
Real-Time Syst

DOI 10.1007/s11241-015-9223-2

Cache-aware compositional analysis of real-time

multicore virtualization platforms

Meng Xu1
· Linh Thi Xuan Phan1

·

Oleg Sokolsky1
· Sisu Xi2 · Chenyang Lu2

·

Christopher Gill2 · Insup Lee1

© Springer Science+Business Media New York 2015

Abstract Multicore processors are becoming ubiquitous, and it is becoming increas-

ingly common to run multiple real-time systems on a shared multicore platform. While

this trend helps to reduce cost and to increase performance, it also makes it more

challenging to achieve timing guarantees and functional isolation. One approach to

achieving functional isolation is to use virtualization. However, virtualization also

introduces many challenges to the multicore timing analysis; for instance, the over-

head due to cache misses becomes harder to predict, since it depends not only on the

direct interference between tasks but also on the indirect interference between virtual

processors and the tasks executing on them. In this paper, we present a cache-aware

compositional analysis technique that can be used to ensure timing guarantees of com-

B Linh Thi Xuan Phan

linhphan@cis.upenn.edu

Meng Xu

mengxu@cis.upenn.edu

Oleg Sokolsky

sokolsky@cis.upenn.edu

Sisu Xi

xis@cse.wustl.edu

Chenyang Lu

cdgill@cse.wustl.edu

Christopher Gill

lu@cse.wustl.edu

Insup Lee

lee@cis.upenn.edu

1 University of Pennsylvania, Philadelphia, USA

2 Washington University in St. Louis, St. Louis, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-015-9223-2&domain=pdf

Real-Time Syst

ponents scheduled on a multicore virtualization platform. Our technique improves on

previous multicore compositional analyses by accounting for the cache-related over-

head in the components’ interfaces, and it addresses the new virtualization-specific

challenges in the overhead analysis. To demonstrate the utility of our technique, we

report results from an extensive evaluation based on randomly generated workloads.

Keywords Compositional analysis · Interface · Cache-aware · Multicore ·

Virtualization

1 Introduction

Modern real-time systems are becoming increasingly complex and demanding; at the

same time, the microprocessor industry is offering more computation power in the

form of an exponentially growing number of cores. Hence, it is becoming more and

more common to run multiple system components on the same multicore platform,

rather than deploying them separately on different processors. This shift towards shared

computing platforms enables system designers to reduce cost and to increase perfor-

mance; however, it also makes it significantly more challenging to achieve separation

of concerns and to maintain timing guarantees.

One approach to achieve separation of concerns is through virtualization tech-

nology. On a virtualization platform, such as Xen (Barham et al. 2003), multiple

system components with different functionalities can be deployed in domains (virtual

machines) that can each run their own operating system. These domains provide a clean

isolation between components, and they preserve the components’ functional behav-

ior. However, existing virtualization platforms are designed to provide good average

performance—they are not designed to provide real-time guarantees. To achieve the

latter, a virtualization platform would need to ensure that each domain meets its real-

time performance requirements. There are on-going efforts towards this goal, e.g.,

(Lee et al. 2012, Crespo et al.2010, Bruns et al. 2010), but they primarily focus on

single-core processors.

In this paper, we present a framework that can provide timing guarantees for multi-

ple components running on a shared multicore virtualization platform. Our approach

is based on multicore compositional analysis, but it takes the unique characteristics

of virtualization platforms into account. In our approach, each component—i.e., a set

of tasks and their scheduling policy—is mapped to a domain, which is executed on a

set of virtual processors (VCPUs). The VCPUs of the domains are then scheduled on

the underlying physical cores. The schedulability analysis of the system is composi-

tional: we first abstract each component into an interface that describes the minimum

processing resources needed to ensure that the component is schedulable, and then we

compose the resulting interfaces to derive an interface for the entire system. Based on

the system’s interface, we can compute the minimum number of physical cores that

are needed to schedule the system.

A number of compositional analysis techniques for multi-core systems have

been developed (for instance, Easwaran et al. 2009; Lipari and Bini 2010; Baruah

and Fisher 2009), but existing theories assume a somewhat idealized platform in

123

Real-Time Syst

which all overhead is negligible. In practice, the platform overhead—especially the

cost of cache misses—can substantially interfere with the execution of tasks. As a

result, the computed interfaces can underestimate the resource requirements of the

tasks within the underlying components. Our goal is to remove this assumption by

accounting for the platform overhead in the interfaces. In this paper, we focus on

cache-related overhead, as it is among the most prominent in the multicore set-

ting.

Cache-aware compositional analysis for multicore virtualization platforms is chal-

lenging because virtualization introduces additional overhead that is difficult to predict.

For instance, when a VCPU resumes after being preempted by a higher-priority VCPU,

a task executing on it may experience a cache miss, since its cache blocks may have

been evicted from the cache by the tasks that were executing on the preempting VCPU.

Similarly, when a VCPU is migrated to a new core, all its cached code and data

remain in the old core; therefore, if the tasks later access content that was cached

before the migration, the new core must load it from memory rather than from its

cache.

Another challenge comes from the fact that cache misses that can occur when a

VCPU finishes its budget and stops its execution. For instance, suppose a VCPU is

currently running a task τi that has not finished its execution when the VCPU finishes

its budget, and that τi is migrated to another VCPU of the same domain that is either

idle or executing a lower-priority task τ j (if one exists). Then τi can incur a cache miss

if the new VCPU is on a different core, and it can trigger a cache miss in τ j when τ j

resumes. This type of overhead is difficult to analyze, since it is in general not possible

to determine statically when a VCPU finishes its budget or which task is affected by

the VCPU completion.

In this paper, we address the above virtualization-related challenges, and we present

a cache-aware compositional analysis for multicore virtualization platforms. Specifi-

cally, we make the following contributions:1

– We present a new supply bound function (SBF) for the existing multiprocessor

resource periodic (MPR) model that is tighter than the original SBF proposed

in Easwaran et al. (2009), thus enabling more resource-efficient interfaces for com-

ponents (Sect. 3);

– we introduce DMPR, a deterministic extension of the MPR model to better represent

component interfaces on multicore virtualization platforms (Sect. 4);

– we present a DMPR-based compositional analysis for systems without cache-

related overhead (Sect. 5);

– we characterize different types of events that cause cache misses in the presence of

virtualization (Sect. 6); and

– we propose three methods (baseline, task- centric- ub, and model- centric)

to account for the cache-related overhead (Sects. 7.1, 7.2 and 8);

1 A preliminary version of this paper has appeared in the Real-Time Systems Symposium (RTSS’13) (Xu

et al. 2013).

123

Real-Time Syst

Domain 1 Domain 2 Domain 3

gEDF gEDF

321 ,, τττ 654 ,, τττ
87 ,ττ

gEDF

Π2,Θ2,m2 Π3,Θ3,m3Π1,Θ1,m1

VP1 VP2 VP3 VP4 VP5

cpu1 cpu2 cpu3 cpu4

VMM

(a) Task and VCPU scheduling.

VP1 VP2VP3 VP4 VP5

cpu1 cpu3 cpu4cpu2

gEDF

(b) Scheduling of VCPUs.

Fig. 1 Compositional scheduling on a virtualization platform

– we analyze the relationship between the proposed cache-related overhead analysis

methods, and we develop a cache-aware compositional analysis method based on

a hybrid of these methods (Sect. 9).

To demonstrate the applicability and the benefits of our proposed cache-aware

analysis, we report results from an extensive evaluation on randomly generated work-

loads using simulation as well as by running them on a realistic platform.

2 System descriptions

The system we consider consists of multiple real-time components that are scheduled

on a multicore virtualization platform, as is illustrated in Fig. 1a. Each component

corresponds to a domain (virtual machine) of the platform and consists of a set of

tasks; these tasks are scheduled on a set of VCPUs by the domain’s scheduler. The

VCPUs of the domains are then scheduled on the physical cores by the virtual machine

monitor (VMM).

Each task τi within a domain is an explicit-deadline periodic task, defined by τi =

(pi , ei , di), where pi is the period, ei is the worst-case execution time (WCET), and

di is the relative deadline of τi . We require that 0 < ei ≤ di ≤ pi for all τi .

Each VCPU is characterized by VP j = (� j ,� j), where � j is the VCPU’s period

and � j is the resource budget that the VCPU services in every period, with 0 ≤ � j ≤

q� j . We say that VP j is a full VCPU if � j = � j , and a partial VCPU otherwise.

We assume that each VCPU is implemented as a periodic server (Sha et al. 1986) with

period � j and maximum budget time � j . The budget of a VCPU is replenished at

the beginning of each period; if the budget is not used when the VCPU is scheduled

to run, it is wasted. We assume that each VCPU can execute only one task at a time.

Like in most real-time scheduling research, we follow the conventional real-time task

model in which each task is a single thread in this work; an extension to parallel task

models is an interestin g but also challenging research direction, which we plan to

investigate in our future work.

123

Real-Time Syst

We assume that all cores are identical and have unit capacity, i.e., each core provides

t units of resource (execution time) in any time interval of length t . Each core has

a private cache,2 all cores share the same memory, and the size of the memory is

sufficiently large to ensure that all tasks (from all domains) can reside in memory at

the same time, without conflicts.

2.1 Scheduling of tasks and VCPUs

We consider a hybrid version of the earliest deadline first (EDF) strategy. As is shown

in Fig. 1, tasks within each domain are scheduled on the domain’s VCPUs under the

global EDF (gEDF) (Baruah and Baker 2008) scheduling policy. The VCPUs of all the

domains are then scheduled on the physical cores under a semi-partitioned EDF policy:

each full VCPU is pinned (mapped) to a dedicated core, and all the partial VCPUs

are scheduled on the remaining cores under gEDF. In the example from Fig. 1b, VP1

and VP3 are full VCPUs, which are pinned to the physical cores cpu1 and cpu2,

respectively. The remaining VCPUs are partial VCPUs, and are therefore scheduled

on the remaining cores under gEDF.

2.2 Cache-related overhead

When two code sections are mapped to the same cache set, one section can evict the

other section’s cache blocks from the cache, which causes a cache miss when the

former resumes. If the two code sections belong to the same task, this cache miss is

an intrinsic cache miss; otherwise, it is an extrinsic cache miss (Basumallick and

Nilsen 1994). The overhead due to intrinsic cache misses of a task can typically be

statically analyzed based solely on the task; however, extrinsic cache misses depend

on the interference between tasks during execution. In this paper, we assume that the

tasks’ WCETs already include intrinsic cache-related overhead, and we will focus on

the extrinsic cache-related overhead. In the rest of this paper, we use the term ‘cache’

to refer to ‘extrinsic cache’.

We use �
crpmd
τi

to denote the maximum time needed to re-load all the useful cache

blocks (i.e., cache blocks that will be reused) of a preempted task τi when that task

resumes (either on the same core or on a different core).3

Since the overhead for reloading the cache content of a preempted VCPU (i.e.,

a periodic server) upon its resumption is insignificant compared to the task’s, we will

assume here that it is either zero or is already included in the overhead due to cache

misses of the running task inside the VCPU.

2 In this work, we assume that the cores either do not share a cache, or that the shared cache has been

partitioned into cache sets that are each accessed exclusively by one core (Kim et al. 2012) We believe that

an extension to shared caches is possible, and we plan to consider it in our future work.

3 We are aware that using a constant maximum value to bound the cache-miss overhead of a task may be

conservative, and extensions to a finer granularity, e.g., using program analysis, may be possible. However,

as the first step, we keep this assumption to simplify the analysis in this work, and we defer such extensions

to our future work.

123

Real-Time Syst

2.3 Objectives

In the above setting, our goal is to develop a cache-aware compositional analysis

framework for the system. This framework consists of two elements: (1) an interface

representation that can succinctly capture the resource requirements of a component

(i.e., a domain or the entire system); and (2) an interface computation method for com-

puting a minimum-bandwidth cache-aware interface of a component (i.e., an interface

with the minimum resource bandwidth that guarantees the schedulability of a compo-

nent in the presence of cache-related overhead).

2.4 Assumptions

We assume that (1) all VCPUs of each domain j share a single period � j ; (2)

all � j are known a priori; and (3) each � j is available to all domains. These

assumptions are important to make the analysis tractable. Assumption 1 is equiv-

alent to using a time-partitioned approach; we make this assumption to simplify

the cache-aware analysis in Sect. 8, but it should be easy to extend the analysis

to allow different periods for the VCPUs. Assumption 2 is made to reduce the

search space, which is common in existing work (e.g., Easwaran et al. 2009); it

can be relaxed by first establishing an upper bound on the optimal period (i.e., the

period of the minimum-bandwidth interface) of each domain j , and then searching

for the optimal period value based on this bound. Finally, Assumption 3 is nec-

essary to determine how often different events that cause cache-related overhead

happen (c.f. Sect. 6), which is crucial for the cache-aware interface computation in

Sects. 7 and 8. One approach to relaxing this assumption is to treat the period of

the VCPUs of a domain as an input parameter in the computation of the overhead

that another domain experiences. Such a parameterized interface analysis approach

is very general, but making it efficient remains an interesting open problem for

future research. We note, however, that although each assumption can be relaxed,

the consequence of relaxing all three assumptions requires a much deeper investiga-

tion.

3 Improvement on multiprocessor periodic resource model

Recall that, when representing a platform, a resource model specifies the character-

istics of the resource supply that is provided by that platform; when representing a

component’s interface, it specifies the total resource requirements of the component

that must be guaranteed to ensure the component’s schedulability. The resource pro-

vided by a resource model R can also be captured by a SBF, denoted by SBFR(t), that

specifies the minimum number of resource units that R provides over any interval of

length t .

In this section, we first describe the existing multiprocessor periodic resource (MPR)

model (Shin et al. 2008), which serves as a basis for our proposed resource model for

multicore virtualization platforms. We then present a new SBF for the MPR model

that improves upon the original SBF given in Shin et al. 2008, thus enabling tighter

MPR-based interfaces for components and more efficient use of resource.

123

Real-Time Syst

(a)

(b)

Fig. 2 Worst case resource supply of MPR model

3.1 Background on MPR

An MPR model Ŵ= (�̃, �̃, m′) specifies that a multiprocessor platform with a number

of identical, unit-capacity CPUs provides �̃ units of resources in every period of �̃

time units, with concurrency at most m′ (in other words, at any time instant at most

m′ physical processors are allocated to this resource model), where �̃ ≤ m′�̃. Its

resource bandwidth is given by �̃/�̃.

The worst-case resource supply scenario of the MPR model is shown in Fig. 2

(Easwaran et al. 2009). Based on this worst-case scenario, the authors in Easwaran

et al. (2009) proposed an SBF that bounds the resource supplied by the MPR model

Ŵ= (�̃, �̃, m′), which is defined as follows:

˜SBFŴ(t) =

⎧

⎪

⎨

⎪

⎩

0, if t ′ < 0
⌊

t ′/�̃
⌋

�̃ + max{0, m′x − (m′�̃ − �̃)}, if t ′ ≥ 0 ∧ x ∈ [1, y]
⌊

t ′/�̃
⌋

�̃+max{0, m′x − (m′�̃ − �̃)}−(m′−β), if t ′ ≥0 ∧ x /∈ [1, y]

(1)

where α =
⌊

�̃
m′

⌋

, β = �̃ − m′α, t ′ = t −
(

�̃ −
⌈

�̃
m′

⌉)

, x = t ′ − �̃

⌊

t ′

�̃

⌋

and

y = �̃ −
⌊

�̃
m′

⌋

.

