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Canonical olfactory signal transduction involves the activation of cAMP-

activated cation channels that depolarize the cilia of receptor neurons and 

raise intracellular calcium. Calcium then activates Cl– currents that may be up 

to tenfold larger than cation currents and are believed to powerfully amplify the 

response. We identified Anoctamin2 (Ano2, also known as TMEM16B) as the 

ciliary Ca2+-activated Cl– channel of olfactory receptor neurons. Ano2 is 

expressed in the main olfactory epithelium (MOE) and in the vomeronasal 

organ (VNO), which also expresses the related Ano1 channel. Disruption of 

Ano2 in mice virtually abolished Ca2+-activated Cl– currents in the MOE and 

VNO. Ano2 disruption reduced fluid-phase electro-olfactogram responses by 

only ~40%, did not change air-phase electro-olfactograms and did not reduce 

performance in olfactory behavioral tasks. In contrast with the current view, 

cyclic nucleotide–gated cation channels do not need a boost by Cl– channels 

to achieve near-physiological levels of olfaction.  

 

Olfaction in mammals involves the binding of odorants to a subset of the large 

number of different G protein–coupled receptors that are present in the cilia of 

olfactory sensory neurons (OSNs)1. These neurons are predominantly found in the 

MOE, which senses and discriminates myriad volatile compounds. In the mouse, the 

nose contains additional, apparently more specialized olfactory organs, such the 

septal organ of Masera and the VNO2. Sensory neurons in the VNO are 

morphologically distinct and use odorant receptors and signal transduction cascades 

that differ from those found in the MOE. 

In the canonical OSN signal transduction pathway, odorant binding to the 

receptor locally increases cytosolic cAMP through activation of the olfactory G protein 

Golf and adenylate cyclase type III1,2. cAMP then opens heteromeric cyclic 

nucleotide–gated (CNG) cation channels3. The resulting influx of Na+ and Ca2+ 

depolarizes the plasma membrane and raises the cytosolic Ca2+ concentration 

([Ca2+]i), thereby activating Ca2+-activated Cl– channels1,4-10. All these components of 

the signal transduction cascade are localized to sensory cilia, which are embedded in 

the mucus covering the MOE. These cilia provide a large interaction surface for 

odorants, and the cilia’s small diameters facilitate large local increases in cytosolic 

cAMP and [Ca2+].  

There has been broad consensus that Ca2+-activated Cl– channels powerfully 

amplify olfactory signal transduction1,4-10. These channels are thought to mediate an 

outward flow of Cl–, which generates a depolarizing current that, in rodents, is five- to 

tenfold larger than currents through CNG channels8,11,12. A prerequisite for Cl– efflux 
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is an inside-out electrochemical Cl–-gradient. It is believed that cytosolic chloride 

concentration of OSNs is raised by the Na+K+2Cl– co-transporter Nkcc19,10,13 and that 

[Cl–] is low in the mucus surrounding the cilia 14,15. However, mucosal ion 

concentrations are difficult to measure in vivo, and Nkcc1 knockout mice display 

attenuated electro-olfactograms (EOGs)11,16, but normal olfactory sensitivity17.  

To investigate the role of Ca2+-activated Cl– channels in olfaction, we 

disrupted Ano2 in mice. Ano2 is a member of the Anoctamin (Tmem16) gene family, 

which encodes several Ca2+-activated Cl– channels18-20. Agreeing with recent 

results13,21-23, our knockout-controlled immunolabeling showed Ano2 expression in 

cilia of OSNs in the MOE, in microvilli of VNO sensory neurons and in synapses of 

photoreceptors. Additionally, we found Ano2 in the olfactory bulb. Ano1 expression 

overlapped with Ano2 in the VNO and the retina, but not in the MOE. Patch-clamp 

analysis showed that Ca2+-activated Cl– currents were undetectable in Ano2–/- OSNs. 

Unexpectedly, however, EOGs of Ano2–/– mice were reduced by only up to ~40%, 

and Ano2–/– mice were able to smell normally. Our work calls for a revision of the 

current view that Ca2+-activated Cl– channels have a crucial role in mammalian 

olfaction. 

 

RESULTS 

Disruption of Ano2 and Ano2 expression pattern 

We generated Ano2–/– mice by flanking exon 12 with loxP sites and crossing these 

mice with Cre-recombinase–expressing deleter mice24 (Supplementary Fig. 1a,b). 

The ~160 kDa band that represents the Ano2 protein in Ano2+/+ (wild-type) olfactory 

epithelium was absent from Ano2–/– tissue (Fig. 1a). Our N-terminal antibody did not 

detect a truncated protein in Ano2–/– tissue, suggesting the occurrence of nonsense-

mediated mRNA decay, instability of the truncated protein, or both. Ano2–/– mice 

were born at Mendelian ratio; they grew, mated, and survived normally and lacked an 

immediately apparent phenotype. 

Consistent with previous data21-23, western blots indicated that Ano2 is most 

highly expressed in olfactory epithelium (MOE and VNO) and eye tissue (Fig. 1a,b). 

Ano2 was expressed at much lower levels in brain, with the highest expression in the 

olfactory bulb and signals near the detection limit in the midbrain and brainstem (Fig. 

1b). We did not detect expression in the cortex, cerebellum or trigeminal nerve. The 

differences in apparent sizes of Ano2 among various tissues are due largely to a 

higher degree of glycosylation in olfactory tissues (Supplementary Fig. 2). 

Immunolabeling showed that Ano2 is expressed on the apical surface of both the 

MOE and the VNO (Fig. 2a). In the MOE, it colocalized with the cilia marker protein 
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acetylated tubulin (Fig. 2b) and the Cnga2 subunit of the olfactory CNG channel3,25,26 

(Fig. 2c). Ano2 staining was specific, as we observed no signal in Ano2–/– tissue 

(Fig. 2c).  

We also detected Ano2 in vomeronasal sensory neurons (VSNs), where it 

colocalized with the closely related Ano1 Cl– channel in sensory protrusions (Fig. 3a). 

In the MOE, however, we did not detect Ano1 in olfactory sensory neurons (Fig. 

3b,c), but it was present in Bowman’s glands (not shown). Similarly, Ano1 was 

present in the apical membranes of nasal glands (Fig. 3b,d) and in the non-ciliated 

cells of the respiratory epithelium (Fig. 3b–d), consistent with a role in salt secretion, 

as in other epithelia18,27,28.  

Ano2 protein was present on the OSN axons that converge on the glomeruli 

in the olfactory bulb (Fig. 4a,b). In the eye, our knockout-controlled staining 

confirmed the presence of Ano2 in the outer plexiform layer of the retina22 

(Supplementary Fig. 3a). Ano2 colocalized with the PSD-95 adaptor protein 

(Supplementary Fig. 3b) and the Ca2+-ATPase PMCA (Supplementary Fig. 3c) in 

presynaptic structures of photoreceptors, where these proteins form a complex 

together with MPP422. Whereas Ano2 is lost from photoreceptors of Mpp4–/– mice22, 

loss of Ano2 affected neither PSD-95 nor PMCA expression (Supplementary Fig. 

3b,c). Ano1 antibodies labeled the same structures that we had also identified as 

Ano2 positive (Supplementary Fig. 3a).  

 

No change of key proteins and axonal convergence  

Neither immunohistochemistry (Fig. 3a) nor immunoblotting (Supplementary Fig. 

4a) indicated an upregulation of Ano1 in the VNO or MOE of Ano2–/– mice. 

Consistent with the normal morphology of both olfactory organs in Ano2–/– mice 

(Figs. 2c and 3a), expression levels of the olfactory marker protein OMP29 were 

unchanged (Supplementary Fig. 4b). Ano2 disruption caused no change in 

expression of the downstream target of Golf, adenylate cyclase III (Supplementary 

Fig. 4c,f), or of the cAMP-activated cation channel subunit Cnga2 (Fig. 2c, 

Supplementary Fig. 4d). Expression of Nkcc1, Ano6, Ano8, and Ano10 in the MOE 

was also unaltered (Supplementary Fig. 4f).  

Immunohistochemistry (Fig. 4a) and immunoblotting (Supplementary Fig. 

