
Review

Cabozantinib in Combination with

Immunotherapy for Advanced Renal

Cell Carcinoma and Urothelial Carcinoma:

Rationale and Clinical Evidence

Paulo Bergerot1, Peter Lamb2, Evelyn Wang2, and Sumanta K. Pal1

Abstract

The treatment landscape for metastatic renal cell carci-

noma (mRCC) and urothelial carcinoma (mUC) has

evolved rapidly in recent years with the approval of several

checkpoint inhibitors. Despite these advances, survival rates

for metastatic disease remain poor, and additional strategies

will be needed to improve the efficacy of checkpoint inhi-

bitors. Combining anti-VEGF/VEGFR agents with check-

point inhibitors has emerged as a potential strategy to

advance the immunotherapy paradigm, because VEGF inhi-

bitors have immunomodulatory potential. Cabozantinib is

a tyrosine kinase inhibitor (TKI) whose targets include MET,

AXL, and VEGFR2. Cabozantinib has a unique immuno-

modulatory profile and has demonstrated clinical efficacy as

a monotherapy in mRCC and mUC, making it a potentially

suitable partner for checkpoint inhibitor therapy. In this

review, we summarize the current status of immunotherapy

for mRCC and mUC and discuss the development of

immunotherapy–TKI combinations, with a focus on

cabozantinib. We discuss the rationale for such combina-

tions based on our growing understanding of the tumor

microenvironment, and we review in detail the preclinical

and clinical studies supporting their use.

Introduction

According to data from 2008 to 2014, 5-year survival rates are

approximately 93% for patients diagnosed with localized renal

cancer, and 69% and 93% for patients diagnosed with in situ and

localized and bladder cancers, respectively. However, these rates

drop to 12% and 5%, for those diagnosed with metastatic renal

and bladder cancers (1). Observational studies show improve-

ments in renal cell carcinoma (RCC) survival since the arrival of

targeted therapies. Nevertheless, 5-year survival for patients with

metastatic disease remains poor, particularly for patients with

poor prognostic factors (2). Novel therapies are therefore needed

to improve outcomes for patients with advanced tumors.

Vascular endothelial growth factor (VEGF)-targeted therapies,

including tyrosine kinase inhibitors (TKI), are established treat-

ments for advanced or metastatic RCC (mRCC; ref. 3). Immuno-

therapy for mRCC has progressed from cytokines to checkpoint

inhibitors, which target suppressive immune checkpoints includ-

ing programmed cell death-1 (PD-1) receptor, programmed cell

death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4; ref. 4). Until recently, chemotherapy has been

the standard of care for advanced or metastatic urothelial carci-

noma (mUC). However, the treatment paradigm has evolved

rapidly with the approval of several checkpoint inhibitor mono-

therapies in 2017, which have demonstrated clinically meaning-

ful and durable responses (5, 6).

Despite thebenefitsof checkpoint inhibitors, there are important

limitations to their use as monotherapies. In general, only a subset

of patients achieve an objective response, some have a delayed

response, and a significant number of patients experience no

clinical benefit (7, 8). There are multiple hypotheses around the

lack of efficacy with checkpoint inhibitor monotherapy in certain

patients. Coexpression of multiple immune checkpoint molecules

hasbeendemonstrated invarious solid tumors (9),withexpression

varying between patients and potentially changing upon treatment

or progression (10, 11). The genetic makeup of the tumor and the

cellular components of the tumormicroenvironment influence the

number, functionality, and location of immune effector cells and

may also have a key role in response to checkpoint inhibitors (12).

Therefore, targeting a single checkpoint alone may not lead to an

optimal antitumor immune response.

Combinations of checkpoint inhibitor therapies have demon-

strated significant improvements in overall survival (OS) com-

pared with checkpoint inhibitor monotherapy in patients with

melanoma (13). Prolonged progression-free survival (PFS) rela-

tive to chemotherapy was also observed in patients with lung

cancer (14). This has encouraged studies of checkpoint inhibitor

combinations for RCC and UC. The combination of the PD-1

inhibitor nivolumab with the CTLA-4 inhibitor ipilimumab has

demonstrated efficacy in a phase III trial of RCC, and clinical

activity has also been observed in UC (15, 16).

Combining anti-VEGF/VEGFR agents with checkpoint

inhibitors has emerged as an alternative strategy to advance the

immunotherapy paradigm. In addition to their effect on tumor

vasculature, VEGF inhibitors have immunomodulatory potential,

including the ability to promote infiltration and activation of
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effector cells and inhibit suppressive immune cells (17). Studies

are assessing checkpoint inhibitors with several VEGF/VEGFR-

targeted therapies. Early studies with nivolumab plus sunitinib

and nivolumab plus pazopanib showed clinical activity but were

not pursued further owing to excessive hepatic and gastrointes-

tinal toxicity (18).However, alternative combinations are proving

to be tolerable and active (19–22).

