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Abstract This paper addresses performance issues

of resource allocation in cloud computing. We

review requirements of different cloud applications

and identify the need of considering communica-

tion processes explicitly and equally to the comput-

ing tasks. Following this observation, we propose a

new communication-aware model of cloud comput-

ing applications, called CA-DAG. This model is based

on Directed Acyclic Graphs that in addition to com-

puting vertices include separate vertices to represent

communications. Such a representation allows mak-

ing separate resource allocation decisions: assigning

processors to handle computing jobs, and network

resources for information transmissions. The proposed

CA-DAG model creates space for optimization of a

number of existing solutions to resource allocation and

for developing novel scheduling schemes of improved

efficiency.
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1 Introduction

In recent years, parallel computers and clusters

have been deployed to support computation-intensive

and communication-intensive applications, and have

become part of cloud computing. Such clouds are

emerging as a new paradigm for providing services

and solving large-scale problems in science, engineer-

ing, and commerce. Clouds comprise heterogeneous

nodes (typically, clusters and parallel supercomputers)

with a variety of computational resources. Clouds are

becoming almost commonplace, with many projects

using them for production services. The initial chal-

lenges of Cloud computing – how to provide a service,

how to manage multiple virtual machines on differ-

ent systems – have been resolved to the first degree.

Therefore, researchers can now address the issues that

will allow more efficient use of the resources. The

use of cloud resource management is far from ubiq-

uitous. This is due to the fact that scheduling and

mapping decisions have to take into account the myr-

iad standards, procedures, and devices in a highly

dynamic environment. Consequently, resource man-

agement procedures must be able to adapt to changes

in state and data communication requirements to meet

their desired QoS constraints as traditional approaches

to resource optimization become insufficient.

mailto:dzmitry.kliazovich@uni.lu


24 D. Kliazovich et al.

New job representations are also being devel-

oped for modeling problems in e-Commerce and

e-Science as workflows. A workflow is the automa-

tion of a processes, which involves the orchestra-

tion of a set of services, agents, and actors that

must be combined together to solve a problem or

to define a new service. Workflows can be modeled

as DAGs or other precedence constraint structures.

Many precedence constraint problems have been stud-

ied in classical scheduling theory, and proved to

be NP-hard. Approximation algorithms, linear pro-

gramming, combinatorial, and stochastic solutions

have been addressed for problem solution. Solutions

for precedence constraint problems from classical

scheduling theory are not suitable for cloud prob-

lems. This is due to the fact that they do not take

into account the: (a) dynamic behavior of the execu-

tion context, (b) job mix workloads, or (c) uncertainty

of the workflow properties. Of particular interest is

to study: how resource unavailability and commu-

nication bandwidth dynamics trigger load balancing,

and how they impact the workflow allocation plans

under deterministic and nondeterministic scheduling

paradigms.

The scheduling of jobs on multiprocessors is gen-

erally well understood and has been studied for

decades. Many research results exist for different

variations of the scheduling problem; some of them

provide theoretical insights while others give hints

for the implementation of real systems. However,

the communication-aware scheduling problems that

require the availability of communication resources

have rarely been addressed. The communication prop-

erties are either completely ignored or highly general-

ized and weakly captured by current task models and

scheduling approaches. Unfortunately, it may result

in inefficient cloud infrastructure and communication

media utilization.

In this paper, we define a model for cloud com-

puting applications taking into account a variety of

communication resources of various types used in real

systems. This communication-aware model of cloud

applications, called CA-DAG, allows making sepa-

rate resource allocation decisions, assigning proces-

sors to handle computing jobs and network resources

for information transmissions, such as application

database requests. It is based on DAGs that in addition

to computing vertices include separate vertices to

represent communications.

The contribution synopsis of the paper is as follows.

1. Review of communication requirements of differ-

ent cloud applications.

2. Motivation of communication awareness in

resource allocation.

3. Definition of new communication-aware model of

cloud applications.

4. Definition of properties of communication tasks.

5. Comparison of the proposed CA-DAG

(communication-aware) model onto existing

resource allocation solutions based on CU-DAG

(communication-aware) and EB-DAG (Edge

based) models.

6. Demonstration that separate resource allocation

decisions to handle computing and communica-

tion jobs provide scheduling flexibility and, under

certain conditions, reduce the requirement for net-

work links and computational resources.

The rest of the paper is structured as follows: We

introduce background on task scheduling in Section 2

and discuss main properties and requirements of cloud

computing applications in Section 3. In Section 4,

we introduce communication-aware DAG model and

compare it with other DAG models. In Section 5,

we present the properties of communication vertices

of our model. Next, we discuss different aspects

of communication-aware scheduling in Section 6. In

Section 7, we present performance evaluation results

to confirm the benefits of the proposed CA-DAG

model. Finally, we conclude with a summary and an

outlook in Section 8.

2 Background on Task Scheduling

A workflow is a composition of tasks with precedence

constraints. Workflows are modeled by a directed

acyclic graph Gj=
(

Vj,Ej

)

, where Vj is the set of

tasks, and Ej=
{

(Tu,Tv) | Tu,Tv∈Vj, u �= v
}

, with

no cycles is the set of arcs between

tasks in Vj. Each arc (Tu,Tv)∈Ej represents the prece-

dence constraint between tasks Tu and Tv, such that

Tu must be completed prior to the initiation of the

execution of Tv.

Arcs can be related to communication requirements

of the underlying algorithm. The weights associated

with the nodes and edges represent their computation

costs and communication costs.
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Tasks are released over time according to the prece-

dence constraints. A task can start its execution only

after all of the corresponding dependencies have been

satisfied. At the release date, a task must be mapped to

a resource. However, we do not demand that the spe-

cific resource is immediately assigned to a task at its

release time. That is to state that the processor allo-

cation of a task can be delayed. Scheduling problems

involving precedence constraints are among the most

studied problems in the domain.

