
                          Luo, J., Jiang, J. Z., & Macdonald, J. (2019). Cable Vibration
Suppression with Inerter-based Absorbers. Journal of Engineering
Mechanics, 145(2), [04018134].
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554

Peer reviewed version
License (if available):
Other
Link to published version (if available):
10.1061/(ASCE)EM.1943-7889.0001554

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via ASCE at https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554 . Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001554
https://research-information.bris.ac.uk/en/publications/50b858b1-e09c-46af-87fc-be1ee353b6ee
https://research-information.bris.ac.uk/en/publications/50b858b1-e09c-46af-87fc-be1ee353b6ee


Cable Vibration Suppression with Inerter-based Absorbers1

Jiannan Luo1, Jason Zheng Jiang2, and John H.G. Macdonald3
2

1Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK.3

2Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK.4

(corresponding author). Email: z.jiang@bristol.ac.uk5

3Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, UK.6

ABSTRACT7

Stay cables are prone to vibrations due to their low inherent damping. This paper presents an8

approach for systematic identification of beneficial passive absorbers layouts consisting of damper,9

spring and inerter. The inerter is a one-port mechanical element with the property that the applied10

force is proportional to the relative acceleration between its terminals. In this work, a finite11

element taut cable model, with vibration absorber represented by its admittance function, is firstly12

established. Two performance measures, depending on the length of the cable and the forcing13

conditions, are introduced to assess the effect of candidate absorbers. Potential advantages of low-14

complexity inerter-based absorber layouts are then systematically investigated, with corresponding15

element values in these layouts identified. Building on this, the effect of series compliance is also16

examined for beneficial absorber layouts. It is shown that, up to a certain inertance, which depends17

on the stiffness of the series compliance, the performance advantages over a viscous damper can18

be maintained, or even enlarged in some cases, if the element values are properly tuned.19

INTRODUCTION20

Stay cables are widely used in cable-stayed bridges and other civil engineering structures in21

order to carry static loads, but they are often observed to experience large amplitude vibrations. The22

exact excitation mechanisms are rather complex, but possible causes include aerodynamic forcing23
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on the cables such as galloping (Den Hartog 1933; Macdonald and Larose 2006), wake galloping24

(Tokoroa et al. 2000), rain–wind excitation (Hikami and Shiraishi 1988; Matsumoto et al. 1990)25

and excitation from deck or pylon motion (Lilien and Da Costa 1994; Macdonald 2016). However,26

large cable vibrations are more often caused by aerodynamic forcing which introduces aero-elastic27

instabilities. The motion of the cable in the wind causes changes in the aerodynamic forces which28

is often taken to be equivalent to negative damping. The classical instance of this is across-wind29

galloping (Den Hartog 1933), which often affects electricity transmission lines, especially with30

ice accretion. More generally, galloping can occur in a three-dimensional environment, such31

as for inclined bridge cables in skew wind (Macdonald and Larose 2006). When the negative32

aerodynamic damping is greater in magnitude than the structural damping, the vibrations grow33

exponentially (until nonlinearity may limit the amplitude at some large value). Other than changing34

the aerodynamic shape, which is not always possible or economic, the solution to galloping is35

to provide sufficient structural damping. For rain-wind excitation (Hikami and Shiraishi 1988;36

Matsumoto et al. 1990), which is the most common cause of large cable vibrations on cable-stayed37

bridges, it is generally considered also to be equivalent to some form of negative aerodynamic38

damping and it has been found to be inhibited by providing a certain level of damping (Caetano39

2007). As a result, for limiting vibrations due to aerodynamic forcing on the cables, the damping40

ratio is often considered as the key parameter.41

Adding viscous dampers to cables is a commonly-used method for introducing extra damping.42

Several studies have been carried out to understand the dynamic behavior. A universal curve have43

been presented for estimating the modal damping of stay cables with a viscous damper close to44

one of the supports (Pacheco et al. 1993), then an analytical formula for the universal curve was45

derived based on complex cable modes (Krenk 2000). Subsequently, Main and Jones extended46

these studies by revealing the importance of damper-induced frequency shifts in characterizing the47

response of the system (Main and Jones 2002). It has been shown that, the optimum damping ratio48

for a certain mode will be larger if the damper is located closer to an anti-node. However, for ease49

of installation and maintenance, they are usually located close to the deck end of the cable, up50
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to about 5% of the length along the cable (Cu and Han 2015). Tuned mass dampers (TMDs) are51

another type of passive absorber device that has been used in practice on cables. It has been shown52

that TMDs can be more effective than viscous dampers if they are fixed at the same location along53

the cable (Cai et al. 2006).54

An alternative is to use a vibration suppression device incorporating an inerter. The inerter55

was proposed as an ideal two terminal mechanical element (Smith 2002), with the property that56

the applied force is proportional to the relative acceleration between its two terminals. The inerter57

has fundamentally enlarged the range of absorbers that can be realized mechanically. Furthermore,58

via gearing, the inertance (i.e. the constant of proportionality between the relative acceleration59

and force, with dimensions of mass) can be much larger than the physical mass of the device.60

Performance advantages have been identified for road vehicles (Smith and Wang 2004; Jiang et al.61

2015a), railway vehicles (Wang et al. 2009; Wang et al. 2012; Jiang et al. 2015b), aircraft landing62

gear systems (Liu et al. 2015; Li et al. 2017a; Li et al. 2017b), and civil engineering structures63

(Ikago et al. 2012; Lazar et al. 2014; Yang 2016; Zhang et al. 2017; Makris and Kampas 2016;64

