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Abstract. Efficient use of the memory hierarchy is critical
for achieving high performance in a multiprocessor system-
on-chip. An external memory that is shared between pro-
cessors is a bottleneck in current and future systems. Cache
misses and a large cache miss penalty contribute to a low
processor utilisation. In this paper, we describe a novel
cache optimisation technique to reduce instruction and data
cache misses for streaming applications. The instruction
and data locality are improved by executing a task multi-
ple times before moving to the next task. Furthermore, we
introduce a dataflow model that is used to trade-off the num-
ber of cache misses against end-to-end latency and memory
usage. For our industrial application, which is a Digital
Radio Mondiale receiver, the number of cache misses is re-
duced with a factor 4.2.

1. Introduction
Embedded multi-media applications are for performance

and power-efficiency reasons implemented on a multipro-
cessor system-on-chip. External memory is required be-
cause the memory footprint of the software is considered
too expensive to store in an on-chip memory. As the gap
between processor and memory performance is still increas-
ing [6], efficient use of the memory hierarchy is critical for
achieving a high performance.

The number of processor stall cycles is determined by
the number of cache misses and the cache miss penalty [6].
Latency in the communication infrastructure, the gap be-
tween processor and memory speed, and contention at the
memory port contribute towards an increase of the cache
miss penalty. A lower number of cache misses can com-
pensate for a larger miss penalty. Furthermore, it decreases
the average number of latency critical external memory ac-
cesses and thereby indirectly reduces the cache miss penalty
for other processors in the multiprocessor system. There-
fore, the average number of processor stalls is reduced and
the system performance increases.

We focus on the class of streaming applications, which
are common in the embedded domain. Streaming applica-
tions comprise a broad spectrum of applications, including
audio, video, and communication processing. It is natural
to represent these applications as a Cyclo Static Dataflow
(CSDF) [1] graph, in which each task or component is rep-
resented by a node, which we refer to as an actor. Com-
munication between actors is made explicit via FIFO chan-

nels, represented by the edges in the CSDF graph. For this
class of streaming applications we apply the cache aware
optimisation technique execution scaling [13], which is a
transformation that improves instruction and data locality
by executing each actor multiple times before moving to the
next actor. If an actor is executed in a loop repeatedly, then,
ideally the first iteration brings its code into the cache and
subsequent iterations execute from the cache, rather then
requiring it to be reloaded from memory each execution.

Disadvantages of execution scaling are (i) increase of
end-to-end latency and (ii) increase of FIFO buffer capac-
ities. The end-to-end latency increases because we exe-
cute an actor multiple times before moving to the next ac-
tor, therefore, it takes more time before the data is rippled
through the CSDF graph. This problem is not severe, as
many streaming applications can tolerate additional latency.
The FIFO buffer capacity increases, because when execut-
ing an actor multiple times, we need sufficient capacity to
store the data communicated between the actors. We de-
scribe how large FIFO buffers can be stored in the external
memory and how data can be prefetched.

In this paper, we minimise the number of instruction and
data cache misses by maximising the number of successive
executions of an actor, while still satisfying the end-to-end
latency of our application and the memory constraints of our
multiprocessor system. The cache aware optimisation tech-
nique is based on execution scaling, but we target a multi-
processor architecture instead of a single processor and use
uncached local (scratchpad) memories to store the input and
output data of an actor. This allows us to scale the execu-
tion extensively and still reduce data cache misses. Further-
more, we introduce an algorithm to model execution scaling
in a CSDF graph, such that we can use traditional dataflow
analysis techniques in a design flow that maximises the ex-
ecution scaling factor.

1.1. Motivating example and outline
In this section, we map a general application on a mul-

tiprocessor to illustrate the trade-off between mapping of
actors to processors and the maximum allowed number of
successive actor executions. Mapping consists of binding
actors to processors and scheduling actors on a processor.

The general application is depicted in Fig. 1 and it has
a minimum throughput constraint of 1/2T . The actors v1

through v4 communicate via FIFO buffers f1 through f3.
The actors are executed on two identical processors p1 and
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Figure 1. Example application
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Figure 2. Two mapping options (a) and (b)

p2. The execution time of each actor is T time units. On
each processor p, we execute two actors in a static-order
schedule Sp. The static-order schedule Sm

p = (vm
i , vm

j )
represents m executions of actor vi followed by m execu-
tions of actor vj . Our goal is to find the mapping with the
maximum execution scaling factor m that satisfies end-to-
end latency and memory constraints.