In the homogeneous scheduling delay model, each

arc represents the potential data transfer between tasks

[1]. Communication system is considered here to

be homogeneous and complete network. The LogP

model presents a more detailed characterization of

the communication delay. It is assumed that the com-

munication delay consists of three parameters: (a)

the latency, which is an upper limit on the time of

transferring the message data in the communication

medium, (b) the overhead of processing the message

at the sender and the receiver communication, and (c)

the interval in which the sender cannot send and the

receiver cannot accept any new messages [2]. In the

hierarchical communication model, the communica-

tion delays are not homogeneous. This is due to the

fact that the processors are connected to clusters, and

the communications inside a same cluster are faster

than those between processors belonging to different

ones.

In the classical scheduling, communication delays

disappear if a predecessor task and a successor task

are executed on the same processor [3]. This assump-

tion is known as the locality assumption. The essential

property of such models is that the task duplication

avoids communication delays.

In the processor network communication model,

the structure of the underlying network and the con-

tention in accessing the shared medium are taken

into account [4, 5]. However, it is assumed that com-

munication channel is a resource equivalent to a

processor.

Different variations of the scheduling problem with

communication delays and classification of existing

results are discussed in [6]. There are only few results

available on scheduling that take into account the pres-

ence of large communication delays [7–9, 48, 49].

The most widely used approach is task clustering to

balance communication delays and processing times.

Mainly two classes of task clustering algorithms are

studied based on the (a) critical path analysis [10]

and (b) decomposition of the precedence task graph

[8, 9, 11].

3 Cloud Applications

To understand how well the available scheduling

solutions are applicable in the cloud computing

environment, the main properties and requirements

of cloud computing applications must be reviewed.

Table 1 presents the classification of cloud com-

puting applications according to the key factors

determining their performance, namely: (a) com-

puting load, (b) communication bandwidth require-

ment, (c) tolerance to high communication delays,

(d) degree of interactivity, and (e) storage usage.

More details on the cloud application requirements

can be obtained from [12]. The applications are sorted

top-to-bottom according to their average demand for

resources.

Cloud gaming is probably the most cloud resource

demanding application. Game execution, processing,

and rendering are done on the cloud provider servers.

The thin client at the user side simply receives and dis-

plays multimedia intensive content, which consumes a

considerable amount of network bandwidth. The com-

munication delay should be imperceptible to allow the

fast reaction to the highly frequent user actions. The

only noncritical demand by the cloud gaming resource

is the storage that is required for the game play

objects.

Videoconferencing and video streaming consume

high bandwidth, but they differ in other require-

ments, such as videoconferencing requires a high

computing power for signal processing and multiplex-

ing, and low communication delays for impercepti-

ble interaction. However, all of the above mentioned

requirements are eased in video streaming making it

similar to cloud storage and cloud backup services.

Moreover, video conferencing does not impose stor-

age requirements as it discards real-time video data

after displaying. On the contrary, the availability of

a very large storage space is a key requirement for

video streaming, cloud storage, and cloud backup

services.

Online office (e.g., Google Docs, Microsoft Office

365) and Customer Relation Management (CRM)

services are mostly utilized by small and medium
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businesses as solutions. Both services are highly inter-

active, have moderate bandwidth requirements, mod-

erate storage requirements, and cannot tolerate high

communication delays. Collaborative editing is simi-

lar to online office applications. However, it imposes

a tight communication delay constraints to allow

document synchronization between collaborators in

real-time.

Remote desktop services consume cloud comput-

ing and bandwidth resources moderately, but are

highly interactive and require low communication

delay to provide close to the typical desktop experi-

ence. They require storage resources intensively as all

the data are streamed in real-time.

Cloud synchronization service stores data, such as

music files, and keeps it synchronized among mul-

tiple devices, such as desktop computers, laptops,

smart phones, or tablets. Even though, the user activ-

ity and variation of the content may be high, the

cloud synchronization service operates periodically by

aggregating the data modification requests. It oper-

ates well in networks with average delays, demands

moderate amount of the computing, and requires

medium bandwidth. However, it is sensitive to the

availability of storage. Other storage-hungry services

are video streaming, cloud storage, and cloud backup.

The aforementioned services require high throughput,

but produce almost no computational requirements

and are tolerant to large communication delays. In

contrast, voice conferencing, such as Skype, does not

require computing, bandwidth resources, and storage.

However, any increase in the communication delay

degrades the quality of user experience greatly.

Social networking is a Web based service that

facilitates people to post their profiles and establish

social relations. Typically implemented using HTTP,

it utilizes low bandwidth, and requires moderate com-

puting power and storage requirements. It is also

tolerant to moderate network delays with almost no

requirements for live voice or video interactions.

The High Performance Computing (HPC)

paradigm utilizes applications that are mostly of

the scientific nature and are composed of highly

computational intensive tasks. HPC applications are

significantly different from other cloud computing

services. Computing is the only resource critical for

execution capability, while bandwidth, delay, and

storage are insignificant, with the exception of a few

data intensive applications, such as climate modeling.

To run HPC applications effectively, the computing

clouds have to be specifically designed or adapted to

HPC as a service model [13, 14], as supercomput-

ers and computer clusters still remain dominant for

HPC.

4 Communication-Aware DAG Model

In this section, we motivate and define our CA-

DAG model for communication intensive cloud

applications and compare it with known CU-DAG

(Communication-unaware) and EB-DAG (Edges-

based) models.

4.1 Need for Communication-Awareness

Most of the cloud computing applications require the

availability of communication resources for their oper-

ations. In Table 1, the surveyed cloud applications

impose communication requirements in terms of the

network bandwidth, delay, or both. The only excep-

tion is HPC, which is predominantly dependent on the

computing power. Applications, such as video stream-

ing, cloud storage, and cloud backup require high

bandwidth to transfer large amounts of data to or from

the end users, while performing almost no computa-

tions. Other applications, such as voice conferencing,

produce very light traffic load on the network, but

require tight delay constraints, as imposed by the

audio codec, and limits of human delay perception

[15]. The cloud applications located in the top half of

the Table 1, with cloud gaming and video conferenc-

ing being the leaders, impose tight constraints on both

the network bandwidth and the delay.