Cabozantinib, a multitargeting TKI and new standard of care

for mRCC, has emerged as a potential partner for checkpoint

inhibitor therapy. Cabozantinib has demonstrated significant

clinical benefit as a single agent and is approved for use in

all patients with mRCC, based on results from the pivotal phase

III METEOR study in the second-line setting, and the phase II

CABOSUN study in the first-line setting. In METEOR, patients

with mRCC had significantly improved PFS, OS, and objective

response rate (ORR) when treated with cabozantinib versus

everolimus (23). CABOSUN, a randomized phase II trial in

intermediate- and poor-risk treatment-na€�ve patients withmRCC,

demonstrated ORR and PFS benefits with cabozantinib over

sunitinib (24). Cabozantinib has also demonstrated clinical

activity as a single agent in patients with relapsed/refractory

mUC (25).

In addition to inhibiting VEGF signaling, cabozantinib targets

MET and the TAM family of receptor kinases (TYRO-3, AXL, and

MER), which are implicated in tumor growth, metastasis, and

therapeutic resistance; MET and AXL are also associated with

resistance to VEGF inhibition (26, 27). Targets of cabozantinib

also help to promote a tumor-permissive immune environment

(Fig. 1).Owing to the unique immunomodulatory and antitumor

properties of cabozantinib (28), there is a strong rationale for

combining cabozantinib and immune checkpoint inhibitors, and

preliminary clinical results of such combinations suggest tolera-

bility and efficacy (19). In this review, we consider the combi-

nation of immunotherapy with TKIs in mRCC and mUC, with a

focus on cabozantinib.

Current Status of Immunotherapy for RCC

and UC

Immunotherapy for RCC

Checkpoint inhibitors are approved in theUnited States for the

treatment of several tumor types. Nivolumab is the only check-

point inhibitor approved as a monotherapy for the treatment of

mRCC,basedon the pivotal phase III studyCheckMate 025 (8). In

CheckMate 025, nivolumab demonstrated a significant OS ben-

efit compared with everolimus in pretreated patients [HR, 0.73;

98.5% confidence interval (CI), 0.57–0.93], and a significant

improvement in ORR (25% vs. 5%, P < 0.001). However, no PFS

benefit was observed; 35% of patients treated with nivolumab

experienced progressive disease as best response. For OS,

© 2019 American Association for Cancer Research
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Figure 1.

Immune-modifying behavior of the cabozantinib-targeting receptor tyrosine kinases VEGFR, MET, AXL, MER, and TYRO3. VEGF is released by tumor cells, which

increases the number MDSCs and regulatory T cells. VEGF also inhibits the maturation of DCs into mature APCs and reduces lymphocyte infiltration (17, 48).

CAFs release HGF, which binds to MET (76), and MET activation drives PD-L1 expression (44). Tumor-associated macrophages release GAS6 which binds to AXL

and to a lesser degree, MER and TYRO3 (77). AXL suppresses MHC class 1 expression (59), and both AXL and MER signaling pathways dampen APC function.

MER signaling also polarizes macrophages into an immunosuppressive M2 phenotype (62). Abbreviations: APC, antigen-presenting cell; CAF, cancer-associated

fibroblast; Teff, effector T cell; Treg, regulatory T cell.
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everolimus was favored for the subgroup of patients ages 75 years

or older (8). Atezolizumab (PD-L1 inhibitor) monotherapy was

investigated as part of the IMmotion 150 study in treatment-na€�ve

patients with mRCC; however, there was no benefit relative to

sunitinib for PFS or ORR, and OS data are pending (22).

Immunotherapy for UC

Five checkpoint inhibitors have been approved in the United

States for the treatment of mUC since 2017, including accelerated

approval of pembrolizumab (PD-1 inhibitor) and atezolizumab

(PD-L1 inhibitor) as first-line treatments for patients ineligible for

platinum-based chemotherapy (subsequent to second-line

approvals), and avelumab (PD-L1 inhibitor), durvalumab (PD-L1

inhibitor), and nivolumab (PD-1 inhibitor) in the second-line

setting, based on phase I/II trials (5, 6). However, preliminary

data from two ongoing phase III trials of pembrolizumab and

atezolizumab infirst-linemUC suggested inferiority of these agents

asmonotherapy in patients with low PD-L1 expression. These data

prompted label updates requiring an FDA-approved test for mea-

surement of PD-L1 expression, and both trials have ceased enroll-

ment of patients with low PD-L1 into the monotherapy treatment

arms (29). KEYNOTE-045, the phase III study evaluating pembro-

lizumab in pretreated patients with advanced UC, reported

improved OS and ORR without a PFS benefit compared with

chemotherapy; ORR was 21% with pembrolizumab, but almost

50% of patients experienced progressive disease as best

response (7). Recent results from the phase III IMvigor211 study

showed that atezolizumab failed to reach its primary endpoint of

improved OS relative to chemotherapy in pretreated patients

with locally advanced or mUC with PD-L1 expression on �5% of

tumor-infiltrating immune cells (30).

