
Cache-Adaptive Analysis

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Bender, Michael A., Erik D. Demaine, Roozbeh Ebrahimi, Jeremy T.
Fineman, Rob Johnson, Andrea Lincoln, Jayson Lynch, and Samuel
McCauley. “Cache-Adaptive Analysis.” Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures
- SPAA ’16 (2016), Pacific Grove, California, USA, July 11-13, 2016,
pp.135-144.

As Published http://dx.doi.org/10.1145/2935764.2935798

Publisher Association for Computing Machinery (ACM)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/110857

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/110857
http://creativecommons.org/licenses/by-nc-sa/4.0/

Cache-Adaptive Analysis

Michael A. Bender † Erik D. Demaine‡ Roozbeh Ebrahimi§ Jeremy T. Fineman¶

Rob Johnson† Andrea Lincoln‖ Jayson Lynch‡ Samuel McCauley†

ABSTRACT
Memory efficiency and locality have substantial impact on
the performance of programs, particularly when operating
on large data sets. Thus, memory- or I/O-efficient algo-
rithms have received significant attention both in theory
and practice. The widespread deployment of multicore ma-
chines, however, brings new challenges. Specifically, since
the memory (RAM) is shared across multiple processes, the
effective memory-size allocated to each process fluctuates
over time.

This paper presents techniques for designing and ana-
lyzing algorithms in a cache-adaptive setting, where the
RAM available to the algorithm changes over time. These
techniques make analyzing algorithms in the cache-adaptive
model almost as easy as in the external memory, or DAM
model. Our techniques enable us to analyze a wide vari-
ety of algorithms — Master-Method-style algorithms, Akra-
Bazzi-style algorithms, collections of mutually recursive al-
gorithms, and algorithms, such as FFT, that break problems
of size N into subproblems of size Θ(Nc).

This research was supported in part by NSF grants
CCF 1114809, CCF 1217708, CCF 1218188, CCF 1314633,
IIS 1247726, IIS 1251137, CNS 1408695, and CCF 1439084;
MADALGO - Center for Massive Data Algorithmics, a Cen-
ter of the Danish National Research Foundation; and a Stan-
ford Graduate Fellowship.
†Department of Computer Science, Stony Brook University,
Stony Brook, NY 11794-4400, USA. Email: {bender, rob,
smccauley}@cs.stonybrook.edu.
‡MIT Computer Science and Artificial Intelligence Lab-
oratory, 32 Vassar Street, Cambridge, MA 02139, USA.
Email: {edemaine,jaysonl}@mit.edu.
§Google Inc., 1600 Amphitheatre Parkway, Mountain View,
CA 94043 USA. Email: rebrahimi@google.com.
¶Department of Computer Science, Georgetown University,
37th and O Streets, N.W., Washington D.C. 20057, USA.
Email: jfineman@cs.georgetown.edu.
‖Department of Computer Science, Stanford Uni-
versity, Palo Alto, CA 94305 USA. Email: an-
dreali@cs.stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11 - 13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935798

We demonstrate the effectiveness of these techniques by
deriving several results:

• We give a simple recipe for determining whether com-
mon divide-and-conquer cache-oblivious algorithms
are optimally cache adaptive.
• We show how to bound an algorithm’s non-optimality.

We give a tight analysis showing that a class of cache-
oblivious algorithms is a logarithmic factor worse than
optimal.
• We show the generality of our techniques by ana-

lyzing the cache-oblivious FFT algorithm, which is
not covered by the above theorems. Nonetheless, the
same general techniques can show that it is at most
O(log logN) away from optimal in the cache adaptive
setting, and that this bound is tight.

These general theorems give concrete results about sev-
eral algorithms that could not be analyzed using earlier
techniques. For example, our results apply to Fast Fourier
Transform, matrix multiplication, Jacobi Multipass Filter,
and cache-oblivious dynamic-programming algorithms, such
as Longest Common Subsequence and Edit Distance.

Our results also give algorithm designers clear guidelines
for creating optimally cache-adaptive algorithms.

1. INTRODUCTION
Memory fluctuations are the norm on most computer sys-

tems. Each process’s share of memory changes dynamically
as other processes start, stop, or change their own demands
for memory. This phenomenon is particularly prevalent on
multi-core computers.

External-memory computations especially suffer from
these fluctuations. Examples include:

• joins and sorts in a database management system
(DBMS),
• irregular, I/O-bound, shared-memory parallel pro-

grams,
• cloud computing services running on shared hardware,

and essentially any external-memory computation running
on a time-sharing system.

Database and scientific computing researchers and prac-
titioners have recognized this problem for over two decades
[9, 18, 19], and have developed many sorting and join algo-
rithms [15, 20, 21, 25–27] that offer good empirical perfor-
mance when memory changes size dynamically. However,
most of these algorithms are designed to perform well in the
common case, but perform poorly in the worst case [3, 4].

http://dx.doi.org/10.1145/2935764.2935798

In contrast to this reality, most of today’s performance
models for external-memory computation assume a fixed in-
ternal memory size M (see, e.g., [24]) and hence algorithms
designed in these models cannot cope when M changes. This
means that most external-memory algorithms cannot take
advantage of memory freed by other processes, and can be-
gin thrashing if the system takes back too much memory.

Thus, there is a gap between the state of the world, where
memory fluctuations are the rule, and today’s tools for de-
signing and analyzing external-memory algorithms, which
assume fixed internal-memory sizes.

Barve and Vitter [3, 4] took the first major step to-
wards closing this gap by showing that worst-case, external-
memory bounds are possible in an environment where the
cache1 changes size. Barve and Vitter generalized the DAM
(disk-access machine) model [1] to allow the memory size
M to change periodically. They give optimal algorithms
for sorting, FFT, matrix multiplication, LU decomposition,
permutation, and buffer trees. Their work shows that it is
possible to specially design intricate algorithms to handle
adaptivity, but stops short of giving a general framework.

Bender et al. [7] took the next major step towards clos-
ing this gap between theoretical performance models and
real systems. They formally define the cache-adaptive
model,2 and prove that some—but not all—optimal cache-
oblivious3 algorithms [13, 14, 22] remain optimal when the
cache changes size dynamically. Specifically, if a recursive
cache-oblivious algorithm performs O(1) block transfers in
addition to its recursive calls, then it is optimally cache
adaptive. So is lazy funnel sort [8], despite not fitting this
recursive pattern. Bender et al.’s results are encouraging.
Because cache-oblivious algorithms are well understood, fre-
quently easy to design, and widely deployed, there is hope
that provably good cache-adaptive algorithms can also be
deployed in the field.

On the other hand, open questions remain. In particular,
the primary contribution of Bender et al. [7] was propos-
ing a computational model rather than an analysis tech-
nique. Is there an algorithmic toolkit for cache-adaptive
analysis so that future engineers could write their own cache-
oblivious algorithms and then quantify their adaptivity?
How can we analyze more general forms of recursive algo-
rithms, e.g., in the common case where the additive term
is ω(1)? (Examples include cache-oblivious FFT, some ver-
sions of cache-oblivious matrix multiply and mutually recur-
sive cache-oblivious dynamic programming algorithms such
as LCS [10], Edit Distance [10], and Jacobi Multipass Fil-
ter [22].) How can we prove that a recursive algorithm is
not optimally cache adaptive? For such algorithms, how far
are they from optimality? The point of the present paper is
to help answer these and other questions.