4e) showed no change in the amount of tyrosine hydroxylase in the olfactory bulb, 

either. The expression of this enzyme depends on neuronal activity and was severely 

reduced in the olfactory bulb of anosmic Cnga2–/y mice30. OSN axon coalescence on 

glomeruli is perturbed in mice lacking functional CNG channels31 or the adenylate 

cyclase32. We detected no obvious change in axonal convergence for OSNs 
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expressing either the P2 or M72 receptor31 (Fig. 4c–e). These observations suggest 

that olfaction is not grossly impaired in Ano2–/– mice and that intrinsic OSN activity is 

not changed to a degree that changes the olfactory map. 

 

Ca2+-activated Cl– currents are absent from Ano2–/– OSNs  

Whole-cell patch-clamp analysis of OSNs from the MOE in situ under conditions that 

largely suppress cation currents (Fig. 5) revealed Ca2+-activated Cl– currents (Fig. 

5d,f,g,i) that were not observed in the absence of intracellular Ca2+ (Fig. 5a–c). 

These currents showed typical time-dependence and outward rectification at 1.5 �M 

(Fig. 5d,f), but not at 13 �M free Ca2+ (Fig. 5g,i) similar to data reported for Ca2+-

activated Cl– currents for heterologously expressed Ano1 and Ano220-22,33,34 and for 

frog OSNs7. We could not detect these Cl– currents in Ano2–/– OSNs (Fig. 5e,f,h,i). 

To exclude that transient Ca2+-activated Cl– currents remain in Ano2–/– OSNs, we 

used flash photolysis of caged Ca2+ and 8-Br-cAMP with isolated receptor neurons 

(Fig. 6). As observed previously12,35, Ano2+/+ neurons responded to uncaging of Ca2+ 

with large, rapidly activating, transient currents that reversed close to the Cl– 

equilibrium potential (Fig. 6a,c). Currents in Ano2–/– OSNs were reduced to less than 

10% of wild-type currents and reversed close to the K+ equilibrium potential. Flash 

release of 8-Br-cAMP elicited large currents in Ano2+/+ but not in Ano2–/– OSNs (Fig. 

6b). Currents remaining in Ano2–/– neurons probably represent cation currents 

through CNG channels12. We conclude that Ca2+-activated Cl– currents of OSNs are 

mediated by Ano2. 

In the VNO, both Ano2+/+ and Ano2–/– VSNs had low background currents in 

the absence of intracellular Ca2+ (Fig. 5j–l). In Ano2+/+ VSNs, 1.5 �M [Ca2+]i elicited 

Cl– currents with an outwardly rectifying, time-dependent component (Fig. 5l,m). 

Currents of most Ano2–/– VSNs were undistinguishable from those observed without 

Ca2+ (Fig. 5n), but a few cells showed currents up to twofold larger. Averaged 

current/voltage curves revealed that Ca2+-activated Cl– currents of VSNs depend 

predominantly on Ano2 (Fig. 5l). Although Ano1 is expressed in the VNO (Fig. 3a), 

its contribution to VSN currents seems minor. 

 

Disruption of Ano2 moderately reduces EOGs 

We investigated the role of Ano2 in the MOE response to odorants using EOGs ex 

vivo (Fig. 7). In fluid-phase EOGs, we continuously superfused the surface of 

turbinates with Ringer solution and applied an odorant cocktail (Fig. 7a,b). The 

superfusate could be switched to a solution containing niflumic acid (NFA). NFA has 

been widely used to block Ca2+-activated Cl– channels in OSNs and other 
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cells4,6,9,11,16,34,36,37 and inhibits both Ano1 and Ano218,20,21,33,34. The response to 

odorants was reduced by roughly 40% in Ano2–/– EOGs compared to the wild type 

(Fig. 7e). We observed similar reductions in EOG amplitudes caused by Ano2 

disruption when adenylate cyclase was directly activated by forskolin (Fig. 7c–e), or 

with single odorants (Fig. 7f). As expected, NFA-insensitive voltage excursions were 

similar in both genotypes (Fig. 7e). Notably, NFA also inhibited odorant-induced 

responses in Ano2–/– epithelia (Fig. 7b,e). Comparison between Ano2+/+ and Ano2–/– 

mice revealed that only ~60% of the response to NFA was due to an inhibition of 

Ano2. Hence, previous studies9,11,37 may have overestimated the role of Ca2+-

activated Cl– channels in olfaction.  

In air-phase EOGs, we exposed the surfaces of turbinates to water-saturated 

air, and we applied an odorant or vehicle using an air puff. In this configuration, 

mucosal ion concentrations are expected to more closely match physiological levels. 

In cotnrast with our results for fluid-phase EOGs (Fig. 7a–f), we detected no 

significant differences between the genotypes in air phase (Fig. 7g).  

With appropriate driving forces, apical Cl– channels may change mucosal ion 

composition, similar to the proposed role of Ano1 in secretory epithelia18,27,28. 

However, Cl–-sensitive microelectrode measurements showed no difference in 

mucosal [Cl–] between the genotypes (Ano2+/+: 84.0 ± 11.8 mM (s.e.m., n = 6), Ano2–

/–: 84.4 ± 9 mM (s.e.m., n = 11)). These values agree with data from amphibia15. 

 

No olfactory deficits detected in Ano2–/– mice  

Using an automated olfactometer17,30,38,39, we tested the mice using an associative 

olfactory learning task. The mice were trained to sample two different stimuli, one of 

which was associated with a water reward, and to lick only in response to the 

rewarded odor.  

Disruption of Ano2 did not affect the mice’s performance in discrimination 

tests in which they learned to distinguish geraniol from the mineral oil solvent (Fig. 

8a). By contrast to Ano2–/– mice, Cnga2–/y mice31 showed a clear-cut impairment in 

the same test (Fig. 8a), as reported25,30. Discrimination ability was neither reduced in 

more complex discrimination tasks such as distinguishing hexanal from octanal (Fig. 

8b), or differentiating between (–)-limonene and an enantiomeric mixture of equal 

parts of (+)- and (–)-limonene (Fig. 8c). Discrimination between 0.4% hexanal/0.6% 

octanal and 0.6% hexanal/0.4% octanal was even more difficult, as evident from the 

larger number of trials needed to distinguish both mixtures (Fig. 8d). Even in this 

task, Ano2–/– mice performed similarly to wild type. Using successive dilutions of 

geraniol, we tested whether the loss of Ano2 affected odor sensitivity. With either 
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genotype, odor detection dropped sharply when the dilution reached 10–7 (Fig. 8e). 

We conclude that Ca2+-activated Cl– channels are not essential for olfaction. 

 

DISCUSSION 

Ca2+-activated Cl– channels are prominently expressed in olfactory sensory neurons. 

In freshwater animals, in which ion gradients preclude a depolarizing influx of 

monovalent cations, Cl– efflux may generate almost all of the receptor current5,40. By 

contrast, the cation concentration in the mucus surrounding olfactory cilia in 

mammals14,15 allows for a sizeable depolarization when CNG channels open upon an 

odorant-induced rise in cAMP. After first publications had shown that Ca2+-activated 

Cl– currents could powerfully amplify olfactory receptor currents4-7, this concept has 

received support from many groups. Experiments with isolated receptor neurons4-6,8 

showed that up to 80-90% of the receptor current is carried by Cl–. An important role 

for Cl– in olfaction was also inferred from EOGs11,16,37. However, as the molecular 

identity of the olfactory Ca2+-activated Cl– channel has remained elusive35, the role of 

Cl– channels in olfaction could not be tested directly.  

 Olfactory cilia express Bestrophin-2 (Best2; ref. 41) and Ano2 (refs. 13, 21), 

which were both hypothesized to mediate ciliary Ca2+-activated Cl– currents. A role of 

Bestrophin-2 has recently been excluded by normal Cl– currents in Best2–/– OSNs35. 

The present work unambiguously identifies Ano2 as olfactory Ca2+-activated Cl– 

channel, or at least as an essential component thereof. Although Ano1 is expressed 

in the VNO, its contribution to Ca2+-activated Cl– currents in VSNs seems minor. 

