere as a boundary condition and simulate the changes in

carbon fluxes and stores in response. Other simulations pre-

scribe emissions of CO2 to the atmosphere (from human ac-

tivity) as an external forcing and require the model to also

simulate the evolution of atmospheric CO2. A model must

be able to run in both these configurations in order to per-

form the C4MIP simulations. The evolution of atmospheric

CO2 concentration can be simulated by assuming that CO2 is

completely well mixed with the same globally averaged con-

centration everywhere in space or by transporting CO2 as a

three-dimensional tracer. This choice is up to the modelling

groups. Throughout this document we refer to the former –

prescribing atmospheric CO2 concentration as a boundary

condition – as a “concentration-driven” simulation, and the

latter – prescribing emissions and in turn simulating the CO2

concentration – as an “emissions driven” simulation. IPCC

AR5 WG1 Ch.6 Box 6.4 described the use of these config-

urations in some detail (Ciais et al., 2013). Figure 6.4 from

that Box is reproduced here for reference (Fig. 2). Although

the same terminology (concentration-driven or emissions-

driven) can be applied to aerosols or non-CO2 GHGs this

paper focuses only on CO2.

Before beginning the simulations described below, a

model must be spun-up to eliminate any long-term drift in

carbon stores or fluxes. Indeed, it has been shown recently

that the large diversity in spin-up protocols used for marine

biogeochemistry in CMIP5 ESMs contribute to large model-

to-model differences in simulated fields, and that drifts have
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Table 1. Summary of the C4MIP tier-1 and tier-2 simulations. Simulations can be “concentration driven” or “emissions driven” as described

in the text. Coupling mode refers to which model components see changes in atmospheric CO2.

Category Type of scenario Emission or

concentration

driven

Coupling mode Simulation

years

Short name

Tier 1

1 %BGC Idealized 1 % per year

CO2 only, BGC mode

C driven CO2 affects

BGC

140 1pctCO2-bgc

SSP5-8.5 SSP5-8.5 up to 2100 E driven Fully coupled 85 esm-ssp585

Tier 2

1 %RAD Idealized 1 % per year

CO2 only, RAD mode

C driven CO2 affects

RAD

140 1pctCO2-rad

1 %COU-Ndep Idealized 1 % per

year CO2 only, fully

coupled, increasing

N-deposition

C driven Fully coupled 140 1pctCO2Ndep

1 %BGC-Ndep Idealized 1 % per year

CO2 only, BGC mode,

increasing

N-deposition

C driven CO2 affects

BGC

140 1pctCO2Ndep-bgc

Hist/SSP5-8.5-

BGC

Historical+SSP5-8.5

up to

2300, BGC mode

C driven CO2 affects

BGC

165

85

200

hist-bgc, ssp585-bgc

and ssp585-bgcExt

SSP5-3.4-

Overshoot-

BGC

SSP5-3.4-OS up to

2300 in BGC mode

C driven CO2 affects

BGC

60 (from 2040–

2100)

200

ssp534-over-bgc,

ssp534-over-bgcExt

potential implications on model performance assessments

in addition to possibly aliasing estimates of climate change

impacts (Séférian et al., 2016). Separate spin-up simula-

tions should be performed for both concentration-driven

and emission-driven configurations. There are many possi-

ble techniques to ensure that a model’s carbon fluxes and

pools exhibit minimal drift. These include simply performing

very long simulations, running components offline from the

coupled system, numerical acceleration techniques or semi-

analytical schemes such as described by Xia et al. (2012).

The choice of technique is up to the modelling groups and

there is no requirement to submit data from the spin-up pe-

riod, but a proper documentation of the spin-up technique

and duration is required. The test of whether a model is spun-

up properly and exhibits minimal drift will be based on the

performance of the piControl simulation. It is suggested that

the model first be spun-up in concentration-driven mode and

this state can be used as an initial basis for the emission-

driven spin-up.

Our definition of an acceptably small drift in a properly

spun-up model is that land, ocean, and atmosphere carbon

stores each vary by less than 10 PgC/century (i.e., a long-

term average ≤ 0.1 PgC yr−1). This is broadly equivalent to

an atmospheric CO2 drift of less than about 5 ppm/century.

We suggest that a drift smaller than this value is highly de-

sirable but this value is a guideline. Exceeding this drift in

the control run may preclude a model from being included

in a C4MIP analysis, but we would expect that decision to

be made on a case-by-case basis. For example, a large ocean

drift in a concentration-driven experiment may not preclude

analysis of land carbon fluxes and vice-versa. We also stress

that being within these drifts is a minimum but not necessar-

ily sufficient quality condition. Regional patterns and drifts

of stores and fluxes will also be assessed and depending on

the analysis may preclude inclusion of a given model’s re-

sults.

For simulations of carbon isotopes, spin-up times of many

thousands of years or the use of an equivalent fast spin-up

technique may be required to eliminate drift, particularly for

carbon-14 in ocean carbon and soil carbon. The spin-up tech-

nique is left to the modellers’ discretion.

3.2.2 DECK piControl and historical

The pre-industrial control run (piControl) is a required simu-

lation of the CMIP DECK, and a prerequisite simulation for

participating in C4MIP. The run begins from a spun-up state

as described above and all forcings should continue to be ap-

plied as per the spin-up. The global land and ocean carbon

stores should not drift by more than 10 PgC/century each.

The length of the pre-industrial control run should be at least
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Table 2. Summary of key simulations from CMIP6 DECK, historical or other MIPs on which C4MIP analysis will rely. The emissions-driven

control and historical runs in particular are entry card requirements for C4MIP.

Type of

simulation

Simulation name Owning MIP Notes

Control

piControl DECK Prescribed pre-industrial CO2 concentration

esm-piControl DECK Prognostically simulated atmospheric CO2

concentration; required if performing any

emissions-driven simulations for C4MIP

Idealized

1pctCO2 DECK Forms essential counterpart for C4MIP BGC

and RAD 1 % simulations

Historical

historical CMIP6 historical

esm-hist CMIP6 historical Prognostically simulated atmospheric CO2

concentration; required if performing any

emissions-driven simulations for C4MIP; pro-

vides starting point for C4MIP emissions-

driven SSP5-8.5

Future

scenarios

ssp585, ssp585ext ScenarioMIP Essential counterpart for SSP5-8.5-BGC de-

coupled simulation and its extension to 2300

ssp534-over,

ssp534-over -ext

ScenarioMIP Essential counterpart for SSP5-3.4-over-bgc de-

coupled simulation and its extension to 2300;

branches from SSP5-8.5 at 2040

esm-ssp585-

ssp126Lu

LUMIP Same as esm-ssp585 except uses SSP1-2.6 land

use (afforestation scenario)

equal to any simulation for which it will serve as the control

simulation thereby allowing correction for model drift. The

piControl run must be run for both concentration-driven and

emission-driven configurations of the model. In both cases

all forcings should be held constant at pre-industrial levels as

described in the CMIP DECK documentation. The only dif-

ference between concentration-driven and emission-driven

control runs is that the emission-driven simulation simulates

atmospheric CO2 internally in response to natural fluxes of

carbon from land and ocean, whereas in the concentration-

driven case atmospheric CO2 concentration is specified. No

anthropogenic fossil fuel emissions of CO2 should be applied

to the model during this control run, and fixed pre-industrial

land-use should be imposed. The simulated atmospheric CO2

in esm-piControl should therefore remain stable, with drifts

below 5 ppm/century.

The CMIP6 historical run, a CMIP6 required simula-

tion, must be performed in both concentration-driven and

emission-driven configurations for participation in C4MIP.

It is expected that the historical simulation would begin

from the same starting point as the pre-industrial control

run (Fig. 3). This nominally is set as 1 January 1850. We

note though that this neglects the small but non-zero ef-

fect of pre-1850 land-use changes (see e.g., Pongratz et al.,

2009; Sentman et al., 2011). Some modelling groups might

therefore opt for an earlier starting date or perform addi-

tional offline land-surface simulations in order to account

for pre-1850 land cover change. This would mean though

that the control and historical simulations begin from dif-

ferent states and with different trends and this should there-

fore be very clearly documented. The protocol for the his-

torical simulation is documented in detail in the CMIP6

paper (Eyring et al., 2016a). Here we stress the need for

the emission-driven historical run (esm-hist) to also be per-

formed as an “entry card” for C4MIP. The only difference be-

tween concentration-driven and emission-driven simulations

is the treatment of atmospheric CO2. All other forcings must

be identical in both simulations. The concentration-driven

simulation will use historical atmospheric CO2 concentration

provided by CMIP6.
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Figure 2. Schematic representation of carbon cycle numerical ex-

perimental design. Concentration-driven (left) and emissions-driven

(right) simulation experiments make use of the same Earth system

models (ESMs), but configured differently. Concentration-driven

simulations prescribe atmospheric CO2 as a pre-defined input to

the climate and carbon cycle model components. Compatible emis-

sions can be calculated from the output of the concentration-driven

simulations. Emissions-driven simulations prescribe CO2 emissions

as the input, and atmospheric CO2 is an internally calculated state

variable within the ESM. Adapted from Ciais et al. (2013). Solid

arrows depict internal data flow within the model, dashed arrows

depict data output from the model.

The emission-driven simulation will use anthropogenic

CO2 emissions documented here. Model groups have a

choice over the treatment of land-use forcing as described

below.

– Fossil fuel emissions: CMIP6 will provide gridded, an-

nual CO2 emissions from burning of fossil fuels, from

the beginning of 1850 to the end of 2014 for the his-

torical simulation and through to the end of 2100 for

ssp5-8.5. See Sect. 3.3.1.

– Land-use carbon emissions: there are two allowable op-

tions:

– If possible, drive the model with the CMIP6 land-

use forcing (Hurtt et al., 2016; http://luh.umd.edu/

_LUH2/LUH2_1.0h/) and the model simulates its

own CO2 emissions (including both from deforesta-

tion and uptake from regrowth) to/from the atmo-

sphere as an internal process. In this case the only

external input of carbon to the system is fossil fuel

emissions.

– If that is not possible for the model, then

C4MIP will provide land-use carbon emissions; see

Sect. 3.3.1.

Figure 3. Schematic representation of model spin-up followed by

control and historical simulations through 2014. The interactive

CO2 pre-industrial control should ideally have a drift of less than

5 ppm/century.

3.2.3 Idealized 1 % simulations

A concentration-driven simulation with a 1 % per year in-

crease in atmospheric CO2 concentration beginning from

pre-industrial is a required simulation of the DECK. In

C4MIP there are further variants of this 1 % simulation de-

signed to quantify the concentration-carbon and climate–

carbon feedback parameters (Friedlingstein et al., 2006;

Arora et al., 2013).

The tier-1 C4MIP simulation 1pctCO2-bgc requires the

simulation to be repeated but with a change to the model

set-up such that only the model’s carbon cycle compo-

nents (both land and ocean) respond to the increase in CO2,

whereas the model’s radiation code uses a constant, pre-

industrial concentration of CO2. This simulation was previ-

ously known as “Uncoupled” in Friedlingstein et al. (2006),

and was re-named “Biogeochemically coupled” by Gregory

et al. (2009). All other forcings must be identical to the

DECK 1pctCO2 simulation.

A tier-2 C4MIP simulation 1pctCO2-rad is the counterpart

of 1pctCO2-bgc. It requires the simulation to be repeated but

with a change to the model set-up such that only the model’s

radiation code sees the increase in CO2 and the model’s car-

bon cycle components (both land and ocean) see a constant,

pre-industrial concentration of CO2. This simulation was not

performed in Friedlingstein et al. (2006), and was termed

“Radiatively coupled” by Gregory et al. (2009). All other

forcings must be identical to the DECK 1pctCO2 simula-

tion. Although this simulation is in tier-2 we strongly encour-

age all modelling groups to perform it as the non-linearities
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of biogeochemical and radiative response can be large (e.g.