1We use “cache” to refer to the smaller level in any two-level
hierarchy. Because this paper emphasizes RAM and disk,
we use the terms “internal memory,” “RAM,” and “cache”
interchangeably.
2The cache-adaptive model allows memory to change size
more rapidly and unpredictably than the model of [3, 4],
meaning that cache-adaptive results are more likely to hold
up in the real world.
3Cache-oblivious algorithms are not parameterized by the
memory hierarchy, yet they often achieve provably optimal
performance for any static hierarchy; see Section 2.

Results
The contribution of this paper is a set of tools that make ana-
lyzing the performance of recursive algorithms in the cache-
adaptive setting almost as easy as analyzing their perfor-
mance in the DAM [1] or cache-oblivious/ideal-cache mod-
els [13, 14, 22]. Analyzing the performance of many algo-
rithms in the cache-adaptive model boils down to mechani-
cally transforming the recurrence relation for the algorithm’s
I/O complexity, solving this new recurrence, and comparing
the result to a problem-specific lower bound: if these bounds
are asymptotically equal, then the algorithm is optimal; if
they are not, then their ratio bounds how far the algorithm
is from optimal.

Our techniques are general. They can analyze a wide
variety of algorithms: Master-method-style algorithms [11],
Akra-Bazzi-style algorithms [2], algorithms made of several
mutually recursive functions, and algorithms, such as cache-
oblivious FFT, that break a problem of size N into subprob-
lems of size Θ(Nc).

Our results provide easy guidelines for cache-adaptive-
algorithm designers. For example, in the case of linear-
space-complexity Master-method-style algorithms, our re-
sults give an easy rule: if you want your algorithm to be
optimal in the cache-adaptive model, then it can perform
linear scans of size up to O(Nc), where c < 1, in addition to
its recursive calls. See Theorem 7.3 for the detailed criteria.

Our results suggest that the problem of designing and
analyzing algorithms that adapt to memory fluctuations is
tractable. The cache-adaptive model places almost no re-
strictions on how much and when memory can change size,
so results in the model can carry over to most real-world sys-
tems. Despite this generality, our method enables algorithm
designers to easily evaluate performance in this model.

We demonstrate our techniques by deriving several con-
crete results. (Below N refers to the input size.)
• We establish that cache-obliviousness does not always

lead to cache-adaptivity using a variation of the cache-
oblivious näıve matrix multiplication algorithm of Frigo
et al. [13]. While this variation is optimal in the DAM
model, it is a Θ(logN) factor away from optimal in the
cache-adaptive model. This result serves as a concrete
example of our more general techniques.
• We completely characterize when a Master-method-

style linear-space-complexity algorithm is optimal in the
cache-adaptive model; see Theorem 7.3. We show that
when such an algorithm is DAM-optimal, it is at most
an O(logN)-factor slower than optimal in the cache-
adaptive model.
• More generally, we completely characterize when a set of

mutually recursive linear-space-complexity Akra-Bazzi-
style algorithms are optimal in the cache-adaptive model
(Theorem 6.10 and Theorem 6.11).
We apply these theorems to show the cache-adaptive
optimality of mutually recursive algorithms such as
the cache-oblivious dynamic programming algorithms of
Chowdhury and Ramachandran [10] for Longest Com-
mon Subsequence and Edit Distance, and Prokop’s
cache-oblivious Jacobi Multipass Filter Algorithm [22].
• We show that the same techniques can be used to an-

alyze non-Akra-Bazzi-style algorithms. As an example,
we show that the cache-oblivious FFT algorithm [13] is
O(log logN) away from optimal.

Paper overview. The rest of the paper is organized as fol-
lows. Section 2 reviews the cache-adaptive model. Section 3
axiomatizes the notion of a progress bound, which are used
in many DAM optimality proofs.

Section 4 works through the analysis of a version of the
cache-oblivious matrix multiply algorithm of Frigo et al. [13].
This example shows how our results apply to a classic cache-
oblivious algorithm, and demonstrates the key ideas behind
our techniques. Section 5 generalizes these ideas to an easy-
to-use recipe for performing cache-adaptive analysis.

Section 6 gives a high-level overview of the core technical
idea of the paper. We show how to bound the progress an
algorithm can make on any memory profile. Section 7 de-
scribes our main cache-adaptive optimality characterization
theorems. We give an optimal cache-adaptivity character-
ization theorem for collections of mutually recursive Akra-
Bazzi-style algorithms. The proofs for the theorems given
in Section 7 appear in the full version of this paper.

The paper ends with a summary of concrete results about
specific algorithms that can be obtained using our methods.

2. CACHE-ADAPTIVE MODEL, DEFINI-
TIONS, AND ANALYTICAL TOOLS

The cache-adaptive model [7] is the same as the DAM
model [1] except that memory may change size after each
I/O (i.e., after each cache miss).4 Thus, the size of memory
is not a constant, but rather a function m(t) giving the size
of memory (in blocks) after the tth I/O. We also use M(t) =
B ·m(t) to represent the size, in words, of memory at time
t. We call m(t) and M(t) memory profiles in blocks and
words, respectively.

Optimality in the cache-adaptive model mirrors optimal-
ity in the DAM model. On every memory profile, an optimal
algorithm has worst-case I/O complexity within a constant
factor of any other algorithm’s worst-case I/O complexity.

However, in the cache-adaptive model it does not make
sense to compare two algorithms’ running times directly.
That is, given a profile m(t) and two algorithms A and B, we
cannot compare A and B’s performance by simply running
them on m(t) and comparing their running times. To see
why, suppose B performs one dummy I/O and then runs A.
By any reasonable definition, B’s running time should be
asymptotically no worse than A’s. But consider an input I
and profile m(t) that drops to very little memory as soon as
A(I) finishes. Now B may finish arbitrarily later than A.

Thus, we formalize optimality by comparing algorithms
using speed augmentation . Rather than granting an algo-
rithm extra time, we allow it to perform multiple I/Os per
time step in our analysis. Speed augmentation is a theoret-
ical tool to ensure that algorithms are compared on profiles
that provide the same overall resources up to a constant fac-
tor. Thus, rather than saying one algorithm is (say) twice
the speed of another, we say that it performs equally well
on hardware with half the latency. This gives the same intu-
ition as classic asymptotic analysis while being meaningful
in the cache-adaptive model.

Definition 2.1. Giving an algorithm A, c-speed augmen-
tation means that A may perform c I/Os in each step of
the memory profile.
4We use I/Os as a proxy for time because we are study-
ing I/O-bound algorithms—the algorithm spends most of
its time performing these I/Os (see [7]).

In order to make the definition of optimality in the CA
model as strong as possible, we allow algorithms to query
m(t), even into the future. Thus, an optimal algorithm in
the CA model is asymptotically as fast as any other algo-
rithm, even one that can see the future size of memory and
plan accordingly.5

However, allowing algorithms to query the memory pro-
file creates a problem: a P/poly algorithm may be able to
use the memory profile as a “reference string” to speed up its
computations on some memory profiles. We rule out this be-
havior by only permitting memory-monotone algorithms:

Definition 2.2. A memory monotone algorithm runs at
most a constant factor slower when given more memory.