The availability of communications resources

becomes crucial and determines how cloud applica-

tions interact with the end users. Indeed, most of the

cloud applications process requests from and deliver

results to many parts of the Internet. In addition

to these external communications, cloud applications

interact among themselves producing internal to the

datacenter traffic which may account for as much as

75 % of the total traffic [16, 17].

Current models of cloud applications rely mostly

on the HPC concepts [13, 14]. These models are based

on DAGs that are formed of the collection of ver-

tices, each representing a computing task, and directed

edges, which show the relations between the tasks.
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Table 1 Classification of cloud applications

Cloud application Resource requirement

Computing Bandwidth Low communication delay Degree of interactivity Storage

Cloud gaming H H H H L

Video conferencing H H H H L

Online office H M M H M

Collaborative editing M M H H M

CRM M M M H M

Remote desktop M M H H L

Cloud Synchronization M M M M H

Video streaming L H L L H

Cloud storage L H L L H

Cloud backup L H L L H

Voice conferencing L L H H L

Social networking M L M M M

HPC H L L L L

H: High, M: Medium and L: Low

Such models perfectly fit to the computationally inten-

sive HPC applications, but fail for most part of cloud

applications, where communications must be taken

into account as well. Several researchers have realized

this shortcoming and proposed adapting the standard

DAG model by either allowing vertices to represent

both computing and communication requirements of

a task (communication-unaware model - CU-DAG)

or associating edges with the communications per-

formed tasks (edges-based model - EB-DAG). Both

approaches have significant drawbacks that we detail

below.

CU-DAG - Communication-Unaware Model Joining

computing and communication demands of a task

together, and representing them as a single vertex [18,

19], as represented in Fig. 1a, makes it almost impos-

sible to schedule the task execution properly. Let us

consider a computing task that requires information

from a database as an input. The delay of sending

and handling a database query as well as receiving

a reply can be significantly beyond several millisec-

onds [20, 21], which is comparable with the time the

search engines return results [22, 23]. During this time

the computing work, being scheduled for execution,

stays on hold waiting for input data. For the DAG

example presented in Fig. 1a, we could ask how many

processors or cores should be used to schedule tasks 2

and 3 in parallel? It may be enough to allocate a single

core and share it in time, i.e. perform computing for

the task 2, while task 3 waits for the input, and process

task 3, while task 2 is sending its output. However,

to answer this question properly, a precise knowledge

of the communication patterns of both tasks should

be available. There is another shortcoming of the

reviewed model. Suppose task 2 computes data, and

(a) sends them to the network for the database update

(represented by a grey segment of the vertex), and (b)

feeds them as an input to the task 4. With such a DAG

representation, task 4 will need to wait for the suc-

cessful completion of the task 2 including database

update. On the other hand, the task 4 could be started

in parallel to the database update.

Summarizing, having a single vertex for represent-

ing both computing and communication of a task

makes it difficult to properly schedule them: comput-

ing work at the servers and communication work in

the network. It would be logical to separate these two

fundamentally different activities and schedule them

separately for an efficient execution.

EB-DAG - Edges-Based Model Associating DAG

edges with task communications [4, 24, 25] is an

attempt to treat communication and computing works
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Fig. 1 Modeling

communications DAGs: a

CU-DAG (communication-

unaware) and b EB-DAG

(edges-based)

1

2 3

4Computing work of a task

Communication work of a task

Ordinary edge

Edge with task communications(a) (b)

1

2

4

3

differently. In this model, the DAG is defined as a

directed acyclic graph G = (V, E, w, c), where ver-

tices V represent computing tasks, and a set of edges

E describes communications between tasks. w(n) is a

computation cost of a node n ∈ V, and c(eij) denotes

the communication cost of the link eij∈ E. Task

scheduling implies mapping tasks V on a set of pro-

cessors specifying starting time, and duration for each

task.

The aforementioned representation of communica-

tion processes with DAG edges has one significant

drawback. It prevents two different computing tasks

from using the same data transfer to receive an input.

Consider tasks 2 and 3, in Fig. 1b. Suppose the tasks

require the same data object from the database to start

their execution. In practice, it can be done with a sin-

gle database query, which implies a single edge of the

graph. However, a single edge cannot lead to two dif-

ferent vertices. As a result, either two different edges

trigger two different queries, or an empty vertex needs

to be added as a mean to branch a DAG edge.

Another shortcoming of this model is in the pro-

cessing of edge scheduling. To schedule communica-

tions, the DAG edges E are mapped to the network

links represented by the topology graph of the network

[4]. The topology graph is assumed to contain accurate

information on network nodes, connections between

them, and data transfer rates of all of the links. Even

if the connectivity information may be available for

the network, accurate knowledge of the available net-

work capacity remains mainly inaccessible [26]. This

is due to the diverse nature of the network traffic

that is produced at different layers of the protocol

stack and mixed in the communication links and net-

work routers. Part of the network traffic is broadcasted

and not accounted for by the edge scheduling. For

example, it is common in Address Resolution Protocol

(ARP) [27], which is used to find the correspon-

dence between IP and MAC address every time a node

communicates with a new destination, or in Inter-

net Control Message Protocol (ICMP) messages [28],

which are often generated by the routers in repose

to routing failures or congestion problems [29]. As

a consequence, knowing capacities of the links helps

to estimate the upper bound of the achievable trans-

mission rate, but what remains available to the edge

scheduler is commonly referred as available band-

width [30]. Estimating the available bandwidth has

been a hot research topic for a number of years with

many solutions proposed [26]. However, it is widely

accepted to be difficult or even impossible to accu-

rately estimate it, partially due to the requirement to

use active probing of network links [31] and a delay

between the moment a probe senses network traf-

fic and the time the measurement becomes available

when the probe is returned.

4.2 Communications-aware DAG Model

In this section, we propose new Communication-

Aware DAG (CA-DAG) model to overcome limita-

tions of the classical DAG representations, discussed

in the previous sections, for cloud computing applica-

tions.