Schwinger et al., 2014).

For models with a nitrogen cycle, there are two fur-

ther 1 % simulation variants requested as C4MIP tier-2:

1pctCO2Ndep and 1pctCO2Ndep-bgc. These can be run if

the model includes either land- or marine nitrogen cycle in

a way that changes carbon uptake and storage. If the input

of reactive nitrogen to the model will not affect the car-

bon cycle, then there is no need to perform these simula-

tions. If changes in nitrogen deposition will affect either

land or ocean carbon uptake then these simulations are re-

quested. 1pctCO2Ndep and 1pctCO2Ndep-bgc are parallel

to the 1pctCO2 and 1pctCO2-bgc simulations but with the

addition of a time-varying deposition of reactive nitrogen

(see Sect. 3.3.3).

3.2.4 Scenario simulations

Concentration-driven scenario simulations, which follow on

from the end of the concentration-driven historical simula-

tion, are performed under ScenarioMIP. In C4MIP we re-

quest simulations that complement some of these.

Under C4MIP tier-1, we request an emission-driven

esm-ssp585 simulation, which parallels the ScenarioMIP

concentration-driven SSP-5-8.5 simulation. This simulation

should begin from the end point of the emissions-driven his-

torical simulation (1 January 2015). As with the historical

simulation the only difference from the concentration-driven

counterpart should be the treatment of atmospheric CO2,

which is simulated within the model driven by prescribed

emissions. SSP8.5 gridded fossil fuel emissions will be pro-

vided as will SSP8.5 land-use forcing and land-use CO2

emissions. Models should implement these in the scenario

run in exactly the same manner as they did in the emission-

driven historical simulation.

Under C4MIP tier-2, we also request a biogeochemically

coupled (BGC) version of the concentration-driven SSP5-

8.5, ssp585-bgc and ssp585-bgcExt. As with the 1pctCO2-

bgc simulation, this run should be performed with only the

carbon cycle components (land and ocean) seeing the pre-

scribed increase in atmospheric CO2. The model’s radiation

scheme should see fixed pre-industrial CO2. All other non-

CO2 forcings should be applied in an identical way to the

ScenarioMIP SSP5-8.5 and SSP5-8.5ext simulations. If pos-

sible this simulation should be extended to 2300, as should

its counterpart from ScenarioMIP, as one of the priority fo-

cus areas for analysis is on long-term processes such as ocean

carbon and heat uptake and permafrost loss (e.g., Randerson

et al., 2015).

3.3 Forcings and inputs

3.3.1 CO2 concentrations and anthropogenic CO2

emissions

For concentration-driven simulations, atmospheric CO2

should be prescribed as a globally well-mixed value provided

by CMIP6. The CMIP6 paper (Eyring et al., 2016a) and a

range of papers in the GMD CMIP6 Special Issue will docu-

ment the forcings in more detail. The data will be made avail-

able from the CMIP6 and PCMDI webpages (http://www.

wcrp-climate.org/wgcm-cmip/wgcm-cmip6, https://pcmdi.

llnl.gov/search/input4mips). For emissions-driven simula-

tions, atmospheric CO2 should be simulated prognostically

by the model. External boundary conditions of anthro-

pogenic CO2 emissions will be provided and should be used

as follows:

– In esmPIcontrol, the emissions-driven control run, at-

mospheric CO2 should be simulated by the model but

no external emissions should be added during this sim-

ulation.

– Fossil fuel emissions should be used for the emissions-

driven historical and future scenario simulations.

C4MIP will provide gridded, annual CO2 emissions

from burning of fossil fuels, from the beginning of 1850

to the end of 2014 for the historical simulation and

through to the end of 2100 for ssp5-8.5. They will be

provided on land points on a 1◦ × 1◦ grid. It is up to

model groups to re-grid or interpolate these emissions

to suit their own model. Global annual totals must be

conserved and must match the global annual totals of

the gridded data provided. Conserving the global annual

total is more important than the spatial patterns of emis-

sions.

– C4MIP strongly recommends that land-use carbon

emissions are simulated internally by applying the land-

use forcing by Hurtt et al. (2016). In the event that this

is not possible in a model, C4MIP will provide annual

land-use carbon emissions mainly based on the results

of two bookkeeping models: BLUE (Hansis et al., 2015)

and Houghton (Houghton et al., 2012). For the years

1850 to 2010 the average result of these two bookkeep-

ing models defines the global emission rate, whereas the

spatial distribution of the emissions is taken solely from

BLUE at a 0.5◦ resolution. This approach provides in-

put emissions more spatially consistent with the land-

use forcing applied to models than population-weighted

spatial patterns used in CMIP5. For the years 2010 to

2014 the global land-use emission rate is specified by

the Global Carbon Project (Le Quéré et al., 2015) and

the spatial pattern is that of BLUE at the year 2010. At

the time of writing this C4MIP protocol, future land-use

scenarios have not yet been processed within LUH2.
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Our intention is that for the future scenarios we will

provide gridded land-use emissions using global totals

from the scenario and the spatial pattern either provided

from the scenario or from the BLUE spatial pattern for

2010. As with fossil fuel emissions, it is up to model

groups to re-grid or interpolate these emissions to suit

their own model. Global annual totals must be con-

served and must match the global annual totals of the

gridded data provided.

3.3.2 Land-use and land-use-induced land cover

change

LULCC affects climate via two aspects in CMIP6 simula-

tions. In both concentration-driven and emission-driven sim-

ulations LULCC alters the distribution of vegetation cover-

ing the land surface, with consequences for the exchange

of heat, water, and momentum with the atmosphere. Its ef-

fects on terrestrial carbon stocks allow us to infer LULCC

emissions, more accurately labelled the “et LULCC flux”

(Brovkin et al., 2013). In emission-driven simulations the

net LULCC flux influences the atmospheric CO2 concentra-

tion, contributing to subsequent carbon cycle feedbacks (e.g.,

Strassmann et al., 2008; Arora and Boer, 2010; Pongratz et

al., 2014).

The LULCC forcing for the historical simulations will be

based on the protocol and forcing data provided by CMIP6

for the DECK and the historical CMIP6 simulations. LULCC

is kept fixed at its pre-industrial state for all 1pctCO2 simu-

lations (fully coupled, biogeochemically and radiatively cou-

pled versions). It is essential that the biogeochemically cou-

pled simulations required for C4MIP of the historical and fu-

ture SSP simulations and their extensions to 2300 use iden-

tically the same LULCC forcing as for the parallel Scenari-

oMIP simulations.

3.3.3 N deposition

Models including a nitrogen cycle are encouraged to use a

consistent set of forcings of anthropogenic nitrogen depo-

sition as drivers for the respective ocean and land biogeo-

chemical components. Rates of speciated nitrogen deposi-

tion at the land and ocean surface are not available from ob-

servations and so need to be determined by models. C4MIP

will coordinate with CCMI to provide gridded, time-varying

fields of nitrogen deposition from chemistry transport models

(CTMs) for use as driving inputs in C4MIP simulations (http:

//www.met.reading.ac.uk/ccmi/?page_id=375). This will be

provided partitioned into four categories of wet or dry and

oxidized or reduced N deposition velocities at the bottom of

the atmosphere. If a model requires more or fewer categories

or species of nitrogen deposition then it is up to the model

group to produce these. When aggregating or disaggregating

components of deposition the total amount of reactive nitro-

gen should be conserved. Inputs into the land biosphere de-

pend on vegetation characteristics, and these aspects should

be dealt with by the individual model groups.

C4MIP simulations should use N deposition fields as fol-

lows:

– Pre-industrial control (piControl and esm-piControl)

should use time-invariant, but spatially explicit, N de-

position appropriate to 1850. This is so that there are no

discontinuities in carbon pools or fluxes at the beginning

of the historical simulation.

– Historical (historical, esm-hist, hist-bgc) and future

scenarios (esm-ssp585, ssp585-bgc, ssp585-bgcExt,

ssp534-over-bgc, ssp534-over-bgcExt) should use the

provided time-varying N-deposition data derived from

CTM simulations. It is essential that all C4MIP simu-

lations use identically the same N-deposition fields for

the C4MIP simulations as the parallel DECK, historical

and ScenarioMIP simulations.

– The idealized simulations (1pctCO2, 1pctCO2-bgc,

1pctCO2-rad) should also use the time-invariant pre-

industrial N deposition as used in the control runs, as

CO2 is the only time-varying forcing in these experi-

ments.

– For the first time, C4MIP requests additional ideal-

ized simulations (1pctCO2Ndep, 1pctCO2Ndep-bgc)

designed to quantify the effect of N deposition on the

carbon–climate and carbon-concentration interactions.

These simulations should use an idealized scenario of

time-varying N deposition as follows. A scenario will

be generated by adding to the pre-industrial base-line

the geographically explicit difference between the year

2100 SSP5-8.5 N deposition scenario and pre-industrial

values, such that the relative growth rates of N deposi-

tion and CO2 match and the global total N deposition

at the time when atmospheric CO2 concentrations reach

the SSP5-8.5 value for the year 2100 correspond to the

year 2100 N deposition total. C4MIP will generate these

fields of N deposition and make them available as an-

nual fields to be applied in these idealized simulations.

If the ESM simulates atmospheric chemistry and composi-

tion and therefore provides N deposition internally, then this

can be used in place of a prescribed field of N deposition for

the control, historical, and scenario simulations. However, ir-

respective of whether an ESM generates N deposition or not,

for the 1 % idealized simulations, it is preferable to use the

provided fields as anomalies, which should be added to the

ESM’s pre-industrial N-deposition fields.

The provided N-deposition data will cover both land and

ocean, but we acknowledge that some models have their own

established sources of reactive nitrogen to the oceans and to

change this would require costly repeat-spinup simulations.

So it is left to the model groups’ discretion how to apply N

deposition to the ocean. If a source other than that provided
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Figure 4. Carbon isotopes in atmospheric CO2 for the historical

period 1850–2014. Data for δ13C is from Law Dome, South Pole

(Rubino et al., 2013), and Mauna Loa (Keeling et al., 2001) and

includes smoothing of the observations. Data for 114C are com-

piled from Levin et al. (2010) and other sources (I. Levin, personal

communication, 2016), following a similar data set used by Orr et

al. (2000).

by C4MIP is used this should be documented and made avail-

able to aid analyses.

3.3.4 Carbon isotopes

Models including carbon isotopes (δ13C and 114C) in land or

ocean realms are encouraged to simulate and report variables

relating to carbon isotopes for control, historical, and future

scenario simulations.

For historical concentration-driven runs (piControl, histor-

ical and hist-bgc), atmospheric δ13CO2 and 114CO2 forcing

based on observations will be provided (Fig. 4). The atmo-

spheric forcing data sets will be available at the C4MIP web-

site. We also plan to make available atmospheric forcing data

for carbon isotopes for the ssp585 scenario and for other sce-

narios and extensions using a simple carbon cycle model, fol-

lowing Graven (2015).

Carbon isotopes are only requested to be simulated in land

and ocean model components using the provided histori-

cal or future atmospheric forcing data sets for δ13CO2 and

114CO2. It is not requested that atmospheric δ13CO2 and

114CO2 be simulated by ESMs, even for emission-driven

simulations of atmospheric CO2.

3.3.5 Other forcings

If the model requires any other external forcing not docu-

mented here, for example deposition of phosphorous, then it

is at the model groups’ discretion how to provide it. In the

case of a model with an interactive phosphorous cycle, we

recommend the forcing data are prepared in a way analogous

to the nitrogen deposition described above. We recommend

modelling groups to contact C4MIP for more details if this

is applicable. Any additional forcings must be documented

through the CMIP meta-data process or in the appropriate

model description paper.