Memory monotonicity is a weak restriction: all cache-
oblivious algorithms are memory monotone, as are LRU,
the optimal offline paging algorithm, and many other pag-
ing algorithms. Memory monotone also includes almost all
“reasonable” DAM-model algorithms. One notable excep-
tion is FIFO paging [6], which was recently shown not to be
memory monotone [12].

Definition 2.3. An algorithm A that solves problem P is
optimal in the cache-adaptive model if there exists a con-
stant c such that on all memory profiles and all sufficiently
large input sizes N , the worst-case running time of a c-speed-
augmented A is no worse than the worst-case running time
of any other (non-augmented) memory-monotone algorithm.

As in the DAM model, memory augmentation is needed
to show that LRU is constant competitive. We also use
memory augmentation to simplify our analyses.

Definition 2.4. For any memory profile m, we define a c-
memory augmented version of m as the profile m′(t) =
cm(t). Running an algorithm A with c-memory augmen-
tation on the profile m means running A on the c-memory
augmented profile of m.

If an algorithm is not parameterized by M or B, then we
say it is cache-oblivious. These algorithms are designed to
perform well without knowing the size of memory.

When analyzing cache-oblivious algorithms in the CA
model, we assume that the system performs automatic page
replacement. Belady’s algorithm [5] turns out to be an op-
timal offline paging algorithm in the CA model and the
least-recently-used (LRU) policy is O(1)-competitive with
resource augmentation [7].

The performance bounds for cache-oblivious algorithms
commonly rely on a so-called tall-cache assumption, which
means that there is a value H(B), polynomial in B, such
that M ≥ H(B). For example, for cache-oblivious sorting
or matrix transpose, H(B) = Θ(B2) [13]. We support these
kinds of analyses in the CA model as follows.

Definition 2.5. In the CA model, we say that a memory
profile M is H-tall if for all t ≥ 0, M(t) ≥ H(B).

Definition 2.6. Algorithm A has space complexity f(N)
if for all problems of size N , the number of distinct memory
locations accessed by A while processing I is Θ(f(N)).

Space complexity is often defined as the maximum mem-
ory location indexed. This definition is slightly more general.
5Note that while our model allows the algorithms to see
the future memory, the cache-oblivious algorithms presented
here do not take advantage of this—in fact, they are not even
aware of the present size of memory.

3. PROGRESS BOUNDS: HOW MUCH AN
ALGORITHM CAN DO ON A PROFILE

This section axiomatizes the notion of progress bounds,
which are used in many lower-bound proofs in the DAM
model, and develops tools to easily port progress bounds
from the DAM model to the CA model.

In the DAM model, a progress bound ρ(M,T) for a prob-
lem P gives an upper bound on the amount of progress
that any algorithm can make towards solving an instance
of P given M words of memory and T I/Os. A progress
requirement function R(N) gives a lower bound on the
amount of progress any algorithm must make in order to
solve all problem instances of size N . In the DAM model,
the I/O complexity of any algorithm must be at least
Ω(T ·R(N)/ρ(M,T)).

Example 3.1. The DAM sorting lower bound [1] says that,
after sorting each block, a comparison-based sorting algo-
rithm learns at most O(B log(M/B)) bits of information
per I/O, given M memory, and must learn Ω(N logN)
bits to sort. Thus, R(N) = Ω(N logN) and ρ(M,T) =
O(TB log(M/B)). Hence sorting in the DAM model takes
at least R(N)/ρ(M, 1) = Ω(N

B
logM/B N) I/Os.

Example 3.2. The DAM matrix multiplication lower
bound [16, 17, 23] states that, given M memory and M/B
I/Os, no naive matrix multiplication algorithm can per-

form more than O(M3/2) elementary multiplications, and

multiplying two
√
N ×

√
N matrices requires performing

Θ(N3/2) elementary multiplications. Thus ρ(M,M/B) =

M3/2 and R(N) = Θ(N3/2). Consequently, multiply-

ing two
√
N ×

√
N matrices requires M

B
R(N)/ρ(M, M

B
) =

Ω(MN3/2/(BM3/2)) = Ω(N
3/2

B
√
M

) I/Os.

We first generalize the notion of progress bounds to ar-
bitrary profiles. Given an arbitrary memory profile M(t),
we write ρ(M) as the upper bound on progress that any al-
gorithm can make on an instance of problem P when given
memory profile M(t).

Most6 progress bounds developed in the DAM model also
apply to the CA model because they are “memory-less”, i.e.,
the bound ρ(M, t) applies no matter what the size or content
of memory was before the t I/Os in question. In fact, in
the full version of this paper, we give a general method for
deriving progress bounds from DAM lower bounds based on
the red pebble game [23].

The only challenge to using DAM progress bounds on
arbitrary memory profiles in the CA model is that some
bounds apply only to time-spans during which memory does
not change size. For example, the matrix multiply progress
bound is defined only for M/B I/Os during which memory
is always of size M .

We solve this problem using square profiles. A profile
m(t) is square if time can be decomposed into a sequence
of regions t0 < t1 < . . . such that m(t) = ti+1 − ti for all
t ∈ [ti, ti+1). Square profiles are useful because we can apply
progress bounds, like the matrix multiply progress bound,
to each square independently and sum to get a bound on the
progress that any algorithm can make on the entire profile.
We use the notation �M to denote a square of size M words
by M/B I/Os, and we denote a square profile with squares

6In fact, all that we have found.

t

m(t)

ti ti+1 ti+2t∗i t∗i+1

ti+1 − ti

ti+2 − ti+1

2(ti+1 − ti)

(ti+1 − ti) + (ti+2 − ti)

m′(t)

4(ti+1 − ti)

Figure 1: The inner square profile of memory profile m(t).

of size M1, . . . ,Mk as �M1 ‖ · · · ‖�Mk
. We generalize ρ from

the DAM model to squares as ρ(�M) = ρ(M,M/B).
We can then generalize these bounds to arbitrary pro-

files by using inner square profiles [7]. The inner square
profile of a profile M is constructed by greedily packing the
largest-possible squares under M from left to right, as shown
in Figure 1. Square profiles enable us to compute bounds
on the amount of progress that any algorithm can make on
an arbitrary memory profile.

Definition 3.3. For a memory profile m, the inner square
boundaries t0 < t1 < t2 < . . . of m are defined as follows:
Let t0 = 0. Recursively define ti+1 as the largest integer such
that ti+1− ti ≤ m(t) for all t ∈ [ti, ti+1). The inner square
profile of m is the profile m′ defined by m′(t) = ti+1 − ti
for all t ∈ [ti, ti+1) (see Figure 1).

Bender et al. [7] proved the following useful lemma about
inner square profiles.

Lemma 3.4. Let m be a memory profile where m(t+ 1) ≤
m(t) + 1 for all t. Let t0 < t1 < . . . be the inner square
boundaries of m, and m′ be the inner square profile of m.

1. For all t, m′(t) ≤ m(t).
2. For all i, ti+2 − ti+1 ≤ 2(ti+1 − ti).
3. For all i and t ∈ [ti+1, ti+2), m(t) ≤ 4(ti+1 − ti).

The following definitions axiomatize two technical but ob-
vious properties of progress functions: (1) that profiles with
more time and memory can support more progress, and (2)
that the progress possible on a square profile is just the sum
of the progress possible on each of its squares.