Unexpectedly, Ano2–/– mice had no detectable impairment of olfaction. This is 

not due to a compensatory upregulation of other Ca2+-activated Cl– channels or of the 

cyclic-nucleotide-gated channel. The normal growth and survival of newborn Ano2–/– 

mice already indicated that they could smell the teats of their mothers. Near-normal 

olfaction was suggested indirectly by unaltered tyrosine hydroxylase expression in 

the olfactory bulb and by apparently normal axonal coalescence on glomeruli in the 

olfactory bulb, and it was confirmed by quantitative olfactometry. In contrast to Ano–/– 

mice, Cnga2–/y mice have severely impaired olfaction (refs. 25,30 and present work). 

We conclude that CNG-mediated cation currents do not need an additional boost 

from anion currents for near-physiological levels of olfactory sensitivity.  

Although fluid-phase EOGs revealed a significant difference between the 

genotypes, the ~40% reduction of Ano2–/– EOG amplitudes is much less than 

expected from the published 80-90% contribution of Cl– to OSN receptor 

currents8,11,12. The contribution of Ca2+-activated Cl– channels was often estimated 

from the inhibition by NFA11,37, but this compound also modulates several other ion 
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channels (for example, refs. 42,43). The attenuation of Ano2–/– EOGs by NFA now 

demonstrates that NFA also affects MOE targets other than Ca2+-activated Cl– 

channels. Hence, previous studies based on NFA-inhibition11,37 have overestimated 

the role of Ca2+-activated Cl– channels. These channels might contribute only about 

40% to receptor currents in vivo. 

The ~40% reduction of fluid-phase EOG in Ano2–/– mice fits well to the ~39% 

to ~57% reduction of EOG amplitudes in Nkcc1–/– mice11,16. The Na+K+2Cl– co-

transporter Nkcc1 may accumulate Cl– into OSNs9-11,13, a prerequisite for depolarizing 

Cl– currents. On the basis of the NFA-block of Nkcc1–/– EOG responses, the authors11 

concluded that a substantial depolarizing Cl– current remained in Nkcc1–/– OSNs and 

proposed that other transporters contribute to intracellular Cl– accumulation11,16. The 

sizeable nonspecific component of NFA inhibition observed here, however, suggests 

that their results11,16 are consistent with Nkcc1 being the main Cl– accumulator of 

OSNs. In Nkcc1–/– mice, intraciliary [Cl–] is then expected to be close to equilibrium, 

and opening of Ano2 channels should shunt rather than amplify receptor currents. 

Such a shunting inhibition may explain the larger decrease of EOG amplitudes in 

Nkcc1–/– mice compared to Ano2–/– mice.  

How can the roughly 40% reduction of fluid-phase EOG amplitude, and 

almost no reduction of air-phase EOGs, be reconciled with previous studies that 

reported a large, up to  80-90% contribution of Cl– to receptor currents? Many of 

those studies used isolated receptor neurons that were patch-clamped at the cell 

body1,4-8,12. Also, our experiments on isolated OSNs suggest a ~90% contribution of 

Ano2 to cAMP-induced currents. The disruption of tight junctions during isolation of 

OSNs may allow ciliary Ano2 channels to spread to the cell body where their 

electrical accessibility is much better10. The length (20–30 �m) and small diameter 

(0.1 �m) of cilia implies that channels in their distal part contribute little to voltage 

changes at the cell body, in particular when ciliary membrane conductance is high 

during signal transduction44. 

Another important consequence of ciliary geometry is the rapid dissipation of 

ion gradients. Taking into account ion concentrations measured in the mucus and the 

dendritic knob (as surrogate for cilia)10,14,15, Cl– gradients across the ciliary membrane 

should dissipate more easily than those for Na+ or Ca2+ which carry depolarizing 

currents through CNG channels. Nkcc1 is thought to rapidly replenish ciliary Cl–, 

which exits through anion channels during signal transduction10,13. Under 

physiological conditions, the driving force for Nkcc1-mediated ciliary Cl– uptake is 

small10 owing to rather low mucosal [Na+] (55 or 85 mM14,15) and [Cl–] (55 or 93 

mM14,15; 84 mM (this work)). The driving force for Cl– uptake is larger in extracellular 
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Ringer-type solutions (> 140 mM NaCl) that were used with isolated OSNs. Hence, 

more efficient ciliary Cl– replenishment from Ringer solution than from mucus may 

lead to larger signal amplification by Cl– channels in isolated OSNs and in fluid-phase 

EOGs than observed in air-phase EOGs and olfaction in vivo.  

If the 40% reduction in Ano2–/– fluid-phase EOG amplitude translates into a 

similar reduction of action potential firing in vivo, our olfactory tests may not be 

sensitive enough to detect ensuing moderate changes in olfaction thresholds. On the 

other hand, air-phase EOGs, which more closely reflect the physiological situation, 

were not significantly impaired by Ano2 disruption, suggesting that the olfactory 

information conveyed to the brain might be nearly unchanged. Notably, there are 

patients with van Willebrand syndrome who carry a large genomic deletion45 that 

includes ANO2 (TMEM16B). Consistent with the present work, no impairment of 

olfaction was reported. The expression of Ca2+-activated Cl– channels in mammalian 

OSNs may be an evolutionary vestige from freshwater animals5,40, or it may serve 

also in mammals to allow consistent olfaction in face of variations of extracellular ion 

concentrations. Ano2 may also affect the mucosal fluid film in face of strong odors, 

although we showed unaltered mucosal Cl– concentration under steady-state 

conditions. Alternatively, Ano2 might confer a slight increase in olfactory sensitivity 

that provides an evolutionary advantage. Clearly, however, Ca2+-activated Cl– 

channels are dispensable for near-normal olfaction, and the importance of these 

channels for olfactory signal amplification has been overestimated.  
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FIGURE LEGENDS 

 

Figure 1 Immunoblot analysis of Ano2 expression. (a) Ano2 expression in the MOE, 

VNO and eye from Ano2+/+, but not Ano2–/–, mice. Protein loaded: 16 �g (MOE) and 

100 �g (other lanes). (b) Ano2 is detected in lower amounts in the olfactory bulb, 

midbrain and brainstem, but not in the cortex, cerebellum and trigeminus. The 

loading  control was α-tubulin. Protein loaded: MOE, 1.6 �g; eye, 10 �g; other lanes, 

50 �g. The sharp ~140 kDa band remaining in Ano2–/– tissue is nonspecific. The 

broad band (*) in midbrain and brain stem tissue represents Ano2, as it is absent 

from Ano2–/– tissue and runs at a similar size as in the retina.  

 

Figure 2 Ano2 localizes to sensory protrusions in olfactory epithelia. (a) Coronal view 

of the anterior part of the nasal cavity stained for Ano2 (antibody rbAno2_N3-3). 

Ano2 localized to the surface of the MOE and the VNO, but not to the respiratory 

epithelium (RE). Nuclei (blue) are shown only in the right half of the picture. Scale 

bar, 500 µm. (b) Confocal images of the transition region from MOE to respiratory 

epithelium shows Ano2 expression exclusively in OSNs, where it colocalizes with 

acetylated tubulin. (c) Colocalization of Ano2 and Cnga2 in the MOE. Merged images 

with nuclei labeled in blue are superimposed on transmission light pictures. Scale 

bar, 20 µm. Arrowheads mark transition from MOE to respiratory epithelium.  

 

Figure 3 Ano2 and Ano1 are co-expressed in the VNO but not in the MOE. (a) A 

confocal image of the VNO colabeled for Ano2 (antibody gpAno2_C1-3) and Ano1 

shows that both proteins are expressed in sensory protrusions of VSNs. Staining of 

Ano2–/– VNO confirms anti-Ano2 antibody specificity and reveals normal expression 

and localization of Ano1. Insets in merge, higher magnification of boxed areas. (b) 

Overview of nasal septum stained for Ano1. Arrowheads mark transition between 

MOE and respiratory epithelium (RE), and an asterisk marks the region containing 

nasal glands. (c,d) Ano1 expression is present only in non-ciliated cells of the 

respiratory epithelium that lack staining by the cilia marker acetylated tubulin (acTub) 

(highlighted in high-magnification insets in c). Beneath the respiratory epithelium, 

Ano1 is found in apical membranes of nasal gland epithelia (arrows and high-

magnification inset in d). Nuclei are labeled in blue, and merged images are 

superimposed on transmission light pictures. Scale bars, 20 µm (a,c–d), 50 µm (b).  
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Figure 4 The olfactory bulb in Ano2–/– and Ano2+/+ mice. (a) Specific staining for 

Ano2 in the olfactory nerve layer and in axons entering olfactory glomeruli. The 

section shows part of olfactory bulb from both hemispheres, with the cleft in center. 