In Fig. 2, we show two mapping options that satisfy the
minimum throughput constraint 1/2T . In option (a), we ex-
ecute actors v1 and v2 on processor p1 and we execute ac-
tors v3 and v4 on processor p2. This mapping option re-
quires a FIFO buffer capacity of m, 2, and m data elements
for FIFO buffers f1, f2, and f3, respectively. The end-to-
end latency (from actor v1 until v4) is equal to (2m + 2) ·T
time units. In option (b), we execute actors v1 and v3 on
processor p1 and we execute actors v2 and v4 on proces-
sor p2. This mapping option requires a FIFO buffer capacity
of 2, m, and 2 data elements for FIFO buffers f1, f2, and f3,
respectively. The end-to-end latency is equal to (m + 2) · T
time units.

In option (a), the end-to-end latency and FIFO buffer
capacity grow with a factor 2m whereas in option (b)
these grow with a factor m. Therefore, we conclude that
mapping option (b) allows a higher value of m for the same
end-to-end latency and memory constraint. A higher value
of m results in less cache misses, and is hence a better
mapping option. This example shows that the mapping
of tasks to processors influences the maximum scaling
factor m. We need tools to compute buffer capacities
and end-to-end latencies for exploring different mapping
options with different execution scaling factors.

The paper is organised as follows. Section 2 presents the
state of the art in cache miss reduction techniques. Exe-
cution scaling is described in Section 3, and we introduce
our CSDF model, in which execution scaling is modelled,
in Section 4. Section 5 presents experimental results and
Section 6 concludes the paper.

2. Related work

There is a large body of literature on reducing the num-
ber of cache misses, which should be applied before ex-
ploring execution scaling. First of all the cache parameters
(e.g. cache line size, cache size, and associativity) have an
impact of the number of cache misses [6]. Next, there are
many compiler optimisations techniques for reducing the
instruction and data cache misses [10]. The compiler can
reduce the number of instruction cache misses by placing
functions near to their callers in memory (assuming rou-
tines and callers are temporally close to each other), and
by removing infrequently executed code (such as error han-
dling) out of the main body of the code and straightening the
code, so that in general, a higher fraction of the instructions
fetched into the instruction cache are actually executed. For
programs that manipulate large arrays of data, the number
of data cache misses can be reduced by loop transforma-
tions. Examples of loop transformations are interchanging
two nested loops, reversing the order in which a loop’s iter-
ations are performed, and fusing two loop bodies together
into one. Cache miss reduction comes from a better use of
the memory hierarchy. Execution scaling is related to loop
transformations that concentrate on optimising the use of
data caches, but execution scaling is focussed on transform-
ing the main loop (scheduling of actors), whereas conven-
tional compiler loop transformations are quite locally ap-
plied.

In the context of Synchronous Data-Flow (SDF) graphs,
which is a subset of CSDF graphs [1], there is a large body
of literature on scheduling these graphs to optimise vari-
ous metrics. The number of context-switches is minimised
in [12]. First, they use a single appearance schedule in
which each task appears once and is activated a minimum
number of times. Second, they scale this schedule with con-
straints on end-to-end latency and memory usage. The fo-
cus is a single processor with local memory and the goal
is to reduce context-switching overhead cost and maximise
the degree of vector processing opportunity. The number
of cache misses are minimised in [7, 13] in the context of
a single processor. They store the input and output FIFO
buffers in a cached memory, creating the problem that the
input and output data eventually overflows the data cache,
when actor executions are scaled excessively.