Intuitively, we say that one profile is smaller than an-
other, i.e., offers less memory and/or time, if it can be cut
into pieces, each of which fits underneath a corresponding
piece of the other.

Definition 3.5. Let M and U be any two profiles of finite
duration. We say that M is smaller than U , M ≺ U ,
if there exist profiles L1, L2 . . . Lk and U0, U1, U2 . . . Uk, such
that M = L1‖L2 . . . ‖Lk and U = U0‖U1‖U2 . . . ‖Uk, and for
each 1 ≤ i ≤ k,
(i) if di is the duration of Li, Ui has duration ≥ di, and
(ii) as standalone profiles, Li is always below Ui.

Definition 3.6. A function ρ : N∗ → N is monotonically
increasing if for any profiles M and U , M ≺ U implies
ρ(M) ≤ ρ(U).

Second, we assume that the progress on a square profile
should be, essentially, the sum of the progress possible on
each square.

Definition 3.7. Let M1‖M2 indicate concatenation of pro-
files M1 and M2. A monotonically increasing function
ρ : N∗ → N is square-additive if (i) ρ(�M) is bounded
by a polynomial in M , and (ii) ρ(�M1 ‖ · · · ‖�Mk

) =

Θ(
∑k
i=1 ρ(�Mi

)).

With these requirements in mind, we can axiomatize the
notion of progress bound.

Definition 3.8. A problem has a progress bound if
there exists a monotonically increasing polynomial-bounded
progress-requirement function R : N→ N and a square-
additive progress limit function ρ : N∗ → N such that:
For any profile M , if ρ(M) < R(N), then no memory-
monotone algorithm running under profile M can solve all
problem instances of size N .

We also refer to the progress limit function ρ as the
progress function or progress bound .

3.1 Optimally-Progressing Algorithms
In this paper, we prove that algorithms are optimal (or

non-optimal) by analyzing whether they always make within
a constant factor of the maximum possible progress on a
profile. An algorithm is optimally progressing if, for every
usable profile m that is just long enough for the algorithm
to solve all problems of size N , ρ(m) = O(R(N)). We first
define what it means for a profile to be “usable” and “just
long enough”and then define optimally progressing formally.

The CA model allows memory to increase or decrease ar-
bitrarily from one time step to the next. However, since
an algorithm can only load one block into memory per time
step, its memory usage can only increase by one block per
time step.

Definition 3.9. An h-tall memory profile m is usable if
m(0) = h(B) and if m increases by at most 1 block per time
step, i.e. m(t+ 1) ≤ m(t) + 1 for all t.

Definition 3.10. For an algorithm A and problem instance
I we say a profile M of length ` is I-fitting if A requires
exactly ` time steps to process input I on profile M . A profile
M is N-feasible for A if A, given profile M , can complete
its execution on all instances of size N . We further say that
M is N-fitting for A if it is N-feasible and there exists
at least one instance I of size N for which M is I-fitting.
(When A is understood, we will simply say that M is N-
feasible, N-fitting, etc.)

Definition 3.11. For an algorithm A, integer N , and N-
feasible profile M(t), let MN (t) denote the N-fitting prefix
of M . We say that algorithm A with tall-cache requirement
H is optimally progressing with respect to a progress
bound ρ (or simply optimally progressing if ρ is understood)
if, for every integer N and N-feasible H-tall usable profile
M , ρ(MN) = O(R(N)).

The following two lemmas show that usable profiles and
square profiles support essentially the same amount of
progress. This implies that, if a memory-monotone algo-
rithm is optimally progressing on all usable profiles, then
it is optimally progressing on all square profiles, and vice

versa. This enables us to focus exclusively on square pro-
files, which are easier to analyze, when proving algorithms
optimal (or non-optimal) in the CA model.

Lemma 3.12. If ρ is square additive and M is a usable
profile with inner square profile M ′, then ρ(M) = Θ(ρ(M ′)).

Proof. Since ρ is monotonic and M ′(t) ≤ M(t) for all t,
ρ(M ′) ≤ ρ(M). Let M ′4,4 be the 4-speed and 4-memory
augmented version of M ′. Since ρ is square-additive and
since ρ(�N) is bounded by a polynomial in N , ρ(M ′4,4) =
O(ρ(M ′)).

We prove that M ≺M ′4,4. Thus, by monotonicity of ρ,

ρ(M ′) ≤ ρ(M) ≤ ρ(M ′4,4) = O(ρ(M ′)),

which means that ρ(M) = Θ(ρ(M ′)).
Let M [Si] denote the profile M restricted to the interval

Si. Let k + 1 be the number of inner squares in M ′. Define
L1 = M [S1 ∪ S2], L2 = M [S3], . . . , Lk = M [Sk+1], and note
that M = L1‖L2‖ . . . ‖Lk. Also, define Ui to be a 4-speed
4-memory augmented version of square Si and allow U ′k =
Uk‖Uk+1. Notice that M ′4,4 = U1‖U2‖ . . . Uk−1‖U ′k.

In order to prove that M ≺ M ′4,4, we show that each Ui,
1 ≤ i ≤ k− 1 satisfies the three conditions of Definition 3.5,
and U ′k satisfies the first two conditions of Definition 3.5.

We start by considering U1 and L1. If M is H(B)-tall,
by Definition 3.9 we have that M(0) = H(B). By Defini-
tion 3.3, we have that t1 = H(B) and since m(t + 1) ≤
m(t) + 1, we have that for all t ∈ [0, t1), M(t) ≤ 2t1. More-
over, by Lemma 3.4, we know that S2 is at most twice as
long as S1 and for all t ∈ [t1, t2), M(t) ≤ 4(t1 − t0) = 4|S1|.
Hence, t2 ≤ 3t1, and for all t ∈ [0, t2), M(t) ≤ 4|S1|. Be-
cause U1 is a 4-speed 4-memory augmented version of S1, we
have that (i) U1 has a longer duration than L1 = M [S1∪M2],
and that (ii) L1 is below U1.

Similarly, for each Ui, 2 ≤ i ≤ k, by Lemma 3.4, we
know that Si+1 is at most twice as long as Si and for all
t ∈ [ti+1, ti+2), M(t) ≤ 4(ti+1 − ti) = 4|Si|. Because Ui is
a 4-speed 4-memory augmented version of Si, we have that
(i) Ui has a longer duration than Li = M [Si+1], and that
(ii) Li is below Ui.

By repeating the above argument for Uk, we see that (i)
Uk has a longer duration than Lk = M [Sk+1], and that
(ii) Lk is below Uk. This means that U ′k = Uk‖Uk+1 also
satisfies both of the above conditions. Therefore, we have
shown that M ≺M ′4,4 and the lemma is complete.

M(t)

t

U(t)

W

Figure 2: The usable profile beneath each square profile.

Lemma 3.13. Let ρ be square additive. For every H-tall
square memory profile M , there exists a usable memory pro-
file U below M such that ρ(U) = Θ(ρ(M)).

Proof. Let M = �M1 ‖�M2 ‖ . . .�Mk
be any square profile.