123

Real-Time Syst

3.2 Improved SBF of the MPR model

We observe that, although the function ˜SBFŴ given in Eq. (1) is a valid SBF for

the MPR model Ŵ, it is conservative. Specifically, the minimum amount of resource

provided by Ŵ over a time window of length t (see Fig. 2) can be much larger than
˜SBFŴ(t) when (i) the resource bandwidth of Ŵ is equal to its maximum concurrency

level (i.e., �̃/�̃ = m′), or (ii) x ≤ 1, where x is defined in Eq. (1). We demonstrate

these cases using the two examples below.

Example 1 Let Ŵ1 = 〈�̃, �̃, m′〉, where �̃ = �̃m′, and � and m′ are any two positive

integer values. By the definition of the MPR model, Ŵ1 represents a multiprocessor

platform with exactly m′ identical, unit-capacity CPUs that are fully available. In

other words, Ŵ1 provides m′t time units in every t time units. However, according to

Eq. (1), we have α =
⌊

�̃
m′

⌋

= �̃, β = �̃ − m′α = 0, t ′ = t −
(

�̃ −
⌈

�̃
m′

⌉)

= t ,

x = t ′ − �̃

⌊

t ′

�̃

⌋

, and y = �̃ −
⌊

�̃
m′

⌋

= 0. Whenever x /∈ [1, y], for all t = t ′ ≥ 0,

˜SBFŴ1(t) =
⌊

t ′/�̃
⌋

�̃ + max{0, m′x − (m′�̃ − �̃)} − (m′ − β) = m′t − m′.

As a result, ˜SBFŴ1(t) < m′t for all for all t such that x /∈ [1, y].

Example 2 Let Ŵ2 = 〈� = 20,� = 181, m′ = 10〉 and consider t = 21.1. From

Eq. (1), we obtain α = 18, β = 1, t ′ = t − 1 = 20.1, x = 0.1, and y = 2. Since

x /∈ [1, y], we have

˜SBFŴ2(t) =

⌊

t ′

�̃

⌋

�̃ + max{0, m′x − (m′�̃ − �̃)} − (m′ − β)

=

⌊

20.1

20

⌋

181 + max{0, 10 × 0.1 − (10 × 20 − 181)}−(10 − 1)=172.

We reply on the worst-case resource supply scenario of the MPR model shown in

Fig. 2 to compute the worst-case resource supply of Ŵ2 during a time interval of length

t . We first compute the worst-case resource supply when t = 21.1 based on Case 1 in

Fig. 2:

– t starts at the time point s1;

– During the time interval [s1, s1 + (�̃−α − 1)], i.e., [s1, s1 + 1], Ŵ2 supplies 0 time

unit;

– During the time interval [s1+(�̃−α−1), s1+(�̃−α−1)+�̃], i.e., [s1+1, s1+21],

Ŵ2 supplies � = 181 time units;

– During the time interval [s1 + (�̃ − α − 1) + �, s1 + t], i.e., [s1 + 21, s1 + 21.1],

Ŵ2 supplies 0 time unit.

Therefore, Ŵ2 supplies 181 time units during a time interval of length t = 21.1 based

on Case 1 in Fig. 2.

Next, we compute the worst-case resource supply when t = 21.1 based on Case 2

in Fig. 2:

123

Real-Time Syst

– t starts at the time point s2;

– During the interval [s2, s2 + (�̃ − α)], i.e., [s2, s2 + 2] Ŵ supplies β = 1 time unit;

– During the interval [s2 + (�̃ −α), s2 + 2(�̃−α)], i.e., [s2 + 2, s2 + 4], Ŵ supplies

β = 1 time unit;

– During the interval [s2 + 2(�̃ − α), s2 + t], i.e., [s2 + 4, s2 + 21.1], Ŵ supplies

(21.1 − 4) × m′ = 171 time units.

Therefore, Ŵ2 supplies 1 + 1 + 171 = 173 time units during any time interval of

length t based on Case 2 in Fig. 2. Because the two cases in Fig. 2 are the only two

possible worst-case scenarios of the MPR resource model (Easwaran et al. 2009), the

worst-case resource supply of Ŵ2 during any time interval of length t = 21.1 is 173

time units. Since SBFŴ2(t) = 172, the value computed by Eq. (1) under-estimates the

actual resource provided by Ŵ2.

Based on the above observations, we introduce a new SBF that can better bound

the resource supply of the MPR model. This improved SBF is computed based on the

worst-case resource supply scenarios shown in Fig. 2.

Lemma 1 The amount of resource provided by the MPR model Ŵ = 〈�̃, �̃, m′〉 over

any time interval of length t is at least SBFŴ(t), where

SBFŴ(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, t ′ < 0
⌊

t ′

�̃

⌋

�̃ + max
{

0, m′x ′ − (m′�̃ − �̃)
}

, t ′ ≥ 0 ∧ x ′ ∈ [1 −
β
m′ , y]

max
{

0, β
(

t − 2(�̃ − ⌊ �̃
m′ ⌋)
)}

t ′ ∈ [0, 1] ∧ x ′ �∈ [1−
β
m′ , y]

⌊ t ′′

�̃
⌋�̃ + max

{

0, m′x ′′ − (m′�̃ − �̃) − (m′ − β)
}

, t ′ ≥ 1 ∧ x ′ �∈ [1 −
β
m′ , y]

(2)

where

α =

⌊

�̃

m′

⌋

;β =

{

�̃ − m′α, �̃ �= �m′

m′, �̃ = �m′
; t ′ = t −

(

�̃ −

⌈

�̃

m′

⌉)

; t ′′ = t ′−1;

x ′ =

(

t ′ − �̃

⌊

t ′

�̃

⌋)

; x ′′ =

(

t ′′ − �̃

⌊

t ′′

�̃

⌋)

+ 1; y = �̃ −

⌊

�̃

m′

⌋

.

Proof We will prove that the function SBFŴ(t) is a valid SBF of Ŵ based on the

worst-case resource supply patterns of Ŵ shown in Fig. 2.

Consider the time interval of length t ′ (called time interval t ′) and the black-out

interval (during which the resource supply is zero) in Fig. 2. By definition, x ′ is the

remaining time of the time interval t ′ in the last period of Ŵ, and y is half the length

of the black-out interval plus one. There are four cases of x , which determine whether

SBFŴ(t) corresponds to the resource supply of Ŵ in Case 1 or Case 2 in Fig. 2:

– x ′ ∈ [1, y]: It is easy to show that the value of SBFŴ(t) in Case 1 is no larger than

its value in Case 2. Note that if we shift the time interval of length t in Case 1 by

one time unit to the left, we obtain the scenario in Case 2. In doing so, SBFŴ(t) will

123

Real-Time Syst

be increased by β time units from the first period but decreased by at most β time

units from the last period. Therefore, the pattern in Case 2 supplies more resource

than the pattern in Case 1 when x ′ ∈ [1, y].

– x ′ ∈ [1 − β
m′ , 1]: As above, if we shift the time interval of length t in Case 1 by one

time unit to the left, we obtain the scenario in Case 2. Recall that x ′ is the remaining

time of the time interval of length t ′ in the last period, x ′ ≤ 1 and y ≥ 1. In

shifting the time interval of length t , SBFŴ(t) will lose (1 − x ′)m′ time units while

gaining β time units from the first period. Because x ′ ≥ 1−
β
m′ , β −(1−x ′)m′ ≥ 0.

Therefore, SBFŴ(t) gains β−(1−x ′)m′ ≥ 0 time units in transferring the scenario

in Case 1 to the scenario in Case 2. Hence, Case 1 is the worst-case scenario when

x ′ ∈ [1 −
β
m′ , 1].

– x ′ ∈ [0, 1 − β
m′): It is easy to show that Ŵ supplies less resource in Case 2 than in

Case 1 when we shift the time interval of length t of Case 1 to left by one time unit

to get Case 2. Therefore, Case 2 is the worst-case scenario when x ′ ∈ [0, 1 − β
m′].

– x ′ > y: We can easily show that SBFŴ(t) is no larger in Case 2 than in Case 1.

Because x ′ > y, when we shift the time interval t of Case 1 to left by one time unit

to get the scenario in Case 2, Ŵ loses m′ time units from the last period but only

gains β time units, where β ≤ m′. Therefore, Case 2 is the worst-case scenario

when x ′ > y.

From the above, we conclude that Case 1 is the worst-case resource supply scenario

when x ′ ∈ [1 −
β
m′ , y], and Case 2 is the worst-case resource supply scenario when

x ′ �∈ [1 − β
m′ , y].

Based on the worst-case resource supply scenario under different conditions above,

we can derive Eq. 2 as follows:

– When t ′ < 0: It is obvious that SBFŴ(t) = 0 because Ŵ supplies no resource in

the black-out interval.

– When t ′ ≥ 0 and x ′ ∈ [1−
β
m′ , y]: Based on the worst-case resource supply scenario

in Case 1, Ŵ has ⌊ t ′

�̃
⌋ periods and provides �̃ time units in each period. Ŵ has x ′

remaining time in the last period, which provides max{0, m′x ′′−(m′�−�)−(m′−

β)} time units. Therefore, Ŵ supplies ⌊ t ′

�̃
⌋�̃+max{0, m′x ′′−(m′�−�)−(m′−β)}

time units during time interval t .

– When t ′ ∈ [0, 1] and x ′ �∈ [1 − β
m′ , y]: Because t ′ ∈ [0, 1], t ∈ [� − ⌈ �̃

m′ ⌉,� −

⌈ �̃
m′ ⌉+1]. Therefore, t < 2(�−⌈ �̃

m′ ⌉)+2, where 2(�−⌈ �̃
m′ ⌉) is the length of the

black-out interval. Hence, the worst-case resource supply of Ŵ during time interval

t is max{0, β(t − 2(� − ⌊ �
m′ ⌋))}.

– When t ′ > 1 and x ′ �∈ [1 −
β
m′ , y], the worst-case resource supply scenario is

Case 2. Ŵ has ⌊ t ′′

�̃
⌋ periods and provides �̃ time units in each period. Ŵ supplies

max{0, m′x ′′ − (m′�̃ − �̃) − (m′ − β)} time units during its first and last periods.

Therefore, SBFŴ(t) = ⌊ t ′′

�̃
⌋� + max{0, m′x ′′ − (m′�̃ − �̃) − (m′ − β)}.

The lemma follows from the above results. ⊓⊔

It is easy to verify that, under the two scenarios described in Examples 1 and 2,

SBFŴ1(t) and SBFŴ2(t) correspond to the actual minimum resource that Ŵ1 and

123

Real-Time Syst

Ŵ2 provide, respectively. It is also worth noting that, for the scenario described in

Example 1, the compositional analysis for the MPR model Easwaran et al. (2009) is

compatible4 with the underlying gEDF schedulability test under the improved SBF

but not under the original SBF in Eq. (1). In the next example, we further demonstrate

the benefits of the improved SBF in terms of resource bandwidth saving.

Example 3 Consider a component C with a taskset τ = {τ1 = · · · = τ4 =

(200, 100, 200)} that is scheduled under gEDF, and the period of the MPR inter-

face of C is fixed to be 40. Following the interface computation method in Easwaran

et al. (2009), the corresponding minimum-bandwidth MPR interfaces, Ŵ1 and Ŵ2, of C

when using the original SBF in Eq. (1) and when using the improved SBF in Eq. (2) are

obtained as follows: Ŵ1 = 〈40, 145, 4〉 and Ŵ2 = 〈40, 120, 3〉. Thus, the MPR inter-

face of C corresponding to the improved SBF can save 145/40−120/40 = 0.625 cores

compared to the interface corresponding to the original SBF proposed in Easwaran et

al. (2009).

4 Deterministic multiprocessor periodic resource model

In this section, we introduce the deterministic multiprocessor resource model (DMPR)

for representing the interfaces. The MPR model described in the previous section is

simple and highly flexible because it represents the collective resource requirements of

components without fixing the contribution of each processor a priori. However, this

flexibility also introduces some extra overhead: it is possible that all processors stop

providing resources at the same time, which results in a long worst-case starvation

interval (it can be as long as 2(�̃ − ⌈�̃/m′⌉) time units (Easwaran et al. 2009).

Therefore, to ensure schedulability in the worst case, it is necessary to provide more

resources than strictly required. However, we can minimize this overhead by restricting

the supply pattern of some of the processors. This is a key element of the deterministic

MPR that we now propose.

A DMPR model is a deterministic extension of the MPR model, in which all of the

processors but one always provide resource with full capacity. It is formally defined

as follows.

Definition 1 A DMPR μ = 〈�,�, m〉 specifies a resource that guarantees m full

(dedicated) unit-capacity processors, each of which provides t resource units in any

time interval of length t , and one partial processor that provides � resource units in

every period of � time units, where 0 ≤ � < � and m ≥ 0.

By definition, the resource bandwidth of a DMPR μ= 〈�,�, m〉 is bwμ = m + �
�

.

The total number of processors of μ is mμ = m+1, if � > 0, and mμ = m, otherwise.

Observe that the partial processor of μ is represented by a single-processor periodic

resource model 	 = (�,�) (Shin and Lee 2003). (However, it can also be represented

4 We say that a compositional analysis method is compatible with the underlying component’s schedula-

bility test it uses if whenever a component C with a taskset τ is deemed schedulable on m cores by the

schedulability test, then C is also deemed schedulable under an interface with bandwidth no larger than m

by the compositional analysis method.

123

Real-Time Syst

VP Θ Θ Θ1

VP2

VP3

2Π Π 3Π 0

t

Fig. 3 Worst-case resource supply pattern of μ = 〈�, �, m〉

by any other single processor resource model, such as EDP model Easwaran et al.

2007.) Based on this characteristic, we can easily derive the worst-case supply pattern

of μ (shown in Fig. 3) and its SBF, which is given by the following lemma:

Lemma 2 The SBF of a DMPR model μ = 〈�,�, m〉 is given by:

SBFμ(t) =

{

mt, if � = 0 ∨ (0 ≤ t ≤ � − �)

mt + y� + max{0, t − 2(� − �) − y�}, otherwise

where y =
⌊

t−(�−�)
�

⌋

, for all t > � − �.

Proof Consider any interval of length t . Since the full processors of μ are always avail-

able, μ provides the minimum resource supply iff the partial processor provides the

worst-case supply. Since the partial processor is a single-processor periodic resource

model 	 = (�,�), its minimum resource supply in an interval of length t is given

by Shin and Lee (2003): SBF	(t) = 0, if � = 0 or 0 ≤ t ≤ � − �; otherwise,

SBF	(t) = y�+max{0, t −2(�−�)− y�} where y =
⌊

t−(�−�)
�

⌋

. In addition, the

m full processors of μ provides a total of mt resource units in any interval of length t .

Hence, the minimum resource supply of μ in an interval of length t is mt + SBF	(t).