Bakis et al. 2017). For vibration suppression of cables, the potential benefits of adding a tuned65

inerter damper (TID) system has been analyzed (Lazar et al. 2016). A practical tuning methodology66

for the TID was proposed to minimize the displacement amplitude at the mid-span of the cable67

for excitation from motion of both supports. However, cable vibrations caused by aerodynamic68

forcing on the cables, which is usually more problematic have not been considered for inerter-based69

absorbers.70

Two performance measures are introduced in this paper to quantify the damping performance71

of the absorbers. As the lowest frequency mode is often most susceptible to vibrations (Gimsing72

and Georgakis 2011), one performance measure is the minimum damping ratio of any modes with73

natural frequencies close to that of the first mode of the undamped cable, without considering74

higher frequency modes. However, long cables or cables in extreme conditions may be susceptible75

to vibrations in multiple modes, so the second measure takes higher modes into consideration. In76

addition, the effects of series compliance to the absorber are introduced, since the connections at77
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either end of the absorber, to the support and to the cable, may not be fully rigid.78

In this paper, the potential to enhance the damping performance of a cable, for passive absorber79

layouts with three element or less is presented. The approach adopted enables candidate layouts,80

i.e. specific connections of spring damper and inerter elements, to be explored in a systematic81

manner. First, a finite element cable model is integrated with an admittance function representing a82

general vibration absorber. All possible absorber layouts with no more than one damper, one inerter83

and one spring each, as well as two proposed performance measures, are then introduced. After84

that, the optimum performance of the modes with frequencies close to that of the first mode of the85

undamped cable for all candidate layouts are identified, and the corresponding parameter values are86

presented. Similar analysis, using the second measure to account for the effect on higher frequency87

modes, is then implemented and results are presented. Finally, the effect of series compliance is88

addressed for the two most beneficial layouts obtained in the previous section, before conclusions89

are drawn.90

MATHEMATICAL APPROACH91

In this section, a finite element model of a cable combined with an arbitrary linear passive92

absorber layout is introduced. Subsequently, all candidate absorber layouts with no more than one93

damper, inerter and spring each are presented. Two performance measures are then introduced to94

assess the damping performance. Following that, optimization results of a viscous damper only95

layout is discussed and compared with previous studies, showing the validity of proposed approach.96

Cable models with admittance functions representing absorbers97

A mathematical model of a cable is built using the finite element method. Lumped masses rather98

than bar elements are used here for the benefit of calculation efficiency, which will be discussed in99

detail at the end of this subsection.100

The tension along the cable is denoted as T , the total mass of the cable is M , and the total length101

of the cable is L. The effects of inclination and sag of the cable are neglected as well as the cable’s102

out-of-plane motion and its elasticity. An example of a taut cable model with n DOF is shown in103

Fig. 1. There are n masses, each of mass m spread along the cable and two masses of mass m/2104
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connected directly to the supports. Hence, m = M/(n + 1). These masses divide the cable into105

n + 1 elements, each of length l = L/(n + 1). The ath mass has an associated vertical position xa,106

which equals zero at equilibrium. Since the masses at the end-points are connected directly to the107

supports, x0 and xn+1 always equal zero.108

The displacement of the masses from their equilibrium positions leads to an angle θa between109

mass a and mass a + 1. As the displacements are small compared to the element length L/(n + 1),110

the angle θa can be presented as:111

θa = arcsin

(
xa+1 − xa

L/(n + 1)

)
(1)112

The circular natural frequency of the first mode of the undamped cable model can be expressed113

as:114

ωo = π

(
T

ML

)0.5

(2)115

The equation of motion for mass a, without any external force, can be expressed as:116

m Üxa = T sin(θa) − T sin(θa−1) (3a)117

Similarly, the equation of motion for mass a f , where the absorber is located, can be expressed118

as:119

m Üxa f
= T sin(θa f

) − T sin(θa f −1) + F(t) (3b)120

where F(t) is the force provided by the absorber. By substituting Eqs. (1) and (2) into Eqs. (3a)121

and (3b), Eqs. (4a) and (4b) can be obtained as below:122

1

n + 1
Üxa = (n + 1) · (

ωo

π
)2 · (xa+1 − 2xa + xa−1) (4a)123

124

1

n + 1
Üxa f
= (n + 1) · (

ωo

π
)2 · (xa f −1 − 2xa f

+ xa f +1) +
F(t)

M
(4b)125
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Taking Laplace transforms of both sides of Eqs. (4a) and (4b), Eqs. (5a) and (5b) are obtained:126

1

n + 1
s2 x̃a = (n + 1) · (

ωo

π
)2 · (x̃a−1 − 2x̃a + x̃a+1) (5a)127

128

1

n + 1
s2 x̃a f

= (n + 1) · (
ωo

π
)2 · (x̃a f −1 − 2x̃aF + x̃a f +1) +

Y (s)

M
· s · x̃a f

(s) (5b)129

where tildes indicate Laplace transforms and Y (s) = F̃(s)/[s · x̃a f
(s)] represents the admittance130

function of the absorber, which is defined as the ratio of force to velocity.131

It has been shown that all Y (s) representing linear, passive absorbers are positive-real functions132

(Brune 1931). By arranging the displacement of each mass in the vector x = [x1, x2, x3, · · · , xn]
T,133