Definition of CA-DAG Model The program is repre-

sented by a directed acyclic graph G = (V ,E, ω, ϕ).

The set of vertices V = {Vc, Vcomm is composed

of two non-overlapping subsets Vc and Vcomm. The

set ⊆ VcV represents computing tasks, and the set

⊂ VcommV represents communication tasks of the

program.
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A computing task vc
i ∈ Vc is described by a pair

(I, Dc) with the number of instructions I (amount of

work) that has to be executed within a specific dead-

line Dc. A communication task vcomm
i ∈ Vcomm is

described by parameters (S, Dcomm), and defined as

the amount of information S in bits that has to be

successfully transmitted within a predefined deadline

Dcomm. Positive weights ω
(

vc
i

)

and ϕ(vcomm
i ) repre-

sent the cost of computing at the node vc
i ∈ Vc, and

cost of communication at the node vcomm
i ∈ Vcomm,

respectively.

The set of edges E consists of directed edges eij rep-

resenting dependence between node vi∈ V, and node

vj∈ V, meaning that a task vj relies on the input from

the task vi, and vj cannot be started until this input

is received. A particular case is when the size of this

input is zero. It helps to define the execution order of

tasks, which exchange no data.

The main difference between communication ver-

tices Vcomm and edges E is that Vcomm represents

communication tasks occurred in the network, making

them a subject to communication contention, signif-

icant delay, and link errors. Edges E represent the

results of exchange between tasks considered to be

executed on the same physical server. Such communi-

cations often involve processor caches. They are fast

and the associated delay is multiple orders of mag-

nitude lower than the delay in a network and can be

neglected. Consequently, the edge set E corresponds

to the dependences between computing and commu-

nication tasks defining the order of their execution.

Representative Example Consider a typical cloud

computing application of webmail. On a highly

abstract level its operation can be represented with the

following four steps:

Step 1: Receive user request and process it.

Step 2: Generate personalized advertisement.

Step 3: Request list of email messages from the

database.

Step 4: Generate HTML page and send it to the user.

Each of the aforementioned steps involves a com-

munication process, and can be represented by the

communication-aware DAG.

In Fig. 2, the DAG vertices related to the computing

tasks Vc are represented by circles, while the com-

munication related vertices Vcomm are shown using

square shapes. Task 0 is associated with the arrival of

Computing task

Communcation task

T0

T1

T2 T4

T3 T5 T6

T7

T8

processing requests

identifying a user,

preparing database query

analysing

user profile

database query for

email messages

prepare a list

of emails

group messages

into conversations
retrieve personalized

advertisement from

databases combine outputs of T3, T5, and T6,

generate a complete HTML page

send output to user

Fig. 2 CA- DAG model of cloud mail appliocation

user request and its delivery to computing resources

over the data center network. Task 1 processes the

request, identifies a user, and prepares a database

query. Task 2 analyses user profile to determine traits

for targeted advertisement. During the execution of

Task 3 the requested personalized advertisement is

obtained from the database.

In Task 4, the database is queried for the list of user

email messages. When the reply is received, it is fed

into Task 5 and Task 6 running parallel. Task 5 pre-

pares a list of email messages, while Task 6 determines

which messages can be grouped into conversations.

Finally, Task 7 combines the outputs of Task 3, Task

5, and Task 6, and generates a complete HTML page,

which is sent to the user in Task 8.

Comparison of Models Let us consider a scheduling

of tasks with communications on a set of identi-

cal computers to optimize the total execution time

(makespan). Computing resources are represented by

two processors of a data center p1 and p2 (see Fig. 3).

The communication resources are represented with

network links l1 and l2 interconnecting computing

resources and database DB. Now let us see how the

described webmail application can be represented by

three types of DAGs: CU-DAG (Fig. 1a), EB-DAG

(Fig. 1b), and CA- DAG (Fig. 2).

Figure 4a shows a possible schedule for the CA-

DAG. Computing Tasks 1, 2, 5, 6, and 7 are scheduled
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Fig. 3 Example of infrastructure for scheduling

on the processor p1, while communication-related

Tasks 0, 3, 4, and 8 are scheduled at the network link

l1. Representing communication tasks with their own

distinct vertices allows us to control an allocation and

execution time at the network resources in addition to

the processor unit. The processor time is not wasted by

waiting for communications to complete. For exam-

ple, a data base query (Task 4) is executed simultane-

ously with the analysis of a user profile (Task 2), while

at the next step, the list of email messages (Task 5)

can be generated, while database is being queried for a

personalized advertisement (Task 3). Such a schedul-

ing flexibility is not available when communication

work is seen as a part of a task description.

For the purpose of comparison, Fig. 4b presents

a schedule for CU-DAG, depicted in Fig. 1a. The

inability to control allocation of network resources and

Fig. 4 Schedules for: a

CA-DAG model, b CU-

DAG model and one

processor, c CU- DAG

model and two processor, d

EB-DAG model and one

network link, and e

EB-DAG model and one

network link

l1

P1

T0 T4 T3 T8

T1 T2 T5 T6 T7

T4

(d) EB-DAG 8 time

l1

P1

T0 T4 T3 T8

T1 T2 T5 T6 T7

T4l2

(e) EB-DAG 7 time

7

l1

P1

T0 T4 T3 T8

P2

T1 T2

T5

T6 T7T0 T3

T4

T8

(c) CU-DAG time

l1

P1

T0 T4T3 T8

T1 T2 T5 T6 T7T0 T3 T4 T8

(b) CU-DAG 9 tim

l1

P1

T0 T4 T3 T8

T1 T2 T5 T6 T7

(a) CA-DAG 7 time
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distinguish the size of task communications, results in

a larger makespan. The processor is often forced to

wait for finishing communications before it can start

the computational portion of the task. To match the

makespan of the CA-DAG, an additional processing

unit would be required (see Fig. 4c).