This proves the lemma. ⊓⊔

It is easy to show that, when a DMPR μ and an MPR Ŵ have the same period,

bandwidth, and total number of processors, then SBFμ(t) ≥ SBFŴ(t) for all t ≥ 0,

and the worst-case starvation interval of μ is always shorter than that of Ŵ.

5 Overhead-free compositional analysis

In this section, we present our method for computing the minimum-bandwidth DMPR

interface for a component, assuming that the cache-related overhead is negligible.

The overhead-aware interface computation is considered in the next sections. We first

recall some key results for components that are scheduled under gEDF (Easwaran et

al. 2009).

5.1 Component schedulability under gEDF

The demand of a task τi in a time interval [a, b] is the amount of computation that

must be completed within [a, b] to ensure that all jobs of τi with deadlines within

123

Real-Time Syst

[a, b] are schedulable. When τi = (pi , ei , di) is scheduled under gEDF, its demand

in any interval of length t is upper bounded by Easwaran et al. (2009):

dbfi (t) =
⌊ t + (pi − di)

pi

⌋

ei + CIi (t), where

CIi (t) = min
{

ei , max
{

0, t −
⌊ t + (pi − di)

pi

⌋

pi

}}

. (3)

In Eq. (3), CIi (t) denotes the maximum carry-in demand of τi in any time interval

[a, b] with b − a = t , i.e., the maximum demand generated by a job of τi that is

released prior to a but has not finished its execution requirement at time a.

Consider a component C with a taskset τ = {τ1, . . . τn}, where τi = (pi , ei , di),

and suppose the tasks in C are schedulable under gEDF by a multiprocessor resource

with m′ processors. From Easwaran et al. (2009), the worst-case demand of C that

must be guaranteed to ensure the schedulability of τk in a time interval (a, b], with

b − a = t ≥ dk is bounded by:

DEM(t, m′) = m′ek +
∑

τi ∈τ

Îi,2 +
∑

i :i∈L(m′−1)

(Īi,2 − Îi,2) (4)

where Îi,2 = min
{

dbfi (t) − CI i (t), t − ek

}

, ∀ i �= k,

Îk,2 = min
{

dbfk(t) − CIk(t) − ek, t − dk

}

;

Īi,2 = min
{

dbfi (t), t − ek

}

, ∀ i �= k,

Īk,2 = min
{

dbfk(t) − ek, t − dk

}

;

and L(m′−1) is the set of indices of all tasks τi that have Īi,2 − Îi,2 being one of the

(m′ − 1) largest such values for all tasks.5 This leads to the following schedulability

test for C :

Theorem 1 (Easwaran et al. 2009) A component C with a task set τ = {τ1, . . . τn},

where τi = (pi , ei , di), is schedulable under gEDF by a multiprocessor resource

model R with m′ processors in the absence of overhead if, for each task τk ∈ τ and

for all t ≥ dk , DEM(t, m′) ≤ SBFR(t), where DEM(t, m′) is given by Eq. (4) and

SBFR(t) gives the minimum total resource supply by R in an interval of length t.

5.2 DMPR interface computation

In the absence of cache-related overhead, the minimum resource supply provided by a

DMPR model μ = 〈�,�, m〉 in any interval of length t is SBFμ(t), which is given by

Lemma 2. Since each domain schedules its tasks under gEDF, the following theorem

follows directly from Theorem 1.

5 Here, dk and t refer to Dk and Ak + Dk in Easwaran et al. (2009), respectively.

123

Real-Time Syst

Theorem 2 A domain D with a task set τ = {τ1, . . . τn}, where τi = (pi , ei , di), is

schedulable under gEDF by a DMPR model μ = (�,�, m) if, for each τk ∈ τ and

for all t ≥ dk ,

DEM(t, mμ) ≤ SBFμ(t), (5)

where mμ = m + 1 if � > 0, and mμ = m otherwise.

We say that μ is a feasible DMPR for D if it guarantees the schedulability of D

according to Theorem 2.

The next theorem derives a bound of the value t that needs to be checked in Theo-

rem 2.

Theorem 3 If Eq. (5) is violated for some value t, then it must also be violated for a

value that satisfies the condition

t <
C
 + mμek + U + B

�
�

+ m − UT

(6)

where C
 is the sum of the mμ −1 largest ei ; U =
∑n

i=1(pi −di)
ei

pi
; UT =

∑n
i=1

ei

pi
;

and B = 2 �
�

(� − �).

Proof The proof follows a similar line with the proof of Theorem 2 in Easwaran et al.

(2009). Recall that DEM(t, mμ) is given by Eq. (4). According to Eq. (4), we have

Îi,2 ≤

⌊

t + (pi − di)

pi

⌋

ei ≤
t + (pi − di)

pi

ei ≤ t
ei

pi

+
pi − di

pi

ei .

Therefore,

n
∑

i=1

Îi,2 ≤

n
∑

i=1

t
ei

pi

+

n
∑

i=1

pi − di

pi

ei = tUT + U.

Because the carry-in workload of τi is no more than ei , we derive
∑

i :i∈L(mμ−1)

(Īi,2 − Îi,2)

≤ C
 . Thus,

DEM(t, mμ) ≤ mμek + tUT + U + C
 .

Further, SBFμ(t) gives the worst-case resource supply of the DMPR model

μ = 〈�,�, m〉 over any interval of length t . Based on Lemma 2, the resource sup-

123

Real-Time Syst

ply of μ is total resource supply of one partial VCPU (�,�) and m full VCPUs.

From (Shin and Lee 2003), the resource supply of the partial VCPU (�,�) over any

interval of length t is at least �
�

(t − 2(� − �)). In addition, the resource supply of m

full VCPUs over any interval of length t is mt . Hence, the resource supply of μ over

any interval of length t is at least mt + �
�

(t − 2(� − �)). In other words,

SBFμ(t) ≥ mt +
�

�
(t − 2(� − �)).

Suppose Eq. (5) is violated, i.e., DEM(t, mμ) > SBFμ(t) for some value t . Then,

combine with the above results, we imply

mμek + tUT + U + C
 > mt +
�

�
(t − 2(� − �)),

which is equivalent to

t <
C
 + mμek + U + B

�
�

+ m − UT

.

Hence, if Eq. (5) is violated for some value t , then t must satisfy Eq. (6). This proves

the theorem. ⊓⊔

The next lemma gives a condition for the minimum-bandwidth DMPR interface

with a given period �.

Lemma 3 A DMPR model μ∗ = 〈�,�∗, m∗〉 is the minimum-bandwidth DMPR

with period � that can guarantee the schedulability of a domain D only if m∗ ≤ m for

all DMPR models μ = 〈�,�, m〉 that can guarantee the schedulability of a domain

D.

Proof Suppose m∗ > m for some DMPR μ = 〈�,�, m〉. Then, m∗ ≥ m + 1

and, hence, bwμ∗ = m∗ + �∗/� ≥ m + 1 + �∗/� ≥ m + 1. Since � < �,

bwμ = m + �/� < m + 1. Thus, bwμ∗ > bwμ, which implies that m∗ cannot be the

minimum-bandwidth DMPR with period �. Hence the lemma. ⊓⊔

5.3 Computing the domains’ interfaces

Let Di be a domain in the system and �i be its given VCPU period (c.f. Sect. 2).

The minimum-bandwidth interface of Di with period �i is the minimum-bandwidth

DPRM model μi = 〈�i ,�i , mi 〉 that is feasible for Di . To obtain μi , we perform

binary search on the number of full processors m′
i , and, for each value m′

i , we compute

the smallest value of �′
i such that 〈�′

i ,�i , m′
i 〉 is feasible for Di (using Theorem 2).6

6 Note that the number of full processors is always bounded from below by ⌊Ui ⌋, where Ui is the total

utilization of the tasks in Di , and bounded from above by the number of tasks in Di or the number of

physical platform (if given), whichever is smaller.

123

Real-Time Syst

Then mi is the smallest value of m′
i for which a feasible interface is found, and, �i is

the smallest budget �′
i computed for mi .

5.4 Computing the system’s interface

The interface of the system can be obtained by composing the interfaces μi of all

domains Di in the system under the VMM’s semi-partitioned EDF policy (c.f. Sect. 2).

Let D denote the number of domains of the platform.

Observe that each interface μi = 〈�i ,�i , mi 〉 can be transformed directly into an

equivalent set of mi full VCPUs (with budget �i and period �i) and, if �i > 0, a

partial VCPU with budget �i and period �i . Let C be a component that contains all

the partial VCPUs that are transformed from the domains’ interfaces. Then the VCPUs

in C are scheduled together under gEDF, whereas all the full VCPUs are each mapped

to a dedicated core.

Since each partial VCPU in C is implemented as a periodic server, which is essen-

tially a periodic task, we can compute the minimum-bandwidth DMPR interface

μC = 〈�C,�C, mC〉 that is feasible for C by the same technique used for domains.

Combining μC with the full VCPUs of the domains, we can see that the system must be

guaranteed mC +
∑

1≤i≤D mi full processors and a partial processor, with budget �C

and period �C , to ensure the schedulability of the system. The next theorem directly

follows from this observation.

Theorem 4 Let μi = 〈�i ,�i , mi 〉 be the minimum-bandwidth DMPR interface of

domain Di , for all 1 ≤ i ≤ D. Let C be a component with the taskset

τC = {(�i ,�i ,�i) | 1 ≤ i ≤ D ∧ �i > 0},

which are scheduled under gEDF. Then the minimum-bandwidth DMPR interface

with period �C of the system is given by: μsys = 〈�C ,�C , msys〉, where μC =

〈�C,�C, mC〉 is a minimum-bandwidth DMPR interface with period �C of C and

msys = mC +
∑

1≤i≤D mi .

Based on the system’s interface, one can easily derive the schedulability of the

system as follows (the lemma comes directly from the interface’s definition):

Lemma 4 Let M be the number of physical cores of the platform. The system is

schedulable if M ≥ msys + 1, or, M = msys and �C = 0, where 〈�C ,�C , msys〉 is

the minimum-bandwidth DMPR system’s interface.

The results obtained above assume that the cache-related overhead is negligible.

We will next develop the analysis in the presence of cache-related overhead.

6 Cache-related overhead scenarios

In this section, we characterize the different events that cause cache-related overhead;

this is needed for the cache-aware analysis in Sects. 7 and 8.

123

Real-Time Syst

Fig. 4 Cache-related overhead

of a task-preemption event

Cache-related overhead in a multicore virtualization platform is caused by (1) task

preemption within the same domain, (2) VCPU preemption, and (3) VCPU exhaustion

of budget. We discuss each of them in detail below.

6.1 Event 1: task-preemption event

Since tasks within a domain are scheduled under gEDF, a newly released higher-

priority task preempts a currently executing lower-priority task of the same domain, if

none of the domain’s VCPUs are idle. When a preempted task resumes its execution, it

may experience cache misses: its cache content may have been evicted from the cache

by the preempting task (or tasks with a higher priority than the preempting task, if a

nested preemption occurs), or the task may be resumed on a different VCPU that is

running on a different core, in which case the task’s cache content may not be present

in the new core’s cache. Hence the following definition:

Definition 2 (Task-preemption event) A task-preemption event of τi is said to occur

when a job of another task τ j in the same domain is released and this job can preempt

the current job of τi .

Figure 4 illustrates the worst-case scenario of the overhead caused by a task-

preemption event. In the figure, a preemption event of τ1 happens at time t = 3

when τ3 is released (and preempts τ1). Due to this event, τ1 experiences a cache miss

at time t = 5 when it resumes. Since τ1 resumes on a different core, all the cache

blocks it will reuse have to be reloaded into new core’s cache, which results in cache-

related preemption/migration overhead on τ1. (Note that the cache content of τ1 is not

necessarily reloaded all at once, but rather during its remaining execution after it has

been resumed; however, for ease of exposition, we show the combined overhead at

the beginning of its remaining execution).

Since gEDF is work-conserving, tasks do not suspend themselves, and each task

resumes at most once after each time it is preempted. Therefore, each task τk expe-

riences the overhead caused by each of its task-preemption events at most once, and

this overhead is bounded from above by �
crpmd
τk

.

Lemma 5 A newly released job of τ j preempts a job of τi under gEDF only if d j < di .

Proof Suppose d j ≥ di and a newly released job J j of τ j preempts a job Ji of τi .

Then, J j must be released later than Ji . As a result, the absolute deadline of J j is later

123

Real-Time Syst

than Ji ’s (since d j ≥ di), which contradicts the assumption that J j preempts Ji under

gEDF. This proves the lemma. ⊓⊔

The maximum number of task-preemption events in each period of τi is given by

the next lemma.

Lemma 6 (Number of task-preemption events) The maximum number of task-

preemption events of τi under gEDF during each period of τi , denoted by N 1
τi

, is

bounded by

N 1
τi

≤
∑

τ j ∈HP(τi)

⌈di − d j

p j

⌉

(7)

where HP(τi) is the set of tasks τ j within the same domain with τi with d j < di .

Proof Let τ c
i be the current job of τi in a period of τi , and let r c

i be its release time.

From Lemma 5, only jobs of a task τ j with d j < di and in the same domain can

preempt τ c
i . Further, for each such τ j , only the jobs that are released after τ c

i and that

have absolute deadlines no later than τ c
i ’s can preempt τ c

i . In other words, only jobs

that are released within the interval (r c
i , r c

i + di − d j] can preempt τ c
i . As a result,

the maximum number of task-preemption events of τi under gEDF is no more than
∑

τ j ∈HP(τi)

⌈

di −d j

p j

⌉

. ⊓⊔

6.2 VCPU-preemption event

Definition 3 (VCPU-preemption event) A VCPU-preemption event of VPi occurs

when VPi is preempted by a higher-priority VCPU VP j of another domain.

When a VCPU VPi is preempted, the currently running task τl on VPi may migrate

to another VCPU VPk of the same domain and may preempt the currently running

task τm on VPk . This can cause the tasks running on VPk experiences cache-related

preemption or migration overhead twice in the worst case, as is illustrated in the

following example.

Example 4 The system consists of three domains D1–D3. D1 has VCPUs VP1 (full)

and VP2 (partial); D2 has VCPUs VP3 (full) and VP4 (partial); and D3 has one

partial VCPU VP5. The partial VCPUs of the domains—VP2(5, 3), VP4(8, 3) and

VP5(6, 4)—are scheduled under gEDF on cpu1 and cpu2, as is shown in Fig. 5a. In

addition, domain D2 consists of three tasks, τ1(8, 4, 8), τ2(6, 2, 6) and τ3(10, 1.5, 10),

which are scheduled under gEDF on its VCPUs (Fig. 5b).

As is shown in Fig. 5a, a VCPU-preemption event occurs at time t = 2, when VP4

(of D2) is preempted by VP2. Observe that, within D2 at this instant, τ2 is running on

VP4 and τ1 is running on VP3. Since τ2 has an earlier deadline than τ1, it is migrated

to VP3 and preempts τ1 there. Since VP3 is mapped to a different core from cpu1, τ2

has to reload its useful cache content to the cache of the new core at t = 2. Further,

when τ1 resumes at time t = 3.5, it has to reload the useful cache blocks that may

have been evicted from the cache by τ2. Hence, the VCPU-preemption event of VP4

causes overhead for both of the tasks in its domain.