Eqs. (5a) and (5b) can be rewritten in matrix form as:134

Ms
2
x̃ + Cs̃x +Kx̃ = 0 (6)135

In Eq. (6), the elements of matrices M, C and K are respectively described in Eqs. (7a)-(7c), in136

which δi j is the Kronecker delta function.137

mi j =
1

n + 1
δi j (7a)138

139

ci j = 0, except ca f a f
= −Y (s)/M (7b)140

141

ki j = (n + 1) · (
ωo

π
)2 · (2δi j − δi( j+1) − δi( j−1)) (7c)142

Complex eigenvalues of the system (represented by [λ λ
∗T]T) are calculated as roots of Eq. (8),143

where λ = [λ1, λ2, λ3, · · · ] , 0 is the square null matrix of size n and I is the identity matrix of size144

n.145

det
©«


0 I

−M−1K −M−1C


−


sI 0

0 sI


ª®®¬
= 0 (8)146

It should be noted that C is a function of s, so the eigenvalues of the system cannot be found by147

conventional numerical methods. However, Eq. (8) is still fundamentally valid, giving a polynomial148
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in s, the roots of which are the eigenvalues. By using a similar finite element model of a cable149

with a TID (Lazar et al. 2016), in which the internal DOFs of the TID was explicitly represented150

in the matrix equation of motion, making the vector x (n + 1) elements long and the matrices M,151

C and K of size (n + 1) × (n + 1). Using that method, the matrices need to be reformulated for152

each alternative absorber layout. The advantage of the method presented here is that a system with153

any passive linear absorber can be represented by Eq. (6) and Eqs. (7a)-(7c), with x always being n154

elements long and the matrices M, C and K always of size n × n. The only difference for different155

absorber layouts is the positive-real admittance function Y (s) representing the absorber.156

The roots of Eq. (8), i.e. [λ λ
∗T]T, are in complex conjugate pairs. The number of pairs is157

given by n plus the number of internal DOFs of the absorber. However, normally only a few pairs,158

representing low frequency modes, are of interest. Either eigenvalue λe (with positive imaginary159

part, e = 1, 2, 3, · · ·) or its complex conjugate eigenvalue λ∗e can be used to calculate damping ratio160

ζe and circular natural frequency ωe of mode e of the damped cable, which respectively are:161

ζe = −Re(λe)/

√
Re(λe)

2
+ Im(λe)

2 (9a)162

163

ωe =

√
Re(λe)

2
+ Im(λe)

2 (9b)164

The number of DOF of the cable, n, should be large enough to limit the error due to the finite165

element approximation. In order to balance accuracy and computational time, lumped masses166

rather than bar elements are used and a suitable number of DOF is selected. From preliminary167

analysis for a number of absorber layouts, it was typically found that a lumped mass model with168

99 DOFs provides similar accuracy to a bar element model with 60 DOFs, but the bar element169

model took approximately twice the computational time. This is because the mass matrix for the170

bar element model is non-diagonal, which leads to a non-trivial inverse in Eq. (8). Hence for171

similar accuracy, the lumped mass model is more computationally efficient. The maximum relative172

difference in the damping ratio ζe between lumped mass models with 99 and 999 DOFs was found173

to be typically less than 0.1%, considering only low frequency modes with natural frequencies174
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below 6.5ωo. Therefore, a 99 DOF lumped mass model is used for the analysis in the present175

study. Furthermore, since the present study is more focused on a systematic approach to identify176

beneficial absorber layouts, and also for a fair comparison, the location of all candidate absorbers177

in this study is set to be at 5% length of the whole cable.178

Candidate absorber layouts and non-dimensionalized parameters179

In previous study (Lazar et al. 2016), only one specific layout, namely a TID structure is180

considered. Taking into account the fact that less complicated layouts are more preferred due181

to space and weight limits in mechanical structures, all absorber layouts with no more than one182

damper, inerter and spring each are considered as candidate layouts. Because neither an inerter183

nor a spring can dissipate energy, a damper must be present in each candidate layout. Apart184

from a viscous damper only, there are in total four two-element and eight three-element absorber185

layouts that contain one damper, which then cover all layouts that need to be considered. These186

are respectively shown in Fig. 2 and Fig. 3. For each layout, one terminal is connected to the cable187

at mass a f and the other is attached to a fixed support. The admittance functions of all candidate188

absorber layouts are summarized in Table 1.189

For generality, the parameters of the absorber layouts are presented in non-dimensional form.190

Here, the non-dimensional inertance, damping coefficient and stiffness of the absorber elements191

are defined as b′ = b/M , c′ = (c/M)/(ω0/π) and k′ = (k/M)/(ω0/π)
2 respectively. The circular192

natural frequencies ωe of the damped system and the location of the damper relative to the total193

length of the cable a f are also presented in non-dimensional form as ω′ = ωe/ωo and a′
f
=194

a f /(n + 1), respectively. Since the location of all candidate absorbers has been set to be at 5%195

length of the whole cable, thus a′
f
= 0.05.196

Two performance measures197

Two different performance measures are used for optimization analysis in the present study. For198

shorter cables, the lowest frequency mode (i.e. the first mode) is often susceptible to vibrations,199

while vibrations of other modes can be neglected (Gimsing and Georgakis 2011). As the absorbers200

may affect the system’s first natural frequency or introduce extra modes, it is proposed to consider201
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all modes in the frequency range from 0 to 1.5ωo to cover all modes in the vicinity of the first202

undamped mode of the cable. Therefore, the critical damping ratio ζc, which is defined as the203

lowest damping ratio of all modes in the frequency range from 0 to 1.5ωo, is introduced as the key204

parameter to identify the effectiveness of the absorber layouts. The first performance measure is205

the optimum critical damping ratio denoted ζc,opt without considering higher frequency modes.206