We construct a usable profile U as follows. We set U(x) =
H(B) + x for x ∈ [0,≤ M1 − H(B)] and U(x) = M1 for
x ∈ (M1 − H(B),M1). For i ≥ 2, U does the following on
the interval [ti, ti +Mi) covered by the ith square of M ,

(i) If Mi ≤Mi−1, we let U(x) = Mi for x ∈ [ti, ti +Mi).
(ii) If Mi > Mi−1, let U(x) = Mi−1+x for x ∈ [ti, ti+Mi−

Mi−1] and U(x) = Mi for x ∈ (ti+Mi−Mi−1, ti+Mi).
See Figure 2 for an illustration. Clearly we have U ≺M , so
by monotonocity of ρ, we have that ρ(U) ≤ ρ(M).

We now argue that ρ(U) = Ω(ρ(M)). To exhibit this, we
show that there exist mutually disjoint squares �Wi

, that all
fit below U and for each i, �Wi

is at most 2 times shorter
than �Mi

. Since each �Wi
fits below U , we have that W ≺

U where W = �W1 ‖�W2 ‖ . . .�Wk
. On the other hand,

since ρ is square-additive, ρ is bounded by a polynomial
and thus ρ(�Wi

) = Θ(ρ(�Mi
)). Square-additivity of ρ also

means that ρ(W) = Θ(ρ(M)). Since ρ(W) ≤ ρ(U) the
statement follows.

It remains to show that such �Wi
exist for each i. For each

i, if �Ui
= �Mi

(as in case (i) above), we allow �Wi
= �Mi

.
Otherwise (as in case (ii) above), we let �Wi

be a square
that is grown from the rightmost point of �Mi

diagonally
to left until it touches U , see Figure 2. Note that because
U increases linearly at the beginning of �Mi

until it reaches
Mi, the point of �Wi

intersecting U is always on or above
the diagonal of �Mi

. Therefore, the height of Wi is at least
1/2 the height of Mi.

Thus, between Lemma 3.12 and Lemma 3.13 we are able
to use square profiles for both upper and lower bounds with-
out loss of generality.

Finally, our proofs focus on showing that an algorithm
is optimally progressing. This lemma justifies this focus—
showing that an algorithm is optimally progressing is suffi-
cient to show that it is cache-adaptive.

Lemma 3.14. If an algorithm A is optimally progressing,
then it is optimally cache adaptive.

While optimally progressing is sufficient for adaptivity, we
do not know if it is necessary—it remains an open question
if there are algorithms that are optimally cache-adaptive
but not optimally progressing. On the other hand, progress
optimality and competitive optimality are equivalent in the
DAM model. (See the full version for the proof.)

4. MATRIX MULTIPLY: A TALE OF TWO
ALGORITHMS

This section provides a concrete example of our approach
by working through the analysis of two cache-oblivious ma-
trix multiplication algorithms.

We analyze two variants of the cache-oblivious matrix
multiplication algorithm of Frigo et al. [13], which we call
MM-Inplace and MM-Scan. Both algorithms divide each
input matrix into four submatrices and perform eight re-
cursive calls to compute submatrix products. Both run
in O(N3/2/

√
MB) I/Os in the DAM model, which is op-

timal [16,17].

Remarkably, only MM-inplace is optimally cache adap-
tive; MM-scan is a Θ(log(N/B2)) factor away from being
optimal in the cache-adaptive model. This shows that cache-
oblivious algorithms are not always cache adaptive.

The two algorithms differ in how they combine the eight
matrix sub-products. MM-Scan adds the eight matrix sub-
products in one final linear scan, yielding a recurrence of
T (N) = 8T (N/4) + Θ(1 + N/B) in DAM. MM-Inplace
computes the eight matrix sub-products “in place,” adding
the results of elementary multiplications into the output ma-
trix as soon as it computes them, and yielding a recurrence
of T (N) = 8T (N/4) +O(1) in the DAM model. Both algo-
rithms require a tall cache of Θ(B2) and both recurrences
have the same solution in the DAM model.

However, the linear scans of MM-Scan are wasteful if
they execute when memory is plentiful. For each input size
N , we can construct a profile W ∗N that causes MM-Scan
to run inefficiently by giving the algorithm lots of memory
during its scans, when it can’t use it, and very little mem-
ory at other times. As a result, the profile W ∗N will have a
recursive structure that mimics that of MM-Scan: where
MM-Scan performs a linear scan of size Θ(N), W ∗N will con-
tain a square of size Θ(N). When MM-Scan performs a
recursive call on a problem of size N/4, W ∗N will have a copy
of W ∗N/4. Hence ρ(W ∗N), the progress possible on W ∗N , will
satisfy a recurrence relation very similar to the recurrence
relation for MM-Scan. Where MM-Scan’s recurrence re-
lation has a term of the form Θ(N/B), corresponding to a
linear scan of size N , ρ(W ∗N)’s recurrence will have a term
of the form ρ(�N). This will enable us to solve explicitly for
ρ(W ∗N), yielding a concrete counter-example to the optimal-
ity of MM-Scan.

Theorem 4.1. The cache-oblivious matrix multiplication
algorithm MM-Scan is a Ω(log(N/B2)) factor away from
being optimal when solving problem instances of size N .

Sketch. We show in Theorem 7.3 that MM-Inplace is op-
timally progressing; intuitively, this is because nearly all of
its computation time is spent in recursive calls.

The construction of W ∗N works as follows. Let λ = Θ(B2)
be the tall cache requirment for MM-Scan. Memory starts
out at size λ. Whenever MM-Scan starts a linear scan
of size L ≥ 2λ with λ memory, it will necessarily incur
Θ((L−λ)/B) = Θ(L/B) page faults, no matter how memory
changes size during the scan. Thus we can increase memory
to size Θ(L) for the next Θ(L/B) time steps. At the last
time step of the linear scan, we drop memory back to λ.

We now compute ρ(W ∗N). From Example 3.2, no naive

matrix multiply algorithm can do more than O(M3/2) el-
ementary multiplications given M words of memory and
M/B I/Os [23]. Thus ρ(�M) = Θ(M3/2). Since the top-
level recursion performs a linear scan of size Θ(N), W ∗N con-
tains a square of size Θ(N), which contributes Θ(ρ(�N)) to
ρ(W ∗N). Further, W ∗N contains eight copies of W ∗N/4—one
for each recursive call made by MM-Scan. Thus ρ(W ∗N)
satisfies the recurrence

ρ(W ∗N) = 8ρ(W ∗N/4) + Θ(ρ(�N)) = 8ρ(W ∗N/4) + Θ(N3/2)

with base case ρ(W ∗N) = Θ(B3/2) when N = O(B2). Thus

ρ(W ∗N) = Θ(N3/2 log(N/B2)). Since MM-Scan finishes at
the last time step of WN , WN is N -fitting for MM-Scan.

A problem of size N requires R(N) = Θ(N3/2) total mul-

tiplications. Since MM-Scan only makes O(N3/2) progress

onW ∗N butW ∗N supports Θ(N3/2 log(N/B2)) progress, MM-
Scan is Ω(log(N/B2)) less than optimally progressing.

5. A GENERAL RECIPE FOR ANA-
LYZING ALGORITHMS IN THE CA
MODEL

We now explain how to generalize the construction from
Section 4 to obtain a simple recipe for testing whether a
recursive linear-space cache-oblivious algorithm is optimally
progressing.

The method from Section 4 can be used to construct a
profile W ∗N for any cache-oblivious algorithm. Whenever
ρ(W ∗N) = ω(R(N)), the algorithm is not optimal.