Activity-dependent tyrosine hydroxylase (TH) expression in periglomerular cells is not 

changed in Ano2–/– section. (b) Higher magnification of a glomerulus stained for Ano2 

and TH. Scale bars: 200 �m (a) and 50 �m (b). (c–e) Axonal coalescence of OSNs 

expressing the P2 (c,d) or M72 (e) olfactory receptors on glomeruli in the olfactory 

bulb. Olfactory bulbs of homozygous P2-IRES-tauLacZ or M72-IRES-tauLacZ mice31 

with disrupted or wild-type Ano2 genes were stained for LacZ. Bulbi were sectioned 

(c), or the ventral (d) or dorsal (e) side of intact bulbi was observed. No difference in 

coalescence was seen (Number of mouse pairs: P2, n = 9 (4-15 weeks-old), M72, 

n = 2 (5 weeks-old) and n = 1 (24 weeks-old)). Scale bars, 0.5 mm (c), 1 mm (d,e). 

 

Figure 5 Effect of Ano2 disruption on Ca2+-activated Cl– currents. Patch-clamp 

recordings of olfactory receptor neurons from the MOE (a–i) and the VNO (j–l). 

(a,d,g) Typical current traces obtained from Ano2+/+ OSNs in the presence of 

nominally 0 �M, 1.5 �M, and 13 �M Ca2+ in the recording pipette, respectively. The 

voltage-clamp protocol is shown in (a). (b,e,h) Current densities (I/C) from Ano2–/– 

OSNs under conditions as in a,d,g. (c,f,i) Averaged current-voltage relationships of 

steady-state currents with 0 �M, 1.5 �M and 13 �M Ca2+ in the pipette, respectively. 

■, wild-type cells, �, Ano2–/– cells. Error bars, s.e.m. Number of cells measured: (c) 7 

wild type, 7 knockout; (f), 15 wild type, 11 knockout; (i), 14 wild type, 10 knockout. 

(j,m) Typical current traces of wild-type vomeronasal sensory neurons (VSNs) with 0 

�M Ca2+ (j) and 1.5 �M free Ca2+ (m) in the pipette. (k) Ano2–/– VSN with 0 �M Ca2+, 

and (n) with 1.5 �M Ca2+ in the pipette. (l) Averaged current-voltage relationships 

from VNO receptor neurons measured with 1.5 �M Ca2+ (■ Ano2+/+, □ Ano2–/–; n = 7 

and 6, respectively) and with 0 �M Ca2+ (● wild type, ○ Ano2–/–; n = 5 for both). Error 

bars, s.e.m. Voltage clamp protocol as in a. 
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Figure 6 Response of isolated olfactory receptor neurons to photoreleased Ca2+ or 8-

Br-cAMP. (a) Typical current responses to sudden [Ca2+] increase of isolated OSNs 

from both genotypes in whole-cell patch-clamp experiments under symmetrical Cl–. 

Cells were clamped to -50 mV, 0 mV and +50 mV. Arrows indicate the flash that 

releases Ca2+ from DMNP-EDTA. Inset, larger magnification to reveal the currents 

remaining in Ano2–/– OSNs. (b) Typical currents elicited by flash release of 8-Br-

cAMP (arrows) in isolated OSNs from Ano2+/+ and Ano2–/– mice held at -50 mV. 

Mean amplitudes were -445 ± 111 pA and -43.2 ± 9.9 pA for Ano2+/+ and Ano2–/– 

OSNs, respectively (±s.e.m., p = 0.0016). (c) Peak currents elicited by uncaging Ca2+ 

as function of holding voltage, averaged from eight Ano2+/+ and seven Ano2–/– OSNs 

with three or more mice per genotype. Error bars, s.e.m. Significance levels (two 

sample t-test): *, P < 0.05; **, P < 0.01. 

 

Figure 7 EOGs from the MOE. (a,b) Typical fluid phase EOGs from Ano2+/+ (a) from 

Ano2–/– (b) mice with a mixture of 17 odorants (‘Mix1’: isopentyl acetate, hexanal, 

eucalyptol, limonene, 2-heptanone, menthyl acetate, peppermint oil, eugenol, ethyl 

valerate, ethyl butyrate, ethyl tiglate, allyl tiglate, octanal, isobutyl propionate, acetal, 

hexanoic acid, 2-hexanene, 100 µM each). Bars above traces indicate application 

(200 ms) of odorant mixture (lower trace) or vehicle (upper trace). Grey traces were 

obtained with 300 �M NFA and black traces in Normal Ringer (NR) before and after 

exposure to NFA (washout). Traces were averaged from responses to ten repeated 

stimuli. (c,d) Typical fluid-phase EOGs evoked by 2-s application of 30 µM forskolin 

(lower trace) or vehicle control (upper trace) to Ano2+/+ (c) and Ano2–/– MOE (d). (e) 

Averaged EOG amplitudes from experiments as in a–d. (f) Averaged fluid-phase 

EOG amplitudes elicited by individual odorants at 1 mM concentration and with 1:20 

diluted coyote urine. (g) Averaged air phase EOG amplitudes from mice of both 

genotypes. ‘Mix1’ is the same odorant mixture as in a. ‘Mix2’ contained eight 

odorants (D-carvone, 1-heptanol, 2-methylbutyric acid, geraniol, isopentylamine, 2-

hexanone, acetophenone, 1-octanal). Differences in responses between genotypes 

are not statistically significant. Numbers in columns, number of measurements; error 

bars, s.e.m. Significance levels (two sample t-test): *, P < 0.05; **, P < 0.01; ***, P < 

0.001. 
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Figure 8 Ano2 disruption affected neither odor discrimination nor olfactory sensitivity. 

(a–d) Different discrimination tasks. As true for wildt-type littermates, Ano2–/– mice 

learned to discriminate  between 1% geraniol and the diluent mineral oil (n = 6 for 

each genotype) (a), between 1% hexanal and 1% octanal (n = 3 for each genotype) 

(b), between 1% (–)-limonene and an enantiomeric mixture of 0.5% (–)-limonene and 

0.5% (+)-limonene (n = 4 for each genotype) (c), and between 

0.4%hexanal/0.6%octanal and 0.6%hexanal/0.4%octanal (n = 5 for each genotype) 

(d). Anosmic Cnga2–/y mice (n = 3) could not detect 1% geraniol (a). (e) Odor 

detection threshold for geraniol. Both Ano2–/– (n = 6) and Ano2+/+ littermates (n = 6) 

detected geraniol and discriminated it from the diluent only down to a dilution of 10–6. 

The first data point with a geraniol dilution of 10–2 corresponds to a. Error bars, s.e.m. 

There was no significant difference between Ano2+/+ and Ano2–/– mice in any of these 

tests. 
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ONLINE METHODS 

 

Ano2–/– mice. An 11 kb genomic region of Ano2 spanning exon 12 and 13 was 

cloned from R1 ES cells by PCR. Exon 12 was flanked with loxP sites, a FRT-flanked 

neomycin selection cassette inserted (Supplementary Fig. 1) and the construct 

cloned into pKO Scrambler plasmid 901 (Lexicon Genetics). The linearized targeting 

vector was electroporated into R1 ES cells (129/SvJ). Cells from two independent 

correctly targeted clones were injected into C57BL/6 blastocysts. Chimeras were 

crossed to C57BL/6 Cre deleter mice24 for in vivo excision of exon 12, which 

eliminates part of the first extracellular loop and of the second transmembrane 

domain. Splicing from exon 11 to exon 13 introduces a frameshift after the first 

transmembrane domain. Mice were in a mixed C57BL/6-129/Svj background and 

littermates served as controls. The mice in experiments were older than 4 weeks. We 

carried out genotyping PCR with primers flanking the loxP site of the Ano2- allele (5’-

GGACACCCCGTACTTGAAGA-3’ and 5’-AGCACAATGCAGACCAAGTT-3’), 

yielding 163-bp and 1051-bp products for Ano– and Ano+ alleles, respectively.  