Immunotherapy combinations

To improve efficacy, checkpoint inhibitors are being investi-

gated as combination therapies inmRCC andmUC. Recently, the

combination of nivolumab and ipilimumab demonstrated a

survival benefit compared with sunitinib as first-line therapy for

patients with mRCC in the phase III CheckMate 214 study.

Patients with intermediate- and poor-risk scores [according to

the International Metastatic Renal Cell Carcinoma Database

Consortium (IMDC)] were the population of primary clinical

interest. These patients had significantly longer OS (HR, 0.63;

99.8% CI, 0.44–0.89) and improved ORR with the combination

versus sunitinib (42% vs. 27%, P < 0.001), with a modest

improvement in PFS (HR, 0.82; 99.1% CI, 0.64–1.05). However,

older patients showed less of a survival benefit with the combi-

nation, and an exploratory analysis of favorable-risk patients

reported inferior outcomes with the combination relative to

sunitinib (15). It is worth noting that the IMDC model was

developed in patients receiving first-line VEGF-targeting thera-

pies (31); no risk model for RCC has been validated in the

first-line immunotherapy setting to date. In mUC, nivolumab is

also being combined with CTLA-4 inhibitors. A phase III study

(CheckMate 901, NCT03036098) of nivolumab combined

with ipilimumab is ongoing, as is a phase III trial of durvalumab

in combination with the CTLA-4 inhibitor tremelimumab

(DANUBE, NCT02516241).

Safety is a concern with checkpoint inhibitor combinations

because toxicity appears greater versus monotherapy (32).

Although clinical trials in patients with mRCC and mUC did not

compare checkpoint inhibitor combination therapy with mono-

therapy, high rates of adverse events (AE) were observed with the

combination in mRCC patients (data are not yet available for

mUC). In Checkmate 214, 22% of mRCC patients in the nivo-

lumab plus ipilimumab arm discontinued owing to toxicity,

exceeding the rate of discontinuation with sunitinib (12%) for

the same reason. Furthermore, aggressive interventions tomanage

immune-related AEs were needed for patients receiving the com-

bination—35% required high-dose glucocorticoids (15).

To further develop immunotherapies, it will be important to

achieve durable responses in a broad patient population, while

mitigating immune-related toxicities. Additional strategieswill be

needed to improve the efficacy of checkpoint inhibitors through

our understanding of the tumor-immune microenvironment.

This understanding can help identify new therapeutic targets and

provide support for rational combination strategies that over-

come barriers to response.

Tumor-Immune Microenvironment:

Rationale for Combination Therapy

In the tumor-immune microenvironment, there is a balance

between the eradication of cancer cells and prevention of auto-

immunity. The immune system can often suppress early tumor

growth anddevelopment.However, to prevent damage to healthy

cells, the immune response shuts down over time, T cells become

"exhausted" following prolonged exposure to tumor-associated

antigens, and tumor cells escape immune control leading to

disease progression (12). Sustained PD-1 expression is a charac-

teristic of tumor-infiltrating lymphocytes (TILs) possessing an

exhausted phenotype. PD-1 binding to its ligands PD-L1 and PD-

L2 results in a strong immune inhibitory signal, forming the basis

for PD-1/PD-L1 checkpoint inhibitor therapy (33). Studies indi-

cate that a variety of factors, in addition to checkpoint molecule

expression, determinewhether a response to checkpoint inhibitor

monotherapy occurs. These factors include tumor and germline

genetics and epigenetics, the microbiome, and components of

host immunity. Collectively, these factors determine the charac-

teristics of the tumor-immune phenotype, which may be classed

as immune-inflamed or noninflamed (immune-excluded or

immune-desert; ref. 12).

Clinical responses to PD-1/PD-L1 therapy occur most often in

patients with inflamed tumors, characterized by the presence of

PD-L1–positive TILs, highmutational burden, andhighdensity of

CD4þ and CD8þ T cells within both tumor and stroma. Tumor

cells may also express PD-L1, and proinflammatory and effector

cytokines may be present. This inflamed profile suggests a pre-

existing immune response that was arrested. In contrast, tumors

with an immune-excluded phenotype contain abundant immune

cells in the stroma, but not within the tumor itself. This profile

suggests a preexisting immune response that was ineffective

owing to a blockade of T-cell infiltration. After checkpoint inhib-

itor therapy, T cells show evidence of activation but not infiltra-

tion, and clinical responses are uncommon; therefore, T-cell

infiltration may be the critical response-limiting factor. Tumors

with an immune-desert phenotype are characterized by very low

numbers of effector T cells and may be more genomically stable.