In our paper, the focus is on mapping of CSDF graphs
onto a multiprocessor architecture instead of a single pro-
cessor. The input and output FIFO buffers are stored in an
uncached memory region and not in a cached memory re-
gion as in [7, 13]. Therefore, input and output data cannot
overflow the data cache, and execution scaling is only lim-
ited by end-to-end latency and memory constraints. FIFO
buffers can be distributed between the local and external
memory allowing us to create large buffer capacities. Fur-
thermore, we present a CSDF model in which we model
the application that is mapped onto a multiprocessor system
with a certain execution scaling factor m. From this model,
we compute the end-to-end latency and memory usage by
making use of traditional dataflow analysis techniques.
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3. Execution scaling
In this section, we describe our multiprocessor architec-

ture and the execution scaling technique that minimises the
number of instruction and data cache misses.

We use a tiled multiprocessor architecture and each tile
consists of a processor with an uncached scratchpad mem-
ory, referred to as the local memory. The processors have
level one caches for instruction and data to hide the la-
tency in accessing the external memory. In the CSDF model
of computation, two actors communicate via explicit FIFO
channels, one actor producing data in the channel and one
consuming the data. The FIFO channels are implemented
via FIFO buffers located in the local memory of the con-
suming processor. A FIFO buffer is implemented as a cir-
cular buffer [3], in such a way that memory consistency is
guaranteed. The processor, on which the producing actor is
executed, writes the output data via the communication in-
frastructure into this circular buffer. If the execution scaling
factor m increases, the FIFO buffer capacity also increases.
This cannot lead in an overload of the data cache, since the
local memory is uncached. When the FIFO buffer capac-
ity becomes too large to store in the local memory, we dis-
tribute the buffer between the local and external memory. In
our multiprocessor, we have a communication assist [2, 8],
which is an automated DMA controller that prefetches the
data from a circular buffer located in the external mem-
ory to the circular buffer located in the local memory. The
consuming processor reads its input data from the circular
buffer located in its local memory. Prefetching of data is la-
tency tolerant instead of latency critical, as in the case when
input and output data are stored in a cached memory region
such as in [7, 13]. Therefore, the external memory con-
troller has more scheduling freedom to reduce the latency
of latency critical memory accesses.

Key for this architecture is that (i) we don’t communi-
cate the input and output data via the cache (preventing that
execution scaling results in a data cache overflow), (ii) that
we can distribute a FIFO buffer between the local and exter-
nal memory, and (iii) that we use latency tolerant memory
accesses.

To explain execution scaling, we use the following termi-
nology. Let Vp be a set of actors executed on a processor p
and Sp a static-order schedule with length N . The schedule
is denoted by Sp = (s0, s1, ..., sN−1) with si ∈ Vp.

After executing schedule Sp, the number of cache misses
follow the line in Fig. 3, which is also observed by [6, 4].
When the cache size is small compared to size of the set of
actors Vp and the cache size q increases, then the number
of cache misses decrease with

√

q0/q (first order estimate),
where q0 is application dependent. If the cache size ex-
ceeds the size of the set of actors Vp, then only compulsory
misses [6] (cold start misses) remain, because in our archi-
tecture the input and output data are stored in the uncached
local memory. The number of cache misses can be reduced
by executing an actor si multiple times before moving to
the next actor si+1 in the schedule Sp. Scaling the exe-
cution with factor m means that each actor si is executed

lo
g(

ca
ch

e
m

is
se

s)

(a) (b) (c)

log(cache size)

Sm
p

Sp

Figure 3. Cache misses as function of the cache size

m times before moving to the next actor. We refer to the
new schedule by Sm

p = (sm
0 , sm

1 , ..., sm
N−1). After execut-

ing schedule Sm
p , the number of cache misses follow the

dashed line in Fig. 3.
The impact of execution scaling on the number of cache

misses for the cache size ranges (a), (b), and (c), in Fig. 3,
are the following: (a) Hardly any impact on the number of
cache misses, none of the actors vi ∈ Vp fit in the cache. (b)
Largest impact on the number of cache misses. Individual
actors vi ∈ Vp fit in the cache while the set of actors Vp does
not fit. During the first execution of an actor we see compul-
sory misses, because the actor is being discarded from the
cache when executing the other actors in the schedule. Dur-
ing the following m− 1 executions, the actor typically exe-
cutes from the cache, because the program code and data is
already present in the cache. The average number of cache
misses reduces when increasing the scaling factor m. (c)
No impact on the number of cache misses. For both sched-
ules Sp and Sm

p only compulsory misses remain, because
the individual actors vi ∈ Vp, as well as the set of actors Vp,
fit in the cache.