The DAGs that use edges to model communica-

tion processes (Fig. 1b) cannot model certain required

communication types. In our example, for instance,

consider using an edge for the representation of the

database request (Task 4). It will make it not possible

to make a single edge lead to two different computing

tasks, Task 5 and Task 6, while having an additional

edge will unnecessarily duplicate the communication

effort. Fig. 4d shows an example of edges-based com-

munication scheduling. It requires scheduling Task

4 for two edges leading from Task 1 to Tasks 5

and 6. Matching the schedule of the CA-DAG model

becomes possible only when additional network link

is available, such that both edges can be scheduled in

parallel.

5 Properties of Communication Vertices

In this section, we discuss and explain the aforemen-

tioned properties in more details.

5.1 Task Parallelization

While it is often assumed that a single vertice vc rep-

resents a piece of computing code, which cannot be

further parallelized, the communication vertice vcomm

does not imply such an assumption.

Communication-related tasks significantly differ

from the computing tasks. Their most distinct property

is the task parallelization: each communication task

vcomm
i ∈Vcomm can be divided into n different inde-

pendent communication tasks vcomm
ij , j = 1, . . . , n,

with a size of communication task in bits equals to

ϕ(vcomm
i )/n.

All of the bits that are to be transferred are inde-

pendent. They can be transmitted on different paths of

the network and reassembled in the original sequence

at the destination node. As a result, each communica-

tion vertice vcomm
i can be split into a number of data

flows scheduled in parallel or sequentially. Network

paths used for their transmission can be either com-

pletely different, i.e. include only the sender and the

receiver as common nodes, or partially overlapped.

The number of parallel flows depends on the number

of network paths available, the size of data, available

effective bandwidth, an overhead of the protocol used

for communication, etc.

5.2 Multipath Routing

In a fully deterministic system, a schedule can be

computed by finding an association between the DAG

representing cloud applications, and topology graph

representing a data center network, which includes

network nodes, switches, and communication links

with their transmission rates. This approach has a

number of limitations. It assumes circuit switching

and static routing. This guarantees a dedication of

certain bandwidth resources along a predefined net-

work path for the whole duration of communication.

However, in real systems, these assumptions do not

hold. Nowadays, most of the communication networks

are packet-switched, and packet routing decisions are

taken at every hop independently. Furthermore, most

of the data center network topologies, including the

most commonly used fat tree topology, introduce mul-

tipath connections as a mean to provide resilience and

load balancing. The availability of multiple paths is

essential to benefit from the parallelization of commu-

nication tasks discussed earlier in this section.

5.3 5.3 Task Completion Time

In computing, the task completion time corresponds to

the time a processing resource is released from execut-

ing computing instructions, after which a computing

result is available. In packet-switched networks, multi-

ple links are involved into communication task execu-

tion. They operate at different data rates, and process

a packet transmission sequentially.

Figure 5 attributes communication delays with dif-

ferent network components. The information process-

ing and packetization delay dproc as well as queuing

delay dqueue are occurred at the network node. The

transmission delay dtx defines a time interval of net-

work link occupancy. For a data segment of the length

S and link data rate r, the transmission delay is defined

as a ratio S/r. The propagation delay dprop corresponds

to the time the signal travels from a sender to receiver.

It is defined as a ratio between the link length llink and

propagation speed of the link medium c. Combining
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Fig. 5 Communication

delays n1 n2dproc

dtx dqueue dprop

the aforementioned delays together, we can compute

task completion delay for the network path of N hops

as follows:

dcomm =
N

∑

i=1

(

d i
proc + d i

queue + d i
tx + d i

prop

)

. (1)

The minimum communication delay will correspond

to the system with very fast processing (dproc→ 0) and

empty buffers (dqueue= 0), and will be expressed by
∑

(dtx+dprop).

5.4 Available Bandwidth

Typically, communication resources are associated

with the residual capacity – the amount of the path

capacity left unoccupied by the traffic flowing along

the path. However, in practice, residual capacity

reflects only the minimum amount of bandwidth that

a newly introduced flow can obtain. The communica-

tion flows sharing the same path or a segment of a path

in the network compete for bandwidth resources. As a

result, a newly introduced data flow along with rely-

ing on the residual capacity may grab a share of the

bandwidth currently used by the other flows.

The communication protocol and its performance

are two of the most important factors. Overwhelm-

ing majority of data transmissions is performed using

Transmission Control Protocol (TCP). It is the only

protocol in the standard TCP/IP protocol stack able to

guarantee both reliability and flow control. It uses a

positive feedback loop with the receiver. Based on the

feedback information, TCP triggers retransmissions

for the packets, which are lost due to congestion or

link errors, and adjusts sending rate. The sending rate

is additively increased for every feedback message

received unless a packet loss is detected. In the latter

case, the TCP reduces its sending rate multiplicatively,

typically by a factor of 2.

Due to the uncertainty on the end-to-end network

path, and operational TCP dynamics, accurate cal-

culation of a node sending rate becomes unrealistic

making it difficult to predict completion time of com-

munication tasks [26, 47]. However, for the purpose of

scheduling, it is important to estimate the boundaries

for this value.

A good estimate of the steady-state TCP perfor-

mance can be obtained as the following [32]:

B(p) =
MSS

RT T · √
p

, (2)

where MSS is a maximum segment size typically

selected to fit maximum packet size, which will not

trigger fragmentation at the network interface card,

RTT is the round-trip time between the sender and

the receiver, and p is an error probability, which

includes both congestion- and link-related packet

losses. According to (2), for the RTT of 200 ms, which

is common in Internet, typical for Ethernet MSS of

1500 bytes, and typical for wired links error rates

in the order of 10−7, the maximum achievable TCP

sending rate is less than 200 Mb/s. To estimate the

protocol-related overhead, we may consider an upper

bound of the link capacity and use a more precise

model from [33]. For a typical per-server available

bandwidth of 300 Mb/s and round-trip delay of 100

ms, the transmission of 500 MB data fragment using

TCP protocol will take almost 15 seconds versus the-

oretical 13 seconds in case of raw data transmission

with no protocol used. In this example, the overhead

of TCP protocol is round 13 %.