123

Real-Time Syst

(a) Scheduling scenario of VCPUs. (b) Cache overhead of tasks in D2.

Fig. 5 Cache overhead due to a VCPU-preemption event

Lemma 7 Each VCPU-preemption event causes at most two tasks to experience

a cache miss. Further, the cache-related overhead it causes is at most �
crpmd
C =

maxτi ∈C �
crpmd
τi

, where C is the component that has the preempted VCPU.

Proof At most one task is running on a VCPU at any time. Hence, when a VCPU VPi

of C is preempted, at most one task (τm) on VPi is migrated to another VCPU VP j ,

and this task preempts at most one task (τl) on VP j . As a result, at most two tasks

(i.e., τm and τl) incur a cache miss because of the VCPU-preemption event. (Note

that τl cannot immediately preempt another task τn because otherwise, τm would have

migrated to the VCPU on which τn is running and preempted τn instead.) Further, since

the overhead caused by each cache miss in C is at most �
crpmd
C

= maxτi ∈C �
crpmd
τi

,

the maximum overhead caused by the resulting cache misses is at most 2�
crpmd
C

. ⊓⊔

Since the partial VCPUs are scheduled under gEDF as implicit-deadline tasks (i.e.,

the task periods are equal to their relative deadlines), the number of VCPU-preemption

events of a partial VCPU VPi during each VPi ’s period also follows Lemma 6. The

next lemma is implied directly from this observation.

Lemma 8 (Number of VCPU-preemption events) Let VPi = (�i ,�i) for all partial

VCPUs VPi of the domains. Let HP(VPi) be the set of VP j with 0 < � j <� j < �i .

Denote by N 2
VPi

and N 2
VPi ,τk

the maximum number of VCPU-preemption events of

VPi during each period of VPi and during each period of τk inside VPi ’s domain,

respectively. Then,

N 2
VPi

≤
∑

VP j ∈HP(VPi)

⌈�i − � j

� j

⌉

(8)

N 2
VPi ,τk

≤
∑

VP j ∈HP(VPi)

⌈ pk

� j

⌉

. (9)

123

Real-Time Syst

6.3 VCPU-completion event

Definition 4 (VCPU-completion event) A VCPU-completion event of VPi happens

when VPi exhausts its budget in a period and stops its execution.

Like in VCPU-preemption events, each VCPU-completion event causes at most two

tasks to experience a cache miss, as given by Lemma 9.

Lemma 9 Each VCPU-completion event causes at most two tasks to experience a

cache miss.

Proof The effect of a VCPU-completion event is very similar to that of a VCPU-

preemption event. When VPi finishes its budget and stops, the running task τm on VPi

may migrate to another running VCPU VP j , and, τm may preempt at most one task

τl on VP j . Hence, at most two tasks incur a cache miss due to a VCPU-preemption

event. ⊓⊔

Lemma 10 (Number of VCPU-completion events) Let N 3
VPi

and N 3
VPi ,τk

be the num-

ber of VCPU-completion events of VPi in each period of VPi and in each period of

τk inside VPi ’s domain. Then,

N 3
VPi

≤ 1 (10)

N 3
VPi ,τk

≤
⌈ pk − �i

�i

⌉

+ 1 (11)

Proof Eq. (10) holds because VPi completes its budget at most once every period. Fur-

ther, observe that τi experiences the worst-case number of VCPU-preemption events

when (1) its period ends at the same time as the budget finish time of VPi ’s current

period, and (2) VPi finishes its budget as soon as possible (i.e., Bi time units from the

beginning of the VCPU’s period) in the current period and as late as possible (i.e., at

the end of the VCPU’s period) in all its preceding periods. Eq. (11) follows directly

from this worst-case scenario. ⊓⊔

6.4 VCPU-stop event

Since a VCPU stops its execution when its VCPU-completion or VCPU-preemption

event occurs, we define a VCPU-stop event that includes both types of events. That is, a

VCPU-stop event of VPi occurs when VPi stops its execution because its budget is fin-

ished or because it is preempted by a higher-priority VCPU. Since VCPU-stop events

include both VCPU-completion events and VCPU-preemption events, the maximum

number of VCPU-stop events of VPi during each VPi ’s period, denoted as N
stop
VPi

,

satisfies

N
stop
VPi

= N 2
VPi

+ N 3
VPi

≤
∑

VP j ∈HP(VPi)

⌈�i − � j

� j

⌉

+ 1 (12)

123

Real-Time Syst

6.5 Overview of the overhead-aware compositional analysis

Based on the above quantification, in the next two sections we develop two different

approaches, task-centric and model-centric, for the overhead-aware interface compu-

tation. Although the obtained interfaces by both approaches are safe and can each

be used independently, we combine them to obtain the interface with the smallest

bandwidth as the final result.

7 Task-centric compositional analysis

This section introduces two task-centric analysis methods to account for the cache-

related overhead in the interface computation. The first, denoted as baseline, accounts

for the overhead by inflating the WCET of every task in the system with the maximum

overhead it experiences within each of its periods. The second, denoted as task-

centric- ub, combines the result of the first method using an upper bound on the

number of VCPUs that each domain needs in the presence of cache-related overhead.

We describe each method in detail below.

7.1 BASELINE: analysis based on WCET-inflation

As was discussed in Sect. 6, the overhead that a task experiences during its lifetime

is composed of the overhead caused by task-preemption events, VCPU-preemption

events and VCPU-completion events. In addition, when one of the above events occurs,

each task τk experiences at most one cache miss overhead and, hence, a delay of at most

�
crpmd
τk

. From (Brandenburg 2011), the cache overhead caused by a task-preemption

event can be accounted for by inflating the higher-priority task τi of the event with the

maximum cache overhead caused by τi . From Lemmas 8 and 10, we conclude that

the maximum overhead τk experiences within each period is

δcrpmd
τk

= max
τi ∈LP(τk)

{�crpmd
τi

} + �crpmd
τk

(N 2
VPi ,τk

+ N 3
VPi ,τk

)

where LP(τk) is the set of tasks τi within the same domain with τk with di > dk and

VPi is the partial VCPU of the domain of τk . As a result, the worst-case execution

time of τk in the presence of cache overhead is at most

e′
k = ek + δcrpmd

τk
. (13)

Thus, we can state the following theorem:

Theorem 5 A component with a taskset τ = {τ1, . . . τn}, where τk = (pk, ek, dk),

is schedulable under gEDF by a DMPR model μ in the presence of cache-related

overhead if its inflated taskset τ ′ = {τ ′
1, . . . τ

′
n} is schedulable under gEDF by μ in

the absence of cache-related overhead, where τ ′
k = (pk, e′

k, dk), and e′
k is given by

Eq. 13.

123

Real-Time Syst

Based on Theorem 5, we can compute the DMPR interfaces of the domains and the

system by first inflating the WCET of each task τk in each domain with the overhead

δ
crpmd
τk

and then applying the same method as the overhead-free interface computation

in Sect. 5.2.7

7.2 TASK-CENTRIC-UB: Combination of BASELINE with an upper bound on

the number of VCPUs

Recall from Sect. 6 that, VCPU-preemption events and VCPU-completion events

happen only when the component has a partial VCPU. Therefore, the taskset in a

component with no partial VCPU experiences only the cache overhead caused by

task-preemption events. Recall that when a task-preemption event happens, the cor-

responding lower-priority task τi experiences a cache miss delay of at most �
crpmd
τi

.

Thus, the maximum cache overhead that a high-priority task τk causes to any pre-

empted task is maxτi ∈LP(τk) �
crpmd
τi

, where LP(τk) is the set of tasks τi within the

same domain with τk that have di > dk . As a result, the worst-case execution time of

τk in the presence of cache overhead caused by task-preemption events is at most

e′′
k = ek + max

τi ∈LP(τk)
�crpmd

τi
, (14)

where τi ∈ LP(τk) if di > dk . This implies the following lemma:

Lemma 11 A component with a taskset τ = {τ1, . . . , τn}, where τk = (pk, ek, dk), is

schedulable under gEDF by a DMPR model μ̄ = 〈�, 0, m̄〉 in the presence of cache-

related overhead if its inflated taskset τ ′′ = {τ ′′
1 , . . . , τ ′′

n } is schedulable under gEDF by

μ′′ = 〈�,�′′, m′′〉 in the absence of cache-related overhead, where τ ′′
k = (pk, e′′

k , dk),

e′′
k is given by Eq. 14, and m̄ = m′′ + ⌈�′′

�
⌉. Further, the maximum number of full

VCPUs of the interface of the taskset τ in the presence of cache overhead is m̄.

Proof First, observe that the inflated taskset τ ′′ safely accounts for all the cache over-

head experienced by τ . This is because

(1) inflating the worst-cache execution time of each task τk with maxτi ∈LP(τk) �
crpmd
τi

is safe to account for the cache overhead delay caused by task-preemption events

(as was proven in Brandenburg 2011), and

(2) the DMPR model μ̄ has no partial VCPU and thus, τ does not experience any

cache overhead caused by VCPU-preemption events or VCPU-completion events.

Further, based on Lemma 2, one can easily show that the resource SBF SBFμ(t)

of a DMPR model μ = 〈�,�, m〉 is monotonically non-decreasing with the

budget of μ when the period of μ is fixed. In other words, SBFμ̄(t) ≥ SBFμ′′(t)

for all t . Combine the above observations, we imply that τ is schedulable under

the resource model μ̄ in the presence of cache overhead if τ ′′ is schedulable under

7 Note that we inflate only the tasks’ WCETs and not the VCPUs’ budgets, since δ
crpmd
τk

includes the

overhead for reloading the useful cache content of a preempted VCPU when it resumes.

123

Real-Time Syst

the resource model μ′′ in the absence of cache overhead. This proves the first part

of the lemma.

Since τ is schedulable under the resource model μ̄ in the presence of cache overhead,

the number of full VCPUs of the overhead-aware interface of τ is always less than or

equal to the ceiling of the bandwidth of μ̄, which is exactly m̄. ⊓⊔

Note that the maximum number of full VCPUs given by Lemma 11 can be larger

or smaller than the interface bandwidth computed by the baseline method, as is

illustrated in the following two examples.

Example 5 Consider a system Sys1 consisting of two domains, C1 and C2, with

workloads τC1 = {τ 1
1 = · · · = τ 3

1 = (100, 40, 100)} and τC2 = {τ 1
2 = · · · = τ 3

2 =

(100, 40, 100)}, respectively. Suppose that Sys1 employs the hybrid EDF scheduling

strategy described in Sect. 2; the periods of DMPR interfaces of C1, C2 and Sys1

are set to 80, 40 and 20, respectively; and the cache overhead per task is 1. Then,

the DMPR cache-aware interface of C1 computed using the baseline method is

μC1 = 〈80, 76, 1〉, which has a bandwidth of 1 + 76/80 = 1.95.

In contrast, if we only consider the cache overhead caused by task-preemption

events, then the interface of the system is given by μ′′
C1

= 〈80, 64, 1〉. Based on

Lemma 11, the maximum number of full VCPUs of C1 is 1 + 64/80 = 2, and the

corresponding DMPR interface is μ̄C1 = 〈80, 0, 2〉. Thus, the interface computed

by the baseline method has a smaller bandwidth than the maximum number of full

VCPUs given by Lemma 11.

Example 6 Consider a system Sys2 that is identical to the system Sys1 in Example 5,

except that the cache overhead for each task is 5 instead of 1. In this case, the cache-

aware interface of C1 computed using the baseline method is μ̄C1 = 〈80, 72, 2〉,

which has a bandwidth of 2 + 72/80 = 2.9. In contrast, if we only consider only the

cache overhead caused by task-preemption events, then the interface of the system

is given by μ′′
C1

= 〈80, 74, 1〉. Based on Theorem 11, the maximum number of full

VCPUs is 1+74/80 = 2. Therefore, the interface computed by the baseline method

has a larger bandwidth than the maximum number of full VCPUs given by Lemma 11.

Since the interface μ̄ given by Lemma 11 does not always have a smaller bandwidth

than the interface computed using the baseline method, we combine the two inter-

faces to derive the minimum-bandwidth DMPR interface in the presence of overhead,

as is given by Theorem 6. The correctness of this theorem is derived directly from the

correctness of Lemma 11 and Theorem 5.

Theorem 6 Let C be a component with a taskset τ = {τ1, . . . , τn} that is schedu-

lable by the gEDF scheduler, where τk = (pk, ek, dk) for all 1 ≤ k ≤ n. Suppose

μ′
C = 〈�,�′, m′〉 is the feasible DMPR interface given by Theorem 5, and m′′ is the

maximum number of full VCPUs of C given by Lemma 11. Then, the component C is

schedulable under the DMPR interface μC , where μC = μ′
C if m′′ > m′ + �′

�
, and

μC = 〈�, 0, m′′〉 otherwise.

Interface computation under the task- centric- ub method Based on the above

results, the overhead-aware interface for a system can be obtained by first computing

123

Real-Time Syst

the interface for each domain using Theorem 6, and then computing the system’s

interface by applying the overhead-free interface computation in Sect. 5.

7.3 TASK-CENTRIC-UB versus BASELINE

As was discussed in Sect. 7.2, the interface of a domain computed by the task-

centric- ub method always has a bandwidth no larger than the bandwidth of the

interface computed by the baseline method.

We will show that this relationship also holds for the interfaces at the system level.

We first define the dominance relation between any two analysis methods as follows:

Definition 5 A compositional analysis method C S A is said to dominate another com-

positional analysis method C S A′ iff for any system S, the interface bandwidth of S

when computed using C S A is always less than or equal to the interface bandwidth of

S when computed using C S A′.

Lemma 12 The task- centric- ub method always dominates the baseline method.

Proof Consider a system S with D domains, {C1, . . . , CD}. Let μCi
= 〈�i ,�i , mi 〉

and μ′
Ci

= 〈�i ,�
′
i , m′

i 〉 be the minimum-bandwidth DMPR interfaces of Ci under

the task- centric- ub method and the baseline method, respectively. We have the

following:

– Under the task- centric- ub method, the system has a set of partial VCPUs,

VPpart = {VP1 = (�1,�1), . . . , VPD = (�D,�D)}, and (m1 + · · · + m D)

full VCPUs. Based on the analysis in Sect. 5, the minimum-bandwidth DMPR

interface of S is given by μS = 〈�C ,�C , mS〉, where μC = 〈�C ,�C , mC 〉 is the

minimum-bandwidth DMPR interface for VPpart and mS = mC +
∑

1≤i≤D mi .

– Under the baseline method, the system has a set of partial VCPUs, VP′
part =

{VP′
1 = (�1,�

′
1), …,VPD = (�D,�′

D)} and (m′
1 + · · · + m′

D) full VCPUs.

Therefore, the minimum-bandwidth DMPR interface system is given by μ′
S =

〈�C ,�′
C , m′

S〉, where μ′
C = 〈�,�′

C , m′
C 〉 is the minimum-bandwidth DMPR

interface of the partial VCPU set VP′
part, and m′

S = m′
C +
∑

1≤i≤D m′
i .