4 Output requirements

It is vital for accurate analysis and model intercomparison

that every model adheres to the definitions of each output

variable in order for a like-for-like comparison to be made. In

this section we describe in detail each requested output vari-

able. The data request will be documented separately (by the

WGCM Infrastructure Panel; https://www.earthsystemcog.

org/projects/wip/) and will list the required variables output

for each CMIP6 simulation along with their precise variable

names, description, and required units. Here we aim to de-

scribe each variable so that its implementation and use are

made consistent across all models and analyses.

4.1 Land

4.1.1 Land carbon cycle variables

The primary aim of C4MIP is to compare the aspects of

the global carbon cycle and its response to environmental

changes across the participating ESMs. To achieve this ob-

jective, it is essential that all carbon stocks and fluxes are

reported so that total amount of carbon in the system can

be tracked and their conservation checked. To achieve this,

compulsory tier-1 diagnostics have been defined that close

the carbon cycle as simply as possible. Desirable tier-2 diag-

nostics should also be reported where possible, which allow

for more detailed analysis by breaking down tier-1 output

into sub-components.

Land carbon pools: tier-1

Figure 5 shows the requested carbon cycle stores over land.

Tier-1 variables are intended to be simple but still capture the

total land carbon store. Tier-2 variables provide the same in-

formation as the tier-1 variables but in more detail. As shown

in Fig. 5 the total carbon can be calculated from tier-1 vari-

ables and is not the combined sum of tier-1 and tier-2 vari-

ables.

The carbon stored in the vegetation–litter–soil system

is simply represented by tier-1 variables, cVeg, cLitter,

and cSoil respectively. For models that do not repre-
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Figure 5. (a) Requested tier-1 and tier-2 variables representing land carbon pools. Although not a land carbon quantity, atmospheric CO2

is shown here for completeness. (b) Detailed view of the tier-2 breakdown for soil carbon by vertical level (cSoilLevels) and by soil carbon

pool (cSoilPools).

sent a vertical discretization of soil carbon, all soil car-

bon should be reported simply as cSoil. Additionally

in tier-1 for models with vertically discretized soil car-

bon, we request output on the vertical distribution above

and below 1 m depth (cSoilAbove1m, cSoilBelow1m).

These should be reported in addition to cSoil, such that

cSoil=cSoilAbove1m+cSoilBelow1m. The rationale for re-

questing this is the availability of several observation-based

data sets that report soil organic matter content to 1 m depth.

It is important that any evaluation of cSoil outputs against

observed data sets makes use of the appropriate depth of soil

in both the observations and model outputs.

A fourth pool, cProduct, represents the carbon stored in

product pools (harvested wood, paper products, furniture,

etc.) as a result of anthropogenic land-use change. The to-

tal carbon stored per unit area on land is then simply:

cLand = cVeg + cLitter + cSoil + cProduct (1)

Some models may not explicitly simulate a litter pool distinct

from their soil carbon pool. In this case cLitter should be re-

ported as zero. We would normally expect cProduct to be

non-zero in simulations that include anthropogenic land-use

or land-use change. Hence, for the idealized 1 % per year in-

creasing CO2 simulations (biogeochemically, radiatively or

fully coupled) we would expect models to report cProduct =

0. For models whose land-use fluxes contribute straight to the

atmosphere and/or to their litter or soil carbon pools, but not

to the product pools, cProduct = 0 should also be reported

for historical and scenario simulations. Obviously, for mod-

els that do not simulate the effect of LULCC on the carbon

cycle, cProduct will also be expected to be zero.

Land carbon pools: tier-2 vegetation and litter carbon

Tier-2 output variables allow for more detailed breakdown

and analysis of their parent carbon stores. They are sub-

components of their parent tier-1 variables, and not addi-

tional stores. For example, the vegetation carbon pool can

be represented by carbon in the leaf, stem, and root as well

as possibly other (e.g. fruit) components. For models that re-

port these tier-2 variables, the total amount of carbon per unit

area should be identical to the tier-1 variable, i.e.

cVeg = cLeaf + cStem + cRoot + cOther. (2)

The same applies for the litter carbon pool, which is re-

quested to be broken down into coarse woody debris (cLitter-

CWD) and above- and below-surface litter (cLitterSurf, cLit-

terSubSurf) pools. When a model has a continuous profile of

litter with depth, take above and below 10 cm as the defini-

tion of above and below the surface. CWD here is assumed

to be on the surface.

Land carbon pools: tier-2 soil carbon

For CMIP5 the soil carbon pool was requested to be di-

vided into components with fast, medium, and slow turnover

timescales. However, this distinction was not found useful

by the community and as a result was not used in many anal-

yses. For CMIP6, we request a breakdown in two different

ways (Fig. 5b). First, models with a vertical structure to their

soil carbon are requested to report total soil carbon for each

soil layer. In the same way as soil moisture or temperature,

this should be reported as a multi-level output, cSoilLevels.

As the structure for this may vary between models, it is es-

sential that the model is thoroughly documented. The sum

of soil carbon over all cSoilLevels should be identical to the

total cSoil tier-1 variable.
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Table 3. Summary of tier-2 data request of carbon pools and fluxes by sub-grid land cover fraction.

Portion of gridbox Pools Fluxes

treeFrac cVegTree, cLitterTree, cSoilTree gppTree, nppTree, raTree, rhTree

shrubFrac cVegShrub, cLitterShrub, cSoilShrub gppShrub, nppShrub, raShrub, rhShrub

grassFrac cVegGrass, cLitterGrass, cSoilGrass gppGrass, nppGrass, raGrass, rhGrass

cropFrac cVegCrop, cLitterCrop, cSoilCrop gppCrop, nppCrop, raCrop, rhCrop

pastureFrac cVegPast, cLitterPast, cSoilPast gppPast, nppPast, raPast, rhPast

Most soil carbon models represent multiple soil carbon

pools (such as fast or slow turnover, or decomposable and

resistant organic material). In order to be able to diagnose

and evaluate the turnover rates of carbon within the terrestrial

system, we make a second tier 2 request to report individual

soil carbon pools (Fig. 5b, lower panel). It is also required

to report the turnover rate (tSoilPools: defined as 1/residence

time) for each pool. The pool-flux structure of each model

should be fully documented in its model description paper.

This output will enable reduced complexity approaches (e.g.

Xia et al., 2013) to recreate and analyse the soil carbon dy-

namics within each model. The sum of soil carbon over all

cSoilPools should be identical to the total cSoil tier-1 vari-

able.

Land carbon pools: tier-2 carbon on sub-grid tiles

A final tier-2 breakdown is required to report the main stores

and fluxes separately for different land cover types. The LU-

MIP data request (Lawrence et al., 2016) requests carbon

pools and fluxes for four land cover types: crop, pasture,

primary and secondary land (combined as one tile), and ur-

ban. For C4MIP we additionally request a breakdown of car-

bon pools and fluxes within “primary and secondary” land

onto tree, shrub, and grass separately. Section 4.1.4 describes

the C4MIP requested output of land cover fractions. Carbon

pools (cVeg, cLitter and cSoil) and fluxes (gpp, npp, ra, rh)

are therefore requested on the treeFrac, shrubFrac, grassFrac,

cropFrac, and pastureFrac fractions shown in Fig. 11. Table 3

lists all of these requests.

Land carbon fluxes

Equally important to the land carbon pools are the fluxes go-

ing into and out of them, which will allow us to gain insight

into how the pools have changed and why. For ease of under-

standing, we have adopted a convention for newly defined

variables that a carbon pool is prefixed by a “c” (as in cVeg

or cSoil) and a flux by an “f” (as in fLandToOcean). Some

existing variables (e.g. gpp and npp) do not conform to this

but are considered to be well known and do not need to be

changed.

Figure 6 shows the variables requested for terrestrial car-

bon fluxes. Similar to land carbon pools, the objective of tier-

1 fluxes is to capture the primary system behaviour, and tier-

Figure 6. Requested tier-1 and tier-2 variables representing land

carbon fluxes. The colours of the arrows correspond to the type of

flux. The orange arrows represent “natural” fluxes that represent

pathways of carbon exchange between the land and atmosphere.

These natural fluxes would generally be expected to be non-zero in

all simulations. The brown arrows represent fluxes associated with

anthropogenic disturbance between land pools or between the land

and the atmosphere. These fluxes would be expected to be non-zero

in simulations that implement anthropogenic land-use change based

on land-use change scenarios. The yellow arrows represent internal

fluxes within the veg–litter–soil system. Finally, the blue arrow rep-

resents carbon loss from land to the ocean, which may be a subset

of leached carbon, although not all models may simulate this flux.

2 fluxes provide breakdown within the tier-1 fluxes allowing

for a more detailed analysis. The directions of the arrows in-

dicate the sign convention of the flux, which is considered

positive in the direction in which the arrows are pointing. For

example, gross primary productivity (gpp) is positive down-

wards indicating flux of carbon from the atmosphere to the

vegetation, whereas autotrophic respiration (ra) is positive

upwards indicating flux of carbon from the vegetation to the

atmosphere.

Gross primary productivity is the flux of carbon from the

atmosphere to the vegetation that is associated with photo-

synthesis. Net primary productivity (npp) represents the car-

bon uptake by vegetation after the autotrophic respiration (ra)

costs have been taken into account (npp = gpp − ra). Both ra

and npp are sub-divided into tier-2 outputs representing flux
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from the leaf, stem, and root, components respectively, plus

also a category “other”, which should include all the compo-

nents (if any) reported under cOther tier-2 carbon pool. Also,

similar to land surface pools, the sum of the tier-2 fluxes must

be identical to their parent tier-1 flux.

npp = nppLeaf + nppStem + nppRoot + nppOther (3)

Heterotrophic respiratory flux (rh) and CO2 emissions as-

sociated with natural wildfires (fFireNat) represent carbon

loss from the land carbon stores to the atmosphere. rh is re-

quested to be sub-divided into its tier-2 components from the

litter and soil pools. Similarly, fFireNat is sub-divided into

fire CO2 emissions from vegetation and litter carbon pools.

Note, that fFireNat should not include CO2 emissions from

fires associated with anthropogenic land-use change.

Anthropogenic land-use change or land management can

result in transfer of carbon out of the vegetation, litter and

soil carbon pools either directly to the atmosphere (fAnthDis-

turb) or to the product pool. fAnthDisturb is proposed to be

split into fluxes due to land-cover change (fDeforestToAt-

mos) or management (fHarvestToAtmos), if this distinction

is made in the model. Anthropogenic fires, associated with

LUC, should be included in fAnthDisturb. Fluxes into the

product pool should similarly be reported as either fDefor-

estToProduct or fHarvestToProduct. Decomposition of car-

bon in the product pool represents a carbon flux back to the

atmosphere (fProductDecomp).

Due to the complexity of the processes involved, espe-

cially in the treatment of land use and management, and the

growing complexity in the manner in which LUC is repre-

sented in the models, it is possible that this simple frame-

work may not be completely compatible with all models. It

is simply not possible to define in advance of CMIP6 a frame-

work that may cover every possible flux in every model. Our

request is, therefore, that all fluxes of carbon are reported

somewhere, in the best possible way that they may fit within

the framework shown in Fig. 6, and not missed. This will

ensure conservation of carbon within the reported variables.

An example of differences in model structure and pro-

cesses is the manner in which litter from the vegetation pool

is transferred to the soil carbon pool. Some models simulate

litter fall from vegetation into the litter pool and then sub-

sequent assimilation into the soil carbon pool. Some mod-

els may also simulate this flux directly from vegetation to

soil carbon. In either case tier-2 breakdown of the litterfall

flux due to senescence (normal turnover) and mortality is

requested; this breakdown is expected to help to diagnose

changes in turnover time of the litter and soil carbon pools.