The more actors that are executed on the processor (i.e.
the larger the set of actors Vp), the larger the size of range
(b). For example, if two actors with the same size are exe-
cuted on a processor, then for schedule Sm

p the flat line in
Fig. 3 starts at half the cache size compared to schedule Sp.
When four actors with the same size are executed on the
processor, then for schedule Sm

p the flat line starts at 1/4 of
the cache size compared to schedule Sp.

There are limitations to what extent the execution scal-
ing factor m can be increased. First, it is limited by the
constraints on end-to-end latency and memory usage. Sec-
ond, if two actors vk and vl are executed on one proces-
sor, and there is a feedback loop (cycle in the CSDF graph)
between these actors, then the maximum value of m is lim-
ited because of the cyclic dependency between actors vk and
vl. The latter can be solved by executing actors vk and vl

on separate processors, but the actors have to wait for each
other due to the cyclic dependency, effecting the processor
performance.

The model described in this section holds for instruction
and data cache misses, because in our architecture the input
and output FIFO buffers are stored in uncached memory re-
gions.
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4. Cyclo Static Dataflow model

In this section, we introduce a technique to model an
application with a specific mapping and execution scaling
factor. This model is used in a design flow to minimise the
number of cache misses by maximising the execution scal-
ing factor m, while satisfying the end-to-end latency and
memory constraints.

The design flow is as follows. For a specified binding,
initial schedules, and specific value of m, we construct a
CSDF graph, as we will describe in Section 4.2. We use tra-
ditional dataflow analysis techniques for computing buffer
capacities and end-to-end latency. The buffer capacities can
be computed from the constructed CSDF model in combi-
nation with a given minimum throughput constraint. Af-
ter computing the buffer capacities the end-to-end latency
is computed. We repeat this procedure for different exe-
cution scaling factors m until we find the maximum value
m that satisfies the end-to-end latency and memory con-
straints. Furthermore, we can backtrack for different initial
schedules and different bindings of tasks to processors.

For SDF graphs, which are a subset of CSDF graphs,
there is an algorithm for computing buffer capacities [15],
and there is an algorithm for computing end-to-end la-
tency [5]. Furthermore, a latency constraint can also be rep-
resented in terms of a throughput constraint [9]. Although
these algorithms are intended for SDF graphs, these tech-
niques can be extended towards CSDF graphs. If runtime
of these algorithms is problematic, then a conservative ap-
proximation technique [16] can be applied to compute suf-
ficiently large buffer capacities and an upper-bound on the
end-to-end latency.

4.1. Cyclo Static Dataflow graph

A CSDF [1] graph G = (V,E) is a directed graph that
consists of a finite set of actors V , and a finite set of di-
rected edges E. Actors synchronise by communicating to-
kens over edges that represent queues. A token can be seen
as a container in which a fixed amount of data can be stored.
An actor vi ∈ V has θ(vi) distinct phases of execution and
transitions from phase to phase in a cyclic fashion. The
phase f of actor vi in firing k is f = ((k − 1)%θ(vi)) + 1,
where x%y stands for x modulo y with the result the same
sign as the divisor. An actor is enabled to fire when a firing
rule is satisfied, i.e. the number of tokens that will be con-
sumed is available on each input edge. The number of to-
kens consumed by actor vi equals γ(e, f), and is determined
by the edge e ∈ E and the current phase f of the actor. The
specified number of tokens is consumed in an atomic action
from all input edges when the actor is started. The execu-
tion time ρ(vi, f) is the difference between the finish and
the start time of phase f of actor vi. When actor vi finishes,
it produces the specified number of tokens on each output
edge e = (vi, vj) in an atomic action. The number of tokens
produced in a phase is denoted by π(e, f). In this paper, we
assume that each actor has a self-cycle e = (vi, vi) with one
initial token to exclude auto concurrency.

In a CSDF graph, the depth of a FIFO channel is theo-
retically unlimited, whereas in the implementation a FIFO
buffer has a bounded capacity. Such a FIFO buffer can be
modelled with two edges in opposite direction (a forward
and backward edge). The availability of data in the FIFO
buffer corresponds with the presence of tokens on the for-
ward edge. If an actor consumes a token, it creates space in
a FIFO buffer, corresponding to the production of a token
on the backward edge. The number of initial tokens on both
edges represents the FIFO buffer capacity.