From Theorem 6, there are two cases for the relationship between μCi
and μ′

Ci
:

1. �i = �′
i and mi = m′

i , if the interface bandwidth computed by the baseline

method is less than or equal to the maximum number of full VCPUs of Ci given

by Lemma 11 (i.e., m′
i +

�′
i

�
≤ mi + �i

�
);

2. �i = 0 and mi ≤ m′
i , otherwise.

We can conclude from the above cases that for all partial VCPUs VPi and VP′
i com-

puted respectively by the task- centric- ub method and the baseline method,

VPi = VP′
i , or VPi has budget equal to 0 whereas VP′

i has budget larger than 0. In

other words, VPpart ⊆ VP′
part.

Because VPpart is only a subset of VP′
part, we can derive from Eq. (4) that the

resource demand of VPpart is always less than or equal to the resource demand of

VP′
part. Therefore, if VP′

part is schedulable under the DMPR interface μ′
C , then VPpart

123

Real-Time Syst

is also schedulable underμ′
C . BecauseμC is the bandwidth-optimal DMPR interface of

VPpart, the bandwidth of μC is no larger than the bandwidth of μ′
C , i.e., �C

�C
+ mC ≤

�′
C

�C
+ m′

C . In addition,
∑

1≤i≤D mi ≤
∑

1≤i≤D m′
i , because mi ≤ m′

i . Hence, the

bandwidth of μS , which is equal to �C

�C
+ mC +

∑

1≤i≤D mi , is no larger than the

bandwidth of μ′
S , which is

�′
C

�C
+ m′

C +
∑

1≤i≤D m′
i . This proves the lemma. ⊓⊔

8 Model-centric compositional analysis

Recall from Sect. 6 that each VCPU-stop event (i.e., VCPU-preemption or VCPU-

completion event) of VPi causes at most one cache miss overhead for at most two

tasks of the same domain. However, since it is unknown which two tasks may be

affected, the baseline method in Sect. 7 assumes that every task τk of the same

domain is affected by all the VCPU-stop events of VPi (and thus includes all of the

corresponding overheads in the inflated WCET of the task). While this approach is

safe, it is very conservative, especially when the number of tasks or the number of

events is high.

In this section, we propose an alternative method, called model- centric, that

avoids the above assumption to minimize the pessimism of the analysis. The idea

is to account for the total overhead due to VCPU-stop events that is incurred by all

tasks in a domain, rather than by each task individually. This combined overhead is

the overhead that the domain as a whole experiences due to VCPU-stop events under

a given DMPR interface μ of the domain (since the budget of the partial VCPU of

a domain is determined by the domain’s interface). Therefore, the effective resource

supply that a domain receives from a DMPR interface μ in the presence of VCPU-stop

events is the total resource supply that μ provides, less the combined overhead.

8.1 Challenge: resource parallel supply problem

Based on the overhead scenarios in Sect. 6, at first it seems possible to account for

the overhead of the VCPU-preemption and VCPU-completion events by inflating the

budget of an overhead-free interface with the cache-related overhead caused by the

VCPU-preemption and VCPU-completion events that occur within a period of the

overhead-free interface. However, this interface budget inflation approach is unsafe,

due to the resource parallel supply under multicore interfaces. We illustrate this via

the following scenario.

Example 7 Consider a system with a single component C that has a workload τ =

{τ1 = τ2 = (2, 0.1, 2), τ3 = (2, 1.81, 2)}, which is scheduled under gE DF . We

assume that ties are broken based on increasing order of tasks’ indices, i.e., a task

with a smaller index has a higher priority. Suppose the cache overhead for each task

is given by �
crpmd
τ1

= �
crpmd
τ2

= 0.05 and �
crpmd
τ3

= 0.2. (The time unit is ms.) In

this example, we consider only the cache overhead caused by VCPU-preemption and

VCPU-completion events and assume that there are no other types of overhead.

123

Real-Time Syst

0.4 Period=2

vcpu1 (full)

vcpu2 (full)

vcpu3 (partial)

1.01

vcpu1 (full)

vcpu2 (full)

vcpu3 (partial)

 Inflated budget because of cache overhead

0.2 1.4 0.4
Miss deadline! Tardiness is 0.01

(a) Resource supply scenario

(b) Task scheduling scenario under the resource supply of scenario a)

23 =d

τ1 = (2, 0.1, 2) τ 2 = (2, 0.1, 2))2,81.1,2(3 =τ 2.0=∆
crpmd Priority: 321 τττ >>

321 ,, τττ

t

3τ

3τ

2τ

1τ

t

Fig. 6 Scenario of unsafe analysis of inflating interface’s budget

Based on the overhead-free anlaysis in Sect. 5, the taskset τ is schedulable under

the DMPR interface μ = 〈2, 1.01, 2〉. Since the interface has only one partial VCPU

and this partial VCPU is not preempted by any other (full) VCPUs, the taskset τ in C

experiences no VCPU-preemption event. In addition, at most one VCPU-completion

event happens in a period of the DMPR interface μ. Further, based on Sect. 6,

each VCPU-completion event causes at most two tasks to experience a cache miss.

Therefore, the total cache overhead delay in a DMPR interface’s period is at most

2 max1≤i≤3{�
crpmd
τi

} = 0.4.

Suppose we inflate the budget of the overhead-free DMPR interface μ with the total

cache overhead delay of 0.4. Then, we obtain the DMPR interface μ′ = 〈2, 1.41, 2〉.

However, the taskset τ is not schedulable under μ′, as is illustrated by Fig. 6.

Figure 6a shows the resource supply pattern of μ′, and Fig. 6b shows the release

and schedule patterns of the tasks in τ . Here, the tasks τ1, τ2, and τ3 are released at

t = 1.01. τ3 migrates from VCPU3 to VCPU2 at t = 1.41 and occurs a delay of

�
crpmd
τ3

= 0.2 time units to reload its cache content (because VCPU3 completes its

budget at t = 1.41). τ3 keeps running on VCPU2 for 1.41 time units and finishes

its execution at t = 3.02. Since τ3’s absolute deadline is t = 3.01, τ3 misses its

deadline.

The flaw in the cache-aware analysis approach that naïvely inflates the interface’s

budget comes from the resource parallel supply problem of the global multicore

scheduling. In the above scenario, when τ3 experiences cache overhead, its worst-case

execution time is enlarged and thus, it needs more CPU time to execute. However,

inflating the budget of the interface cannot guarantee that τ3 receives the inflated bud-

get, e.g., when part of the inflated budget is assigned to a VCPU that supplies resource

in parallel with the VCPU on which τ3 is running. Because τ3 is not a parallel task

123

Real-Time Syst

and cannot execute on two cores at the same time, τ3 does not fully utilize the inflated

budget. As a result, although the extra budget is enough to account for the cache over-

head τ3 experiences, the inflated budget is not enough to guarantee the schedulability

of the taskset under the resource model with inflated budget.

It is worth noting that the above overhead-aware analysis based on interface budget

inflation is only safe under the assumption that the resource demand of a taskset

is independent of the resource supply of the interface. However, this assumption is

incorrect in the multicore setting: both the resource demand of a taskset in Eq. 4 and

the resource supply of a resource mdoel in Lemma 2 depend on the number of VCPUs

of a component, and they are coupled in terms of the number of VCPUs.

In the next section, we present an alternative approach that explicitly considers the

effect of cache overhead on the SBF of the interface of each VCPU.

8.2 Cache-aware effective resource supply of a DMPR model

We first analyze the effective resource supply of a DMPR model μ, i.e., the supply it

provides to a domain in the presence of the overhead caused by VCPU-stop events.

We then combine the results with the overhead caused by task-preemption events to

derive the schedulability and the interface of a domain.

Consider a DMPR interface μ = (�,�, m) of a domain Di , and recall that μ

provides one partial VCPU VPi = (�,�) and m full VCPUs to Di . Then, in the

presence of overhead due to VCPU-stop events, the effective resource supply of μ

consists of the effective resource supply of VPi and the effective resource supply

of m full processors. Here, the effective budget (resource) of a VCPU is the budget

(resource) that is used solely to execute the tasks running on the VCPU, rather than to

handle the cache misses that are caused by VCPU-stop events. We quantify each of

them below.

For ease of exposition, we say that a VCPU incurs a CRPMD if the task running

on the VCPU incurs the overhead caused by a VCPU-stop event, and we call a time

interval [a, b] an overhead interval of a VCPU if the effective resource the VCPU

provides during [a, b] is zero. (Note that the first overhead interval of VPi in a period

cannot start before VPi begins its execution.) Finally, we call [a, b] a black-out interval

of a VCPU if it consists of overhead intervals or intervals during which the VCPU

provides no resources.

Effective resource supply of the partial VCPU VPi of μ Recall that N
stop
VPi

denotes

the maximum number of VCPU-stop events of VPi during each period �. The next

lemma states a worst-case condition for the effective resource supply of VPi :

Lemma 13 The worst-case effective resource supply of VPi in each period occurs

when VPi has N
stop
VPi

VCPU-stop events.

Proof Because VPi has a constant budget of � in each period �, the more cache-

related overhead it incurs in a period, the fewer effective resources it can supply to

(the actual execution of) the tasks in the domain. Since the overhead that a domain’s

tasks incur in a period of VPi is highest when VPi stops its execution as many times

as possible, the worst-case effective resource supply of VPi in a period occurs when

123

Real-Time Syst

VPi has the maximum number of VCPU-stop events, which is N
stop
VPi

events. Hence,

the lemma. ⊓⊔

Based on this lemma, we can construct the worst-case scenario during which the

effective resource supply of VPi is minimal, and we can derive the effective SBF

according to this worst-case scenario.

Lemma 14 The effective resource supply that VPi provides during I is minimal

when (1) VPi provides its budget as early as possible in the current period and as

late as possible in the subsequent periods, (2) VPi has as many VCPU-stop events as

possible in each period, and (3) the interval I begins in the current period of VPi and

the total length of the black-out intervals that overlap with I is maximal.

Proof Suppose VPi provides � resource units in each of its period. Denote by

ScenarioA and ScenarioB the effective resource supply scenarios described in Claim

1 and the worst-case supply scenario. Further, denote by SBF
stop
VPi

(t) and SBF
stop
VPi

(t)

the effective resource supply of VPi over any interval of length t in ScenarioA and

ScenarioB, respectively. Then, SBF
stop
VPi

(t) ≥ SBF
stop
VPi

(t). Let the effective resource

supply in each period of VPi in ScenarioB be �∗. Because there is at most N
stop
VPi

cache misses during each period of VPi , �∗ ≥ � − N
stop
VPi

�
crpmd
VPi

= �∗, where �∗

is the effective budget that VPi provides in each period in ScenarioA. There are two

cases:

Case 1 � ≤ N
stop
VPi

�
crpmd
VPi

: We have SBF
stop
VPi

(t) = 0. Because SBF
stop
VPi

(t) ≤

SBF
stop
VPi

(t), VPi can provide at most �∗ effective budget in each period under

ScenarioB, where �∗ = � − N
stop
VPi

�
crpmd
VPi

. In other words, �∗ ≤ �∗. Since

�∗ ≤ �∗, we obtain �∗ = �∗.

Case 2 � > N
stop
VPi

�
crpmd
VPi

: There are five sub-cases, as follows:

(a) t ≤ x + z: We have SBF
stop
VPi

(t) = 0. Because SBF
stop
VPi

(t) ≤ SBF
stop
VPi

(t), VPi

in ScenarioB must provide its budget as early as possible in the current period

and as late as possible in the next period (as is shown in the interval [t3, t5] in

ScenarioA), so that it can guarantee that SBF
stop
VPi

(t) = 0. Further, because VPi

must provide at most �∗ time units during each period �, VPi always provides

effective resource when t is enlarged. Therefore, the maximum length of the

black-out interval is x + z.

(b) x + z < t ≤ x + z +�∗: Since VPi provides �∗ resource units in each period and

the whole second period of ScenarioB overlaps with the interval I, VPi must

provide �∗ resource units at the end of the �∗ time unit interval of the second

period. Thus, ScenarioB is the same as ScenarioA during the interval [t5, t6].

(c) x + z + �∗ < t ≤ x + 2z + �∗: SBF
stop
VPi

(t) = �∗ and VPi in ScenarioA

provides no effective resource during [t6, t7]. Therefore, VPi in ScenarioB also

provides no effective resource during [t6, t7] (since SBF
stop
VPi

(t) ≤ �∗).

123

Real-Time Syst

Fig. 7 Worst-case effective resource supply of VPi = (�,�)

(d) x + 2z + �∗ < t ≤ x + 2z + 2�∗: Similar to the sub-case (b) above, VPi

in ScenarioB must provide �∗ time units during [t7, t8] (because otherwise, it

cannot provide �∗ time units in each period).

(e) By repeating the sub-cases (c) and (d), we can prove that VPi in ScenarioB

provides no less effective resource than that in ScenarioA.

From the above, we imply that ScenarioA is the worst-case effective resource supply

scenario of VPi . Hence, the lemma. ⊓⊔

Lemma 15 The effective SBF of the partial VCPU VPi = (�,�) of a resource model

μ = (�,�, m) of a component C is

SBF
stop
VPi

(t) =

{

y�∗ + max{0, t − x − y� − z}, if � > N
stop
VPi

�
crpmd
VPi

0, otherwise
(15)

where �
crpmd
VPi

= max
τi ∈C

{�
crpmd
τi

}, �∗ = � − N
stop
VPi

�
crpmd
VPi

, x = � − �
crpmd
VPi

− �∗,

y = ⌊ t−x
�

⌋ and z = � − �∗.

Proof Let I be any interval of length t . We will prove the lemma based on the worst-

case resource supply scenario given by Lemma 14.

Figure 7 illustrates the worst-case scenario described in Lemma 14, where I begins

at time t3 and the intervals during which VPi provides effective resources are [t2, t3],

[t5, t6] and [t7, t8]:

In the figure, the first overhead interval of VPi in a period starts when VPi first

begins its execution in that period. This first overhead interval is caused by the VCPU-

completion event of VPi that occurs in the previous period. Recall from Lemma 13

that the maximum number of VCPU-stop events of VPi in a period � is N
stop
VPi

.

Further, according to the gEDF scheduling of component C , any task in C may run

the partial VCPU and experience the cache overhead caused by the VCPU-stop event.

Therefore, the maximum overhead a task in component C experiences due to a VCPU-

stop event of V Pi is �
crpmd
VPi

= max
τi ∈C

{�
crpmd
τi

}. As a result, the effective budget is

�∗ ≥ � − N
stop
VPi

�
crpmd
VPi

. Further, we have:

t3 − t2 ≥ � − (N
stop
VPi

− 1)�
crpmd
VPi

− (t2 − t1) = �∗ + �
crpmd
VPi

− (t2 − t1);

x = t4 − t3 = (t4 − t1) − (t3 − t2) − (t2 − t1) ≤ � − �
crpmd
VPi

− �∗;

123

Real-Time Syst

Fig. 8 Worst-case resource supply of m full VCPUs of μ

z = t7 − t6 = (t8 − t6) − (t8 − t7) ≤ � − �∗.