Since longer cables, or cables in extreme conditions, may suffer from vibrations in multiple207

modes, in some cases more low-frequency modes should be considered. Therefore, for the second208

performance measure, a constraint on the modes with higher frequencies is included. Hence, the209

second measure is ζc,opt with an extra constraint to ensure that the damping ratios of modes with210

natural frequencies in the range [1.5ωo − 6.5ωo) are no less than those for a cable with a viscous211

damper optimized for the first mode. For simplicity, the damping ratios for the cable with a viscous212

damper are taken to be those from the universal curve (Pacheco et al. 1993).213

For each performance measure, for a given non-dimensional inertance, the optimum critical214

damping ratio ζc,opt is found by using the Matlab optimization command ‘patternsearch’ followed215

by ‘fminsearch’ for fine-tuning of the parameters. The same approach has been used for optimizing216

absorbers for different applications (Smith and Wang 2004; Wang et al. 2009; Jiang et al. 2015b;217

Zhang et al. 2017; Li et al. 2017b). The maximum critical damping ratio ζc,max is defined as the218

maximum ζc,opt , that can be achieved for any inertance.219

Based on the lumped mass model with 99 DOFs, the results of the eigenvalue analysis for a220

viscous damper only (Layout I) are presented in Fig. 4 for a range of damping coefficients c′. Fig. 4a221

shows the relationship between critical damping ratio ζc and non-dimensional damping coefficient222

c′. This follows the universal curve (Pacheco et al. 1993), and similar results from other literatures223

(Krenk 2000; Main and Jones 2002). The optimum critical damping ratio ζc,opt = 0.0264 is found224

by using the proposed optimization method, which matches with the maximum value on the curve,225

showing the validity of the proposed optimization approach. Fig. 4b shows the corresponding non-226

dimensional natural frequency ω′, which indicates that the viscous damper has marginal influence227

on the frequency of the first mode.228

9 Luo, July 31, 2017



OPTIMUM PERFORMANCE OF CANDIDATE ABSORBERS229

In this section, the optimum performance of all candidate absorbers is analyzed, with and without230

the constraint considering higher modes. Optimum critical damping ratios ζc,opt are identified, for231

all candidate layouts.For the layouts contain an inerter, inerters with non-dimensional inertance b′232

ranging from 0 to 2.5 are considered as this covers the maximum optimum critical damping ratio233

for all the layouts. Results for the beneficial absorber layouts are summarized compared. Since234

lower inertance is easier and typically less expensive to realize, more detailed discussions focus on235

b′ from 0 to 0.5.236

Optimization results for absorbers considering first mode only237

As vibrations of the first mode are usually considered critical, this subsection aims to find238

the largest critical damping ratio ζc for the first mode without considering the effect on higher239

modes. All absorber layouts incorporating an inerter can provide a greater maximum optimum240

critical damping ratio than that for a viscous damper only, with suitable values of inertance. The241

optimization results for all candidate layouts are presented below.242

Absorbers with two elements243

For absorber layouts with two elements, layouts that can provide a larger maximum optimum244

critical damping ratio than a damper only are considered beneficial. The optimum critical damping245

ratios ζc,opt of both Layouts II-1 and II-2 (one damper in parallel or series with one spring), are246

found to be ζc,opt = 0.026, which is the same as that for the viscous damper only. The corresponding247

non-dimensional damping coefficient and stiffness are respectively c′ = 6.430, k′ = 0 for Layout248

II-1 and c′ = 6.430, k′ = ∞ for Layout II-2 (i.e. both without the spring). In fact, for any tested c′249

in the range of 0 to 30, adding a spring always decreases the damping ratio for these two layouts.250

Therefore, these two layouts are not beneficial. Hence, only Layouts II-3 and II-4 (one damper in251

parallel or series with one inerter) are discussed below, together with the damper only (i.e. Layout252

I).253

Fig. 5 presents a 3-D shaded surface plot of the critical damping ratio ζc for Layout II-3 with254

0 ≤ b′ ≤ 2.5 and 0 ≤ c′ ≤ 20. The bold solid curve indicates the optimum critical damping255
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ratio for a given inertance. In Fig. 6a, the solid curve presents the optimum critical damping ratio256

as a function of the inertance, which corresponds to the bold solid curve in Fig. 5, while, the257

dashed curve shows the damping ratio for a simultaneously occurring non-critical mode also in the258

frequency range 0 < ω′ ≤ 1.5. The corresponding natural frequencies of both modes are shown259

in Fig. 6b. The lines for other layouts in Figs. 7-10 are consistent in style with those presented in260

Fig. 6.261

As shown in Fig. 6a, with b′ = 0, as expected, the optimized critical damping ratio is the same262

as that for a viscous damper only. For b′ > 0, Layout II-3 provides a greater optimum critical263

damping ratio than that for a viscous damper only for any inertance b′ investigated. It can be seen264

from the solid curve that among all the optimized results with varying b′, the maximum optimum265

critical damping ratio ζc,max is 0.155 for b′ = 1.760, i.e. 5.9 times that for a viscous damper only.266

As b′ increases from zero, the damping ratio of the original first mode (the mode with the lowest267

natural frequency, which is the initially the critical one) increases, but that of the original second268

mode decreases. At b′ = 1.760, the damping ratios of the two modes are equal and above that269

value the damping ratio of the second mode is lower than that of the first mode, so the second270

mode becomes the critical one. It can be seen from Fig. 6b that the natural frequency of the second271

mode decreases as b′ increases and at b′ = 1.760 there is a switch of which mode is the critical272

one. It is notable that in all cases the natural frequency of the critical mode is similar to that of the273

original undamped first mode, showing that the frequency is not greatly influenced by the absorber.274