The main technical challenge of this paper is to show that
W ∗N is, for many algorithms, the worst possible profile, up
to constant factors. Thus, an algorithm is optimally pro-
gressing if and only if ρ(W ∗N) = O(R(N)).

Since ρ(W ∗N) satisfies, by construction, a recurrence that
we can easily derive from the program’s structure, this
gives us an easy way to analyze Master-method-style cache-
oblivious algorithms in the CA model.

1. Write down the recurrence for T (N), the algorithm’s
I/O complexity in the DAM model:

T (N) = aT (N/b) + Θ(Nc/B).

2. Derive the recurrence for ρ(WN) by replacing terms of
the form T (X) with ρ(WX) and terms corresponding
to linear scans of size X with ρ(�X):

T (N) = aT (N/b) + Θ(Nc/B)

⇓
ρ(WN) = aρ(WN/b) + Θ(ρ(�Nc)).

3. Solve the recurrence for ρ(WN).
4. Compare the solution to R(N). If ρ(WN) = O(R(N)),

then the algorithm is optimal. Otherwise, their ratio
bounds how far the algorithm is from optimal.

In fact, we can explicitly solve the recurrence to obtain a
simple theorem characterizing when linear-space complex-
ity cache-oblivious Master-method-style algorithms are op-
timally progressing in the CA model (see Theorem 7.2).

The same basic technique works for Akra-Bazzi-style algo-
rithms and even for collections of mutually-recursive Akra-
Bazzi-style algorithms (see Theorem 6.10). Although Theo-
rem 6.10 looks complex, the basic idea is the same.

1. Write down the recurrence relation for the I/O com-
plexity of the algorithm.

2. Derive three new recurrences by performing the trans-
formations specified in Theorem 6.10.

3. Solve these recurrences and compare to R(N).
We explore these generalizations in Sections 6 and 7.

6. BOUNDING THE WORST-CASE PRO-
FILE

This section formalizes the recipe described in Section 5.
We first define the structure of algorithms covered by our
theorems and then prove bounds on the progress possible
on their worst-case profiles.

We first need to formalize the notion of a linear scan .
When a cache-efficient recursive algorithm is not making re-
cursive calls, the work it does must be I/O efficient. We refer

to this work as a linear scan . Note that under our defini-
tion, a linear scan need not access a sequence of consecutive
elements, as in a classical linear scan. However, it must be
efficient—accessing Ω(B) useful locations on average, plus
O(1) additional I/Os.

Definition 6.1. We say that algorithm L is a linear scan
of size ` if it accesses ` distinct locations, it performs Θ(`)
memory references, and its I/O complexity is Θ(1 + `/B).

This definition captures a wide variety of efficient cache-
oblivious behaviors. Note that, in the definition, a linear
scan might not access every element of its input (e.g., a
search for a specific item in an array), it might not access the
pages in sequential order (e.g., cache-oblivious matrix trans-
pose [13]), and the order of accesses can be data-dependent
(e.g., the merge operation from merge-sort).

Note that some linear scans and algorithms are I/O ef-
ficient only under a tall-cache assumption. For example,
for cache-oblivious sorting or matrix transpose, H(B) =
Θ(B2) [13]. Thus the definition of a scan depends implicitly
on the memory profile.

A particular type of linear scans only access a small num-
ber of locations. This may occur when, for example, an al-
gorithm does O(1) work at the beginning of a recursive call
to set up the computation, or when recursive calls decrease
the size of the linear scan below the block size.

Definition 6.2. When the size of a linear scan in an invo-
cation of an algorithm is ≤ B, we refer to it as an overhead
reference. An overhead reference costs Θ(1) I/Os.

We can now define the class of algorithms covered by
our theorems. Briefly, these algorithms are collections of
mutually recursive Akra-Bazzi-style algorithms, i.e. they
make a constant number of recursive calls on sub-problems
a constant factor smaller than their input, and perform lin-
ear scans. This class covers everything from simple algo-
rithms, such as the matrix multiplication algorithms de-
scribed earlier, to advanced cache-oblivious algorithms, such
as the cache-oblivious longest-common-subsequence (LCS)
and Edit Distance algorithms of Chowdhury and Ramachan-
dran [10], and the cache-oblivious Jacobi Multipass Filter
algorithm of Prokop [22].

Definition 6.3. Let 0 ≤ cj ≤ 1 and fj ≥ 1 be constants
for j = 1, . . . , e. Also let aji > 0, and 0 < bji < 1
be constants for j = 1, . . . , e, and i = 1, . . . , fj. Algo-
rithms A1, . . . , Ae are generalized compositional regular
(GCR) algorithms if, for all i, Aj on an input of size N

(i) makes aji calls to algorithm Aji on subproblems of size
bjiN . Algorithm Aji is one of A1, . . . , Ae.

(ii) performs Θ(1) linear scans before, between, or after
its calls, where the size of the biggest linear scan is
Θ(Ncj).

Algorithms A1, . . . , Ae are perfect generalized compositional
regular (PGCR) algorithms, if for every j the size of all of
Aj’s linear scans is Θ(Ncj).

We can now define the worst-case profile for an algorithm.

Definition 6.4. Algorithm A’s worst-case profile for in-
puts of size N among all profiles that are λ-tall is

WA,N,λ = argmax{ρ(M) |M is N-fitting, λ-tall, usable}.

When λ is omitted, we assume that λ equals the tall-cache
requirement for A, H(B),

WA,N = WA,N,H =

argmax{ρ(M) |M is N-fitting, H-tall, usable}. (1)

The following lemma, which follows directly from the def-
initions, enables us to analyze algorithms by looking at only
their worst-case profiles.

Lemma 6.5. If ρ(WA,N,λ) = O(R(N)), then A is optimally
progressing on all λ-tall profiles.

When combined with Lemma 3.12, the above lemma
means we can analyze algorithms by looking at only their
worst-case square profiles.

The worst-case profile, or its inner square profile, does
not have to respect the recursive structure of A. For exam-
ple, squares can cross recursive boundaries, cover multiple
recursive invocations, span multiple linear scans, etc. Any
analysis based solely on the recursive structure of the algo-
rithm must handle the fact that the profile may not nicely
line up with the algorithm.

To solve this problem, we first establish a mapping from
squares of any N -fitting square profile to recursive calls and
linear scans performed by A.

The following definition defines three conditions under
which the progress from a square can be charged to a linear
scan, recursive call, or overhead reference.

Definition 6.6. When A executes on a square profile M(t),
we say a square S of M overlaps a linear scan L if at least
one memory reference of L is served during S. Similarly, we
say S encompasses A’s execution on a subproblem if every
memory reference A makes while solving the subproblem is
served during S. Finally, we say S contains an overhead
reference R if at least half of the references of R are served
during S.

We now define when we can charge every square of a pro-
file to a linear scan, recursive call, or overhead reference.

Definition 6.7. Let A1, . . . , Ae be generalized compositional
regular (GCR) algorithms all with linear space complexity.
We say that a square profile M of length ` is N-chargeable
with respect to Aj , if every square S of M satisfies at least
one of the following three properties when M is considered
with respect to Aj’s execution on any problem instance of
size N that takes exactly ` steps to process.
(i) S encompasses an execution of any of A1, . . . , Ae on a

subproblem of size Θ(|S|).
(ii) S overlaps a linear scan of size Ω(|S|).
(iii) S contains Θ(|S|/B) overhead references.