They contain cell types associated with immunosuppression,

including regulatory T cells, myeloid-derived suppressor cells

(MDSC), and tumor-associated macrophages. This phenotype

reflects an absence of preexisting immunity, and such tumors are

unlikely to respond to checkpoint inhibitors (12).

Cabozantinib with Immunotherapy for Advanced RCC and UC
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To use checkpoint inhibitors more effectively, it will be neces-

sary to identify which patients are likely to respond, what are the

mechanisms of response and resistance, and how can patients

with a noninflamed, resistant tumor phenotype be converted to

responders. PD-L1 expression on tumor cells and immune cells is

a common feature of RCC (8, 15, 22) andUC (7, 30), although its

role as a predictive biomarker is unclear. In the CheckMate 214

study of untreated intermediate-/poor-risk mRCC patients, PFS

favored the combination of nivolumab plus ipilimumab over

sunitinib for patients with �1% tumor PD-L1 expression and

showed nobenefit for PD-L1–negative patients. However, OS and

ORR favored the combination regardless of PD-L1 status,

although the magnitude of benefit was greater for the PD-L1–

positive group (15). The CheckMate 025 trial of second-line

nivolumab showed a benefit regardless of tumor PD-L1 status

and did not support PD-L1 as a marker of response (8). With

atezolizumab plus bevacizumab, preliminary analyses from

IMmotion 151 showed no evidence that PD-L1 expression on

TILs correlated with response (22).

Elements of the genomic landscape contribute to an inflamed

tumor microenvironment and may predict response to check-

point inhibitors. These include defects in DNA damage repair

mechanisms and the resulting mutational load and tumor-

specific neoepitope expression (12). UC is characterized by a

relatively high tumor mutation burden (TMB) compared with

other solid tumors (34), and subgroup analyses of the CheckMate

275 and IMvigor 210 studies suggest that high TMB may predict

response to checkpoint inhibitors (35, 36). One study also

identified an 18-gene expression signature that included compo-

nents of the IFNg signaling pathway to predict response to

pembrolizumab in patients with several tumor types, including

UC (37).

TheRCCmicroenvironment is characterized by ahighdegree of

T-cell infiltration, indicating a strong preexisting immune

response (38). A balance of immune cells that promotes

antitumor immunity has been associated with a higher response

rate to checkpoint inhibitor monotherapy. Predictive baseline

immune-related biomarker signatures that include macrophages,

dendritic cells (DC), natural killer cells, B cells, and T cells (the

latter in the context of MHC class I) have been proposed for RCC,

UC, and other solid tumors (Table 1).

Gene expression data from The Cancer Genome Atlas indicate

that a considerable proportion of noninflamed tumors exist

within RCC and UC (39). It was found that noninflamed tumors

constituted 3% (18/525) of clear cell renal carcinomas, 20%

(52/257) of renal papillary cell carcinomas, 53% (35/66) of renal

chromophobe carcinomas, and 40% (139/344) of urothelial

carcinomas (S. Spranger; personal communication). Strategies

to induce T-cell infiltration may improve response to checkpoint

inhibitor therapy in patients with this noninflamed phenotype.

VEGF/VEGFR-targeting agents such as bevacizumab and sunitinib

have been shown to increase effector T-cell infiltration and

functionality, while decreasing the number and proportion of

inhibitory cell subsets such as regulatory T cells andMDSCs (40).

Given these immunomodulatory properties of VEGF-targeting

TKIs, combining them with checkpoint inhibitors would be

expected to promote an effective immune response in previously

noninflamed tumors.

The success of checkpoint inhibitor–TKI combination strate-

gies depends on the specific immunomodulatory activity of each

inhibitor, as well as intrinsic properties of the tumor-immune

microenvironment. Cabozantinib may be a suitable partner for

checkpoint inhibitors as it inhibits multiple receptor tyrosine

kinases in addition to VEGF [a number of which play a role in

immunosuppression (28, 41, 42)] and has demonstrated clinical

efficacy as a monotherapy in mRCC and mUC (23–25).