At b′ = 1.76, the solutions for the critical and the non-critical modes cross over each other, which275

leads to the break point seen in Fig. 5 and Fig. 6a.276

Fig. 7 presents the optimization results for Layout II-4. The results are of a similar form to those277

for Layout II-3. Layout II-4 is hence another beneficial layout compared with a viscous damper only278

if the non-dimensional inertance is sufficiently large. It can be seen from Fig. 7a that among all the279

optimized results with varying b′, Layout II-4 can provide ζc,max = 0.159 for b′ = 2.250, which is280

marginally better than the maximum for Layout II-3. However, Layout II-4 has the drawback that281

large optimum critical damping ratio ζc,opt cannot be achieved with relatively small b′. ζc,opt for282
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Layout II-4 is larger than that of a viscous damper if b′ > 1.15. Similar to the case for Layout II-3,283

the break point at b′ = 2.250 in Fig. 7a is due to a switch of which mode is the critical one and it284

can be seen in Fig. 7b that the natural frequency of the critical mode is always close to that of the285

original undamped first mode.286

Absorbers with three elements287

For all eight possible three element absorber layouts shown in Fig. 3, based on the optimization288

results, only Layouts III-3, III-4, III-5 and III-6 can provide greater optimum critical damping289

ratio ζc,opt than layouts with fewer elements (Layouts I, II-3 and II-4) with relatively small non-290

dimensional inertance b′. Among these four layouts, Layout III-6 is less preferable than the other291

three due to ζc,opt being lower for a wide range of b′. Therefore, only results for Layouts III-3, III-4292

and III-5 are discussed and compared here.293

It can be seen in Fig. 8 that among all the optimum results with varying b′, Layout III-3 can294

provide a maximum optimum critical damping ratio of ζc,max = 0.159, for b′ = 2.250, which is295

the same as Layout II-4, but Layout III-3 is more effective than Layout II-4 when b′ < 2.250.296

For any optimum critical damping ratio with a given b′ ≤ 2.250, the two modes of the system297

with non-dimensional frequency ω′ < 1.5 provide the same damping ratio and very similar natural298

frequencies. This shows that the inerter and the spring provide a resonance to target the first mode.299

When b′ = 2.250, the two modes bifurcate, since the corresponding non-dimensional stiffness300

reaches infinity. For b′ ≥ 2.250 the optimum results are the same as for Layout II-4, i.e. the spring301

in Layout III-3 has become a rigid connection.302

The Layout III-4 is equivalent to a TMD when one terminal is grounded (Lazar et al. 2016). As303

shown in Fig. 9, among all the optimum results with varying b′, Layout III-4 can provide a maximum304

optimum critical damping ratio ζc,max = 0.159, for non-dimensional inertance of b′ = 2.250 (the305

same as for Layout II-4). However, compared with Layout II-4, Layout III-4 is more effective when306

b′ is smaller. Similar to the results of Layout III-3, Layout III-4 also has the property that for any307

ζc,opt for given b′ ≤ 2.250, the two modes of the system with ω′ ≤ 1.5 provide the same damping308

ratio and very similar natural frequencies. When b′ = 2.250 the two modes bifurcate since the309
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non-dimensional stiffness k′ for the optimum result reduces to zero. Since k′ cannot physically be310

negative, for b′ > 2.250, ζc,opt is the same as for Layout II-4.311

It can be seen in Fig. 10 that among all the optimum results with varying non-dimensional312

inertance b′, Layout III-5 can provide ζc,max = 0.155, for b′ = 1.760, which is the same as for313

Layout II-3. Due to resonance provided by the inerter and spring, for 0.065 ≤ b′ ≤ 1.760, optimized314

results for Layout III-5 are better than those for Layout II-3. The two modes of the system with315

ω′ < 1.5 provide the same damping ratio and very similar frequencies. When b′ > 1.760 or316

b′ < 0.065, the optimized results for Layout III-5 are the same as those for Layout II-3, which lead317

to kinks in Fig. 10a. The optimum value of k′ is then infinity, so the spring acts as a rigid link.318

Optimization results for absorbers with the higher mode constraint319

The optimization measures considering six modes is similar to that previously described,320

except that the additional constraint is implemented to consider the performance of higher modes.321

Optimization results show that for two-element layouts, Layouts II-3 and II-4 can provide better322

results than a viscous damper only, and for three element Layouts III-4 and III-6 perform better323

than the other three element layouts.324

As shown in Fig. 11a, for Layout II-3 with non-dimensional inertance b′ = 0, as expected, the325

optimized critical damping ratio is the same as that for a viscous damper only, i.e. ζc,opt = 0.026.326

For b′ > 0.170 the constraint affects the results, so ζc,opt is lower with the constraint than without327

it. For b′ > 0, Layout II-3 provides a slightly greater optimum critical damping ratio than a damper328

only. It can be seen from the solid curve that among all the optimized results with varying b′, ζc,max329

is 0.028 for b′ = 0.160. When optimized with b′ < 0.170 without the constraint, the damping330

ratio of the higher modes are all above the constraint. Therefore, results both with and without331

the constraint are the same. In Fig. 11b, the crosses show the damping ratio for the higher modes332

for the optimized system with b′ = 0.195. The optimum critical damping ratio ζc,opt is restricted333

by the damping ratio of the sixth mode, which is on the boundary provided by the solution of the334

viscous damper. However, for b′ > 0.195, the sixth mode cannot meet the boundary condition that335

no worse than that for a viscous damper optimized for the first mode. Therefore, the solid curve in336
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Fig. 11a terminates. Similar situations can occur for the other layouts.337