Figure 6 also forms the basis of carbon conservation prop-

erties that must be obeyed by the reported outputs. These in-

clude the manner in which fluxes should add up and that the

rate of change of carbon in carbon pools must be equal to the

sum of fluxes going in and out of the pools, or equivalently

changes in pools must be equal to the sum of time integral of

the fluxes into and out of the pools.

gpp = npp + ra (4)

d cVeg

dt
= npp − fVegLitter − fVegSoil − fAnthDisturb (5)

− fDeforestToProduct − fHarvestToProduct − fVegFire

d cLitter

dt
= fVegLitter − fLitterSoil − fLitterFire − rhLitter (6)

d cSoil

dt
= fLitterSoil + fVegSoil − rhSoilfLandToOcean (7)

d cProduct

dt
= fDeforestToProduct (8)

+ fHarvestToProductfProductDecomp

We define a new variable, netAtmosLandCO2Flux, which

is the total flux of CO2 from the land to the atmosphere. It

should encompass every flux from land to atmosphere so that

the total from each model can be compared without having to

know model details of which component fluxes to sum. Due

to differences in naming convention, we have chosen not to

call this NBP (net biome productivity). This is an essential

tier-1 variable requested from all C4MIP simulations.

4.1.2 Land nitrogen cycle variables

Figures 7 and 8 summarize the requested terrestrial nitrogen

pools and flux variables from models that include a repre-

sentation of terrestrial nitrogen cycle and its coupling to the

terrestrial carbon cycle. The nitrogen pools are designed to

parallel their corresponding carbon stores as closely as pos-

sible, giving primarily the storage of nitrogen in the vegeta-

tion (nVeg), litter (nLitter), and soil organic matter (nSoil)

pools. Additionally, we are requesting mineral nitrogen in

soil (nMineral), which is sub-divided into tier-2 variables

representing ammonium (nMineralNH4) and nitrate (nMin-

eralNO3) mineral nitrogen. We do not envisage much inter-

est in the nProduct variable (nitrogen stored in anthropogenic

product pools), but it is required as a tier-1 output in order to

close the nitrogen budget and ensure mass conservation of

analyses. There will also be likely little interest in separat-

ing nLitter into its tier-2 components nLitterCwd, nLitterSurf

and nLitterSubSurf but these variables are being requested

for consistency with their carbon counterparts.

Requested fluxes associated with the flow of nitrogen over

land are summarized in Fig. 8 and differ more from their car-

bon counterparts than do the carbon and nitrogen pools. As

with the pools, all fluxes should be reported somewhere in

order to be able to close nitrogen cycle budget over land and

ensure mass conservation of analyses. As with carbon fluxes,

the sign convention of the flux is considered positive in the

direction in which the arrows are pointing

Nitrogen enters the terrestrial ecosystems either through

anthropogenic inputs (which can be either atmospheric de-

position, fNdep, or fertilizer input fNfert) or through bio-

logical fixation (fBNF). Flows between vegetation, litter, and
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Figure 7. Requested tier-1 and tier-2 variables representing land

nitrogen pools.

soil organic N pools mirror the carbon fluxes, but with addi-

tional terms that represent inorganic mineral nitrogen uptake

by vegetation (fNup) and the net mineralization flux, i.e. the

difference between gross mineralization and immobilization,

from the dead litter and soil organic matter pools to the min-

eral nitrogen pool (fNnetmin). fNnetmin should be reported

as positive into the nMineral pool. Negative values of fNnet-

min then imply net immobilization.

The tier-1 variables that represent the loss of nitrogen

from the primary terrestrial pools of vegetation, litter and

soil organic matter include fluxes due to anthropogenic dis-

turbance: either into the LUC product pool (fNproduct) or

loss direct to the atmosphere fNAnthDisturb and loss from

the mineral nitrogen pool (fNloss). In order to conserve ni-

trogen, all losses of N must be reported into one of these

variables. fNloss may be further sub-divided (if represented

in the model) into tier-2 outputs of gaseous loss to the atmo-

sphere (fNgas) and loss of dissolved organic and inorganic

nitrogen through leaching (fNleach), i.e. fNloss = fNgas +

fNleach. If represented in the model, fNgas can be split into

that due to fire and non-fire. A further breakdown of tier-2

fluxes is also requested, if available, but these do not nec-

essarily have to add up to the tier-1 flux value: fNOx and

fN2O are components (but do not necessarily have to add up

to fNgas) and may be of interest for evaluation activities or

coupling to atmospheric chemistry models. fNLandToOcean

may be a subset of fNleach and is of interest for studying the

impact of terrestrial nitrogen cycle on coastal ocean ecosys-

tems.

4.1.3 Land physical variables

While most variables representing the land surface physical

state and water fluxes will likely be requested by the land sur-

face, snow, and soil moisture model intercomparison project

Figure 8. Requested tier-1 and tier-2 variables representing land

nitrogen fluxes.

(LS3MIP, van den Hurk et al., 2016) and land-use model

intercomparison project (LUMIP, Lawrence et al., 2016),

C4MIP requests some basic land surface physical variables

as well. These include soil moisture and temperature, vegeta-

tion leaf area index (LAI) and height, and basic water fluxes.

Physical state variables

Figure 9 shows the state variables requested that characterize

the physical vegetation structure (through leaf area index and

vegetation height) and the physical state of the soil (through

the soil moisture and temperature of a model’s soil layers).

The only tier-1 state variable requested for vegetation

structure is LAI, which represents the area of leaves per unit

area of ground. Vegetation height may also be considered

an important evaluation metric but this is requested as tier-

2 variable. It is likely more useful to distinguish vegetation

height by vegetation type, i.e. by tree, shrub, grass, and crop.

If this distinction is not made or unavailable in a model then

only the grid-averaged vegetation height may be reported.

Soil moisture and temperature are requested as tier-1 vari-

ables to be able to analyse carbon and moisture fluxes to-

gether and to identify the role of the physical state of the

soil conditions on carbon stores and fluxes. The total, liquid,

and frozen soil moisture contents are aggregated and disag-

gregated in various ways as shown in Fig. 9 and described

below:

– soil temperature (tsl) is requested for each model level

– soil moisture is requested as

– total soil moisture content (sum of frozen and liq-

uid) in the top 10 cm, mrsos;

– total (mrsol), liquid (mrsll) and frozen (mrsfl) soil

moisture content at each model level;
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Figure 9. Requested state variables that characterize the physical vegetation structure and the physical state of the soil.

Figure 10. Requested land surface hydrological flux variables.

– column integrated total (mrso), liquid (mrlso) and

frozen (mrfso) soil moisture contents.

Additionally, a total water diagnostic, mrtws, is requested as

tier-2 variable. This includes all soil moisture as reported

above (mrso) but additionally includes water from other

stores such as sub-grid lakes, aquifers, or rivers if they are

represented in the model.

Physical water fluxes

Figure 10 summarizes the small number of land surface hy-

drological fluxes being requested. As with the carbon and

nitrogen fluxes the sign convention is shown by the direction

of the arrows.

– prveg represents precipitation intercepted by the

canopy, and evspsblveg represents evaporation from the

canopy leaves (including sublimation).

– evspsblsoi represent evaporation from bare soil, and in-

cludes sublimation.

– tran represents transpiration flux of moisture through

the vegetation and out of the leaf stomata.

Models may represent runoff in multiple ways. The runoff

variables requested here are distinct from river/stream flow

variables, which other MIPs may request. Runoff is repre-

sented in depth units (kg m−2 s−1), while river/stream flow

represents volume of water per unit time generated by inte-

grating runoff from upstream grid cells (m3 s−1). mrros rep-

resents the surface runoff from each grid cell, and mrro rep-

resents the total runoff (including from the surface, the sub-

surface and any drainage through the base of the soil model).

4.1.4 Land cover state variables

Figure 11 summarizes the land cover variables requested

from all models. As with other requested variables, these

are categorized as simpler tier-1 variables, which represent

the primary land cover types, while the tier-2 variables fur-

ther break down the tier-1 variables into more detail. Tier-

1 land cover variables are required from all models so that

the land cover is completely described. Where possible mod-

elling groups are requested to provide the additional details

through tier-2 variables. It is important that the combined to-

tals of tier-2 variables agree with their tier-1 counterparts.
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Figure 11. Requested land cover variables. Sea fraction is assume to

be fixed, so must be reported under “climatology”. Fractions must

sum to 1 for every grid cell (including the sea fraction). Fractions

are per grid cell, not per land area.

A grid cell is described in terms of vegetation fractional

coverage (vegFrac), fractional coverage of bare soil (bare-

soilFrac), and a residual term (residualFrac) that may include

fractional coverage of urban areas, sub-grid-scale lakes, and

stony outcrops. For grid cells at the continental edges, a frac-

tion of the grid cell may also be covered by open ocean/sea.

The vegFrac is further subdivided into fractional coverage

by trees (treeFrac), shrubs (shrubFrac), grasses (grassFrac),

crops (cropFrac), and pasture (pastureFrac). Crop and pas-

ture fractions are the same as those requested by LUMIP

(Lawrence et al., 2016). Tree, shrub, and grass fractions rep-

resent additional detail within the LUMIP tile called “pri-

mary and secondary land”. All land cover must be reported,

such that

VegFrac + baresoilFrac + residualFrac + SeaFrac = 1, (9)

treeFrac + shrubFrac + grassFrac + cropFrac (10)

+ pastureFrac = VegFrac.

The tier-2 land cover variables follow the separation of

trees based on their leaf structure (broadleaf and needleleaf)

and leaf phenology (evergreen and deciduous) as treeFrac-

NdlEvg, treeFracNdlDcd, treeFracBdlEvg, treeFracBdlDcd.

The fractional coverage of grasses, crops, and pasture is sep-

arated into C3 and C4 variants based on their photosynthetic

pathway. Tier-2 totals should sum to be identical to their tier-

1 counterparts. For example

treeFracNdlEvg + treeFracNdlDcd (11)

+ treeFracBdlEvg + treeFracBdlDcd = treeFrac,

grassFracC3 + grassFracC4 = grassFrac. (12)

Figure 12. Fire and wetland variables. Other than burntFractionAll,

all other variables are requested as tier 2 variables.

4.1.5 Auxiliary land cover fractions and fluxes

Figure 12 shows auxiliary land cover diagnostics and fluxes

that may be reported. The additional land cover types are

fractions of a grid cell related to a biogeochemical process

that models may specifically simulate. These include burned

area (burntFractionAll) and wetland fraction (wetlandFrac).

burntFractionAll is expected to include burned area from

all natural and anthropogenic processes (anthropogenic fires,

and land-use change and management-related fires). wet-

landFrac is expected to include natural wetlands (dynami-

cally calculated in the model or specified) including any area

of rice paddies if it is explicitly represented. Both the burnt

and wetland fractions must be reported as the fraction of

the grid cell and not as fraction of the land or vegetation

area. Where models also estimate natural methane wetland

emissions from the wetland fraction these can also be re-

ported (wetlandCH4prod) and must include emissions from

rice paddies (if represented) to make methane emissions con-

sistent with the reported wetland fraction. If models simulate

methane uptake by soils then this may be reported as wet-

landCH4cons. The net land-to-atmosphere methane flux is to

be reported as wetlandCH4. Models that simulate methane

emissions from wetlands and/or rice paddies may explicitly

simulate the depth to the water table and this may also be

reported as waterDpth. Positive values of waterDpth indicate

that the water table is below the ground surface and nega-

tive values indicate that the water table is above the ground

surface.

4.2 Ocean diagnostics

Ocean biogeochemical stores and fluxes are described below.