Combining Checkpoint Inhibitors with

Cabozantinib: Preclinical Studies

Cabozantinib is an inhibitor of multiple receptor tyrosine

kinases including VEGFR,MET, the TAMkinases, KIT, FLT3, TRKB,

and TIE2 (43). In addition to their roles in angiogenesis, tumor

growth, andmetastasis, several targets of cabozantinib play a role

in immunosuppression, particularly VEGFR, MET, and the TAM

kinases (17, 44–46). Inhibitionof these signalingmolecules likely

contributes to the antitumor immunomodulatory effect of

cabozantinib (Fig. 1; refs. 26, 28). Clear cell RCC (ccRCC) is a

highly angiogenic tumor owing to prevalent loss of von

Hippel–Lindau (VHL) function leading to VEGF overexpres-

sion (47). Increased levels of local and circulating VEGF have

immunosuppressive effects. VEGF inhibits differentiation of

monocytes into DCs and DC maturation and promotes the

accumulation and proliferation of immunosuppressive cell types

such asMDSCs and regulatory T cells (17, 48). These effects can be

reversed by inhibition of the VEGF pathway (48), and this is

clinically evidenced by the reduction in regulatory T cells and

MDSCs observed in mRCC patients following treatment with

bevacizumab or sunitinib (49, 50).

The loss of VHL may partly explain the prominent overexpres-

sion of MET in ccRCC (51), via upregulation of the HIF tran-

scription factor (52). MET overexpression is also evident in

mUC (53), but is not thought to result from specific genetic

alterations.MET signaling promotes tumor cell survival, invasion,

Table 1. Immune cell markers in patients with solid tumors and their correlation with improved response to checkpoint inhibitor or TKI therapy

Tumor Therapy Immune cell markers associated with improved response to therapy

mRCC (72) Atezolizumab * Increased baseline effector T-cell to regulatory T-cell gene expression ratio

mRCC (73) Nivolumab * Low baseline inflammatory index defined as platelets � neutrophils/lymphocytes

mRCC (22) Atezolizumab þ Bevacizumab * High effector T-cell signature gene expression

mRCC (74) Sunitinib * High tumor score for T-cell gene expression signatures (including CD8þ T cell, Th1 cell, Th2 cell,

Treg cell, and stromal cell)

mRCC (22) Sunitinib * High expression of angiogenesis gene signature

mUC (75) Nivolumab * High CD8 expression
* High CD8 combined with low epithelial–mesenchymal transition-associated gene expression

mUC (64) Cabozantinib * Low levels of Tregs at baseline
* Changes in Treg PD-1 expression

Abbreviations: Th, T helper cell; Treg, regulatory T cell.

Bergerot et al.
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and metastasis, and drives expression of PD-L1 in RCC tumor

cells (44). MET is also implicated in immune suppression and is

expressed on several immune cell subsets (54, 55). In a mouse

melanoma model, checkpoint blockade resulted in MET-

dependent recruitment of an immune-suppressive subset of neu-

trophils that blunted T-cell antitumor activity. This neutrophil-

mediated suppression was blocked by MET inhibition with a

concomitant increase in tumor response to checkpoint

inhibition (54).

The TAM kinases play an important role in maintaining

immune homeostasis and are expressed on innate immune cells

such as DCs, macrophages, monocytes, and natural killer

cells (45, 46). TAM receptor triple-knockout mice develop multi-

organ autoimmunedisease, reflecting the normal physiologic role

of these kinases in limiting immune responses. Tumor expression

of TAMkinases has been reported and is associatedwith resistance

to chemotherapy and TKIs (56). Increased expression of TAM

kinases has been associated with poor prognosis in mUC and

mRCC (57, 58).

AXL is themostwidely studiedTAMkinase familymember, and

its expression has been implicated in resistance to checkpoint

inhibitors due to T-cell exclusion. In preclinical models, AXL

expression on tumor cells suppressed MHC class 1 expression

and secretion of myeloid-promoting cytokines, and reduced

levels of immune cell infiltrate (59). In patients with melanoma,

increased AXL mRNA expression levels correlated with resistance

to anti–PD-1 therapy (60). Both AXL and MER may promote an

immunosuppressive phenotype in tumor-associated immune

cells; for example, AXL activation inhibits the activity of DCs (61),

whereas MER activation on tumor-associated macrophages pro-

motes polarization to an M2 immunosuppressive pheno-

type (62). Perhaps as a consequence, in anMER-knockout mouse

tumor model, tumors grew poorly; concentrations of tumor-

associated macrophages and CD8þ T cells were increased, along

with IL12 cytokine levels (63).

Several studies have highlighted the antitumor immunomod-

ulatory effects of cabozantinib, both indirectly via tumor-

associated immune cells and directly via tumor cells. In general,

the effects reported are consistentwith the target inhibition profile

of cabozantinib and the roles of the individual targets on tumor

and immune cells discussed above. The net effect of cabozantinib

in preclinical tumor models is promotion of a more immune-

permissive environment and enhancement of the activity of

immune-directed therapies. In vitro, treatment of tumor cells with

cabozantinib induces MHC class 1 expression, rendering the cells

more susceptible to T-cell–mediated killing (28). AXL suppresses

antigen presentation through MHC class 1 (59); therefore, it is

possible that inhibition of AXL plays a role in this outcome.