Finally, we prove that, for GCR algorithms with linear
space complexity, every profile is N -chargeable.

Lemma 6.8. Let e be a constant and let A1, . . . , Ae be per-
fect generalized compositional regular (PCGR) algorithms,
all with linear space complexity. Then every N-fitting square
profile for Aj is N-chargeable with respect to Aj.

To see why, consider a square of size S that does not over-
lap a linear scan of size Ω(S). Such a square must contain
entire executions that access Θ(S) distinct locations. And
since all the algorithms have linear space complexity, any
execution that touches Θ(S) distinct locations must be on

a subproblem of size Θ(S). (See the full version for the
complete proof.)

Finally, we bound the size of boxes that contain mostly
overhead references, which means that they can be ignored
when analyzing many algorithms.

Lemma 6.9. Let A1, . . . , Ae be a set of generalized compo-
sitional regular algorithms all with linear space complexity
and let q = max{bji}. Let M be an N-chargeable profile
with respect to Aj. Each square of M that does not sat-
isfy property (i) nor property (ii) in Definition 6.7 has size

O
(
B log1/qX(S)

)
.

These two lemmas give us the “recurrence-rewriting” rule
outlined in Section 5. The progress on each square of a pro-
file can be charged to either (1) a linear scan of size at least
as large as the square, (2) a subproblem of size proportional
to the square, or (3) overhead references, although in the
last case the square cannot be very large. Theorem 6.10 (at
the top of the next page) summarizes this result.

The following theorem, proven in the full version, gives a
corresponding lower bound on the progress of the worst-case
profile. While Theorem 6.10 can show that an algorithm is
optimally progressing, Theorem 6.11 gives a recipe to prove
that an algorithm is not optimally progressing.

Theorem 6.11. Suppose A1, . . . , Ae are generalized com-
positional regular algorithms with linear space complexity,
tall-cache requirement H(B), and progress bound ρ. Let λ =
max{H(B), (B log1/bB)1+ε}, where ε is any constant larger
than 0. When all cj = 1, the bound in Theorem 6.10 is tight,
meaning that ρ(WAj ,N,λ), is Θ(Tj(N) + Uj(N) + Vj(N)).

7. OPTIMALITY CRITERIA FOR MANY
MASTER-METHOD-STYLE ALGO-
RITHMS

Theorem 6.10, Theorem 6.11, and Lemma 6.5 provide an
easy way to test whether a linear-space GCR algorithm is
optimally progressing: derive the recurrences on Ti, Ui, and
Vi from the structure of the algorithm, solve the recurrences,
and check whether Ti(N) + Ui(N) + Vi(N) = O(R(N)).

Although we can’t give a general solution for all possible
Ti, Ui, and Vi, we can use this method to derive a simple
test for Master-method-style algorithms.

We first define the class of Master-theorem-style algo-
rithms covered by our optimality criterion. Note that this
class is more general than the constant-overhead recursive
(COR) form algorithms covered by previous work [7]. Note
also that c ≤ 1 is implied by the linear space restriction.

Definition 7.1. Let a ≥ 1/b, 0 < b < 1, and 0 ≤ c ≤ 1 be
constants. A linear-space algorithm is (a, b, c)-regular if,
for inputs of sufficiently large size N , it makes

(i) exactly a recursive calls on subproblems of size bN , and

(ii) Θ(1) linear scans before, between, or after recursive
calls, where the size of the biggest scan is Θ(Nc).

We will prove that a DAM-optimal linear-space-
complexity (a, b, c)-regular algorithm is optimal in the CA
model if and only if c < 1. We first solve the recurrence
from Theorem 6.10 for the special case of (a,b,c)-regular al-
gorithms to get a simple bound on ρ(WN).

Theorem 6.10. Let 0 ≤ cj ≤ 1 and fj ≥ 1 be constants for j = 1, . . . , e. Also let aji > 0, and 0 < bji < 1 be constants
for j = 1, . . . , e, and i = 1, . . . , fj. Suppose A1, . . . , Ae are generalized compositional regular algorithms all with linear space
complexity, tall-cache requirement H(B), and progress bound ρ.
Let b = max{bji} and λ ≥ H(B) be constants. Then there exist functions T1, . . . , Te; U1, . . . ,Ue; V1, . . . ,Ve such that the
progress of the worst-case λ-tall profile for Aj, ρ(WAj ,N,λ), is O(Tj(N) + Uj(N) + Vj(N)) and the Tj, Uj and Vj satisfy the
recurrences

Tj(N) =

max

ρ (�N) ,

fj∑
i=1

ajiTji(bjiN)

 if λ < N

Θ(ρ(�λ)) if N ≤ λ;

Uj(N) =

Θ (ρ(�Ncj)) +

fj∑
i=1

ajiUji(bjiN) if N = Ω(λ) and Ncj = Ω(λ)

fj∑
i=1

ajiUji(bjiN) if N = Ω(λ) and Ncj 6= Ω(λ)

0 if N 6= Ω(λ);

Vj(N) =

fj∑
i=1

ajiVji(bjiN) if B log1/bN = Ω(λ) and Ncj > B

Θ(ρ(�B log1/b N)) +

fj∑
i=1

ajiVji(bjiN) if B log1/bN = Ω(λ) and Ncj ≤ B

0 if B log1/bN 6= Ω(λ).

where Tji, Uji and Vji are one of T1, . . . , Te; U1, . . . ,Ue; V1, . . . ,Ve depending on the structure of Aj.

Theorem 7.2. Let A be an (a, b, c)-regular algorithm with
linear space complexity and tall-cache requirement H(B).
Suppose that A is optimal in the DAM model for a problem
with progress bound ρ(�X) = Θ(Xp), where p is a constant.
Assume that B ≥ 4. Pick an ε > 0, and let d = 3(1 + ε) and
λ = max{H(B), (dB log1/bB)1+ε}.

Then, ρ(WA,N,λ) is bounded by O(X (N)), where

X (N) =

{
Θ
(
N log1/b a log1/b

N
λ

)
if c = 1

Θ
(
N log1/b a

)
otherwise.

The following rule for optimality of (a, b, c)-regular algo-
rithms can be derived by comparing X (N) with R(N).

Theorem 7.3. Suppose A is an (a, b, c)-regular algorithm
with tall-cache requirement H(B) and linear space com-
plexity. Suppose also that, in the DAM model, A is
optimally progressing for a problem with progress bound
ρ(�N) = Θ(Np), for constant p. Assume B ≥ 4. Let

λ = max{H(B), ((1 + ε)B log1/bB)1+ε)}, where ε > 0.

1. If c < 1, then A is optimally progressing and optimally
cache-adaptive among all λ-tall profiles.

2. If c = 1, then A is Θ
(

log1/b
N
λ

)
away from being op-

timally progressing and O
(

log1/b
N
λ

)
away from being

optimally cache-adaptive.

8. APPLYING OUR TECHNIQUES
The techniques presented in this paper provide cookbook

methods for designing and analyzing a wide variety of cache-
adaptive algorithms. Figure 3 summarizes the result of ana-
lyzing several algorithms using this method. In addition to
analyzing algorithms that did not fit the requirements of pre-
vious analysis techniques, our approach enables us improve
on previous results by reducing the tall-cache requirements
for some algorithms.