As with the land, it is important that all carbon stocks are re-

ported so that total carbon can be tracked and conservation

checked. Figures 13–16 show the requested diagnostics. Tier-

1 diagnostics are intended to be simple and capture the whole

ocean carbon cycle, while tier-2 diagnostics repeat tier-1 but
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Figure 13. Ocean carbon cycle pools (blue boxes) and fluxes (yellow arrows) with associated processes. Where appropriate, pools are

grouped into components like particulate organic carbon (POC).

in more detail. As such the total carbon is the sum of tier-

1 and not the combined sum of tier-1 plus tier-2. The main

(tier-1) processes considered are (1) gas exchange with the

atmosphere that requires modelling the coupled cycle of al-

kalinity, and (2) biological processes coupling the carbon cy-

cle with nitrogen, phosphorus, iron, silicon nutrients. These

biological processes are centred around phytoplankton-based

primary production of organic carbon, ecosystem modula-

tion through zooplankton grazing and higher trophic inter-

actions, sinking of organic material out of the 100 m ref-

erence level (nominal euphotic zone depth), and recycling

of nutrients. Additional mechanisms working at the process

level may include: biodiversity among phytoplankton, zoo-

plankton and bacteria, dissolved organic carbon cycling, oxy-

gen cycling and its modulation of remineralization and den-

itrification, N2 fixation/denitrification, flexibility in the stoi-

chiometry among elements, sediment interactions, silicifica-

tion, calcification, lithogenics, mineral ballasting of sinking

material, aspects of iron cycle modulation through scaveng-

ing and the role of ligands, phytoplankton mortality by aggre-

gation, and viruses. The integral of a particular tracer XXX

over model vertical levels is IntXXX, and the total time rate

of change of tracer XXX is diagnosed as FddtXXX. Simi-

larly, the time rate of change due to the sum of all biologi-

cal terms acting on tracer XXX is diagnosed as FbddtXXX.

XXXs is the surface value of XXX.

The ocean ecosystem in ESMs typically comprises up to

five phytoplankton functional groups: diazotrophs, which can

fix N2 but may take up nitrate or ammonia as well depend-

ing on the model formulation, diatoms, which take up silicate

to form opal tests, calcareous phytoplankton, which take up

dissolved carbonate and alkalinity to form calcite, or arago-

nite tests, picophytoplankton, and miscellaneous phytoplank-

ton in which any other phytoplankton groups are combined.

Zooplankton groups may be separated by size into microzoo-

plankton, mesozooplankton, and macrozooplankton. Com-

bined with bacteria and detritus, these pools form the par-

ticulate organic carbon pool. Carbon stores in each of these

sub-components are requested as tier-2 (Fig. 14) and should

sum to be identical to their tier-1 counterparts.

As shown in Fig. 15, phytoplankton growth consumes dis-

solved organic carbon and nutrients in the presence of light to

form particulate organic carbon and oxygen through primary

production (i.e. intPb), some of which is exported (i.e. expC).

For each phytoplankton group, the degree of limitation by

light (i.e. limIrrdiat), nitrogen (i.e. limNdiat), and iron (i.e.

limFediat) availability can be diagnosed. For each elemental

cycle the external sources (i.e. FSC) and removal (i.e. FRC)

can be diagnosed. As model implementation of multiple fac-

tor limitation is very model dependent, limitation terms for

light and nutrients should be diagnosed in a manner consis-

tent with model implementation. For each model participant,

it will be important to document how combinations of limita-

tion terms should be combined, multiplicatively, as the min-

imum, or otherwise

Chemistry associated with the carbon system and gas ex-

change is kept track of through the variables provided in

Fig. 16. Cycles include the full carbon system associated

with dissolved inorganic carbon and alkalinity as well as ad-

ditional components relevant to specific tracer analysis such

as the natural carbon system that is unaffected by anthro-

pogenic CO2, and simplified abiotic dissolved inorganic car-

bon and abiotic alkalinity used for simulation of radiocarbon

(dissic14C, dissic14Cabio).
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Figure 14. Ocean ecosystem carbon pools in terms of chlorophyll-

based and carbon-based phytoplankton functional groups, zoo-

plankton size groups, bacteria, detritus, and dissolved organic car-

bon. As with land carbon diagnostics, the tier-2 requests are sub-

components of the tier-1 aggregate quantities. For example, ZooC

should report the total carbon pool in zooplankton. The sum of

the tier-2 components ZooMicro, ZooMeso and ZooMisc should be

identical to the tier-1 total. They are not additional pools to it.

Figure 15. Phytoplankton growth and export variables by phyto-

plankton group and by associated elemental cycle including exter-

nal sources and removal. Export refers to the export flux due to sink-

ing.

4.3 Carbon isotopes

Carbon isotopes are not simulated in all models and have

not been requested or used before in C4MIP analyses. For

CMIP6 we request that any model that simulates isotopes of

carbon (13 or 14) either on land or in the ocean report them

in the same way as the tier-1 carbon outputs.

Figure 17 shows carbon isotope diagnostics, which are re-

quested. These represent stocks of carbon-13 and carbon-14

in both land and ocean reservoirs and their exchange fluxes

with the atmosphere. Net air–sea fluxes of carbon-13 and

Figure 16. Ocean chemistry including the suite of carbon system

tracers and those undergoing gas exchange.

Figure 17. Carbon isotope diagnostics. Only report for models sim-

ulating isotopes. We define c13Land=c13Veg+c13Litter+c13Soil

and likewise for c14Land. As for cSoil, models with vertical dis-

cretization should also report above and below 1 m separately as

c13SoilAbove1m and c13SoilBelow1m and likewise for c14.

carbon-14 and dissolved inorganic of carbon-13 and carbon-

14 concentrations in the ocean are requested. On land, fluxes

of carbon-13 and carbon-14 associated with gross primary

productivity, autotrophic respiration, and heterotrophic respi-

ration, and stocks of carbon-13 and carbon-14 in vegetation,

litter, and soil are requested. The same units used for car-

bon should be used for carbon-13 and carbon-14. Stocks and

fluxes of carbon-14 should be normalized with the standard
14C / C ratio, Rs, of 1.176×10−12 (Karlen et al., 1968). This

means that reported stocks and fluxes of carbon-14 should be

divided by Rs.

Decay of carbon-14 should use the currently accepted half-

life of 5700 ± 30 years. In ocean models, carbon-14 can be

run as an abiotic variable (Orr et al., 2000) or integrated

into marine ecosystem carbon cycling. If carbon-14 is run as

an abiotic variable, abiotic dissolved inorganic carbon con-

centrations and abiotic carbon air–sea fluxes must also be

reported. For carbon-13 in the ocean, we request only net

air–sea fluxes of carbon-13 and carbon-13 in DIC. We do

not request variables related to carbon-13 in phytoplankton

or carbon-13 fluxes between DIC and phytoplankton, even
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though ocean models including carbon-13 are likely to in-

clude marine ecosystem cycling of carbon-13. More detail on

implementing carbon isotopes in ocean models for CMIP6

can be found in Orr et al. (2016).

5 Conclusions

Processes in the natural carbon cycle currently remove ap-

proximately half of anthropogenic emissions of CO2, help-

ing to reduce the magnitude and rate of climate change. How

these processes may change in the future in response to envi-

ronmental changes and direct human forcing is uncertain.

As an endorsed activity of CMIP6, C4MIP will contribute

coordinated simulations and analyses targeted at 3 key car-

bon cycle areas.

– Feedback quantification through idealized simulations.

Here we hope to better understand and quantify the sen-

sitivity of land and ocean carbon uptake to key environ-

mental changes, and in particular the impact of climate

change on carbon uptake.

– Model evaluation through analysis of historical simula-

tions. Here we hope to build trust in projections through

process-based and top-down evaluation, advancing our

understanding of the strengths and weakness of ESMs

and documenting progress since CMIP5.

– Future projections of climate and CO2 under scenar-

ios of CO2 emissions. Here we hope to better project

the future response to anthropogenic activity through

CO2 emissions-driven simulations that allow for the full

range of feedbacks to operate from CO2 emissions to

the evolution of atmospheric CO2 and the associated cli-

mate response.

C4MIP will focus on the coupled Earth system, compris-

ing land–atmosphere–ocean physical realms and both the ter-

restrial and marine carbon cycle components. Offline studies

of land only or ocean only will complement our analyses but

are outside the specific remit of C4MIP.

Over the last 2 years the C4MIP community has devised

a compact and efficient set of numerical experiments to be

performed with ESMs to address the above questions. In this

paper we have documented the rationale and set-up of these

simulations and the required outputs. This therefore consti-

tutes the C4MIP contribution to CMIP6.

6 Data availability

As with all CMIP6-endorsed MIPs, the model output from

the C4MIP simulations described in this paper will be dis-

tributed through the Earth System Grid Federation (ESGF).

The natural and anthropogenic forcing data sets required for

the simulations will be described in separate invited con-

tributions to this special issue and made available through

the ESGF with version control and digital object identifiers

(DOIs) assigned. Links to all forcings data sets will be made

available via the CMIP Panel website.

Acknowledgements. CRESCENDO project members (CDJ, PF,

LB, VB, TI, SZ) acknowledge funding received from the Horizon

2020 European Union’s Framework Programme for Research and

Innovation under grant agreement no. 641816. CDJ was supported

by the Joint UK BEIS/Defra Met Office Hadley Centre Climate

Programme (GA01101). HDG was supported by a Marie Curie

Career Integration Grant from the European Commission. JP is

supported by the German Research Foundation’s Emmy Noether

Program (PO 1751/1-1).

Edited by: C. Sierra

Reviewed by: C. Huntingford and two anonymous referees

References

Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Cox, P., Jones,

C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the land and

ocean components of the global carbon cycle in the CMIP5 earth

system models, J. Climate, 26, 6801–6843, doi:10.1175/jcli-d-

12-00417.1, 2013.

Arora, V. K. and G. J. Boer: Uncertainties in the 20th century carbon

budget associated with land use change, Glob. Change Biol., 16,

3327–3348, 2010.

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C.

D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cad-

ule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and

Wu, T.: Carbon–Concentration and Carbon–Climate Feedbacks

in CMIP5 Earth System Models, J. Climate, 26, 5289–5314,

2013.

Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L.,

Phillips, O. L., Asner, G. P., Armston, J., Asthon, P., Banin, L.

F., Bayol, N., Berry, N., Boeckx, P., de Jong, B., DeVries, B.,

Girardin, C., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G.,

Lucas, R., Malhi, Y., Morel, A., Mitchard, E., Nagy, L., Qie, L.,

Quinones, M., Ryan, C. M., Slik, F., Sunderland, T., Vaglio Lau-

rin, G., Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S:

An integrated pan-tropical biomass map using multiple reference

datasets, Glob Change Biol., 22, 1406–1420, 2015.

Bacastow, R. B.: The effect of temperature change of the warm

surface waters of the oceans on atmospheric CO2, Global Bio-

geochem. Cy., 10, 319–333, 1993.

Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M.,

Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R.,

Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated car-

bon dioxide emissions from tropical deforestation improved by

carbon-density maps, Nature Climate Change, 2, 182–185, 2012.

Batjes, N. H: ISRIC-WISE derived soil properties on a 5 by 5 arc-

minutes global grid (ver. 1.2). Report 2012/01, Wageningen: IS-

RIC – World Soil Information, 57 pp., 2012.

Bloom, A. A., Exbrayat, J.-F., van der Velde, I.R., Feng, L., and

Williams, M.: The decadal state of the terrestrial carbon cycle:

global retrievals of terrestrial carbon allocation, pools and resi-

dence times, P. Natl. Acad. Sci., 113, 1285–1290, 2016.

www.geosci-model-dev.net/9/2853/2016/ Geosci. Model Dev., 9, 2853–2880, 2016

http://dx.doi.org/10.1175/jcli-d-12-00417.1
http://dx.doi.org/10.1175/jcli-d-12-00417.1


2876 C. D. Jones et al.: The Coupled Climate–Carbon Cycle Model Intercomparison Project

Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung,

M., Reichstein, M., Lawrence, D. M., and Swenson, S. C.: Im-

proving canopy processes in the Community Land Model ver-

sion 4 (CLM4) using global flux fields empirically inferred from

FLUXNET data, J. Geophys. Res.-Biogeosci., 116, G02014,

doi:10.1029/2010JG001593, 2011.