 

Mouse husbandry. Animal care and experiments conformed to German animal 

protection laws and were approved by the Berlin authorities (LaGeSo). Cnga2– 

(previously called Ocnc1–), P2-IRES-tauLacZ and M72-IRES-tauLacZ mice were 

provided by P. Mombaerts (Max Planck Institute of Biophysics, Frankfurt) and have 

been described31. 

 

Generation of Ano2 antibodies. Antibody to the the N-terminal epitope 

(128NGETGKERHGGGPGDVELG) of Ano2 (rbAno2_N3-3) was raised in rabbits; 

antibody to the extreme C-terminus (970GDRSRRSRAASSAPSGRSQP) of Ano2 

(gpAno2_C1-3) was raised in guinea pigs (Pineda Antikörper-Service, Berlin). 

Peptides were coupled to keyhole limpet hemocyanine via C- and N-terminally added 

cysteines, respectively. The animals were immunized seven times, and the 

antibodies were affinity-purified from final bleeds and tested using Ano2–/– tissue as 

control. 

 

Immunohistochemistry. Anesthetized mice were perfused with PBS followed by 4% 

paraformaldehyde (PFA) (wt/vol) in PBS. Tissues were post-fixed for 2 h (olfactory 

bulb) or overnight (nose, eye). We cut 6-µm cryosections from the eye and 10-µm 

cryosections from olfactory bulb. Noses were decalcified in 10% EDTA (wt/vol) in 

PBS for 7 d and post-fixed for 2 h, and then 6-µm paraffin sections were prepared. 
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For antigen retrieval, sections were boiled for 5 min in 10 mM citrate buffer (pH 6.0) 

or 10 mM Tris, 1 mM EDTA (pH 9.0), and transferred to 3% BSA (wt/vol) in TBS with 

0.2% NP-40 (vol/vol) for blocking and antibody incubation. Antibodies were used at 

the following dilutions: rbAno2_N3-3 (1:1000); gpAno2_C1-3 (1:250); anti-TMEM16A 

(Ano1) rabbit polyclonal (1:100, ab53212, Abcam; its specificity had been shown 

using Ano1–/– tissue46); anti-Cnga2 goat polyclonal (1:50, CNG-2/M-20, sc-13700, 

Santa Cruz); anti-acetylated tubulin mouse monoclonal (1:1000, clone 6-11B-1, 

T7451, Sigma-Aldrich); anti-tyrosine hydroxylase mouse monoclonal (1:1000, 

MAB5280, Chemicon); anti–PSD-95 mouse monoclonal (1:250, clone 7E3-1B8, 

MA1-046, ThermoScientific); anti-PMCA mouse monoclonal (1:500, clone 5F10, 

MA3-914, Affinity BioReagents). Detection was carried out using secondary 

antibodies coupled to Alexa fluorophores (Invitrogen). Nuclei were stained with 

Hoechst 33258. Pictures were taken with a Zeiss LSM 510 META laser scanning 

microscope using a Plan-Apochromat 63×/1.40 Oil DIC M27 or EC Plan-Neofluar 

10×/0.3 M27 objective and ZEN software. 

 

Determination of OSN coalescence. P2-IRES-tauLacZ and M72-IRES-tauLacZ 

mice31 were crossed with Ano2+/– mice to yield Ano2–/– and Ano2+/+ littermates that 

were homozygous for these reporter lines. Experiments were carried out with mice 

from 5 weeks to 24 weeks old. The mice were perfused with PBS followed by 4% 

PFA (wt/vol) in PBS. Brains were post-fixed (20 min on ice), washed in buffer A (100 

mM phosphate buffer (pH 7.4), 2 mM MgCl2, 5 mM EGTA) and incubated for 30 min 

in buffer A with 0.02% NP-40 (vol/vol) and 0.01% deoxycholate (vol/vol). LacZ 

staining was overnight in buffer A with 0.2% NP-40 (vol/vol), 0.1% deoxycholate 

(vol/vol), 5 mM potassium-ferricyanide, 5 mM potassium-ferrocyanide and 1 mg ml-1 

of X-Gal at room temperature (20-25°C). Whole-mount  stained bulbs were 

cryoprotected in 30% sucrose (wt/vol), frozen in Tissue-Tek O.C.T. compound 

(Sakura) and cut into 20-µm cryostat sections. Sections were post-stained with X-Gal 

and counterstained with Neutral Red.  

 

Lysate preparation, deglycosylation and immunoblotting. Turbinates, VNO or 

eyes were dissected, minced and sonicated in lysis buffer (10 mM HEPES (pH 7.4), 

150 mM NaCl, 5 mM EDTA, protease inhibitors, 1% SDS (wt/vol)). Lysates from 

brain regions and ANO1-transfected HEK cells were prepared similarly. The ANO1 

expression construct encodes a 986 aa human isoform (NM_018043.5). For 

deglycosylation, lysates were incubated with 5% β-mercaptoethanol (vol/vol) for 15 
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min at 55 °C, diluted 1:5 into deglycosylation buffer (50 mM HEPES (pH 7.4), 10 mM 

EDTA, 0.5% Nonidet P-40 (vol/vol) and protease inhibitors) and incubated overnight 

at 37 °C with 1 U of N-Glycosidase F (Roche Diagnostics) per 100 µg protein. 

Proteins were separated on SDS-polyacrylamide gels and transferred on 

polyvinylidene difluoride membranes. Antibodies were used at the following dilutions: 

rbAno2_N3-3 antibody (1:1000); anti-adenylate cyclase III rabbit polyclonal (1:2000, 

C-20, sc-588, Santa Cruz); anti-olfactory marker protein (OMP) goat polyclonal 

(1:1000, 544-10001, Wako); anti-α-tubulin mouse monoclonal (1:2000, clone B-5-1-2, 

T5168, Sigma-Aldrich); anti-Cnga2 (1:100), anti-tyrosine hydroxylase (1:5000) and 

anti-TMEM16A (1:250) antibodies as in immunohistochemistry. Signals were 

visualized by chemiluminescence (SuperSignal West, Pierce) with a PeqLab camera 

system and secondary antibodies coupled to horseradish peroxidase (Chemicon). 

Immunoblots were repeated in three or more independent experiments. 

 

Quantitative real-time PCR. Turbinates were dissected from Ano2+/+ and Ano2–/– 

mice (three litter pairs, 25-27 weeks old) and total RNA was isolated (RNeasy Mini 

Kit, Qiagen). We subjected 1 µg RNA to DNase I (amplification grade, Invitrogen) 

digestion and transcribed it into cDNA using random primers and Superscript II 

reverse transcriptase (Invitrogen). We set up 20-µl PCR reactions were set up with 

the Power SYBR Green PCR Master Mix (Applied Biosystems) and run the reactions 

in triplicates with 40-s elongation time at 60 °C. Amplification and melting curves 

were monitored using a StepOnePlus Real-Time PCR System and StepOne 

Software (Applied Biosystems). Comparison between Ano2–/– and wild-type 

littermates used the Pfaffl method and β-actin as internal control. Primers spanned 

introns or exon-exon boundaries and gave products of 100 to 200 bp length. Primer 

pairs: β-actin 5’-TGTGATGGTGGGAATGGGTCAGAA-3’, 5’-

TGTGGTGCCAGATCTTCTCCATGT-3’; adenylate cyclase III 5’-

CGGCATCGAGTGTCTACGCTTC-3’, 5’-GCCAGCGCTCCTTGTCTGACTT-3’; 

Ano2_ex3-4 5’-GATGTTGAACTTGGGCCACT-3’, 5’-CAAGAACTCTGCTTCCCTGG-

3’; Ano2_ex20-21 5’-AGGCTGTCTCATGGAGCTGT-3’, 5’-

TGCTCTGGACGTTTTGAGTG-3’; Ano6 5’-AAGAGGAACAGGCCCGGCCA-3’, 5’-

AGAAGACGGCGCTCGCACAC-3’; Ano8 5’-GCGACGCGGCTGGAAGACAG-3’, 5’-

CGGCCAGTGGGAAGGCAGAG-3’; Ano10 5’-AGCGGAAGTACTGTGCGAGGGT-3’, 

5’-GCAAAGGCAGCTGCTAGCGG-3’; Nkcc1 5’-CTGGTGGGCTGCGTTGCTCA-3’, 

5’-GCGCTTGTGTGGAGGATCCCC-3’. 
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Tissue preparation for patch-clamping. Mice were killed at 6-8 weeks by cervical 

dislocation. The MOE was prepared and embedded in 4% low melting agarose 

(wt/vol) in normal Ringer (140 mM NaCl, 5 mM KCl, 10 mM glucose, 1 mM sodium 

pyruvate, 10 mM HEPES (pH 7.4), 2 mM CaCl2, 1 mM MgCl2, osmolality: 321 mOsm 

kg–1). A Leica VT1200S vibratome was used to cut 200-µm perpendicular to the 

surface. The soft tissue of the VNO was embedded47 in 4% low melting agarose 

(wt/vol), and cut in 200-µm coronal slices. Slices were kept in normal Ringer bubbled 

with 95% O2/ 5% CO2.  