Based on this information, we can derive the minimum effective resource supply

during the interval I as follows: if � ≤ N
stop
VPi

�
crpmd
VPi

, then �∗ = 0 and SBF
stop
VPi

= 0;

otherwise, SBF
stop
VPi

(t) = y�∗ + max{0, t − x − y� − z}. In addition, SBF
stop
VPi

(t) is

minimal when �∗ = �− N
stop
VPi

�
crpmd
VPi

and x = �−�
crpmd
VPi

−�∗. Therefore, Eq. 15

gives the minimum effective resource supply of the worst-case effective resource

supply scenario described in Lemma 14. This proves the lemma. ⊓⊔

Effective resource supply of all m full VCPUs of μ Similar to the partial-VCPU case,

we can also establish a worst-case condition for the total effective resource supply of

the full VCPUs:

Lemma 16 The m full VCPUs provide the worst-case total effective resource supply

when they incur N
stop
VPi

CRPMDs in total during each period � of the partial VPi of

μ.

Proof Because the total resource supply of m full VCPUs in any interval of length t

is always mt , these VCPUs together provide the least effective resource supply when

they incur the maximum number of CRPMDs. Recall from Sect. 6 that, when a VCPU-

stop event of the partial VCPU VPi of a domain Di occurs, it causes one CRPMD in

a full VCPU of the same domain. Hence, the total number of CRMPDs that these full

VCPUs incur together is the number of VCPU-stop events of the partial VCPU VPi

of the same domain. The lemma then follows from a combination with Lemma 13. ⊓⊔

The next lemma gives the worst-case supply scenarios of m full VCPUs. Figure 8

illustrates one of the conditions under this worst-case scenario.

Lemma 17 The worst-case effective resource supply of m full VCPUs of μ in any

interval I of length t occurs when (1) all the N
stop
VPi

CRPMDs are experienced by one

full VCPU VP f in each period � of VPi , (2) VP f incurs the overhead as late as

possible in the first period and as early as possible in the rest of periods of VPi , (3)

the maximum overhead cost of each CRPMD overhead is �
crpmd
VPi

, and (4) the interval

I begins when the first CRPMD occurs in the first period.

Proof We denote by ScenarioA the effective resource supply scenario given by

Lemma 17 (see Fig. 8), and let ScenarioB be a worst-case effective resource supply

123

Real-Time Syst

scenario of the m full VCPUs. Let x = N
stop
VPi

�
crpmd
VPi

. We will prove that the m full

VCPUs provides no less effective resource in ScenarioB than in ScenarioA with the

following arguments:

1. While a full VCPU VP f is experiencing a CRPMD, the resource provided by any

other full VCPU VP j is unavailable to the task currently running on VP f (since

this task cannot execute on more than one VCPUs at any given time). Since it is

unknown which exact task in the domain is running on VP f , it is unknown whether

VP j is available to a given task. Hence, we consider VP j as unavailable to every

task while VP f is experiencing the overhead, so as to guarantee the safety of the

schedulability analysis. Recall from Lemma 16 that, all m full VCPUs incur N
stop
VPi

CRPMDs in each period. The unavailable intervals of each period � is maximized

when all these N
stop
VPi

CRPMDs are incurred by one full VCPU V P f in each period

� of VPi . Hence, ScenarioB must obey Condition (1).

2. The maximum total length of the unavailable intervals of m full VCPUs in each

period is x = N
stop
VPi

�
crpmd
VPi

. The maximum black-out interval happens when

the unavailable intervals in two periods are consecutive and the maximum cost

of each CRPMD is �
crpmd
VPi

. Therefore, the full VCPU V P f should incur the

overhead as late as possible in the first period and as early as possible in the

second period of VPi in order for the black-out interval to be maximized. In

addition, the interval I should begin when the first CRPMD occurs in the first

period. Hence, ScenarioB should obey the conditions (3) and (4), and the m full

VCPUs provide no less effective resource in ScenarioB than in ScenarioA when

t ≤ 2x .

3. When x + k� < t < 2x + k� (k ∈ N), because m full VCPUs must provide

m(�−x) effective resource units in each period and the interval t has k periods, the

m full VCPUs in ScenarioB should provide at least km(�− x) effective resource

units during a time interval of length t . Because t > x + k�, the m full VCPUs in

ScenarioB have already provided km(� − x) effective resource units during the

interval of length x + k�. Therefore, they must provide no effective resource in

the remaining time interval of length t − (x + k�) (otherwise, the m full VCPUs

would provide more effective resource in ScenarioB than in ScenarioA.) Hence,

VP f should incur the overhead as early as possible in all periods (except for the

first period) of VPi . Hence, by combining the the arguments (2) and (3), we imply

that ScenarioB must obey Condition (2) and the m full VCPUs provide no less

effective resource in ScenarioB than in ScenarioA when x +k� < t < 2x +k�.

4. When 2x + k� < t < x + (k + 1)� (k ∈ N), the m full VCPUs in ScenarioB

provides no effective resource during [x +k�, 2x +k�] according to the argument

(3). In addition, the m full VCPUs in ScenarioB must provide m(�− x) effective

resource units during [x + k�, x + (k + 1)�], i.e., the (k + 1)th period of VPi ,

in order to guarantee m(� − x) effective resource units during the (k + 1)th

period of VPi . Therefore, the m VCPUs in ScenarioB always provides the same

effective resource during [2x + k�, x + (k + 1)�] as in ScenarioA. Hence,

they provide no less effective resource in ScenarioB than in ScenarioA when

2x + k� < t < x + (k + 1)�.

123

Real-Time Syst

Because the m full VCPUs provide no less effective resource in ScenarioB than

in ScenarioA, and ScenarioB is a worst-case effective resource supply scenario, we

imply that ScenarioA is also a worst-case effective resource supply scenario of the

m full VCPUs. Hence, the lemma. ⊓⊔

The next lemma gives the effective SBF of the m full VCPUs of μ based on the

worst-case scenario described in Lemma 17.

Lemma 18 The effective SBF of the m full VCPUs of μ is given by:

SBF
stop
VPs(t) =

{

m
(

y�′ + max{0, t − y� − 2x}
)

if � �= 0

mt if � = 0
(16)

where x = N
stop
VPi

�
crpmd
VPi

, y = ⌊ t−x
�

⌋ and �′ = � − x.

Proof The effective resource SBF SBF
stop
VPs

(t) of the resource supply scenario given

by Lemma 17 is given by: When t < 2x , SBF
stop
VPs

(t) = 0; When x + k� <

t < 2x + k�, SBF
stop
VPs(t) = km(� − x); When 2x + k� < t < x + (k + 1)�,

SBF
stop
VPs

(t) = km(� − x) + m(t − 2x − k�). Equation 16 is derived by rearranging

the equations of SBF
stop
VPs

(t). Since the resource supply scenario given by Lemma 17 is

a worst-case scenario, SBF
stop
VPs

(t) is the effective resource SBF of the m full VCPUs

of μ. ⊓⊔

Effective resource supply of a DMPR model The next lemma gives the effective

resource supply that a DMPR interface μ = (�,�, m) provides to a domain Di after

having accounted for the overhead due to VCPU-stop events. The lemma is a direct

consequence of Lemmas 15 and 18.

Lemma 19 The effective resource supply of a DMPR interface μ = 〈�,�, m〉 of a

domain Di after having accounted for the overhead due to VCPU-stop events is given

by:

SBFstop
μ (t) = SBF

stop
VPi

(t) + SBF
stop
VPs(t), ∀ t ≥ 0. (17)

Here, SBF
stop
VPi

(t) is the effective resource supply of the partial VCPU VPi = (�,�),

which is given by Eq. (15), and SBF
stop
VPs

(t) is the effective resource supply of the m

full VCPUs of μ, which is given by Eq. (16).

Proof Since the resource supply of a DMPR interface is the total effective resource

supply of its partial VCPU and full VCPUs, the lemma directly follows from the

definition of SBF
stop
VPi

(t) and SBF
stop
VPs

(t). ⊓⊔

Note that, when no partial VCPU exists for interface μ = 〈�, 0, m〉, the effective

resource supply of μ is equal to the resource supply of μ, i.e., SBFstop
μ (t) = mt .

123

Real-Time Syst

8.3 DMPR interface computation under MODEL-CENTRIC method

Based on the effective supply function, we can develop the component schedulability

test as follows.

Theorem 7 Consider a domain Di with a taskset τ = {τ1, . . . τn}, where τk =

(pk, ek, dk). Let τ ′′ = {τ ′′
1 , . . . τ ′′

n }, where τ ′′
k = (pk, e′′

k , dk) and e′′
k = ek +

maxτi ∈L P(τk)�
crpmd
τi

8 for all 1 ≤ k ≤ n. Then, Di is schedulable under gEDF by

a DMPR model μ in the presence of cache-related overhead, if the inflated taskset τ ′′

is schedulable under gEDF by the effective resource supply SBFstop
μ (t) in the absence

of overhead.

Proof Since τ ′′ includes the overhead that τ incurs due to task-preemption events, if

SBFstop
μ (t) is sufficient to schedule τ ′′ assuming negligible overhead, then it is also

sufficient to schedule τ in the presence of task-preemption events. As SBFstop
μ (t) gives

the effective supply that μ provides to τ after having accounted for the overhead due

to VCPU-stop events, μ provides sufficient resources to schedule τ in the presence of

the overhead from all types of events. This proves the theorem. ⊓⊔

Based on the above results, we can generate a cache-aware minimum-bandwidth

DMPR interface for a domain in the same manner as in the overhead-free case, except

that we use the effective resource supply and the inflated taskset in the schedulabil-

ity test. Similarly, the system’s interface can be computed from the interfaces of the

domains in the exact same way as the overhead-free interface computation.

9 Hybrid cache-aware DMPR interface

Recall from Sect. 7 that the task- centric- ub method always dominates the

baseline method. However, neither of these analysis methods dominates the model-

centric method, and vice versa. We demonstrate this using two example systems,

where the task- centric- ub method gives a smaller interface bandwidth in the first

system but a larger interface bandwidth in the second system compared to the interface

bandwidth given by the model- centric method.

Example 8 Let Sys1 be a system consisting of two domains C1 and C2 that are sched-

uled under the hybrid EDF scheduling strategy (c.f. Sect. 2) and that have workloads

τC1 = {τ 1
1 = · · · = τ 4

1 = (200, 100, 200)} and τC2 = {τ 1
2 = τ 2

2 = (200, 100, 200)},

respectively. By applying the analysis in Sects. 7.2 and 8, the interfaces of the

system under task- centric- ub and under model- centric are computed to be

μSys1
= 〈20, 17, 5〉 and μ′

Sys1
= 〈20, 19, 5〉, respectively. Thus, the system’s inter-

face under task- centric- ub has a smaller bandwidth than that of the interface

computed under model- centric.

Example 9 Let Sys2 be a system consisting of two domains C1 and C2 that are

scheduled under the hybrid EDF scheduling strategy and that have workloads τC1 =

8 Recall that LP(τk) = {τi |di > dk }.

123

Real-Time Syst

{τ 1
1 , . . . , τ 5

1 = (100, 5, 100)} and τC2 = {τ 1
2 , . . . , τ 5

2 = (100, 5, 100)}, respectively.

The interfaces of this system under task- centric- ub and under model- centric

are given by μSys2
= 〈20, 0, 4〉 and μ′

Sys2
= 〈20, 14, 3〉, respectively. Thus, the

system’s interface under task- centric- ub has a larger bandwidth than that of the

interface computed under model- centric.

One can also show that neither model- centric nor baseline dominates one

another. For instance, consider the system Sys1 in Example 8. The interface of the

whole system under the baseline method is μ′′
Sys1

= 〈20, 17, 5〉, which has a smaller

bandwidth than the interface μ′
Sys1

computed using the model- centric method.

Further, since the task- centric- ub method dominates the baseline method but

not the model- centric method, the baseline method also does not dominate the

model- centric method.

From the above observations, we can derive the minimum interface of a com-

ponent from the ones computed using the task- centric- ub and model- centric

methods (since task- centric- ub method always dominates baseline), as stated by

Theorem 8. The theorem is trivially true, since both interfaces computed using the

task- centric- ub and model- centric methods are safe. We refer to this analysis

as the hybrid method.

Theorem 8 (Hybrid cache-aware interface) The minimum cache-aware DMPR inter-

face of a domain Di (a system S) is the interface that has a smaller resource bandwidth

between μtask and μmodel, where μtask and μmodel are the minimum-bandwidth

DMPR interfaces of Di (S) computed using the task- centric- ub and the model-

centric methods, respectively.

Discussion We observe that the schedulability analysis under gEDF in the absence

of overhead (Theorem 1) is only a sufficient test, and that its pessimism degree varies

significantly with the characteristics of the taskset. For instance, under the same mul-

tiprocessor resource, one taskset with a larger total utilization may be schedulable

while another with a smaller total utilization may not be schedulable. As a result, it

is possible that the overhead-aware interface of a domain (system) may require less

resource bandwidth than the overhead-free interface of the same domain (system).

10 Evaluation

To evaluate the benefits of our proposed interface model and cache-aware composi-

tional analysis, we performed simulations using randomly generated workloads. We

had five main objectives for our evaluation: (1) Determine how much resource band-

width the interfaces computed using the improved SBF (Sect. 3.2) can save compared

to the interfaces computed using the original SBF proposed in Easwaran et al. (2009);

(2) determine how much resource bandwidth the DMPR model can save compared to

the MPR model; (3) evaluate the relative performance of the hybrid method and the

baseline method; (4) study the impact of task parameters (e.g., the range of taskset

utilization, the distribution of task’s utilization, the period range of tasks) on the inter-

faces under the hybrid and baseline methods; and (5) evaluate the performance of

123

Real-Time Syst

the hybrid analysis when using a cache overhead value per task and when using the

maximum cache overhead value for the entire system.

10.1 Experimental setup

10.1.1 Key factors

We focus on the following five key factors that can affect the performance of a cache-

aware compositional analysis:9

– Utilization of a task set Tasks with larger utilizations tend to have a larger number

of tasks; thus, each task tends to experience more cache overhead during its lifetime

because there are more other tasks that can preempt it.

– Distribution of task utilizations High-utilization tasks are more sensitive to cache

overhead and can more easily become unschedulable because of this overhead

than tasks with small utilization.

– Periods of the tasks If two tasks have the same utilization and experience the same

cache overhead, the task with the smaller period has a higher probability of missing

its deadline because of the overhead than the task with the larger period because

the former has a smaller relative deadline. Therefore tasks with smaller period are

more sensitive to cache overhead.

– Number of tasks in a task set In the baseline approach and the task-centric

approach from Sect. 7, when a VCPU-stop event happens, each task’s worst-

case execution time is inflated by the cache overhead caused by this event, even

though at most two tasks actually experience the cache overhead that the event has

caused. Hence, these two approaches will become more and more pessimistic as

the number of tasks increases.

– Cost of cache overhead per event. If the cost of cache overhead increases, tasks

will experience longer delays when task-preemption or VCPU-stop events occur.