The analysis of FFT is similar to the technique described
above, but requires a separate proof because FFT breaks
problems of size N into subproblems of size

√
N . The proof

uses the same idea: we determine the worst-case profile using
a charging argument, and use it to analyze the algorithm’s
performance. This shows that the technique is useful even
when Theorem 6.10 does not apply. See the full version for
complete proofs of all these results.

Algorithm Tall Cache Ratio to Optimal

Recursive-LCS O((B log2B)1+ε) Θ(1)
Edit-Distance O((B log2B)1+ε) Θ(1)
Jacobi O((B log2B)1+ε) Θ(1)
MM-Inplace O(B2) Θ(1)
FW-APSP O(B2) Θ(1)
M-Transpose O(B2) Θ(1)
FFT O(B2) Θ(log log(N/B2))

Figure 3: Adaptivity of several cache-oblivious algorithms.
All but FFT can be analyzed using the technique described
above. The analysis of FFT is similar, but requires a sep-
arate analysis because FFT breaks problems of size N into
subproblems of size

√
N .

9. CONCLUSION
This paper revisits one of the most important, but also

most difficult, problems in the design, analysis, and deploy-
ment of external-memory algorithms. We show that design-
ing and analyzing cache-adaptive algorithms is tractable.

But our results have broader implications for the cache
adaptive model itself.

In order for a computational model to be truly useful,
(1) it needs to capture an important phenomenon that peo-
ple care about, (2) its predictions have to be true-to-life,

and (3) it has to be simple enough to work with. There are
dozens of theoretical models capturing different aspects of
memory-hierarchy performance. The DAM [1] and cache-
oblivious [13,14,22] models have been so successful because
they satisfy these criteria so effectively.

The cache-adaptive model is already known to satisfy two
of these criteria. It captures the important phenomenon of
changes in cache size, which can strongly affect the perfor-
mance of algorithms on concurrent systems. It is true to life
because it imposes no unrealistic restrictions on changes in
the size of memory.

We believe that, by making it easy to analyze many al-
gorithms in the cache-adaptive model, the tools developed
in this paper provide the final piece necessary for the cache-
adaptive model to join the ranks of truly useful models, such
as the DAM and cache-oblivious models.

10. REFERENCES
[1] A. Aggarwal and S. Vitter, Jeffrey. The input/output

complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, Sept.
1988.

[2] M. Akra and L. Bazzi. On the solution of linear
recurrence equations. Computational Optimization and
Applications, 10(2):195–210, 1998.

[3] R. Barve and J. S. Vitter. External memory
algorithms with dynamically changing memory
allocations. Technical report, Duke University, 1998.

[4] R. D. Barve and J. S. Vitter. A theoretical framework
for memory-adaptive algorithms. In Proc. 40th Annual
Symposium on the Foundations of Computer Science
(FOCS), pages 273–284, 1999.

[5] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Journal of Research
and Development, 5(2):78–101, June 1966.

[6] L. A. Belady, R. A. Nelson, and G. S. Shedler. An
anomaly in space-time characteristics of certain
programs running in a paging machine.
Communications of the ACM, 12(6):349–353, 1969.

[7] M. A. Bender, R. Ebrahimi, J. T. Fineman,
G. Ghasemiesfeh, R. Johnson, and S. McCauley.
Cache-adaptive algorithms. In Proc. 25th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 958–971, 2014.

[8] G. S. Brodal and R. Fagerberg. Cache oblivious
distribution sweeping. In Proc. 29th International
Colloquium on Automata, Languages and
Programming (ICALP), pages 426–438.
Springer-Verlag, 2002.

[9] K. P. Brown, M. J. Carey, and M. Livny. Managing
memory to meet multiclass workload response time
goals. In Proc. 19th International Conference on Very
Large Data Bases (VLDB), pages 328–328. Institute of
Electrical & Electronics Engineers (IEEE), 1993.

[10] R. A. Chowdhury and V. Ramachandran.
Cache-oblivious dynamic programming. In Proc. 17th
annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 591–600. ACM, 2006.

[11] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction To Algorithms. MIT Press, 2001.

[12] P. Fornai and A. Iványi. FIFO anomaly is unbounded.
CoRR, abs/1003.1336, 2010.

[13] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In
Proc. 40th Annual Symposium on the Foundations of
Computer Science (FOCS), pages 285–298, 1999.

[14] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. ACM
Transactions on Algorithms, 8(1):4, 2012.

[15] G. Graefe. A new memory-adaptive external merge
sort. Private communication, July 2013.

[16] J.-W. Hong and H. T. Kung. I/O complexity: The
red-blue pebble game. In Proc. 13th Annual ACM
Symposium on the Theory of Computation (STOC),
pages 326–333, 1981.

[17] D. Irony, S. Toledo, and A. Tiskin. Communication
lower bounds for distributed-memory matrix
multiplication. Journal of Parallel and Distributed
Computing, 64(9):1017–1026, 2004.

[18] R. T. Mills. Dynamic adaptation to CPU and memory
load in scientific applications. PhD thesis, The College
of William and Mary, 2004.

[19] R. T. Mills, A. Stathopoulos, and D. S. Nikolopoulos.
Adapting to memory pressure from within scientific
applications on multiprogrammed cows. In Proc. 8th
International Parallel and Distributed Processing
Symposium (IPDPS), page 71, 2004.

[20] H. Pang, M. J. Carey, and M. Livny.
Memory-adaptive external sorting. In Proc. 19th
International Conference on Very Large Data Bases
(VLDB), pages 618–629. Morgan Kaufmann, 1993.

[21] H. Pang, M. J. Carey, and M. Livny. Partially
preemptible hash joins. In Proc. 5th ACM SIGMOD
International Conference on Management of Data
(COMAD), page 59, 1993.

[22] H. Prokop. Cache oblivious algorithms. Master’s
thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology, June 1999.

[23] J. E. Savage. Models of Computation: Exploring the
Power of Computing. Addison-Wesley Longman
Publishing Co., Inc., 1st edition, 1997.

[24] J. S. Vitter. Algorithms and data structures for
external memory. Foundations and Trends in
Theoretical Computer Science, 2(4):305–474, 2006.

[25] H. Zeller and J. Gray. An adaptive hash join
algorithm for multiuser environments. In Proc. 16th
International Conference on Very Large Data Bases
(VLDB), pages 186–197, 1990.

[26] W. Zhang and P.-A. Larson. A memory-adaptive sort
(MASORT) for database systems. In Proc. 6th
International Conference of the Centre for Advanced
Studies on Collaborative research (CASCON), pages
41–. IBM Press, 1996.

[27] W. Zhang and P.-A. Larson. Dynamic memory
adjustment for external mergesort. In Proc. 23rd
International Conference on Very Large Data Bases
(VLDB), pages 376–385. Morgan Kaufmann
Publishers Inc., 1997.

	Introduction
	Cache-Adaptive Model, Definitions, and Analytical Tools
	Progress Bounds: How Much an Algorithm Can Do on a Profile
	Optimally-Progressing Algorithms

	Matrix Multiply: A Tale of Two Algorithms
	A General Recipe for Analyzing Algorithms in the CA Model
	Bounding the Worst-Case Profile
	Optimality Criteria for Many Master-Method-Style Algorithms
	Applying Our Techniques
	Conclusion
	References