5.5 Uncertainty in Data Size

Communication actions performed by a task executed

in data center can be classified into unidirectional

and bidirectional. Unidirectional communications are

typically related to the task outputs to the user or

another service in data center. They have a well-

defined size of the information that needs to be trans-

ferred. Bidirectional communications are related to

the request-response actions performed by the task,

such as database queries. In this regard, while the

size of outgoing request is well-known, the amount

of information that will be received back is often

unknown. For example, in Fig. 2, in Task 4 the list of

email messages is received from the database. The list
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can be completely empty or has a large size depending

on the number of emails stored in the user mailbox.

In order to cope with the uncertainty in data size

of communications adaptive scheduling approaches

should be used. However, to make resource alloca-

tion efficient, it is important to estimate task com-

pletion delays and usage of network resources for

such bidirectional communications. One of the most

promising approaches is to use statistical data mining

approaches. Each node can include a software module

which, based on the precedent experience, will esti-

mate a query processing delay, the round-trip time to

a database server, as well as the size of the data output

reducing uncertainly and assisting resource allocation.

Scheduling with uncertainly have been also exten-

sively studed in grid networks with the relation to

application demands and resource availability [44],

and uncertainty of communication demands [45, 46].

6 Communication-aware Scheduling

In this section, we discuss the impact of the intro-

duction of the communication-aware DAG model

on existing scheduling solutions. The problem of

DAG scheduling is known to be NP-complete even

for DAGs with no communication-related vertices or

edges [34]. Therefore, classical exact and enumera-

tive methods are only useful to solve the reduced size

problems. Approximation algorithms, linear program-

ming, combinatorial, and stochastic solutions have to

be adopted for the problem solution. Communica-

tion is not only a problem on the algorithmic level,

but also for the scheduling model as well. Most of

the scheduling algorithms employ a strongly idealized

model of the targeted system. It is assumed that all

of the processors are fully connected. The informa-

tion governing scheduling decisions is assumed to be

known in advance. However, it is not always the case

when the communication-aware model is considered.

The most widely used heuristics are usually classified

into three categories: duplication-based scheduling,

cluster-based scheduling, and priority-based schedul-

ing.

Task duplication is a special scheduling method

that replicates selected tasks to reduce inter-processor

communications [35, 36]. One of the main problems in

obtaining high performance of data intensive applica-

tions is the inevitable communication overhead when

tasks executed on different processors exchange data.

Duplication-based scheduling can reduce this over-

head by allocating the tasks redundantly on more than

one processor. Task duplication can decrease in the

cost of communications at the expense of bringing

additional computational load into computing system.

Nevertheless, task replication seems to be an imprac-

tical option in the context of cloud computing since

it tends to redundantly use and waste resources for

replicas.

Task clustering exploits the idea of grouping the

heavily communicating tasks and executing them on

the same computing resource [37, 38]. A problem

arises when the number of clusters is larger than the

number of the available processors [9]. This would

require scheduling of several clusters onto the same

processor inevitably increasing the overall length of

the schedule. The mapping or post-clustering phases

can refine the obtained clusters and acquire the final

task-to-resource map. The problem becomes more dif-

ficult under the condition of resources with different

and varying capabilities. Known static load balanc-

ing mechanisms become impractical. Even effectively

modified, clustering algorithms cannot be directly

applied under these conditions.

In priority-based scheduling, tasks are scheduled

onto resources according to their priorities [5]. The

heuristics use different strategies to decide on the task

priorities and allocated resources for each task. This

type of scheduling techniques is usually relatively

easy to implement, but, typically they do not consider

inter-processor communication delay when assigning

scheduling priorities.

Uncertainties inside applications (amount of com-

puting and communication works) and of the exe-

cution environment (number of available machines,

their location, their capabilities, the network topology,

effective communication bandwidth, etc.) add new

dimension to the scheduling problem.

Solutions for precedence-constrained problems

from classical theory are not suitable for the cloud sce-

narios. Scheduling in cloud computing environments

poses challenges not found in other distributed ser-

vice and computing environments mainly due to the

dynamicity of computing resources and communica-

tions, mix in job workloads, and different properties of

the workflows. Traditional scheduling algorithms for

high-performance computing are often afforded many

assumptions that do not hold in cloud computing, such
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as relatively negligible communication costs, precise

knowledge of the application structure, and the com-

munication patterns. Most of the existing scheduling

algorithms employ a strongly idealized model of the

target system making difficult to apply them in the

cloud.

Another important feature of existing scheduling

strategies is a consideration of a single objective cri-

terion. Most of the scheduling strategies for DAGs

adopt the best-effort approach, which minimizes only

performance objective. However, scheduling in the

cloud is inherently multi-objective. For instance, sys-

tem performance related objectives, cost based, energy

consumption based, and QoS based objectives must be

considered.

In cloud computing environments, resource

scheduling should be able to meet QoS requirements

for individual DAG instances at the same time max-

imizing performance for multiple DAGs running

concurrently. Workflow or DAG scheduling has diver-

sified into many research directions: minimization of

critical path execution time, selection of admissible

resources, allocation of suitable resources for data

intensive workflows, QoS constraint scheduling, as

well as fine-tuning of the workflow execution and

performance analysis. Most of them have consid-

ered single DAG scheduling problems. As already

mentioned cloud applications are typically small, but

arrive to the data center in millions. Therefore, the

scheduler should be designed to take into account

not only dependencies within a single job, but also

multiple DAGs.

Several research works address the scientific

workflow-scheduling problem on clouds. The work-

flows are represented by DAGs. Unlike tightly cou-

pled applications in which tasks communicate in

the network directly, workflow tasks typically com-

municate using file system. Most the scheduling

approaches are based on list scheduling, clustering,

and meta-heuristic search [39–41].

The communication-aware scheduling problem

considered in this work is hybridization between net-

work scheduling and classical machine scheduling.