10.1.2 Workload

In order to evaluate the impact of the above five factors on the performance of overhead-

free and overhead-aware compositional analysis, we generated a number of synthetic

real-time workloads with randomly generated periodic task sets that span a range of

different parameters for each of these factors. Below, we explain how the parameters

were chosen.

We picked the task set utilizations from the interval [0, 24], with increments of 0.2,

to be consistent with the ranges used in Brandenburg et al. 2011 and Brandenburg

(2011). However, we observed that a smaller interval is sufficient to demonstrate the

relative performance of overhead-free and overhead-aware compositional analysis;

hence, we used the range [0, 5], again with increments of 0.2, when evaluating the

impact of the other factors on overhead-aware compositional analysis.

9 We assume other factors are same when we discuss one factor’s impact on the cache-aware analysis.

123

Real-Time Syst

The tasks’ utilizations were drawn from one of four distributions: one uniform dis-

tribution over the range [0.001, 0.1] and three bimodal distributions; in the latter, the

utilization was distributed uniformly over either [0.1, 0.5) or [0.5, 0.9], with respec-

tive probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9 (heavy).

These probabilities are consistent with the ones used in Bastoni et al. (2010) and Bran-

denburg (2011). The periods of the tasks were drawn from a uniform distribution over

one of the following three ranges: (35, 850 ms), (550, 650 ms), and (100, 1100 ms);

all periods were integer. These distributions are identical to those used in Lee et al.

(2011). The number of tasks in a task set ranged from [0, 300] with increments of 20.

The cost of cache overhead per event was chosen based on the cache overhead

ratio, which we define as the cache overhead of a task τi divided by the worst-case

execution time of τi . We picked the cache overhead ratio from the range [0, 0.1]

with increments of 0.01. This range was chosen based on measurements of the L2

cache miss overhead of tasks on our experimental platform; we found that the cost of

missing the L2 private cache but hitting the L3 shared cache was 0.02 ms when the

working set size was 256 kB (the L2 private cache size). Because the L3 cache hit

latency is very small (less than 100 cycles), the cache overhead per task-preemption

or VCPU-stop event is only 0.02 ms. Therefore, the cache overhead ratio was less

than 0.02 for any task we measured that had a worst-case execution time of more

than 2 ms.

10.1.3 Overhead measurements

For our measurements, we used a Dell Precision T3610 six-core workstation with

the RT-Xen 2.0 platform (Xi et al. 2014); each domain was running LITMUSRT

2012.3 (Calandrino et al. 2006). The scheduler was gEDF in the domains and semi-

partitioned EDF in the VMM, as described in Sect. 2. We allocated a full-capacity

VCPU to one domain and pinned this VCPU to a physical core of its own; this was

done to avoid interference from domain 0 (the administrative domain in RT-Xen),

which was pinned to a different core. We measured the cache overhead of the cache-

intensive program ρ as follows. First we warmed up the cache by accessing all the

cache content of the program; then we used the time stamp counter to measure the

time lhit it takes to access the same content again. Because the cache was warm, lhit

is the cache hit latency of this program. Next, we allocated an array of the same size

as the private L2 cache and loaded this into the same core’s L2 cache in order to

pollute the cache content of ρ. Finally, we again accessed all the cache content of ρ

and recorded the cache miss latency lmiss . The cache overhead of the program ρ per

task-preemption or VCPU-stop event is then lmiss − lhit .

10.2 Overhead-free analysis

We begin with an empirical comparison of the overhead-free analyses. For this purpose,

we set up four domains with harmonic periods, and we randomly generated tasks and

uniformly distributed them across the four domains. To be consistent with (Phan et al.

2013), we generated 25 task sets per task set utilization or task set size.

123

Real-Time Syst

5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(a) Bimodal-light distribution.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(b) Bimodal-medium distribution.

5 10 15 20
0

0.5

1

1.5

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(c) Bimodal-heavy distribution.

Fig. 9 Average resource bandwidth saved: MPR with improved SBF versus MPR with original SBF

10.2.1 MPR with improved SBF versus MPR with original SBF

To estimate the impact of the improved SBF, we generated 625 tasksets with taskset

utilizations ranging from 0.1 to 24, with increments of 0.2. The task utilizations

were drawn from the bimodal-light distribution as described earlier; the tasks’ peri-

ods were uniformly distributed across [350, 850 ms]. For each taskset we generated,

we distributed the tasks into one domain, and we then computed the overhead-free

interface of the domain using MPR with the improved SBF, as well as using the

original MPR. Figure 9a shows the average bandwidth savings due to the improved

SBF. We observe that, across all taskset utilizations, MPR with the improved SBF

always requires either the same or less resource bandwidth than MPR with the orig-

inal SBF. We also observe that MPR with the improved SBF saves over 0.8 cores

when the taskset utilization is larger than 5. Figure 9b, c show the average resource

bandwidth savings with the other two bi-modal distributions; we observe that, in all

three cases, MPR with the improved SBF consistently outperformed MPR with the

original SBF.

123

Real-Time Syst

5 10 15 20
0

2

4

6

8

10

12

14

16

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(a) Bimodal-light distribution.

5 10 15 20
0

2

4

6

8

10

12

14

16

18

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(b) Bimodal-medium distribution.

5 10 15 20
0

2

4

6

8

10

12

14

16

18

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(c) Bimodal-heavy distribution.

Fig. 10 Average resource bandwidth saved: DMPR versus MPR with original SBF

10.2.2 DMPR versus MPR with the original SBF

To compare DMPR to MPR with the original SBF on the whole system, we dis-

tributed the tasks in each taskset over four domains and we then computed the

overhead-free interface of the whole system using both DMPR and MPR with the

original SBF. Figure 10a shows the average bandwidth savings of DMPR for differ-

ent taskset utilizations. Our results show that DMPR consistently saves bandwidth

relative to MPR with the original SBF for up to 16 cores. There are very few data

points beyond this point because we can only compute the average bandwidth sav-

ings when both analyses return valid interfaces for the same taskset; however, for

taskset utilizations above 16, MPR generally fails to compute a valid interface for the

system.

As shown in Fig. 11a, the fraction of tasksets with valid interfaces under MPR

with the original SBF decreases with increasing taskset utilization. This is because the

original SBF of MPR is pessimistic and cannot provide m′t time units with interface

Ŵ = 〈�,�m′, m′〉. Once the interfaces of the leaf components (i.e., domains) have

been computed, these interfaces are transferred to VCPUs as the workload of the

123

Real-Time Syst

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Task set utilization

F
ra

c
ti

o
n

 o
f

c
o

m
p

u
ta

b
le

 t
a

s
k

s
e

t

MPR

DMPR

(a) Bimodal-light distribution.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Task set utilization

F
ra

c
ti

o
n

 o
f

c
o

m
p

u
ta

b
le

 t
a

s
k

s
e

t

MPR

DMPR

(b) Bimodal-medium distribution.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Task set utilization

F
ra

c
ti

o
n

 o
f

c
o

m
p

u
ta

b
le

 t
a

s
k

s
e

t

MPR

DMPR

(c) Bimodal-heavy distribution.

Fig. 11 Fraction of taskset with valid interfaces: DMPR versus MPR with original SBF

top component. When some of those VCPUs have utilization 1, the resource demand

increases faster than the resource supply of MPR with the original SBF; hence, MPR

cannot find a valid interface. DMPR does not have this problem because it can always

supply m′t time units with bandwidth m′; hence, the fraction of tasksets with valid

interfaces is always 1. As Fig. 11b, c show, the results for the other two bimodal

distributions are similar: DMPR is consistently able to compute interfaces for all

tasksets, whereas MPR with the original SBF finds fewer and fewer interfaces as the

taskset utilization increases.

10.3 Comparison of HYBRID cache-aware analysis versus BASELINE

cache-aware analysis

Next, we compared the performance of the two overhead-aware analysis approaches.

For this we used the same tasksets and system configuration as for the previous exper-

iment, but we additionally computed DMPR interfaces for each taskset using the

respective approach.

123

Real-Time Syst

5 10 15 20
0

0.5

1

1.5

2

Task set utilization

A
v

e
ra

g
e

 r
e

s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a

v
e

d

(a) Bimodal-light distribution.

5 10 15 20
0

0.5

1

1.5

2

2.5

Task set utilization

A
v

e
ra

g
e

 r
e

s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a

v
e

d

(b) Bimodal-medium distribution.

5 10 15 20
0

0.5

1

1.5

2

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(c) Bimodal-heavy distribution.

Fig. 12 Average resource bandwidth saved: hybrid versus baseline

10.3.1 Impact of taskset utilization

Figure 12a shows the average resource bandwidth savings of the hybrid approach

compared to the baseline approach for each taskset utilization. We observe that

a) hybrid reduced the resource bandwidth in all cases, and that b) more and more

cores are being saved as the taskset utilization increases. Note that, as the taskset

utilization increases, the interface bandwidth can sometimes decrease. One reason

for this is that the underlying gEDF schedulability test is only sufficient, and is

not strictly dependent on the taskset utilization; in other words, it is possible that

a taskset with a high utilization is schedulable but another with a lower utilization is

not.

10.3.2 Impact of task utilization

Figure 12a–c show the average resource bandwidth savings for different taskset uti-

lizations and each of the three bimodal distributions. We observe that, in all three

cases, the hybrid approach consistently outperformed the baseline approach. Fur-

123

Real-Time Syst

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

Task set size

A
v

e
ra

g
e

 r
e

s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a

v
e

d

(a) Bimodal-light distribution.

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Task set size

A
v

e
ra

g
e

 r
e

s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a

v
e

d

(b) Bimodal-medium distribution.

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Task set size

A
v

e
ra

g
e

 r
e

s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a

v
e

d

(c) Bimodal-heavy distribution.

Fig. 13 Average resource bandwidth saved: hybrid versus baseline

ther, as the taskset utilization increases, the savings also increase and remain steady

at approximately one core once the taskset utilization has reached 10.

10.3.3 Impact of taskset size

We investigated the impact of the number of tasks (i.e., the taskset size) on the average

bandwidths saving of the hybrid approach compared to the baseline approach. For

this experiment, we generated a set of tasksets with sizes between 4 to 300, with

increments of 20, and with 25 tasksets per size. As before, we tried each of the three

bimodal distributions we discussed in Sect. 10.1.

Figure 13a–c show the average resource bandwidth savings for different taskset

sizes with each of the three bi-modal distributions. We observe that (a) the hybrid

approach consistently outperforms the baseline approach, and (b) the savings

increase with the number of tasks. This is expected because the baseline tech-

nique inflates the WCET of every task with all the cache-related overhead each

task experiences; hence, its total cache overhead increases with the size of the

taskset.

123

Real-Time Syst

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(a) Task period: [100, 1100]ms.

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(b) Task period: [350, 850]ms.

1 23 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Task set utilization

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

(c) Task period: [550, 650]ms.

Fig. 14 Average resource bandwidth saved under different ranges of tasks’ periods

10.3.4 Impact of task period distribution

We further investigated the impact of the distribution of tasks’ periods on the average

bandwidth savings of the hybrid approach compared to the baseline approach. For

this experiment, we generated a number of tasksets with taskset utilizations in the

range [0, 5] with increments of 0.2, and, as usual, 25 tasksets per taskset utilization.

The individual tasks’ utilizations were drawn from the bi-modal light distribution.

For the tasks’ periods, we tried each of the three distributions that were discussed in

Sect. 10.1. Figure 14a–c show the average resource bandwidth saving for three different

distribution of tasks’ periods; in all three cases, the hybrid approach consistently

outperforms the baseline approach.

10.3.5 Impact of cost of cache overhead

We first generated 25 tasksets with taskset utilization 4.9 and uniformly distributed the

tasks of each taskset over four domains with harmonic periods. The tasks’ utilizations

were uniformly distributed in [0.001, 0.1], and their periods were uniformly distributed

123

Real-Time Syst

Fig. 15 Average bandwidth

saving under different ratios of

cache overhead to task WCET

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

Ratio of cache overhead over wcet of a task

A
v
e
ra

g
e
 r

e
s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a
v
e
d

in [350ms, 850ms]. We then modified the cache overhead of tasks of the 25 tasksets and

generated a set of tasksets with cache-related overhead ratio [0, 0.1] with increments

of 0.01 based on the 25 tasksets. Recall from Sect. 10.1 that we define the cache-related

overhead ratio of a task τi to be the cost of one cache-related overhead of τi divided

by the worst-case execution time of τi .

Figure 15 shows the average resource bandwidth savings of the hybrid approach

over the baseline approach for each cache overhead ratio. We observe that the hybrid

approaches saves more resources as the cache-related overhead ratio increases. This

is expected because tasks’ utilizations are uniformly distributed over [0.001, 0.1] and

a taskset has more tasks than the number of VCPUs. Since the baseline approach

inflates the WCET of every task with all the cache-related overheads any task can expe-

rience, its total cache overhead increases as the cost of one cache-related overhead

increases.

10.3.6 Impact of per-task cache overheads

When different tasks can have different costs for cache-related overheads, it is pes-

simistic to simply use the largest cache overhead in the system, as we did in Xu et al.

(2013). To evaluate the impact of considering cache overheads per task, we generated

tasks with different cache-related overhead ratios, drawn from an uniform distribu-

tion over [0, 0.1]. We then calculated the system’s interface with the hybrid analysis

using the following two approaches: (1) Using a per-task cost of cache overheads to

compute the hybrid analysis, as we did in this work; and (2) Using the upper bound

for the cache overhead in the system as the cost for each task, as we did in Xu et al.

(2013).

Figure 16 shows the average resource bandwidth savings of the hybrid approach

with per-task cache overheads relative to the more pessimistic approach. We observe

that the hybrid approach with per-task cache overheads consistently outperformed

the pessimistic approach; however, the saving does not increase as the taskset uti-

lization increases. This is because the task- centric- ub approach only considers

the cache overhead caused by task-preemption events, and each task’s WCET is only

inflated with one cache overhead. Therefore, the pessimistic hybrid analysis with

123

Real-Time Syst

Fig. 16 Average bandwidth

saving of hybrid with cache

overhead per task over hybrid

with maximum cache overhead

of system (Ratio of overhead

over wcet is uniformly

in [0, 0.1])

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Task set utilization

A
v

e
ra

g
e

 r
e

s
o

u
rc

e
 b

a
n

d
w

id
th

 s
a

v
e

d
Table 1 Performance in theory versus in practice

Overhead-free MPR Overhead-free DMPR hybrid baseline

Theory RT-Xen Theory RT-Xen Theory RT-Xen Theory RT-Xen

Schedulable Yes No Yes No No No No No

Deadline miss ratio 78 % 78 % 0.07 % 7 %

system’s maximum cache overhead may have the same upper-bounded number of full

VCPUs as the hybrid analysis with cache overhead per task. When both analyses use

the upper-bounded number of full VCPUs as the components’ interface, the hybrid

analysis with per-task cache overheads will have the same interface bandwidth as the

pessimistic analysis and thus saves no resources; however, (2) if both hybrid analyses

choose the interfaces computed by the model- centric analysis, the hybrid analysis

with per-task cache overheads will save resources relative to the pessimistic approach

because every time one cache-related overhead happens, the pessimistic approach will

have more cache overhead.