Fig. 11c shows the optimization results for Layout II-4. The maximum optimum critical338

damping ratio ζc,max with the constraint is 0.062 for b′ = 2.172, which is much greater than for a339

damper only, but large inertance is required. The solid curve starts at b′ = 0.390 since for small b′340

the damping ratio of the second mode cannot satisfy the constraint. For b′ > 1.500, the optimum341

solution is limited by the sixth mode, giving reduced result compared with the case without the342

constraint.343

Based on the optimization results, it is found that with suitable amount of inertance, all candidate344

layouts with three elements can provide greater ζc,opt than layouts with fewer elements (i.e. Layouts345

I, II-3 and II-4). Since Layouts III-4 and III-6 are the most beneficial ones, therefore, their results346

are discussed in detail below.347

Fig. 12a shows the optimization results for Layout III-4. The maximum optimum critical348

damping ratio ζc,max is 0.141 for b′ = 1.47. The solid curve allowing the additional constraint starts349

at b′ = 0.390 since below that the damping ratio of the second mode cannot satisfy the constraint.350

For b′ < 0.90, the optimum solution is limited by the second mode and for b′ > 1.40 it is limited351

by the sixth mode. For 0.9 ≤ b′ ≤ 1.4, the results are not limited by the additional constraint, so352

the optimum solution is the same as when only considering the critical damping ratio.353

Fig. 12b shows the optimization results for Layout III-6. The maximum optimum critical354

damping ratio ζc,max is 0.033 for b′ = 0.215. When b′ < 0.070, the corresponding k′ becomes a355

rigid connection, and it can be simplified to Layout II-3. For b′ > 0.340, since the corresponding356

stiffness k′ = 0, Layout III-6 reduce to a damper only, so there is no further change in ζc,opt .357

Summary for all beneficial layouts358

Although inerters can realize large inertance by using gearing, with relatively small actual359

mass (Smith 2002), in practice it is difficult and currently uneconomical to realize an inerter with360

extremely large inertance. Therefore, only two element layouts that can provide better optimum361

critical damping ratio than a damper only, and some most beneficial three element layouts with362

relatively small non-dimensional inertance within the range, 0 ≤ b′ ≤ 0.5, are compared and363
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illustrated in Figures.364

For all absorber layouts without the higher modes constraint, Layouts II-3, II-4, III-3, III-4 and365

III-5 are considered beneficial. The performance improvements for these five layouts, including their366

beneficial inertance region, maximum improvement compared with a damper only (in percentage367

terms) and the maximum benefit for 0 ≤ b′ ≤ 0.5 are summarized in Table 2.368

For b′ ≤ 0.5 the optimum critical damping ratios ζc,opt of Layouts II-3 and II-4, and their369

corresponding non-dimensional damping coefficients c′ are compared in Fig. 13, along with the370

results for a damper only. Layout II-3 provides higher ζc,opt than Layout II-4 and a damper only371

in this range. Also, a lower damping coefficient is required than that of Layout I. Layout II-4 is372

only more beneficial than Layout II-3 for b′ > 1.950 and it can provide a slightly better maximum373

optimum critical damping ratio ζc,max = 0.159 compared with ζc,max = 0.155 for Layout II-3.374

However, for 0 ≤ b′ ≤ 0.5, only Layout II-3 is beneficial. Up to 34% increase in the critical375

damping ratio can be realized compared with a viscous damper only by Layout II-3, as shown in376

Table 2.377

Without the higher mode constraint, the optimization results of the beneficial three-element378

absorber layouts, i.e. Layouts III-3, III-4 and III-5, are shown in Fig. 14 for b′ < 0.5. Layout III-4379

provides the largest optimum damping ratio ζc,opt over a wide range of non-dimensional inertance380

values b′, though the difference with the other two layouts are often small. For b′ ≤ 0.065,381

Layout III-5 is most beneficial where it reduces to Layout II-3. For b′ > 0.065, Layout III-5382

provides different solutions with greater ζc,opt , which leads to the jump in c′ in Fig. 14. For383

0.065 < b′ ≤ 0.5, there is little difference in performance between the three element layouts,384

while much lower non-dimensional damping coefficients c′ are required for Layouts III-4 and III-5385

compared with III-3. Fig. 14c shows that the corresponding non-dimensional stiffness k′ are about386

π2 times b′ for all three layouts, indicating that the inerter and spring provide resonance to target387

the first mode.388

With the higher mode constraint, only Layouts II-3, II-4, III-4 and III-6 are considered beneficial.389

The performance improvements of these four layouts are summarized in Table 3. The optimization390
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results show that Layout III-6 in the range 0 ≤ b′ ≤ 0.510 and III-4 in the range 0.510 ≤ b′ ≤ 2.5391

provides more beneficial optimized critical damping ratios than the other layouts. Layout III-4392

provides the overall optimum critical damping ratio, while Layout III-6 is still worth considering393

in practice, since it provides reasonable benefits with relatively small inertance. As is shown in394

Fig. 15, only Layouts II-3 and III-6 can provide results better than a viscous damper for b′ ≤ 0.5.395

Compared with the results without the constraint, c′ and k′ are of the same order of magnitude, but396

the higher mode constraint has greatly reduced ζc,opt for all the beneficial absorber layouts.397