Cabozantinib also reversed theMET-dependent increase in PD-L1

expression observed in RCC tumor cells treated with the MET

ligand hepatocyte growth factor (HGF) (44).

The effects of cabozantinib on immune cells in vivo have been

studied in several preclinical models. In a murine colon cancer

model, cabozantinib increased tumorCD8þT-cell infiltration and

decreased the number of tumor-associated macrophages and

MDSCs, effects that were enhanced when cabozantinib was com-

bined with a cancer vaccine (28). In a murine castrate-resistant

prostate cancer (CRPC) model, cabozantinib induced tumor

clearance that was associated with increased release of neutrophil

chemotactic factors from tumor cells, and robust neutrophil

infiltration (42). In another CRPC model, cabozantinib reduced

the number and activity of MDSCs, impairing their ability to

suppress proliferation of effector T cells. Quantities of key cyto-

kines necessary for MDSC recruitment and function, such as

CCL5, CCL12, CD40, and HGF, were also reduced. In this model,

cabozantinib monotherapy or combined anti–CTLA-4/anti–PD-

1 checkpoint inhibitor therapy both had moderate effects on

tumor growth. However, cabozantinib synergized with dual

checkpoint inhibitor therapy when combined, with profound

effects on tumor growth and metastasis (41).

Although limited, available clinical data on the immunomod-

ulatory impact of cabozantinib are consistent with the preclinical

data. In a phase I trial of patients with mUC treated with

cabozantinib, a reduction in peripheral regulatory T cells was

observed (64). In a phase II trial of cabozantinib in patients with

triple-negative breast cancer, a sustained increase in CD8þ T cells

and a reduction in peripheral MDSCs were reported (65).

Together, these studies demonstrate an impact of cabozantinib

on cells of both the adaptive and innate immune system that

results in synergistic antitumor immune activation when com-

binedwith either checkpoint inhibition or a cancer vaccine. These

data provide a rationale for the ongoing clinical trials combining

cabozantinib with checkpoint inhibitors discussed below.

Clinical Studies

Checkpoint inhibitors with VEGF-targeting agents in RCC

Numerous clinical studies are investigating VEGF-targeted

agents in combination with checkpoint inhibitors in mRCC.

Bevacizumab, a VEGF-targetingmonoclonal antibody, combined

with atezolizumab, has yielded encouraging PFS compared with

sunitinib in the phase II IMotion150 study (22), particularly in

patients withmRCCwho have PD-L1 expression on�1% of TILs.

Based on these findings, the phase III IMmotion151 study eval-

uated the combination relative to sunitinib in treatment-na€�ve

patients with mRCC. The study met its first primary endpoint;

investigator-assessed PFS favored bevacizumab/atezolizumab

over sunitinib in patients with PD-L1 �1% (median PFS 11.2 vs.

7.7 months; HR, 0.74; 95% CI, 0.57–0.96), and the benefit was

maintained in the intention-to-treat population. However, PFS

assessed by independent review committee (IRC) showed no

difference between the treatment arms (median 8.9 vs.

7.2 months; HR, 0.93; 95% CI, 0.72–1.21), and OS data are

pending (22).

Axitinib primarily targets VEGFR1–3 and is approved for

use in mRCC in the second-line setting. Axitinib has shown

efficacy in combination with pembrolizumab or avelumab in

treatment-na€�ve patients with mRCC (20, 21). In the phase III

KEYNOTE-426 study, axitinib plus pembrolizumab improvedOS

(HR, 0.53; 95% CI, 0.38–0.74) and PFS (per IRC; HR, 0.69; 95%

CI, 0.57–0.84) relative to sunitinib. The ORR was 59% in the

axitinib plus pembrolizumab group and 36% in the sunitinib

group. The frequency of grade 3or higher AEswas similar between

treatment arms (76% vs. 71%); in the combination arm, 8% of

patients discontinued both axitinib and pembrolizumab due to

an AE, and 10% discontinued sunitinib (21). Recent results from

the phase III trial (JAVELIN renal 101) of axitinib plus avelumab

in treatment-na€�ve mRCC patients showed longer PFS (per IRC)

with the combination relative to sunitinib (20). For patients

with PD-L1–positive tumors (expression on �1% of immune

cells), median PFS was 13.8 months in the combination arm and

7.2 months in the sunitinib arm (HR, 0.61; 95% CI, 0.47–0.79),
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andORRwas 55% and 26%, respectively. The frequency of grade

3 or higher AEs was similar between treatment arms (71% and

72%), with AEs leading to discontinuation in 8% of the com-

bination arm and 13% of the sunitinib arm. Results for the

overall population were similar, and mature OS data are pend-

ing. Themajority of patients enrolled in this study were classified

as intermediate risk (byMemorial Sloan Kettering Cancer Center

criteria), which was also the case for the phase III IMmotion151

study of bevacizumab plus atezolizumab (22). As more data

from these and other phase III trials of immunotherapy with

VEGF-targeting agents emerge, it will be important to determine

efficacy across the different risk groups.