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P.,

Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R.,

Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosys-

tems in the 21st century: projections with CMIP5 models,

Biogeosciences, 10, 6225–6245, doi:10.5194/bg-10-6225-2013,

2013.

Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P.,

Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., van den

Hurk, B. J. J. M., Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-

Ducoudré, N., Pacifico, F., Pongratz, J., and Weiss, M.: Effect of

Anthropogenic Land-Use and Land-Cover Changes on Climate

and Land Carbon Storage in CMIP5 Projections for the Twenty-

First Century, J. Climate, 26, 6859–6881, 2013.

Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S.

C., Leblanc, K., Le Quéré, C., Luo, Y.-W., O’Brien, C., O’Brien,

T., Peloquin, J., Schiebel, R., and Swan, C.: MAREDAT: towards

a world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data,

5, 227–239, doi:10.5194/essd-5-227-2013, 2013.

Burke, E. J., Jones, C. D., and Koven, C. D.: Estimating the

Permafrost-Carbon Climate Response in the CMIP5 Climate

Models Using a Simplified Approach, J. Climate, 26, 4897–

4909, 2013.

Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M.,

Migliavacca, M., Mu, M., Saatchi, S., Santoro, M., Thurner, M.,

Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J. T.,

and Reichstein, M.: Global covariation of carbon turnover times

with climate in terrestrial ecosystems, Nature, 514, 213–217,

doi:10.1038/nature13731, 2014.

Ciais, P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R.

J.: A large northern hemisphere terrestrial CO2 sink indicated

by the 13C/12C ratio of atmospheric CO2, Science, 269, 1017–

1188, 1995.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,

Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C.,

Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon

and Other Biogeochemical Cycles. In: Climate Change 2013:

The Physical Science Basis, Contribution of Working Group I to

the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-

K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,

Bex, V., and Midgley, P. M., Cambridge University Press, Cam-

bridge, United Kingdom and New York, NY, USA, 2013.

Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell,

I. J.: Acceleration of global warming due to carbon-cycle feed-

backs in a coupled climate model, Nature, 408, 184–187, 2000.

Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Hunting-

ford, C., Jones, C. D., and Luke, C.: Sensitivity of tropical carbon

to climate change constrained by carbon dioxide variability, Na-

ture, 494, 341–345, doi:10.1038/nature11882, 2013.

Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts,

R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend,

A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S.,

Smith, B., White, A., and Young-Molling, C.: Global response

of terrestrial ecosystem structure and function to CO2 and cli-

mate change: results from six dynamic global vegetation models,

Glob. Change Biol., 7, 357–373, 2001.

Dufresne, J.-L., Friedlingstein, P., Berthelot, M., Bopp, L., Ciais,

P., Fairhead, L., Le Treut, H., and Monfray, P.: On the mag-

nitude of positive feedback between future climate change

and the carbon cycle, Geophys. Res. Lett., 29, 43-1–43-4,

doi:10.1029/2001GL013777, 2002.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,

Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled

Model Intercomparison Project Phase 6 (CMIP6) experimen-

tal design and organization, Geosci. Model Dev., 9, 1937–1958,

doi:10.5194/gmd-9-1937-2016, 2016a.

Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones,

C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C.,

Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D.,

Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert,

D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E.,

Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D.,

Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams,

K. D.: ESMValTool (v1.0) – a community diagnostic and perfor-

mance metrics tool for routine evaluation of Earth system models

in CMIP, Geosci. Model Dev., 9, 1747–1802, doi:10.5194/gmd-

9-1747-2016, 2016b.

FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil

Database (version 1.2), Rome: FAO, 2012.

Foley, A. M., Dalmonech, D., Friend, A. D., Aires, F., Archibald,

A. T., Bartlein, P., Bopp, L., Chappellaz, J., Cox, P., Edwards,

N. R., Feulner, G., Friedlingstein, P., Harrison, S. P., Hopcroft, P.

O., Jones, C. D., Kolassa, J., Levine, J. G., Prentice, I. C., Pyle,

J., Vázquez Riveiros, N., Wolff, E. W., and Zaehle, S.: Evalu-

ation of biospheric components in Earth system models using

modern and palaeo-observations: the state-of-the-art, Biogeo-

sciences, 10, 8305–8328, doi:10.5194/bg-10-8305-2013, 2013.

Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J.-L., Fairhead, L.,

LeTreut, H., Monfray, P., and Orr, J.: Positive feedback between

future climate change and the carbon cycle, Geophys. Res. Lett.,

28, 1543–1546, 2001.

Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner, P.: How

positive is the feedback between climate change and the carbon

cycle?, Tellus, 55B, 692–700, 2003.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W.,

Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G.,

John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W.,

Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick,

C., Roeckner, E., Schnitzle, K.-G., Schnur, R., Strassmann, K.,

Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate–carbon cy-

cle feedback analysis: Results from the C4MIP model intercom-

parison, J. Climate, 19, 3337–3353, 2006.

Fung, I., Rayner, P., and Friedlingstein, P.: Full-form earth system

models: Coupled carbon-climate interaction experiment (the fly-

ing leap), IGBP Global Change Newslet., 41, 7–8, 2000.

Gillett, N. P., Arora, V. K., Matthews, H. D., and Allen, M. R.: Con-

straining the Ratio of Global Warming to Cumulative CO2 Emis-

sions Using CMIP5 Simulations, J. Climate, 26, 6844–6858,

2013.

Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R.,

Matthes, K., Santer, B. D., Stone, D., and Tebaldi, C.: Detec-

tion and Attribution Model Intercomparison Project (DAMIP),

Geosci. Model Dev., 9, 2853–2880, 2016 www.geosci-model-dev.net/9/2853/2016/

http://dx.doi.org/10.1029/2010JG001593
http://dx.doi.org/10.5194/bg-10-6225-2013
http://dx.doi.org/10.5194/essd-5-227-2013
http://dx.doi.org/10.1038/nature13731
http://dx.doi.org/10.1038/nature11882
http://dx.doi.org/10.1029/2001GL013777
http://dx.doi.org/10.5194/gmd-9-1937-2016
http://dx.doi.org/10.5194/gmd-9-1747-2016
http://dx.doi.org/10.5194/gmd-9-1747-2016
http://dx.doi.org/10.5194/bg-10-8305-2013


C. D. Jones et al.: The Coupled Climate–Carbon Cycle Model Intercomparison Project 2877

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-74, in re-

view, 2016.

Graven, H. D.: Impact of fossil fuel emissions on atmo-

spheric radiocarbon and various applications of radiocarbon

over this century, P. Natl. Acad. Sci. USA, 112, 9542–9545,

doi:10.1073/pnas.1504467112, 2015.

Graven, H. D., Gruber, N., Key, R., Khatiwala, S., and Giraud,

X.: Changing controls on oceanic radiocarbon: New insights on

shallow-to-deep ocean exchange and anthropogenic CO2 uptake,

J. Geophys. Res., 117, C10005, doi:10.1029/2012JC008074,

2012.

Gregory, J. M., Jones, C. D., Cadule, P., and Friedlingstein, P.:

Quantifying carbon cycle feedbacks, J. Climate, 22, 5232–5250,

2009.

Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Bal-

aji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes,

J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M.,

Haak, H., Hallberg, R. W., Hewitt, H. T., Holland, D. M., Ily-

ina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W.

G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J.

G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E.,

Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Win-

ton, M., and Yeager, S. G.: Experimental and diagnostic pro-

tocol for the physical component of the CMIP6 Ocean Model

Intercomparison Project (OMIP), Geosci. Model Dev. Discuss.,

doi:10.5194/gmd-2016-77, in review, 2016.

Hansis, E., Davis, S. J., and Pongratz, J.: Relevance of

methodological choices for accounting of land use change

carbon fluxes, Global Biogeochem. Cy., 29, 1230–1246,

doi:10.1002/2014GB004997, 2015.

Hengl, T., Mendes de Jesus, J., MacMillan, R. A., Bat-

jes, N. H., Heuvelink, G. B. M., Ribeiro, E. C., Samuel-

Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M. G.,

and Gonzalez, M. R.: SoilGrids1km – global soil informa-

tion based on automated mapping, PLoS ONE, 9, e105992,

doi:10.1371/journal.pone.0105992, 2014.

Hoffman, F. M., Randerson, J. T., Arora, V. K., Bao, Q., Cad-

ule, P., Ji, D., Jones, C. D., Kawamiya, M., Khatiwala, S.,

Lindsay, K., Obata, A., Shevliakova, E., Six, K. D., Tjipu-

tra, J. F., Volodin, E. M., and Wu, T.: Causes and implica-

tions of persistent atmospheric carbon dioxide biases in Earth

System Models, J. Geophys. Res.-Biogeosci., 119, 141–162,

doi:10.1002/2013JG002381, 2014.

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., De-

Fries, R. S., Hansen, M. C., Le Quéré, C., and Ramankutty, N.:

Carbon emissions from land use and land-cover change, Biogeo-

sciences, 9, 5125–5142, doi:10.5194/bg-9-5125-2012, 2012.

Hurtt, G., Chini, L., Sahajpal, R., Frolking, S., Calvin, K., Fujimori,

S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinemann,

A., Kaplan, J., Lawrence, D., Lawrence, P., Mertz, O., Popp,

A., Stehfest, E., van Vuuren, D., and Zhang, X.: Harmonization

of global land-use change and management for the period 850–

2100, in preparation, 2016.

Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li,

H., and Nunez-Riboni, I.: Global ocean biogeochemistry model

HAMOCC: Model architecture and performance as component

of the MPI-Earth System Model in different CMIP5 experimen-

tal realizations, J. Adv. Model. Earth Systems, 5, 287–315, 2013.

Iudicone, D., Rodgers, K. B., Stendardo, I., Aumont, O., Madec, G.,

Bopp, L., Mangoni, O., and Ribera d’Alcala’, M.: Water masses

as a unifying framework for understanding the Southern Ocean

Carbon Cycle, Biogeosciences, 8, 1031–1052, doi:10.5194/bg-8-

1031-2011, 2011.

Jenkinson, D. S., Adams, D. E., and Wild, A.: Model estimates of

CO2 emissions from soil in response to global warming, Nature,

351, 304–306, 1991.

Jones, C. D., Robertson, E., Arora, V., Friedlingstein, P., Shevli-

akova, E., Bopp, L., Brovkin, V., Hajima, T., Kato, E.,

Kawamiya, M., Liddicoat, S., Lindsay, K., Reick, C. H., Roe-

landt, C., Segschneider, J., and Tjiputra, J.: 21st century compat-

ible CO2 emissions and airborne fraction simulated by CMIP5

Earth System Models under four representative concentration

pathways, J. Climate, 13, 4398–4413, doi:10.1175/JCLI-D-12-

00554.1, 2013.

Joos, F. and Bruno, M.: Long-term variability of the terrestrial and

oceanic carbon sinks and the budgets of the carbon isotopes 13C

and 14C, Global Biogeochem. Cy., 12, 277–295, 1998.

Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O., and Schmittner,

A.: Global warming and marine carbon cycle feedbacks on future

atmospheric CO2, Science, 284, 464–467, 1999.

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson,

A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen,

J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G.,

Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors,

E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams,

C.: Global patterns of land-atmosphere fluxes of carbon diox-

ide, latent heat, and sensible heat derived from eddy covariance,

satellite, and meteorological observations, J. Geophys. Res.-

Biogeosci., 116, G00J07, doi:10.1029/2010JG001566, 2011.

Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke,

J., Matei, D., Mikolajewicz, U., Notz, D., and von Storch, J.-S.:

Characteristics of the ocean simulations in MPIOM, the ocean

component of the MPI Earth System Model, J. Adv. Model. Earth

Syst., 5, 422–446, 2013.

Karlen, I., Olsson, I. U., Kallburg, P., and Kilici, S.: Absolute de-

termination of the activity of two 14C dating standards, Arkiv

Geofysik, 4, 465–471, 1968.

Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T.

P., Heimann, M., and Meijer, H. A.: Exchanges of atmospheric

CO2 and 13CO2 with the terrestrial biosphere and oceans from

1978 to 2000. I. Global aspects, SIO Reference Series, No.

01-06, Scripps Institution of Oceanography, San Diego, 88 pp.,

2001.

Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M.,

Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A.,

Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean stor-

age of anthropogenic carbon, Biogeosciences, 10, 2169–2191,

doi:10.5194/bg-10-2169-2013, 2013.

Kirschbaum, M. U. F.: The temperature dependence of soil organic

matter decomposition and the effect of global warming on soil

organic carbon storage, Soil Biol. Biochem., 27, 753–760, 1995.

Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S.,

Collins, W. D., Bonan, G. B., Lawrence, D. M., and Swenson,

S. C.: The effect of vertically resolved soil biogeochemistry and

alternate soil C and N models on C dynamics of CLM4, Biogeo-

sciences, 10, 7109–7131, doi:10.5194/bg-10-7109-2013, 2013.

www.geosci-model-dev.net/9/2853/2016/ Geosci. Model Dev., 9, 2853–2880, 2016

http://dx.doi.org/10.5194/gmd-2016-74
http://dx.doi.org/10.1073/pnas.1504467112
http://dx.doi.org/10.1029/2012JC008074
http://dx.doi.org/10.5194/gmd-2016-77
http://dx.doi.org/10.1002/2014GB004997
http://dx.doi.org/10.1371/journal.pone.0105992
http://dx.doi.org/10.1002/2013JG002381
http://dx.doi.org/10.5194/bg-9-5125-2012
http://dx.doi.org/10.5194/bg-8-1031-2011
http://dx.doi.org/10.5194/bg-8-1031-2011
http://dx.doi.org/10.1175/JCLI-D-12-00554.1
http://dx.doi.org/10.1175/JCLI-D-12-00554.1
http://dx.doi.org/10.1029/2010JG001566
http://dx.doi.org/10.5194/bg-10-2169-2013
http://dx.doi.org/10.5194/bg-10-7109-2013


2878 C. D. Jones et al.: The Coupled Climate–Carbon Cycle Model Intercomparison Project

Lashof, D. A.: The dynamic greenhouse – Feedback processes that

may influence future concentrations of atmospheric trace gases

and climatic change, Clim. Change., 14, 213–242, 1989.

Lawrence, D. M., Hurtt, George C., Arneth, A., Brovkin, V., Calvin,

K. V., Jones, Andrew D., Jones, C. D., Lawrence, P. J., de Noblet-

Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova,

E.: The Land Use Model Intercomparison Project (LUMIP): Ra-

tionale and experimental design, Geosci. Model Dev. Discuss.,

doi:10.5194/gmd-2016-76, in review, 2016.

Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S.,

Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, R. J.,

Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans,

P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, L., Chang,

J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A.,

Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, A. K., Kato,

E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer,

P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, I. D., Metzl,

N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S.,

Nakaoka, S., Nojiri, Y., O’Brien, K., Olsen, A., Ono, T., Pérez,

F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck,

C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff,

T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van

der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Van-

demark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.:

Global Carbon Budget 2015, Earth Syst. Sci. Data, 7, 349–396,

doi:10.5194/essd-7-349-2015, 2015.

Levin, I., Naegler, T., Kromer, B., Diehl, M., Francey, R. J., Gomez-

Pelaez, A. J., Steele, L. P., Wagenbach, D., Weller, R., and Wor-

thy, D. E.: Observations and modelling of the global distribution

and long-term trend of atmospheric 14CO2, Tellus B, 62, 26–46,

2010.

Lindsay, K., Bonan, G. B., Doney, S. C., Hoffman, F. M., Lawrence,

D. M., Long, M. C., Mahowald, N. M., Moore, J. K., Rander-

son, J. T., and Thornton, P. E.: Preindustrial control and 20th

century carbon cycle experiments with the Earth system model

CESM1(BGC), J. Climate, 27, 8981–9005, doi:10.1175/JCLI-D-

12-00565.1, 2014.

Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth,

E., Carvalhais, N., Ciais, P., Dalmonech, D., Fisher, J. B., Fisher,

R., Friedlingstein, P., Hibbard, K., Hoffman, F., Huntzinger, D.,

Jones, C. D., Koven, C., Lawrence, D., Li, D. J., Mahecha, M.,

Niu, S. L., Norby, R., Piao, S. L., Qi, X., Peylin, P., Prentice, I.

C., Riley, W., Reichstein, M., Schwalm, C., Wang, Y. P., Xia, J.

Y., Zaehle, S., and Zhou, X. H.: A framework for benchmarking

land models, Biogeosciences, 9, 3857–3874, doi:10.5194/bg-9-

3857-2012, 2012.

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,

Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi,

A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He,

Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., Jones, C.

D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C.,

Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., Tian, H.,

Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y.

P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu, X.,

and Zhou, T.: Towards more realistic projections of soil carbon

dynamics by Earth System Models, Global Biogeochem. Cy., 30,

40–56, doi:10.1002/2015GB005239, 2016.

Maier-Reimer, E., Mikolajewicz, U., and Winguth, A.: Future ocean

uptake of CO2: interaction between ocean circulation and biol-

ogy, Clim. Dynam., 12, 711–722, 1996.

Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G.,

Lange, H., Seneviratne, S. I., Vargas, R., Ammann, C., Arain, M.

A., Cescatti, A., Janssens, I. A., Migliavacca, M., Montagnani,

L., and Richardson, A. D.: Global convergence in the tempera-

ture sensitivity of respiration at ecosystem level, Science, 329,

838–840, 2010.

Matsumoto, K., Sarmiento, J. L., Key, R. M., Aumont, O., Bullis-

ter, J. L., Caldeira, K., Campin, J.-M., Doney, S. C., Drange, H.,

Dutay, J.-C., Follows, M., Gao, Y., Gnanadesikan, A., Gruber,

N., Ishida, A., Joos, F., Lindsay, K., Maier-Reimer, E., Marshall,

J. C., Matear, R. J., Monfray, P., Mouchet, A., Najjar, R., Plat-

tner, G.-K., Schlitzer, R., Slater, R., Swathi, P. S., Totterdell, I. J.,

Weirig, M.-F., Yamanaka, Y., Yool, A., and Orr, J. C.: Evaluation

of ocean carbon cycle models with data-based metrics, Geophys.

Res. Lett., 31, L07303, doi:10.1029/2003gl018970, 2004.

Meyerholt, J. and Zaehle, S.: The role of stoichiometric flexibility

in modelling forest ecosystem responses to nitrogen fertilization,

New Phytol., 208, 1042–1055, doi:10.1111/nph.13547, 2015.

Naegler, T. and Levin, I.: Biosphere-atmosphere gross carbon ex-

change flux and the δ13CO2 and 114CO2 disequilibria con-

strained by the biospheric excess radiocarbon inventory, J. Geo-

phys. Res., 114, D17303, doi:10.1029/2008JD011116, 2009.

O’Neill, B. C., Tebaldi, C., van Vuuren, D., Eyring, V., Friedling-

stein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F.,

Lowe, J., Meehl, J., Moss, R., Riahi, K., and Sanderson, B. M.:

The Scenario Model Intercomparison Project (ScenarioMIP) for

CMIP6, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-

84, in review, 2016.

Orr, J., Najjar, R., Sabine, C., and Joos, F.: Abiotic-HOWTO, Tech-

nical report, available at: http://ocmip5.ipsl.jussieu.fr/OCMIP/

phase2/simulations/Abiotic/HOWTO-Abiotic.html (last access:

February 2016), 2000.

Orr, J., Maier-Reimer, E., Mikolajewicz, U., Monfray, P.,

Sarmiento, J. L., Toggweiler, J. R., Taylor, N. K., Palmer, J., Gru-

ber, N., Sabine, C. L., Le Queìreì, C., Key, R. M., and Boutin, J.:

Estimates of anthropogenic carbon uptake from four 3-D global

ocean models, Global Biogeochem. Cy., 15, 43–60, 2001.

Orr, J. C., Najjar, R. G., Aumount, O., Bopp, L., Bullister, J.

L., Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-

C., Graven, H., Griffies, S. M., John, J. G., Joos, F., Levin,

I., Lindsay, K., Matear, R. J., McKinley, G. A., Mouchet, A.,

Oschlies, A., Romanou, A., Schlitzer, R., Tagliabue, A., Tan-

hua, T., and Yool, A.: Biogeochemical protocols and diagnostics

for the CMIP6 Ocean Model Intercomparison Project (OMIP),

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-155, in re-

view, 2016.

Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X.,

Ahlström, A., Anav, A., Canadell, J. G., Cong, N., Huntingford,

C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M.

R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun,

Z., Wang, T., Viovy, N., Zaehle, S. and Zeng, N.: Evaluation of

terrestrial carbon cycle models for their response to climate vari-

ability and to CO2 trends, Glob. Change Biol., 19, 2117–2132,

doi:10.1111/gcb.12187, 2013.

Pilcher, D. J., Brody, S. R., Johnson, L., and Bronselaer, B.: Assess-

ing the abilities of CMIP5 models to represent the seasonal cycle

Geosci. Model Dev., 9, 2853–2880, 2016 www.geosci-model-dev.net/9/2853/2016/

http://dx.doi.org/10.5194/gmd-2016-76
http://dx.doi.org/10.5194/essd-7-349-2015
http://dx.doi.org/10.1175/JCLI-D-12-00565.1
http://dx.doi.org/10.1175/JCLI-D-12-00565.1
http://dx.doi.org/10.5194/bg-9-3857-2012
http://dx.doi.org/10.5194/bg-9-3857-2012
http://dx.doi.org/10.1002/2015GB005239
http://dx.doi.org/10.1029/2003gl018970
http://dx.doi.org/10.1111/nph.13547
http://dx.doi.org/10.1029/2008JD011116
http://dx.doi.org/10.5194/gmd-2016-84
http://dx.doi.org/10.5194/gmd-2016-84
http://ocmip5.ipsl.jussieu.fr/OCMIP/phase2/simulations/Abiotic/HOWTO-Abiotic.html
http://ocmip5.ipsl.jussieu.fr/OCMIP/phase2/simulations/Abiotic/HOWTO-Abiotic.html
http://dx.doi.org/10.5194/gmd-2016-155
http://dx.doi.org/10.1111/gcb.12187


C. D. Jones et al.: The Coupled Climate–Carbon Cycle Model Intercomparison Project 2879

of surface ocean pCO2, J. Geophys. Res.-Oceans, 120, 4625–

4637, 2015.

Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Ef-

fects of anthropogenic land cover change on the carbon cycle

of the last millennium, Global Biogeochem. Cy., 23, GB4001,

doi:10.1029/2009GB003488, 2009.

Pongratz, J., Reick, C. H., Houghton, R. A., and House, J. I.: Ter-

minology as a key uncertainty in net land use and land cover

change carbon flux estimates, Earth Syst. Dynam., 5, 177–195,

doi:10.5194/esd-5-177-2014, 2014.

Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L.,

Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Sc-

holes, R. J., and Wallace, D. W. R.: The carbon cycle and atmo-

spheric carbon dioxide. In: Climate Change 2001: The Scientific

Basis, Contribution of Working Group I to the Third Assessment

Report of the Intergovernmental Panel on Climate Change, edited

by: Houghton, J. T., Ding, Y., Griggs, D. J., Noquer, M., van der

Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cam-

bridge University Press, Cambridge, United Kingdom and New

York, NY, USA, 183–237, 2001.

Raddatz, T. J., Reick, C. H., Knorr, W., Kattge, J., Roeckner, E.,

Schnur, R., Schnitzler, K.-G., Wetzel, P., and Jungclaus, J.: Will

the tropical land biosphere dominate the climate-carbon cycle

feedback during the twenty first century?, Clim. Dyn., 29, 565–

574, doi:10.1007/s00382-007-0247-8, 2007.