 

Preparation of isolated olfactory receptor neurons. The MOE was transferred to 

low-Ca2+ Ringer (140 mM NaCl, 5 mM KCl, 10 mM glucose, 1 mM sodium pyruvate, 

1 mM EDTA, 1 mM cysteine, 10 mM HEPES (pH 7.2)) at 4 °C. After mincing, it was 

digested at room temperature for 20 minutes with 0.2 mg ml–1 trypsin in low-Ca2+ 

Ringer. The digestion was terminated with normal Ringer containing 0.2 mg ml–1 

BSA, 0.2 mg ml–1 leupeptin and 0.025 mg ml–1 DNase I. Following gentle trituration, 

cells were allowed to settle on poly-L-lysine–coated coverslips for 30-45 minutes at 

4 °C.   

 

Patch-clamp analysis. Pipettes were pulled from borosilicate glass and contained 

140 mM CsCl, 4 mM HEPES (pH 7.2), 1 mM EGTA, 2 mM Mg-ATP. Free [Ca2+] was 

adjusted according to the Maxchelator program (http://maxchelator.stanford.edu/) to 

0 µM, 1.5 µM and 13 µM. OSNs from the MOE were patched at the cell body and 

sometimes at the dendritic knob, with similar results. VSNs were patch-clamped at 

the dendritic knob. Pipette resistances were ~ 5 M� and 8-10 M� when patching 

OSNs or VSN dendritic knobs, respectively. Recordings were performed in the 

whole-cell configuration at room temperature in normal Ringer containing 10 mM 

tetraethylammonium chloride using an Axon CNS MultiClamp 700B amplifier, a 

Digidata 1322A interface, and pClamp 10 software (Molecular Devices).  

 

Photorelease of caged Ca2+ and 8-Br-cAMP. We used [6,7-

Bis(carboxymethoxy)coumarin-4-yl]methyl-8-bromoadenosine-3', 5'-cyclic mono-

phosphate (BCMCM-caged 8-Br-cAMP), a generous gift from V. Hagen (FMP, Berlin) 

and DMNP-EDTA (Invitrogen). For uncaging 8-Br-cAMP, a UV flash lamp JML-C2 

(Rapp OptoElektronik) was coupled to an inverted Zeiss Axiovert 200 microscope 

equipped with a 100× Fluar objective. Ca2+ was uncaged with a SP-20 UV flash lamp 

(Rapp OptoElektronik) coupled to an upright Olympus BX51WI microscope equipped 
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with a 60× LUMPlanFL objective. Isolated OSNs were patched at room temperature 

in the whole-cell mode. For Ca2+ uncaging, the pipette solution contained 140 mM 

KCl, 2 mM MgATP, 0.3 mM Na2-GTP, 10 mM HEPES (pH 7.4), 3.5 mM CaCl2 and 5 

mM DMNP-EDTA. For uncaging 8-Br-cAMP, the pipette solution contained 145 mM 

KCl, 4 mM MgCl2, 1 mM MgATP, 0.1 mM Na2-GTP, 10 mM HEPES (pH 7.4), 0.5 mM 

EGTA, and 0.1 mM BCMCM-caged 8-Br-cAMP. Settings were 200 V at 1 mF and 

300 V at 3 mF for uncaging 8-Br-cAMP and Ca2+, respectively. 

 

Electro-olfactogram recordings. The head was cut in the sagittal plane and the 

endoturbinates were exposed11,48. The lateral side of the head was immersed into 

0.5% agarose gel with Normal Ringer.  

In fluid-phase EOGs the turbinates were continuously superfused with normal Ringer 

with or without niflumic acid. The four-barrelled application pipette had two channels 

for continuous flow of normal Ringer, a channel for odorant-free vehicle and for 

odorants. The latter two channels were connected to a Picospritzer (Toohey) to apply 

pressure steps. Mixtures of odorants, single odorant or forskolin (specified in legend 

to Fig. 7, in aqueous solution containing 0.5% DMSO (vol/vol)) were used.  

In the air-phase configuration, the application tube had a channel for 

continuous flow of humidified 95% O2/5% CO2, and another one connected to a 15-

ml bottle containing 2 ml of odorants or odorant-free vehicle, and a Picospritzer. 

Pressure steps of  200 ms were used to drive the air from the bottle to the turbinates. 

In both arrangements, EOGs were recorded in current clamp with an extracellular 

electrode filled with Ringer placed on the middle of turbinate IIb or III. EOG 

amplitudes from single turbinates were averaged from ten individual sweeps and 

subsequently averaged from several experiments. 

 

Ion-sensitive microelectrodes. Chloride-selective electrodes were fabricated49 from 

theta-glass capillaries (Warner Instruments) with tip diameters of ∼ 3 µm. Ion-selective 

barrels were silanized with methyltrichlorosilane in dichloromethane (Fluka/Sigma-

Aldrich) and backfilled with ‘Chloride ionophore I – cocktail A’ (Fluka/Sigma-Aldrich). 

Reference barrels contained 155 mM NaCl. To exclude artifacts by Cl– diffusion, we 

also filled them with 40 mM NaCl and 77 mM Na2SO4. No differences in measured 

[Cl–] were found. Measurements with either reference barrel solution were pooled. 

Microelectrodes connected to a differential amplifier49 were lowered at a low angle 

onto the surface of freshly dissected turbinates. [Cl–] was determined from calibration 
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curves before and after measurements. Measurements were discarded when these 

calibrations differed by >20%.  

 

Olfactometry. Behavioral assessment of odor detection and discrimination ability 

used a computer-controlled 8-channel liquid-dilution olfactometer (Knosys) as 

described50. Mice were trained on a go/no-go operant conditioning task in which 

licking on a water delivery tube upon presentation of an S+ stimulus (odor 1) is 

associated with a water reward, but not after presentation of an S– stimulus (odor 2 

or diluent). Mice able to discriminate between stimuli readily stop to answer to the S– 

stimulus when subjected to successive trials of S+ and S– stimuli presented in 

random order. Response accuracy is monitored as a measure for odor discrimination 

and detection ability and represents the percentage of correct answers in a block of 

20 trials. 

Water-deprived Ano2–/– mice and control littermates were trained on the 

BEGIN program and on a simple odor discrimination task. Tests used the D2 

program with standard settings50. Chemicals were from Sigma-Aldrich/Fluka. Mice 

(35-41 weeks-old) were tested on 1% (–)-limonene versus 0.5% (–)/0.5% (+)-

limonene (six males, two females) and on geraniol dilutions (eight males, four 

females) starting with the highest concentration. Trials were 200 (down to 10–5) or 

400 (10–6, 10–7) and response accuracy was calculated as mean of three consecutive 

blocks after reaching the criterion response of 90% or of the last three blocks in 400 

trials, respectively. Mice at 14 weeks old (four males, two females) were used for 1% 

hexanal versus 1% octanal discrimination, and six males and fopur females (at 50 

weeks old) for the 0.4/0.6% versus 0.6/0.4% hexanal/octanal discrimination test. 

Three male Cnga2–/y mice (14-16 weeks old) were tested on 1% geraniol. 