10.4 Performance in theory versus in practice

We also validated the correctness of the cache-aware interfaces (and the invalidity of

the overhead-free interfaces) in practice. For this experiment, we first computed the

domains’ interfaces, and we then ran the generated tasks on our RT-Xen experimen-

tal platform. The periods and budgets of the domains in RT-Xen were chosen to be

those of the respective computed interfaces. We then computed the schedulability and

deadline miss ratios of the tasks, based on the theoretical schedulability test and the

measurements on the RT-Xen platform. Table 1 shows the schedulability and deadline

miss ratios of these methods.10

10 We note that the interfaces given by the hybrid method and the baseline method are the same as the

interfaces given by the cache-aware hybrid analysis method and task-centric analysis method proposed in

the conference version (Xu et al. 2013), respectively.

123

Real-Time Syst

We observe that the overhead-free MPR and DMPR interfaces significantly under-

estimate the tasks’ resource requirements: even though the tasks were claimed to be

schedulable by the computed interfaces, 78 % of the jobs missed their deadlines. The

experimental results also confirm that our cache-aware analysis correctly estimated

the resource requirements of the system in practice: the theory predicted that the tasks

would not be schedulable, and this was confirmed in practice by the nonzero deadline

miss ratio, which was 0.07 % for the hybrid approach and 7 % for the task-centric

approach. We also observe that the hybrid approach had fewer deadline misses than,

and thus outperformed, the task-centric approach.

11 Related work

Several compositional analysis techniques for multicore platforms have been devel-

oped (see e.g., Easwaran et al. 2009; Lipari and Bini 2010; Baruah and Fisher 2009;

Leontyev and Anderson 2008) but, unlike this work, they do not consider the platform

overhead. There are also methods that account for cache-related overhead in mul-

ticore schedulability analysis (e.g., Brandenburg 2011), but they cannot be applied

to the virtualization and compositional setting. To the best of our knowledge, the

only existing overhead-aware interface analysis is for uniprocessors (Phan et al.

2013).

Prior work has already extended the multiprocessor resource model in a number of

ways. Most notably, Bini et al. introduced generalizations such as the parallel supply

function (Bini et al. 2009), as well as later refinements. These models capture the

resource requirements at each different level of parallelism; thus, they minimize the

interface abstraction overhead that the MPR model incurs. However, they also increase

the complexity of the interface representation and the interface computation. Our work

follows a different approach: instead of adding more information, we make the supply

pattern of the resource model more deterministic. As a result, we can improve the

worst-case resource supply of the model without increasing its complexity. In addition,

this approach helps to reduce the platform overhead that arises when these interfaces

are scheduled at the next level.

The semi-partitioned EDF scheduling we use at the VMM level is similar to the

strategy proposed for soft real-time tasks by Leontyev and Anderson (2008), in which

the bandwidth requirement of a container is distributed to a number of dedicated

processors as well as a periodic server, which is globally scheduled onto the remaining

processors. The two key differences to our work are that (1) we use gEDF within

the domains, which necessitates a different analysis, and that (2) unlike our work,

(Leontyev and Anderson 2008) does not consider cache overhead.

There are other lines of cache-related research that benefit our work. For example,

results on intrinsic cache analysis and WCET estimation (Hardy et al. 2009) can be

used as an input to our analysis; studies on cache-related preemption and migration

delay (Bastoni et al. 2010) can be used to obtain the value of cache-overhead per task

value �
crpmd
τi

used in our analysis; and cache-aware scheduling, such as Guan et al.

(2009), can be used to reduce the additional cache-related overhead in the composi-

tional/virtualization setting.

123

Real-Time Syst

12 Conclusion

We have presented a cache-aware compositional analysis technique for real-time vir-

tualization multicore systems. Our technique accounts for the cache overhead in the

component interfaces, and thus enables a safe application of the analysis theories in

practice. We have developed three different approaches, baseline, task- centric-

ub and model- centric, for analyzing the cache-related overhead and for testing the

schedulability of components in the presence of cache overhead. We have also intro-

duced an improved SBF for the MPR model and a deterministic extension of the MPR

model, which improve the interface resource efficiency, as well as accompanying

overhead-aware interface computation methods. Our evaluation on synthetic work-

loads shows that our improved SBF and the DMPR interface model can help reduce

resource bandwidth by a significant factor compared to the MPR model with the

existing SBF, and that a hybrid of task- centric- ub and model- centric achieves

significant resource savings compared to the baseline method (which is based solely

on WCET inflation).

Acknowledgments This research was supported in part by the ONR N000141310802, NSF CNS-

1329984, NSF CNS-1117185, NSF ECCS-1135630, and The Ministry of Knowledge Economy (MKE),

Korea, under the Global Collaborative R&D program supervised by the KIAT (M002300089).

References

Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen

and the art of virtualization. In: SOSP

Baruah S, Baker T (2008) Schedulability analysis of global EDF. Real Time Syst 38(3):223–235

Baruah S, Fisher N (2009) Component-based design in multiprocessor real-time systems. In: ICESS

Bastoni A, Brandenburg BB, Anderson JH (2010) Cache-related preemption and migration delays: empirical

approximation and impact on schedulability. In: Proceedings of OSPERT

Basumallick S, Nilsen K (1994) Cache issues in real-time systems. In: LCTES

Bini E, Bertogna M, Baruah S (2009) Virtual multiprocessor platforms: specification and use. In: RTSS

Brandenburg BB (2011) Scheduling and locking in multiprocessor real-time operating systems. PhD thesis,

The University of North Carolina at Chapel Hill, Chapel Hill

Brandenburg BB, Leontyev H, Anderson JH (2011) An overview of interrupt accounting techniques for

multiprocessor real-time systems. J Syst Archit 57(6):638–654

Bruns F, Traboulsi S, Szczesny D, Gonzalez E, Xu Y, Bilgic A (2010) An evaluation of microkernel-based

virtualization for embedded real-time systems. In: ECRTS

Calandrino JM, Leontyev H, Block A, Devi UC, Anderson JH (2006) LITMUS RT: a testbed for empirically

comparing real-time multiprocessor schedulers. In: RTSS

Crespo A, Ripoll I, Masmano M (2010) Partitioned embedded architecture based on hypervisor: the XtratuM

approach. In: EDCC

Easwaran A, Anand M, Lee I (2007) Compositional analysis framework using EDP resource models. In:

RTSS

Easwaran A, Shin I, Lee I (2009) Optimal virtual cluster-based multiprocessor scheduling. Real Time Syst

43(1):25–59

Guan N, Stigge M, Yi W, Yu G (2009) Cache-aware scheduling and analysis for multicores. In: EMSOFT

Hardy D, Piquet T, Puaut I (2009) Using bypass to tighten WCET estimates for multi-core processors with

shared instruction caches. In: RTSS

Kim T, Peinado M, Mainar-Ruiz G (2012) System-level protection against cache-based side channel attacks

in the cloud. In: USENIX security

Lee J, Phan LTX, Chen S, Sokolsky O, Lee I (2011) Improving resource utilization for compositional

scheduling using DPRM interfaces. SIGBED Rev 8(1):38–45

123

Real-Time Syst

Lee J, Xi S, Chen S, Phan LTX, Gill C, Lee I, Lu C, Sokolsky O (2012) Realizing compositional scheduling

through virtualization. In: RTAS

Leontyev H, Anderson JH (2008) A hierarchical multiprocessor bandwidth reservation scheme with timing

guarantees. In: ECRTS

Lipari G, Bini E (2010) A framework for hierarchical scheduling on multiprocessors: from application

requirements to run-time allocation. In: RTSS

Phan LTX, Xu M, Lee J, Lee I, Sokolsky O (2013) Overhead-aware compositional analysis of real-time

systems. In: RTAS

Sha L, Lehoczky JP, Rajkumar R (1986) Solutions for some practical problems in prioritized preemptive

scheduling. In: RTSS

Shin I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: Proceedings of the

24th IEEE real-time systems symposium (RTSS), Cancun

Shin I, Easwaran A, Lee I (2008) Hierarchical scheduling framework for virtual clustering of multiproces-

sors. In: ECRTS

Xi S, Xu M, Lu C, Phan LTX, Gill C, Sokolsky O, Lee I (2014) Real-time multi-core virtual machine

scheduling in Xen. In: EMSOFT

Xu M, Phan LTX, Lee I, Sokolsky O, Xi S, Lu C, Gill CD (2013) Cache-aware compositional analysis of

real-time multicore virtualization platforms. In: RTSS

Meng Xu received a Bachelor of Engineering (B.E.) in Software

Engineering from Northwestern Polytechnical University, China, in

2011, and a Master of Science in Engineering (M.S.E.) in Computer

and Information Science from the University of Pennsylvania, USA,

in 2013. He is currently a Ph.D. student in Computer and Information

Science at the University of Pennsylvania, USA, advised by Professor

Insup Lee and Research Assistant Professor Linh Thi Xuan Phan. He

was nominated for the best paper award in IEEE Real-Time Systems

Symposium (RTSS) in 2013. His research interests lie in composi-

tional scheduling analysis and real-time virtualization.

Linh Thi Xuan Phan is a Research Assistant Professor of Com-

puter and Information Science at the University of Pennsylvania. She

received her B.S. degree in 2003 and Ph.D. degree in 2009 in Com-

puter Science from the National University of Singapore (NUS). Her

research interests center on developing theoretical models, analysis

methods, tools and systems support for real-time, embedded, cyber-

physical, and cloud computing systems. She has an extensive record

of service in review panels, workshops, conferences, and journals for

real-time, embedded systems and cyber-physical systems. She was a

recipient of the Graduate Research Excellence Award from NUS in

2009 for her dissertation.

123

Real-Time Syst

Oleg Sokolsky is a Research Associate Professor of Computer and

Information Science at the University of Pennsylvania. His research

interests include the application of formal methods to the develop-

ment of real-time systems and rigorous development of real-time

embedded software. He received Ph.D. in Computer Science from

Stony Brook University.

Sisu Xi is a software engineer at Two Sigma Investment. His

research focuses on real-time virtualization and cloud computing. He

received the Ph.D. degree from Washington University in St. Louis

in 2014, and the B.S. degree from Beijing University of Posts and

Telecommunications in 2008.

Chenyang Lu is the Fullgraf Professor in the Department of Com-

puter Science and Engineering at Washington University in St. Louis.

His research interests include real-time systems, wireless sensor net-

works, cyber-physical systems and Internet of Things. He is Editor-

in-Chief of ACM Transactions on Sensor Networks, Area Editor of

IEEE Internet of Things Journal and Associate Editor of Real-Time

Systems. He also chaired premier conferences such as IEEE Real-

Time Systems Symposium (RTSS), ACM/IEEE International Confer-

ence on Cyber-Physical Systems (ICCPS) and ACM Conference on

Embedded Networked Sensor Systems (SenSys). He is the author and

co-author of over 150 research papers with over 12,000 citations and

an h-index of 50. He received the Ph.D. degree from University of

Virginia in 2001, the M.S. degree from Chinese Academy of Sciences

in 1997, and the B.S. degree from University of Science and Technol-

ogy of China in 1995.

123

Real-Time Syst

Christopher Gill is a Professor of Computer Science and Engineer-

ing at Washington University in St. Louis. His research focuses on

formal modeling, verification, implementation, and empirical evalu-

ation of policies and mechanisms for enforcing timing, concurrency,

and other properties in embedded, real-time, and cyber-physical sys-

tems. Dr. Gill has over 60 refereed technical publications and an

extensive record of service in review panels, standards bodies, work-

shops, conferences, and journals for distributed, real-time, embedded,

and cyber-physical systems.

Insup Lee is Cecilia Fitler Moore Professor of Computer and Infor-

mation Science and Director of PRECISE Center at the University

of Pennsylvania. He holds a secondary appointment in the Depart-

ment of Electrical and Systems Engineering. He received a PhD

in Computer Science from the University of Wisconsin, Madison.

His research interests include cyber-physical systems, real-time and

embedded systems, runtime assurance and verification, formal meth-

ods and tools, trust management, and high-confidence medical sys-

tems. His papers received the best paper awards in IEEE RTSS 2003,

CEAS 2011, IEEE RTSS 2012, and ACM/IEEE ICCPS 2014, and the

best student paper in IEEE RTAS 2012. He has served on many pro-

gram committees, chaired many international conferences and work-

shops and served on various steering and advisory committees of

technical societies. He has also served on the editorial boards on the

several scientific journals, including Journal of ACM, IEEE Transac-

tions on Computers, Formal Methods in System Design, Real-Time

Systems Journal, and KIISE Journal of Computing Science and Engineering (JCSE). He was Chair of

IEEE Computer Society Technical Committee on Real-Time Systems (2003-2004) and an IEEE CS Dis-

tinguished Visitor Speaker (2004-2006). He with his student received the best paper award in RTSS 2003.

He was a member of Technical Advisory Group (TAG) of President’s Council of Advisors on Science and

Technology (PCAST) Networking and Information Technology (NIT), 2006-2007. He is IEEE fellow and

received IEEE TC-RTS Outstanding Technical Achievement and Leadership Award in 2008.

123

	Cache-aware compositional analysis of real-time multicore virtualization platforms
	Abstract
	1 Introduction
	2 System descriptions
	2.1 Scheduling of tasks and VCPUs
	2.2 Cache-related overhead
	2.3 Objectives
	2.4 Assumptions

	3 Improvement on multiprocessor periodic resource model
	3.1 Background on MPR
	3.2 Improved SBF of the MPR model

	4 Deterministic multiprocessor periodic resource model
	5 Overhead-free compositional analysis
	5.1 Component schedulability under gEDF
	5.2 DMPR interface computation
	5.3 Computing the domains' interfaces
	5.4 Computing the system's interface

	6 Cache-related overhead scenarios
	6.1 Event 1: task-preemption event
	6.2 VCPU-preemption event
	6.3 VCPU-completion event
	6.4 VCPU-stop event
	6.5 Overview of the overhead-aware compositional analysis

	7 Task-centric compositional analysis
	7.1 baseline: analysis based on WCET-inflation
	7.2 task-centric-ub: Combination of baseline with an upper bound on the number of VCPUs
	7.3 task-centric-ub versus baseline

	8 Model-centric compositional analysis
	8.1 Challenge: resource parallel supply problem
	8.2 Cache-aware effective resource supply of a DMPR model
	8.3 DMPR interface computation under model-centric method

	9 Hybrid cache-aware DMPR interface
	10 Evaluation
	10.1 Experimental setup
	10.1.1 Key factors
	10.1.2 Workload
	10.1.3 Overhead measurements

	10.2 Overhead-free analysis
	10.2.1 MPR with improved SBF versus MPR with original SBF
	10.2.2 DMPR versus MPR with the original SBF

	10.3 Comparison of hybrid cache-aware analysis versus baseline cache-aware analysis
	10.3.1 Impact of taskset utilization
	10.3.2 Impact of task utilization
	10.3.3 Impact of taskset size
	10.3.4 Impact of task period distribution
	10.3.5 Impact of cost of cache overhead
	10.3.6 Impact of per-task cache overheads

	10.4 Performance in theory versus in practice

	11 Related work
	12 Conclusion
	Acknowledgments
	References