EFFECTS OF SERIES COMPLIANCE398

In practice, the connections at either end of the absorber, with the support and with the cable,399

may not be fully rigid. Apart from compliance of the connections themselves and of any axial400

linkage element, for common bridge cables made up of multiple parallel strands in an outer sheath,401

there may be relative movement between the sheath, to which the absorber is usually attached, and402

the structural strands inside. The lack of rigidity may be expected to reduce the performance of403

the absorber. In order to quantify this effect, a compliant element is introduced in series with the404

absorber. For simplicity, it is modeled as an ideal spring of non-dimensional stiffness k′sc. The405

upper limit of possible stiffness values is considered infinite. The lower realistic limit is estimated406

using simplified assumptions. For vibrations of the main length of the cable (from the absorber to407

the other end) in a half sine wave mode shape, neglecting motion of the point where the absorber408

is attached and the short length of cable between that point and the near end, the force on the409

absorber is given approximately by Tθa f (Fig. 1). The maximum value of θa f approximately410

equals πxmax/L, where xmax is the maximum displacement at the anti-node of the mode. If this411

force causes a deformation between the end of the absorber and the cable γ, the equivalent linear412

stiffness of the series spring, ksc, is Tπxmax/(Lγ). Hence the non-dimensional stiffness k′sc is413

simply πxmax/γ. Typically, it is aimed for xmax to be limited to the diameter of the cable, which is414

typically about 200mm, whilst the deformation γ is estimated to be of the order of 10mm. Hence415

the minimum value of k′sc in practice is estimated to be around 60. Therefore, to more than cover416

the range of expected values, in this study k′sc is taken to be in the range of 10 to infinity.417
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The effects of series compliance are analyzed for both performance measures, with and without418

the higher mode constraint. The higher mode constraint used here is the performance of a viscous419

damper with the same series compliance, rather than the universal curve used in previous sections.420

The beneficial layouts with two elements, i.e., Layouts II-3 and II-4, are not discussed here, as the421

optimization results show that both layouts cannot achieve the same level of critical damping ratio422

when series compliance is included. The effect of k′sc on the beneficial layouts with three elements,423

i.e. Layouts III-3sc, III-4sc, III-5sc and III-6sc, are investigated. The four layouts, including the424

series compliance, are shown in Fig. 16.425

Using the previously optimized parameter values, when the series compliance is added the426

critical damping ratios decrease significantly for all four layouts. Given the detrimental effect, the427

parameters of the absorbers should be re-optimized.428

Layouts III-3sc and III-5sc have two springs in series. Therefore, if k′sc ≥ k′o, where k′o is the429

original optimized non-dimensional stiffness without series compliance, they can be adjusted to430

have identical properties to the original optimized layouts. The re-tuned k′ can simply be calculated431

as k′ = 1/[(1/k′o) − (1/k′sc)]. Since k′ increases with b′ (Fig. 14c), this is possible for b′ up to a432

certain value, b′ < b′m, at which k′sc = k′o, and the maximum value of ζc,opt can be achieved. For433

b′ > b′m the performance of Layouts III-3sc and III-5sc rapidly decreases, but it is still larger than434

that of without retuning k′.435

For Layout III-4sc the two springs are not simply in series, so re-optimization of the absorber436

layout is needed. Fig. 17a shows that, without re-optimization and without considering the higher437

mode constraint, for k′sc equal to 10, 100 and 1000, the maximum optimum critical damping ratio438

ζc,max respectively are 83.0%, 47.2% and 2.7% of the original ζc,max only. Similar results have also439

been found for Layouts III-3sc, III-5sc and III-6sc. The re-optimized results for Layout III-4sc are440

shown in Fig. 17b for the k′sc equal to 10, 100 and 1000, as well as infinity. In each case, for b′ up441

to a certain value b′m, indicated by crosses, the optimum critical damping ratio of the re-optimized442

layout is at least as great as for the original layout. To achieve the optimum behavior, both the443

non-dimensional damping coefficient c′ and non-dimensional stiffness k′ need to be adjusted. For444
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b′ > b′m, the re-optimized ζc,opt for Layout III-4sc cannot reach the original value, but it is still445

better than that without re-optimization.446

Fig. 18 shows the relation of the maximum critical inertance b′m and the corresponding optimum447

critical damping ratio ζc,opt to the series compliance k′sc for Layouts III-3sc, III-4sc and III-5sc. For448

all three layouts, when relatively stiff series compliance is considered, i.e. k′sc ≥ 100, only a449

marginal effect on ζc,opt . When very soft series compliance is considered, taking the worst case of450

k′sc = 10 as example, the re-optimized ζc,opt still reaches 60% of the original ζc,max . Also, when451

k′sc = 10, the maximum critical non-dimensional inertance b′m ≈ 0.6 for all three layouts, indicating452

that within the range of inertance of most interest (b′ ≤ 0.5), the same or even marginally better453

ζc,opt can be achieved compared with the case without the series compliances.454

Considering the higher mode constraint, Layout III-6sc cannot reach the original optimum even455

if the absorber is returned. However, it is still much more beneficial than the case where the456

parameters are not retuned. For Layout III-4, the re-optimized results are presented in Fig. 19,457

showing that softer k′sc can be beneficial if the system is returned. For a range of b′, which depends458

on k′sc, the re-optimized system can still provide a critical damping ratio as good as, and in some459

cases significantly greater than the critical damping ratio provided by the original layout.460

CONCLUSIONS461

In this paper, a systematic approach to identify beneficial low-complexity inerter-based absorber462

layouts for cable vibration suppression is presented. A Finite Element (FE) model of the cable463

is firstly presented with various absorber layouts represented by admittance functions. Then,464

considering the first mode only and the first six modes, two performance measures are proposed.465

Based on the model, absorbers with different layouts are optimized. The performance of all possible466

absorber layouts with no more than one inerter, damper and spring is analyzed with non-dimensional467

inertance b′ within the range of 0 to 2.5, with further focus on the more practical range of 0 to 0.5.468