 21 

REFERENCES 

 

1. Kleene, S. J. The electrochemical basis of odor transduction in vertebrate 
olfactory cilia.  Chemical senses 33, 839-859 (2008). 

2. Munger, S. D., Leinders-Zufall, T. & Zufall, F. Subsystem organization of the 
mammalian sense of smell.  Annu Rev Physiol 71, 115-140 (2009). 

3. Bönigk, W. et al. The native rat olfactory cyclic nucleotide-gated channel is 
composed of three distinct subunits.  J Neurosci 19, 5332-5347 (1999). 

4. Kleene, S. J. Origin of the chloride current in olfactory transduction.  Neuron 
11, 123-132 (1993). 

5. Kurahashi, T. & Yau, K. W. Co-existence of cationic and chloride components 
in odorant-induced current of vertebrate olfactory receptor cells.  Nature 363, 
71-74 (1993). 

6. Lowe, G. & Gold, G. H. Nonlinear amplification by calcium-dependent chloride 
channels in olfactory receptor cells.  Nature 366, 283-286 (1993). 

7. Kleene, S. J. & Gesteland, R. C. Calcium-activated chloride conductance in 
frog olfactory cilia.  J Neurosci 11, 3624-3629 (1991). 

8. Reisert, J., Bauer, P. J., Yau, K. W. & Frings, S. The Ca2+-activated Cl 
channel and its control in rat olfactory receptor neurons.  J Gen Physiol 122, 
349-363 (2003). 

9. Reisert, J., Lai, J., Yau, K. W. & Bradley, J. Mechanism of the excitatory Cl- 
response in mouse olfactory receptor neurons.  Neuron 45, 553-561 (2005). 

10. Kaneko, H., Putzier, I., Frings, S., Kaupp, U. B. & Gensch, T. Chloride 
accumulation in mammalian olfactory sensory neurons.  J Neurosci 24, 7931-
7938 (2004). 

11. Nickell, W. T., Kleene, N. K., Gesteland, R. C. & Kleene, S. J. Neuronal 
chloride accumulation in olfactory epithelium of mice lacking NKCC1.  J 
Neurophysiol 95, 2003-2006 (2006). 

12. Boccaccio, A. & Menini, A. Temporal development of cyclic nucleotide-gated 
and Ca2+-activated Cl- currents in isolated mouse olfactory sensory neurons.  
J Neurophysiol 98, 153-160 (2007). 

13. Hengl, T. et al. Molecular components of signal amplification in olfactory 
sensory cilia.  Proc Natl Acad Sci U S A 107, 6052-6057 (2010). 

14. Reuter, D., Zierold, K., Schröder, W. H. & Frings, S. A depolarizing chloride 
current contributes to chemoelectrical transduction in olfactory sensory 
neurons in situ.  J Neurosci 18, 6623-6630 (1998). 

15. Chiu, D., Nakamura, T. & Gold, G. H. Ionic composition of toad olfactory 
mucus measured with ion selective microelectrodes (Abstract).  Chemical 
senses 13, 677-678 (1988). 

16. Nickell, W. T., Kleene, N. K. & Kleene, S. J. Mechanisms of neuronal chloride 
accumulation in intact mouse olfactory epithelium.  J Physiol 583, 1005-1020 
(2007). 

17. Smith, D. W., Thach, S., Marshall, E. L., Mendoza, M. G. & Kleene, S. J. Mice 
lacking NKCC1 have normal olfactory sensitivity.  Physiology & behavior 93, 
44-49 (2008). 

18. Yang, Y. D. et al. TMEM16A confers receptor-activated calcium-dependent 
chloride conductance.  Nature 455, 1210-1215 (2008). 

19. Caputo, A. et al. TMEM16A, a membrane protein associated with calcium-
dependent chloride channel activity.  Science 322, 590-594 (2008). 

20. Schroeder, B. C., Cheng, T., Jan, Y. N. & Jan, L. Y. Expression cloning of 
TMEM16A as a calcium-activated chloride channel subunit.  Cell 134, 1019-
1029 (2008). 



 22 

21. Stephan, A. B. et al. ANO2 is the cilial calcium-activated chloride channel that 
may mediate olfactory amplification.  Proc Natl Acad Sci U S A 106, 11776-
11781 (2009). 

22. Stöhr, H. et al. TMEM16B, a novel protein with calcium-dependent chloride 
channel activity, associates with a presynaptic protein complex in 
photoreceptor terminals.  J Neurosci 29, 6809-6818 (2009). 

23. Rasche, S. et al. Tmem16b is specifically expressed in the cilia of olfactory 
sensory neurons.  Chemical senses 35, 239-245 (2010). 

24. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the 
ubiquitous deletion of loxP-flanked gene segments including deletion in germ 
cells.  Nucleic Acids Res 23, 5080-5081 (1995). 

25. Brunet, L. J., Gold, G. H. & Ngai, J. General anosmia caused by a targeted 
disruption of the mouse olfactory cyclic nucleotide-gated cation channel.  
Neuron 17, 681-693 (1996). 

26. Nakamura, T. & Gold, G. H. A cyclic nucleotide-gated conductance in 
olfactory receptor cilia.  Nature 325, 442-444 (1987). 

27. Romanenko, V. G. et al. Tmem16A encodes the Ca2+-activated Cl- channel in 
mouse submandibular salivary gland acinar cells.  J Biol Chem 285, 12990-
13001 (2010). 

28. Rock, J. R. et al. Transmembrane protein 16A (TMEM16A) is a Ca2+-
regulated Cl- secretory channel in mouse airways.  J Biol Chem 284, 14875-
14880 (2009). 

29. Keller, A. & Margolis, F. L. Immunological studies of the rat olfactory marker 
protein.  J Neurochem 24, 1101-1106 (1975). 

30. Lin, W., Arellano, J., Slotnick, B. & Restrepo, D. Odors detected by mice 
deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main 
olfactory system.  J Neurosci 24, 3703-3710 (2004). 

31. Zheng, C., Feinstein, P., Bozza, T., Rodriguez, I. & Mombaerts, P. Peripheral 
olfactory projections are differentially affected in mice deficient in a cyclic 
nucleotide-gated channel subunit.  Neuron 26, 81-91 (2000). 

32. Zou, D. J. et al. Absence of adenylyl cyclase 3 perturbs peripheral olfactory 
projections in mice.  J Neurosci 27, 6675-6683 (2007). 

33. Pifferi, S., Dibattista, M. & Menini, A. TMEM16B induces chloride currents 
activated by calcium in mammalian cells.  Pflügers Arch 458, 1023-1038 
(2009). 

34. Sagheddu, C. et al. Calcium concentration jumps reveal dynamic ion 
selectivity of calcium-activated chloride currents in mouse olfactory sensory 
neurons and TMEM16B/anoctamin2-transfected HEK 293T cells.  J Physiol 
588, 4189-4204 (2010). 

35. Pifferi, S. et al. Calcium-activated chloride currents in olfactory sensory 
neurons from mice lacking bestrophin-2.  J Physiol 587, 4265-4279 (2009). 

36. Frings, S., Reuter, D. & Kleene, S. J. Neuronal Ca2+ -activated Cl- channels--
homing in on an elusive channel species.  Prog Neurobiol 60, 247-289 
(2000). 

37. Pinato, G. et al. Electroolfactogram responses from organotypic cultures of 
the olfactory epithelium from postnatal mice.  Chemical senses 33, 397-404 
(2008). 

38. Bodyak, N. & Slotnick, B. Performance of mice in an automated olfactometer: 
odor detection, discrimination and odor memory.  Chemical senses 24, 637-
645 (1999). 

39. Kelliher, K. R., Ziesmann, J., Munger, S. D., Reed, R. R. & Zufall, F. 
Importance of the CNGA4 channel gene for odor discrimination and 
adaptation in behaving mice.  Proc Natl Acad Sci U S A 100, 4299-4304 
(2003). 



 23 

40. Kleene, S. J. & Pun, R. Y. Persistence of the olfactory receptor current in a 
wide variety of extracellular environments.  J Neurophysiol 75, 1386-1391 
(1996). 

41. Pifferi, S. et al. Bestrophin-2 is a candidate calcium-activated chloride channel 
involved in olfactory transduction.  Proc Natl Acad Sci U S A 103, 12929-
12934 (2006). 