The scheduling algorithm should be aware of the

computing and communication tasks to be scheduled.

We reduce an online DAG scheduling problem with

communications to the problem without communica-

tions since communications are included into the new

DAG model as tasks to be performed. Computing

tasks have to be mapped to computing resources and

communication tasks to the communicating media

resources.

To treat uncertainly and dynamism of the problem,

stochastic models, non-clairvoyant and knowledge-

free scheduling strategies can be applied. The lat-

ter corresponds to the strategies where scheduling

decisions are free from information of resources

and characteristic of running applications. Online

list scheduling algorithms are an example of

non-clairvoyant knowledge-free scheduling strate-

gies since list scheduling requires no knowledge of

unscheduled tasks as well as of all tasks currently

being processed. It is very powerful in dynamic envi-

ronments and especially in online non-clairvoyant

scheduling [42]. One standard alternative is to

consider randomized algorithms that make random

choices as they construct a schedule. More sophisti-

cated greedy strategies that can be adopted with some

knowledge of the scheduled application are Prioritiz-

ing Round Robin, First In First Out, Earliest Deadline

First, Least Laxity First, Multilevel Feedback meth-

ods. To deal with multipath routing, the list scheduling

algorithm can be coupled with a routing algorithm to

select the links involved into data forwarding.

Algorithms based on dynamic priority scheduling

can also be adapted to the dynamic context. The basic

idea is to continue focus on policies that assign prior-

ities based on temporal parameters and maximize of

resource utilization. In such algorithms, the priorities

of the ready tasks are calculated during the execu-

tion of the system. The aim is to adapt to dynamically

changing progress and form an optimal configura-

tion in self-sustained manner. Some dynamic prior-

ity scheduling algorithms are Earliest deadline first

scheduling and Least slack time scheduling.

In general, selecting appropriate heuristic requires

understanding the application, the system and the

objectives. However, general frameworks as list

scheduling can be adapted to the communication-

aware scheduling model.

7 Experimental Results

This section presents performance evaluation results

that confirm the benefits of the proposed CA-DAG

model for scheduling cloud computing applications.

The CA-DAG model is compared against CU-DAG
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and EB-DAG models reviewed in Section 2. We first

generated the application workloads according to the

CA-DAG model. Thereafter, the obtained workloads

were converted according to the communication-

unaware and edge-based models and scheduled with

the list scheduling algorithm.

7.1 System Architecture and Workload Generation

The target system architecture is composed of a set

of identical computing resources. The communication

resources are represented with a shared network link

(bus network), interconnecting computing resources,

and a database. The network topology allows only one

node to communicate at a time, while other nodes

must detain their transmissions until the link becomes

free.

The Winkler graph generator [18] was used to pro-

duce the workloads. The generator is based on random

orders methods making the generated graphs to be

representative of multidimensional orders. The two-

dimensional orders graphs were generated. To achieve

the aforementioned, n points were selected randomly

in the [0;1] × [0;1] square. Each point becomes a node

and there is an edge between two points a and b. If

b is greater than a, then in both directions. To gener-

ate large sets of graphs, the following two parameters

were varied: the number of nodes n and the num-

ber of communications. The graphs had a size of 20,

30, 40, and 50 nodes. Moreover, the obtained DAGs

fell into two categories according to their communica-

tion intensity: DAGs with occasional communications

and DAGs with frequent communications. To model

these categories, two probabilities representing the

amount of communication were used: 0.3 to repre-

sent occasional communications and 0.7 for frequent

communications. Moreover, to rank communications

the Communication-to-Computation Ratio (CCR) was

used. The CCR measure indicates whether a DAG

is communication intensive, computation intensive or

balanced. For a given DAG, the CCR ratio is computed

by the average communication cost divided by the

average computation cost on a target system. A high

value of CCR indicates that the DAG is communica-

tion intensive. We used the following three values of

CCR: 0.1 for computationally intensive DAGs, where

communication is of low significance compared to

the cost of computations, 1 for the balanced DAGs,

and 2 for communication intensive DAGs where the

significance of communication processes is high.

There are 30 graphs generated for each combination

input parameters, while the total number of generated

DAGs for each application model is 720.

7.2 Scheduling Algorithm

All of the evaluated DAG models were compared

using an offline (deterministic) scheduling algorithm

with an assumption of zero release times of DAGs

and clairvoyant execution and communication time.

Many offline scheduling algorithms exhibit good per-

formance also in the online scenario. From theory, it

is known that the performance bounds of the offline

scheduling strategies can be approximated for the

online case [19]. As the aim of this section is to com-

pare the application models and not the scheduling

algorithms, the same heuristic is employed for each

of the described model. For the different models, list

scheduling is employed. A list scheduling algorithm

is a two-phases scheduling algorithm that maintains a

list of all of the ready tasks of a given graph. A task

is considered ready to be scheduled when all of its

predecessors have been already scheduled. In the com-

mon variant of list scheduling, the nodes are ordered

according to a priority in the first part of the algo-

rithm. The task with the highest priority is selected.

Thereafter, in the second phase, a suitable processor

that minimizes a predefined cost function (in this case

the processor that allows the earliest finish time of a

task) is selected. A common priority is the task’s bot-

tom level (blevel), which is the length of the longest

path leaving the task. The blevel of a task is bounded

from above by the length of a critical path. The blevel

of a current task is computed by adding the computa-

tion cost along the longest path of the task from the

exit task (a task without successors) in the task graph

including the computation cost of the current task and

excluding the communication costs.

The blevel of any task ti is recursively calculated

as follows:

blevel (ti) = pi + maxtj ∈succ(ti )

{

blevel
(

tj
)}

, (3)

where pi denotes the execution time of task ti and

succ (ti) is the set of immediate successors of task ti.