Lenvatinib, an inhibitor of VEGFR1–3, FGFR1–4, PDGFRa,

KIT, and RET (66), is being partnered with pembrolizumab. In a

phase Ib/II trial, ORR was 67% (20/30) for the combination.

Median PFS (per IRC) was 18months (95%CI, 9.6�undefined),

and median duration of response was 16.6 months (95% CI,

8.9�undefined).Grade3/4AEswere reported in 73%ofpatients,

and discontinuation of lenvatinib and pembrolizumab due to

AEs occurred in 20% and 27% of patients, respectively (67).

Checkpoint inhibitors with cabozantinib in RCC and UC

Cabozantinib is being evaluated in combination with a num-

ber of checkpoint inhibitors in ongoing trials (Table 2). Encour-

aging data have beenobserved in patientswithmUC,mRCC, and

other genitourinary tumors in a recent phase I study with expan-

sion cohorts (NCT02496208). Inpatientswithpreviously treated

metastatic genitourinary tumors (N ¼ 78), including patients

who received prior checkpoint inhibitor therapy (N ¼ 6), the

combination of cabozantinib and nivolumab (CaboNivo) with

or without ipilimumab (CaboNivoIpi) was tolerated and active.

ORR was 36% (23/64, including 20 partial responses and 3

complete responses) for all evaluable patients, 42% (8/19,

including 6 partial responses and 2 complete responses) for the

mUC cohort, and 54% (7/13, all partial responses) for the

RCC cohort. In the UC cohort, ORR for patients who received

CaboNivo was 50% (6/12), compared with 29% (2/7) for

CaboNivoIpi. Median PFS was 12.8 months (95% CI, 1.8–

undefined) for the UC cohort and 18.4 months (95% CI, 6.4–

18.4) for the RCC cohort. Median duration of response was

24.1 months (95% CI, 14.7–undefined); and at the time of data

cutoff, 70% of responses were ongoing (19).

Both CaboNivo and CaboNivoIpi demonstrated acceptable

toxicity profiles. Approximately 57% and 72% of patients in the

CaboNivo and CaboNivoIpi arms, respectively, experienced

grade 3/4 AEs. Of these, fatigue (12% and 11%) and hyperten-

sion (8% and 17%) were the most common (19). This is

consistent with the AE profile of cabozantinib in patients with

mRCC. In the METEOR phase III trial, 71% of patients with

mRCC receiving cabozantinib experienced grade 3/4 AEs, the

most common being hypertension (15%), diarrhea (13%), and

fatigue (11%; ref. 23). Tolerability was also consistent with that

of nivolumabmonotherapy (8). Increased aspartate aminotrans-

ferase (AST) and alanine aminotransferase (ALT) were common

in the combination arms, but were predominantly low-grade. In

the CaboNivo and CaboNivoIpi treatment arms, 55% and 37%

of patients had increased AST; 59% and 41% had increased ALT

(any grade). Grade 3/4 immune-related AEs were uncom-

mon (19). CheckMate 9ER, an ongoing phase III study, will now

evaluate CaboNivo compared with sunitinib as first-line therapy

in mRCC (NCT03141177). T
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An ongoing phase Ib study (NCT03170960) will evaluate

safety and efficacy of cabozantinib combined with atezolizumab

in patients with solid tumors. Preliminary results of the dose-

escalation stage show encouraging antitumor activity in patients

with previously treated or treatment-na€�ve advanced RCC, treated

with a standard dose of atezolizumab in combination with 40 or

60 mg cabozantinib (68). The ORR for 12 patients with RCC was

67%, with 80% (8/10) of ccRCC patients achieving a confirmed

objective response (1 complete response and 7 partial responses).