42. Gribkoff, V. K. et al. Effects of channel modulators on cloned large-
conductance calcium-activated potassium channels.  Mol Pharmacol 50, 206-
217 (1996). 

43. Vogalis, F., Hegg, C. C. & Lucero, M. T. Ionic conductances in sustentacular 
cells of the mouse olfactory epithelium.  J Physiol 562, 785-799 (2005). 

44. Lindemann, B. Predicted profiles of ion concentrations in olfactory cilia in the 
steady state.  Biophys J 80, 1712-1721 (2001). 

45. Schneppenheim, R. et al. A common 253-kb deletion involving VWF and 
TMEM16B in German and Italian patients with severe von Willebrand disease 
type 3.  J Thromb Haemost 5, 722-728 (2007). 

46. Gomez-Pinilla, P. J. et al. Ano1 is a selective marker of interstitial cells of 
Cajal in the human and mouse gastrointestinal tract.  Am J Physiol 
Gastrointest Liver Physiol 296, G1370-1381 (2009). 

47. Shimazaki, R. et al. Electrophysiological properties and modeling of murine 
vomeronasal sensory neurons in acute slice preparations.  Chemical senses 
31, 425-435 (2006). 

48. Cygnar, K. D., Stephan, A. B. & Zhao, H. Analyzing responses of mouse 
olfactory sensory neurons using the air-phase electroolfactogram recording.  
J Vis Exp (2010). 

49. Windmüller, O. et al. Ion changes in spreading ischaemia induce rat middle 
cerebral artery constriction in the absence of NO.  Brain 128, 2042-2051 
(2005). 

50. Slotnick, B. & Restrepo, D. Olfactometry with mice. in Current protocols in 
Neuroscience (eds. Crawley, J. N, et al.) Chapter 8, Unit 8 20 (2005). 



a-tubulin

Ano2

250

130

100

kDa

55

Figure 1

a b

kDa

55

250

130

100

70

**

a-tubulin

Ano2

Ano2 +/+ –/–

MOE VNO Eye

+/+ –/– +/+ –/– Ano2

O
lfa

ct
or

y 

bu
lb

C
or

te
x

M
O
E
Eye M

id
br

ai
n

+/++/+

C
er

eb
el
lu
m

Bra
in
 s
te

m

Tr
ig
em

in
al

n
r

 
e

ve

+/+ –/– +/+ –/– +/+ –/– +/+ –/– +/+ –/– +/+ –/–



Ano2 acTub

REMOE

MOE

RE

VNO

Figure 2

Ano2

a b

Merge

Ano2

Ano2

Cnga2

Cnga2

Merge

Merge

c

A
n

o
2

–
/–

A
n

o
2

+
/+

A
n

o
2

+
/+

MOE

MOE



Ano1

Figure 3

b

MOE RE

RE

Ano1 acTub

Ano1 acTub

RE

Merge

Mergec

d

Ano2 Ano1

Ano2 Ano1

Merge

Mergea

MOE

A
n

o
2

–
/–

A
n

o
2

+
/+

*

VNO

VNO



Ano2 TH Merge

Figure 4

Ano2 TH Merge

Ano2 TH Merge

a

b

A
n

o
2

–
/–

A
n

o
2

+
/+

A
n

o
2

+
/+

– –
Ano2

/

c

d

e

+/+
Ano2

+
/+

P
2

-I
R

E
S

-t
a

u
L

a
c
Z

M
7

2
-I

R
E

S +
/+

-t
a

u
L

a
c
Z



–80 –40  40 80

–80 –40  40 80

–100

100

200

 

 
I/
C

 (
A

/F
)

V (mV)

200 pA

200 ms

500 pA

200 ms

D = 10 mV 0 mV

+100 mV

–100 mV

0 mV

+/+

Ano2

VNO

MOE

l

n

k

m

j

f

ih

d

g

e

++
0 mM Ca

cba

–/–

Ano2

200 pA

200 ms

 

 

100 pA

200 ms

 

–40

–20

20

40

60

80

V (mV)

I/
C

 (
A

/F
)

 ++
–/–, 0 Ca
+/+, 0 Ca

++

–/–, 1.5 Ca
++

+/+, 1.5 Ca
++

–80 –40  40 80

–100

100

200

I/
C

 (
A

/F
)

V (mV)

–/–
+/+

–80 –40  40 80

–200

–100

100

200

 
 

I/
C

 (
A

/F
)

V (mV)

Figure 5

++
1.5 mM Ca

++
13 mM Ca

++
0 mM Ca

++
1.5 mM Ca



100 pA

100 ms

+/+

Ano2

–/–

Ano2

–200

200

400

–60 –30 30 60

200 pA

1 s

+/+

Ano2

–/–

Ano2

a b

c

**

*

+/+

Ano2

–/–

Ano2

Figure 6

C
u

rr
e

n
t 
(p

A
)

Voltage (mV)

50 mV

0 mV

–50 mV

–50 mV

++
Uncaging Ca

 
Uncaging 8-Br-cAMP



FSK/ctrl FSK/ctrlMix1/ctrlMix1/ctrl

NFA NFA

NR
NR

cb

500 ms

50 Vm

Ano2
–/–

Ano2
–/–

Ano2
+/+

a

1 s

100 Vm

Ano2
+/+

Ano2

gfe

d

–/–+/+

G
er

an
io
l (

1 
M

)

M
ix
2 

(0
.1

M
)

M
ix
1 

(0
.1

 M
)

M
ix
1 

(1
 M

)

100

200

300

400

500

8 91111181999

50

100

150

200

250

300

**

*

Fluid phase

50

100

150

200

250

300

350

400

450

**

***

***

9

*

6

P
e

a
k

a
m

p
lit

u
d
e
 (

V
)

m

411119 1110111159614

C
oy

ot
e

ur
in

e

Eth
yl

va
le

ra
te

G
er

an
io
l

Is
oa

m
yl
 a

ce
ta

te

**

**

Air phase

Figure 7

–/–+/+ –/–+/+ –/–+/+Ano2–/–+/+ –/–+/+ –/–+/+ –/–+/+Ano2 –/–+/+ –/–+/+

ForskolinMix1
(30 M)m(0.1 mM)

N
F
A

N
F
A

Fluid phase



Figure 8

e

a 1% (–) versus 0.5% (–)/0.5% (+)-limonene1% hexanal versus 1% octanal

1 2 3 4 5 6

50

60

70

80

90

100

Block of 20 trials

Chance level

90% criterion response

1 2 3 4 5 6

50

60

70

80

90

100

1% geraniol versus diluent

C
o

rr
e

c
t 
a

n
s
w

e
rs

 (
%

) +/+Ano2
– –Ano2 /

50

60

70

80

90

100

1 2 3 4 5 6

–/yCnga2

50

60

70

80

90

100

2 3 4 5 6 7

–log  dilution of geraniol10

R
e

s
p

o
n

s
e

 a
c
c
u

ra
c
y
 (

%
)

Chance level

90% criterion response

Geraniol dilution series

b c

d

50

60

70

80

90

100

2 4 6 8 10 12

C
o

rr
e

c
t 
a

n
s
w

e
rs

 (
%

)

Chance level

90% criterion response

0.4/0.6% versus 0.6/0.4%  hexanal/octanal

Block of 20 trialsBlock of 20 trials

Block of 20 trials

C
o

rr
e

c
t 
a

n
s
w

e
rs

 (
%

)

C
o

rr
e

c
t 
a

n
s
w

e
rs

 (
%

)


	Billig et al. 2011_MDC repository.pdf
	Ano2 paper_Fig1_WB Ano2_edited.pdf
	Ano2 paper_Fig2_Ano2 IHC MOE_edited.pdf
	Ano2 paper_Fig3_IHC VNO Ano1_edited.pdf
	Ano2 paper_Fig4_OB IHC+LacZ_edited.pdf
	Ano2 paper_Fig5_in situ OSN CaCC_edited.pdf
	Ano2 paper_Fig6_isolated OSN transient CaCC_edited.pdf
	Ano2 paper_Fig7_EOG_edited2.pdf
	Ano2 paper_Fig8_olfactometry_edited.pdf