We adapted the list of scheduling algorithm to

consider three different communication models. The

algorithm schedules computational tasks in comput-

ing resources and communications in the network
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link. The list scheduling is applied under the

communication-aware, communication-unaware and

edge-based models, denoted by “CA-DAG”, “CU-

DAG”, and “EB-DAG” respectively. Using the same

algorithm for each of the model allows analyzing the

impact of the model on the quality of the produced

schedules under no influence of different scheduling

techniques.

7.3 Scheduling Criteria

The following criteria are used to evaluate the sched-

ule produced by the algorithm: approximation factor

and schedule efficiency. Let Cmax be the maximum

completion time or makespan of the schedule pro-

duced by the scheduling algorithm under a given DAG

application model. The approximation factor [19] is

defined as ρ =Cmax/C∗
max, where C∗

max is the optimal

makespan. As it is generally not possible to deter-

mine the optimal makespan experimentally, we use

the lower bound C̃∗
max of the optimal makespan C∗

max

instead

C∗
max ≥ C̃∗

max

= max

{

max (blevel (ti)) ,

∑

i=1..,n (pi)

m

}

, (4)

where max (blevel(ti)) represents the critical path

of the DAG without considering communication

costs and m denotes the number of computing

resources. The efficiency of the schedule S defined

as eff (S)=
∑

i=1..,n(pi)

Cmax×m
is the ratio of the sequential

execution time of the graph to the makespan of the

schedule by the number of computing resources. It

measures how well-utilized the computing resources

are in scheduling of a given application, compared to

how much effort is wasted during communication.

7.4 Results

To summarize, a large set of randomly generated

DAGs is scheduled by a list scheduling algorithm

under the CA-DAG, communication-unaware, and

edge-based models onto two configurations of a target

system with four and eight computing nodes arranged

into bus network topology.

Approximation Factor Figures 6 and 7 show the

obtained results for the approximation factor for

DAGs with occasional and frequent communications
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Fig. 6 Approximation factor for DAGs with occasional

communications

respectively. The benefits of the CA-DAG model can

be observed in both figures. For computation intensive

DAGs (CCR=0.1) the values of approximation factor

are close for all the models. With small CCR values

the communication is less important than computa-

tion, and the communication awareness of CA-DAG

does not lead to significant benefits over Comm-

unaware DAG and Edge-based DAG models. A small

approximation factor indicates that the results of a

schedule for a given communication DAG model are

close to the lower bound. It can be observed that the

approximation factor degrades when the amount of

communications increases. However, for the CA-DAG

model the degradation of the approximation factor

is smaller than in related models. The improvement

of CA-DAG model becomes significant for balanced

(CCR=1) and communication intensive (CCR=2)

DAGs where communication awareness can benefit

from the increase amount of transmissions.

0.1 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Communication-to-Computation Ratio (CCR)

A
p

p
ro

x
im

a
ti
o

n
 F

a
c
to

r

CA-DAG

CU-DAG

EB-DAG

Fig. 7 Approximation factor for DAGs with frequent

communications



CA-DAG: Modeling Communication-Aware Applications for Scheduling 37

0.1 1 2
0

10

20

30

40

50

Communication-to-Computation Ratio (CCR)

E
ff

ic
ie

n
c
y
 (

%
)

CA-DAG

CU-DAG

EB-DAG

Fig. 8 Schedule efficiency for DAGs with occasional

communications

Efficiency Figures 8 and 9 show the efficiency of

the schedule produced by different communication

models. They confirm the results obtained with

approximation factor. Indeed, the communication-

aware schedulers under the CA-DAG model achieve

better efficiency for all CCRs. This is especially

evident for balanced and communication intensive

DAGs. Figure 9 confirms that not only the cost of the

communications is important, but also their amount.

In summary, CA-DAG significantly improves the

approximation factor and efficiency of the produced

schedules. However, we have only conducted exper-

iments considering a single shared network link.

Therefore, the communications are serialized. It

would be interesting to consider more than one link to

parallelize communications. We have also considered

only one scheduling algorithm. The high importance

of communication under the CA-DAG model seems to

demand the development of more sophisticated algo-

rithms in order to exploit full potential of this new

model.
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8 Conclusions

The main reason that traditional cluster and grid

resource allocation approaches fail to provide effi-

cient performance in clouds is that most of cloud

applications require availability of communication

resources for information exchange between tasks,

with databases or the end users. Moreover, exe-

cution environment of cloud applications is not

known at development time—the number of avail-

able machines, their location, their capabilities, the

network topology, and effective communication band-

width cannot be predicted ahead. In general, it will

be different for each program/service invocation. To

deal with the dynamics of the execution environment,

either the programmer must explicitly write adap-

tive programs or cloud software environment, such

as a runtime scheduling system, must deal with the

dynamics.

For an effective utilization of the Cloud, the pro-

grams must be decoupled from the execution environ-

ment. Programs should be developed for a uniform

and predictable virtual services, thus, simplifying their

development; the runtime system should deal with

the dynamics. Cloud application model has to allow

high level representation of computing and commu-

nication based on the nature of the problem, and

independent of the executing environment. Mapping

computation on machines, balancing the loads among

different machines, removing unavailable machines

from a computation, mapping communication tasks

and balancing the communication loads among dif-

ferent links have transparently be provided by the

runtime system.

In this paper, we discuss new CA-DAG model

for cloud computing applications, which overcomes

shortcomings of existing approaches using communi-

cation awareness. It is based on a DAG, which along

with computing vertices has separate vertices to rep-

resent communications. Such a representation allows

making separate resource allocation decisions, assign-

ing processors to handle computing jobs and network

resources for information transmissions. The proposed

communication-aware model creates space for opti-

mization of many existing solutions to resource allo-

cation and, together with performance and energy effi-

ciency metrics of communication systems [50], will

become an essential tool in the design of completely

new scheduling schemes of improved efficiency.
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In the future work, we will focus on develop-

ing novel communication-aware resource allocation

solutions based on the proposed model. We will gen-

eralize CA-DAG model to capture dynamics of cloud

environment. One of the important issues is the com-

prehensive simulations using GreenCloud simulator

[43], and practical validation of proposed solutions.
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