Toxicity of the cabozantinib/atezolizumab combination was

manageable; no dose-limiting toxicities were reported. Grade 3

AEs were experienced by 92% of patients, the most common

being hypertension (42%), diarrhea (17%), and hypophospha-

temia (17%). Grade 3 immune-related AEs were reported in 25%

of patients; there were no grade 4 or 5 AEs. Toxicity was managed

with dose reductions and/or dose holds, and all patients

remained on therapy as of data cutoff. Based on these results,

the 40 mg cabozantinib dose has been selected for expansion

cohorts, and recruitment is ongoing (68). In addition to safety

and efficacy outcomes, this study will investigate tumor and

plasmabiomarkers including tumorPD-L1,MET, andAXLexpres-

sion, circulating VEGF, and mutational load and immune cell

infiltrates. Phase I/II studies are also underway to evaluate cabo-

zantinib with pembrolizumab and cabozantinib with avelumab

in patients with mRCC (Table 2).

Summary and Future Directions

As we have outlined, the strategy of combining TKIs with

checkpoint inhibitors has a strongbiological rationale. It is possible

that patients with immunotherapy-resistant, noninflamed tumors

may be susceptible to TKI–checkpoint inhibitor combinations; the

immunomodulatorypropertiesof agents suchas cabozantinibmay

induce an inflamed phenotype, rendering these tumors more

responsive to checkpoint inhibitors. Although strategies of dual

checkpoint inhibition are emerging, existing regimens (e.g., nivo-

lumab/ipilimumab) are hampered by toxicity issues—severe

immune-related AEs are more common with these approaches

and may warrant extended use of high-dose steroids (15). Further-

more, combinations of checkpoint inhibitors with novel immu-

notherapy agents (e.g., pembrolizumab with the IDO inhibitor

epacadostat) have thus far failed to improve on response rates

achieved with monotherapy (69).

In addition to enhancing efficacy, combinations of TKIs with

checkpoint inhibitors may mitigate concerns over immune-

related AEs associated with dual checkpoint inhibition, given

their largely nonoverlapping toxicity profiles. Any potentially

overlapping toxicities, such as diarrhea and transaminitis, should

be distinguishable by their time course of onset (rapid for targeted

therapy and delayed for immunotherapy). In thismanner, appro-

priate supportive care measures can be employed, and dose

intensity can be preserved.

Various immune-cell markers have been proposed as biomar-

kers of improved response to TKIs or immunotherapies (Table 1),

although it is unclear whether these will translate to combination

therapies. Genetic markers of response are also under investiga-

tion; a composite genetic biomarker signature including TP53

mutation, wild-type VHL, and FLT1 C/C variant was recently

found to correlate with response to first-line VEGF therapy in

mRCC (70). MET expression correlates with poor prognosis (71),

andmay correlatewith response to cabozantinib (24). Circulating

plasma markers offer the benefit of noninvasive testing. Circu-

lating VEGF-A and acute-phase proteins have been suggested as

on-treatmentmarkers of response to atezolizumab inmRCC(72).

The role of PD-L1 as a predictive biomarker inmRCC andmUC is

unclear; cross-study comparisons are confounded by differences

in testing platforms and cutoff values for positivity. Further

studies will be needed to define the predictive value of PD-L1

expressionon tumor cells versus TILs. Because PD-L1 expression is

one of several characteristics of an inflamed tumor, it is possible

that composite biomarker signatures which identify an inflamed

versus noninflamed tumor microenvironment may identify

patients likely to respond to checkpoint inhibitor monotherapy,

and those likely to benefit from additional targeted therapy.

There are limited data regarding biomarkers with combined

TKI and checkpoint inhibitor therapy. Exploratory analyses of the

phase II IMmotion 150 trial showed that RCCpatients with a high

effector T-cell gene expression signature had an improved

response to atezolizumab plus bevacizumab, relative to patients

with a low effector T-cell expression score. Patients with this

high effector T-cell signature also had a higher response rate to

the combination treatment relative to sunitinib (22). Ongoing

biomarker studies may provide additional insight (e.g., explor-

atory endpoints of the phase I study with cabozantinib plus

atezolizumab; NCT03170960). Neoadjuvant trials are also

emerging, exploring regimens such as axitinib with avelumab

(NCT03341845). Studies such as these may provide an oppor-

tunity to correlate changes in the tumor and microenvironment

with response.

Conclusions

An increasing body of preclinical and clinical evidence sup-

ports the immunomodulatory role of VEGFR-targeted therapies

which may synergistically enhance the activity of checkpoint

inhibitors when administered concurrently. Additional targets

of cabozantinib are implicated in VEGF pathway inhibitor

resistance and immunosuppression, thereby differentiating

cabozantinib from other VEGF-targeting agents and providing

a strong rationale for partnering cabozantinib with checkpoint

inhibitors. Early clinical evidence shows that this combination

is active in mRCC and mUC, with durable responses and

acceptable tolerability. Ongoing clinical studies will evaluate

cabozantinib in combination with nivolumab, as well as ate-

zolizumab, pembrolizumab, and avelumab in mUC and

mRCC.
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