Randerson, J. T., Lindsay, K., Munoz, E., Fu, W., Moore, J.

K., Hoffman, F. M., Mahowald, N. M., and Doney, S. C.:

Multicentury changes in ocean and land contributions to the

climate-carbon feedback, Global Biogeochem. Cy., 29, 744–759,

doi:10.1002/2014GB005079, 2015.

Roy, T., Bopp, L., Gehlen, M., Schneider, B., Cadule, P., Frolicher,

T. L., Segschneider, J., Tjiputra, J., Heinze, C., and Joos, F.: Re-

gional impacts of climate change and atmospheric CO2 on future

ocean carbon uptake: A multimodel linear feedback analysis, J.

Clim., 24, 2300–2318, 2011.

Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Bat-

tle, M. O., Langenfelds, R. L., Steele, L. P., Curran, M., Bender,

M., White, J. W. C., Jenk, T. M., Blunier, T., and Francey, R.

J.: A revised 1000 year atmospheric δ13C-CO2 record from Law

Dome and South Pole, Antarctica, J. Geophys. Res.-Atmos., 118,

8482–8499, doi:10.1002/jgrd.50668, 2013.

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T.

A., Salas, W. Zutta, B. R., Buermann, W., Lewis, S. L., Hagen,

S., Petrova, S., White, L., Silman, M., and Morel, A.: Bench-

mark map of forest carbon stocks in tropical regions across three

continents, P. Natl. Acad. Sci., 108, 9899–9904, 2011.

Sarmiento, J. L. and Le Queìreì, C.: Oceanic carbon dioxide uptake

in a model of century-scale global warming, Science, 274, 1346–

1350, 1996.

Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S.:

Simulated response of the ocean carbon cycle to anthropogenic

climate warming, Nature, 393, 245–249, 1998.

Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R.,

Ojima, D. S., Painter, T. H., Parton, W. J., and Townsend, A. R.:

Climatic, edaphic and biotic controls over carbon and turnover

of carbon in soils, Global Biogeochem. Cy., 8, 279–293, 1994.

Schwinger, J., Tjiputra, J. F., Heinze, C., Bopp, L., Christian, J. R.,

Gehlen, M., Ilyina, T., Jones, C. D., Salas-Mélia, D., Segschnei-

der, J., Séférian, R., and Totterdell, I. J.: Nonlinearity of Ocean

Carbon Cycle Feedbacks in CMIP5 Earth System Models, J. Cli-

mate, 27, 3869–3888, 2014.

Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J. C., Marti,

O., Dunne, J. P., Christian, J. R., Doney, S. C., Ilyina, T., Lind-

say, K., Halloran, P. R., Heinze, C., Segschneider, J., Tjiputra, J.,

Aumont, O., and Romanou, A.: Inconsistent strategies to spin

up models in CMIP5: implications for ocean biogeochemical

model performance assessment, Geosci. Model Dev., 9, 1827–

1851, doi:10.5194/gmd-9-1827-2016, 2016.

Sentman, L. T., Shevliakova, E., Stouffer, R. J., and Malyshev, S.:

Time scales of terrestrial carbon response related to land-use ap-

plication: Implications for initializing an Earth System Model,

Earth Interactions, 15, 1–16, 2011.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-

Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze,

C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poul-

ter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan,

G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis,

R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B.,

Zhu, Z., and Myneni, R.: Recent trends and drivers of regional

sources and sinks of carbon dioxide, Biogeosciences, 12, 653–

679, doi:10.5194/bg-12-653-2015, 2015.

Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKin-

ley, G., Sarmiento, J. L., and Wanninkhof, R.: Constrain-

ing global air-sea gas exchange for CO2 with recent bomb
14C measurements, Global Biogeochem. Cy., 21, GB2015,

doi:10.1029/2006GB002784, 2007.

Strassmann, K. M., Joos, F., and Fischer, G.: Simulating effects of

land use changes on carbon fluxes: Past contributions to atmo-

spheric CO2 increases and future commitments due to losses of

terrestrial sink capacity, Tellus B, 60, 583–603, 2008.

Tagliabue, A., Mtshali, T., Aumont, O., Bowie, A. R., Klunder, M.

B., Roychoudhury, A. N., and Swart, S.: A global compilation

of dissolved iron measurements: focus on distributions and pro-

cesses in the Southern Ocean, Biogeosciences, 9, 2333–2349,

doi:10.5194/bg-9-2333-2012, 2012.

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C.,

Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez,

F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl,

N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,

Kortzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnar-

son, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R.,

Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Cli-

matological mean and decadal change in surface ocean pCO2,

and net sea–air CO2 flux over the global oceans, Deep Sea Res.

II, 56, 554–577, 2009.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of

CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93,

485–498, 2012.

Thompson, S. L., Govindasamy, B., Mirin, A., Caldeira, K., Delire,

C., Milovich, J., Wickett, M., and Erickson, D.: Quantifying the

effects of CO2-fertilized vegetation on future global climate,

Geophys. Res. Lett., 31, L23211, doi:10.1029/2004GL021239,

2004.

Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Ma-

howald, N., Randerson, J. T., Fung, I., Lamarque, J.-F., Fed-

dema, J. J., and Lee, Y.-H.: Carbon-nitrogen interactions regu-

late climate-carbon cycle feedbacks: results from an atmosphere-

www.geosci-model-dev.net/9/2853/2016/ Geosci. Model Dev., 9, 2853–2880, 2016

http://dx.doi.org/10.1029/2009GB003488
http://dx.doi.org/10.5194/esd-5-177-2014
http://dx.doi.org/10.1007/s00382-007-0247-8
http://dx.doi.org/10.1002/2014GB005079
http://dx.doi.org/10.1002/jgrd.50668
http://dx.doi.org/10.5194/bg-12-653-2015
http://dx.doi.org/10.1029/2006GB002784
http://dx.doi.org/10.5194/bg-9-2333-2012
http://dx.doi.org/10.1029/2004GL021239


2880 C. D. Jones et al.: The Coupled Climate–Carbon Cycle Model Intercomparison Project

ocean general circulation model, Biogeosciences, 6, 2099–2120,

doi:10.5194/bg-6-2099-2009, 2009.

Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M.,

Lorentzen, T., Schwinger, J., Seland, Ø., and Heinze, C.: Eval-

uation of the carbon cycle components in the Norwegian Earth

System Model (NorESM), Geosci. Model Dev., 6, 301–325,

doi:10.5194/gmd-6-301-2013, 2013.

Tjiputra, J. F., Olsen, A., Bopp, L., Lenton, A., Pfeil, B., Roy, T.,

Segschneider, J., Totterdell, I., and Heinze, C.: Long-term surface

pCO2 trends from observations and models, Tellus B, 66, 23083,

doi:10.3402/tellusb.v66.23083, 2014.

Todd-Brown, K. E. O., Randerson, J. T., Hopkins, F., Arora, V., Ha-

jima, T., Jones, C., Shevliakova, E., Tjiputra, J., Volodin, E., Wu,

T., Zhang, Q., and Allison, S. D.: Changes in soil organic carbon

storage predicted by Earth system models during the 21st cen-

tury, Biogeosciences, 11, 2341–2356, doi:10.5194/bg-11-2341-

2014, 2014.

Trumbore, S.: Age of soil organic matter and soil respiration: radio-

carbon constraints on belowground C dynamics, Ecol. Appl., 10,

399–411, 2000

van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derk-

sen, C., Oki, T., Douville, H., Colin, J., Ducharne, A., Cheruy,

F., Viovy, N., Puma, M., Wada, Y., Li, W., Jia, B., Alessan-

dri, A., Lawrence, D., Weedon, G. P., Ellis, R., Hagemann, S.,

Mao, J., Flanner, M. G., Zampieri, M., Law, R., and Sheffield,

J.: The Land Surface, Snow and Soil moisture Model Intercom-

parison Program (LS3MIP): aims, set-up and expected outcome,

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-72, in re-

view, 2016.

Wenzel, S., Cox, P. M., Eyring, V., and Friedlingstein, P.: Emer-

gent constraints on climate-carbon cycle feedbacks in the CMIP5

Earth system models, J. Geophys. Res.-Biogeosci., 119, 794–

807, doi:10.1002/2013JG002591, 2014.

Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-

Brown, K.: Future productivity and carbon storage limited

by terrestrial nutrient availability, Nature Geosci., 8, 441–444,

doi:10.1038/ngeo2413, 2015.

Xia, J. Y., Luo, Y. Q., Wang, Y.-P., Weng, E. S., and Hararuk, O.:

A semi-analytical solution to accelerate spin-up of a coupled car-

bon and nitrogen land model to steady state, Geosci. Model Dev.,

5, 1259–1271, doi:10.5194/gmd-5-1259-2012, 2012.

Xia, J., Luo, Y., Wang, Y.-P., and Hararuk, O.. Traceable

components of terrestrial carbon storage capacity in bio-

geochemical models, Glob. Change Biol., 19, 2104–2116,

doi:10.1111/gcb.12172, 2013.

Zaehle, S. and Dalmonech, D.: Carbon–nitrogen interactions on

land at global scales: Current understanding in modelling climate

biosphere feedbacks, Curr. Opin. Environ. Sustainability, 3, 311–

320, doi:10.1016/j.cosust.2011.08.008, 2011.

Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze,

M. C., Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton,

P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen,

C. M., Gallet-Budynek, A., McCarthy, H., Finzi, A., Hanson,

P. J., Prentice, I. C., Oren, R., and Norby, R. J.: Evaluation of

11 terrestrial carbon–nitrogen cycle models against observations

from two temperate free-air CO2 enrichment studies, New Phy-

tol., 202, 803–822, doi:10.1111/nph.12697, 2014.

Zaehle, S., Jones, C. D., Houlton, B., Lamarque, J.-F., and Robert-

son, E.: Nitrogen Availability Reduces CMIP5 Projections of

Twenty-First-Century Land Carbon Uptake, J. Climate, 28,

2494–2511, 2015.

Geosci. Model Dev., 9, 2853–2880, 2016 www.geosci-model-dev.net/9/2853/2016/

http://dx.doi.org/10.5194/bg-6-2099-2009
http://dx.doi.org/10.5194/gmd-6-301-2013
http://dx.doi.org/10.3402/tellusb.v66.23083
http://dx.doi.org/10.5194/bg-11-2341-2014
http://dx.doi.org/10.5194/bg-11-2341-2014
http://dx.doi.org/10.5194/gmd-2016-72
http://dx.doi.org/10.1002/2013JG002591
http://dx.doi.org/10.1038/ngeo2413
http://dx.doi.org/10.5194/gmd-5-1259-2012
http://dx.doi.org/10.1111/gcb.12172
http://dx.doi.org/10.1016/j.cosust.2011.08.008
http://dx.doi.org/10.1111/nph.12697

	Abstract
	Introduction
	Background and science motivation
	C4MIP history
	Key science motivation and analysis plans for C4MIP
	Carbon cycle feedback parameters
	Evaluation of global carbon cycle models
	Future projections of the components of the global carbon budget

	Links to and requirements from other MIPs

	C4MIP Experiments
	Overview of simulations and their purpose
	Experimental details
	Model requirements and spin-up
	DECK piControl and historical
	Idealized 1% simulations
	Scenario simulations

	Forcings and inputs
	CO2 concentrations and anthropogenic CO2 emissions
	Land-use and land-use-induced land cover change
	N deposition
	Carbon isotopes
	Other forcings


	Output requirements
	Land
	Land carbon cycle variables
	Land nitrogen cycle variables
	Land physical variables
	Land cover state variables
	Auxiliary land cover fractions and fluxes

	Ocean diagnostics
	Carbon isotopes

	Conclusions
	Data availability
	Acknowledgements
	References