The results show that all layouts incorporating with inerters can provide more beneficial optimum469

critical damping ratios than for a viscous damper only. Compared with two-element layouts for470

small inertance, three-element layouts can provide greater damping. Considering only the critical471
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damping ratio, three layouts with three elements are found to be most beneficial, offering much472

greater damping ratios than other layouts when the inerter is small. Including the higher mode473

constraint, two three-element layouts are found to be most beneficial, even though their performance474

is restricted by the constraint. Finally, the effects of series compliance are analyzed for the most475

beneficial layouts, showing that without re-optimization the series compliance is detrimental, as476

expected. However, up to a certain inertance, which depends on the series compliance, the477

absorbers can provide virtually the same, or in some cases even better performance as without the478

series compliance if the element values are properly retuned.479
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TABLE 1. Admittance function Y (s) for all candidate absorbers

Layout Admittance function Layout Admittance function

I c III-3 1/[(1/bs) + (1/c) + (s/k)]

II-1 c + k/s III-4 1/[1/(c + k/s) + (1/bs)]

II-2 1/[(1/c) + (s/k)] III-5 1/[1/(c + bs) + (s/k)]

II-3 bs + c III-6 1/[(1/bs) + (s/k)] + c

II-4 1/[(1/c) + (1/bs)] III-7 1/[(s/k) + (1/c))] + bs

III-1 1/[(1/c) + (1/bs)] + (k/s) III-8 bs + c + k/s

III-2 1/[1/(bs + k/s) + c]
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TABLE 2. Relative improvement of beneficial layouts without higher mode constraint

Beneficial Range of Maximum Corresponding Maximum Corresponding

layout beneficial b′ improvement b′ ∈ (0, 2.5] b′ improvement b′ ∈ (0, 0.5] b′

II-3 (0, 2.5] 487% 1.760 34% 0.5

II-4 (1.150, 2.5] 502% 2.250 N/A N/A

III-3 (0.080, 2.25] 502% 2.250 196% 0.5

III-4 (0, 20.25] 502% 2.250 203% 0.5

III-5 (0, 20.5] 487% 1.760 202% 0.5
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TABLE 3. Relative improvement of beneficial layouts considering constraint of higher modes

Beneficial Range of Maximum Corresponding Maximum Corresponding

layout beneficial b′ improvement b′ ∈ (0, 2.5] b′ improvement b′ ∈ (0, 0.5] b′

II-3 (0, 2.5] 8.96% 0.160 8.96% 0.160

II-4 (1.150, 2.5] 150% 2.25 N/A N/A

III-4 (0.080, 2.25] 451% 2.25 N/A N/A

III-6 (0, 2.25] 27.6% 0.215 27.6% 0.215
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Fig. 1. Finite element model of a taut cable with an absorber
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Fig. 2. Candidate absorber layouts with one or two elements
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Fig. 3. Candidate absorber layouts with three elements
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Fig. 4. Results for Layout I (viscous damper only). (a) Critical damping ratio and (b) corresponding

non-dimensional natural frequency, versus non-dimensional damping coefficient
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Fig. 5. 3-D plot of damping ratio versus non-dimensional inertance and damping coefficient for

Layout II-3
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Fig. 6. Optimization results for Layout II-3. (a) Damping ratio and (b) corresponding non-

dimensional frequency, versus non-dimensional inertance
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Fig. 7. Optimization results for Layout II-4. (a) Damping ratio and (b) corresponding non-

dimensional frequency, versus non-dimensional inertance
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Fig. 8. Optimization results for Layout III-3. (a) Damping ratio and (b) corresponding non-

dimensional frequency, versus non-dimensional inertance
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Fig. 9. Optimization results for Layout III-4. (a) Damping ratio and (b) corresponding non-

dimensional frequency, versus non-dimensional inertance
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Fig. 10. Optimization results for Layout III-5. (a) Damping ratio and (b) corresponding non-

dimensional frequency, versus non-dimensional inertance
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Fig. 11. Performance of two element layouts with and without the constraint. (a) Damping ratio for

Layout II-3 versus non-dimensional inertance. (b) Damping ratios for Layout II-3 for higher modes

optimized when b′ = 0.195. (c) Damping ratio for Layout II-4 versus non-dimensional inertance
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Fig. 12. Optimized damping ratio versus non-dimensional inertance with and without the constraint.

(a) Layout III-4 and (b) Layout III-6, optimum critical damping ratio versus non-dimensional

inertance
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Fig. 13. Optimization results for beneficial layouts with one or two elements without the higher

mode constraint. (a) Damping ratio and (b) corresponding non-dimensional damping coefficient,

versus non-dimensional inertance
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Fig. 14. Optimization results for beneficial layouts with three elements without the higher mode

constraint. (a) Damping ratio, (b) corresponding non-dimensional damping coefficient and (c)

corresponding non-dimensional frequency, versus non-dimensional inertance
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Fig. 15. Optimization results for beneficial layouts with the higher mode constraint. (a) Damping ra-

tio, (b) corresponding non-dimensional damping coefficient and (c) corresponding non-dimensional

frequency, versus non-dimensional inertance
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Fig. 16. Beneficial three-element layouts with added series compliance
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Fig. 17. Critical damping ratios with different series compliance (k′sc) for Layout III-4sc (a) with

original optimized parameters (b) with re-optimized parameters
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Fig. 18. Optimization results for Layouts III-3sc, III-4sc and III-5sc. (a) Maximum critical

inertance b′m and (b) corresponding optimum critical damping ratio ζc,opt , versus non-dimensional

series compliance
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Fig. 19. Optimum critical damping ratio for Layout III-4sc, versus non-dimensional inertance for

re-optimized results with the constraint of higher mode and different series compliance
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