4.2. Modelling execution scaling in CSDF

In this section, we introduce an algorithm to extend the
CSDF graph representing the application into a CSDF graph
modelling a specific mapping and execution scaling factor.
The input of our algorithm is (i) a CSDF graph G = (V,E)
representing the application, (ii) a binding of actors to pro-
cessors, (iii) an initial schedule Sp for each processor p, and
(iv) an execution scaling factor m. The output is a CSDF
graph G′ = (V ′, E′) in which we model the specified map-
ping with schedule Sm

p for each processor p.
In this paper, we use the following terminology. Each

actor is executed on a processor p and each proces-
sor p is executing actors in a static-order schedule Sp =
(s0, s1, ..., sN−1), with si ∈ V . The number of occurrences
of actor vi in schedule Sp equals Ω(vi, Sp). For a certain
schedule Sp, the k’th occurrence of actor vi is at position
φ(k, vi, Sp), with 1 ≤ k ≤ Ω(vi, Sp). For the algorithm de-
scribed below, we limit us to the case where two actors are
executed on one processor, although the technique is appli-
cable for more than two actors.

The new graph G′ is constructed by (i) creating the new
set of actors V ′ and (ii) creating the new set of edges E ′

including the production and consumption rates. (i) The
new set of actors V ′ consists of an equal number of actors
as in set V . Each actor v′

i ∈ V ′ of graph G′ is represent-
ing actor vi ∈ V of the original graph G. The number of
phases θ(v′

i) of actor v′
i is equal to the least common mul-

tiple (lcm) of Ω(v′
i, S

m
p ) and the number of phases of actor

vi, i.e. θ(v′
i) = lcm(Ω(v′

i, S
m
p ), θ(vi)). With this num-

ber of phases we can express the cyclo-static behaviour of
the application as well as the cyclo-static behaviour of the
static-order schedule. The execution time of actor v′

i can be
calculated from the execution time of actor vi and the actor
switching overhead cost Ci (e.g. processor stall cycles due
to cache refills). The execution time of actor v′

i in phase f
is computed with Eq. (1), where κ(f) is a short hand nota-
tion for φ((f%Ω(v′

i, S
m
p )) + 1, v′

i, S
m
p ). We only have to

account for the switching overhead cost if the current actor
is different from the previous actor in the schedule, i.e. if
κ(f) 6= κ(f − 1) + 1.

ρ(v′
i, f) =

{

ρ(vi, f%θ(vi)) if κ(f) = κ(f − 1) + 1

ρ(vi, f%θ(vi)) + Ci if κ(f) 6= κ(f − 1) + 1

(1)

(ii) The new set of edges E′ consists of the set of edges
E′

b modelling the FIFO buffers (with forward and backward
edges) and a set of edges E′

s modelling the scheduling de-
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Figure 4. CSDF graph modelling the application in
Fig. 1 with mapping option (b) and scaling factor m = 3

pendencies. The set of edges E ′
b consists of an equal num-

ber of edges as in set E. Each edge e′b ∈ E′
b of graph G′ is

representing edge e ∈ E of the original graph G. The num-
ber of tokens consumed and produced by actor v′

i on edge
e′b ∈ E′

b equals, respectively, Eq. (2) and Eq. (3) for every
phase f .

γ(e′b, f) = γ(e, f%θ(vi)) (2)
π(e′b, f) = π(e, f%θ(vi)) (3)

The static-order schedule Sm
p on each processor p is mod-

elled with the set of edges E′
s. Each processor is executing

two actors. Between these actors we add two edges in op-
posite directions. For actor s0 in each schedule Sm

p , we add
one initial token on the input edge e′s ∈ E′

s. These initial
tokens define which actors that can start executing. For ev-
ery phase f , the number of tokens consumed and produced
by actor v′

i on edge e′s ∈ E′
s is computed by Eq. (4) and

Eq. (5), respectively.

γ(e′, f) =

{

0 if κ(f) = κ(f − 1) + 1

1 if κ(f) 6= κ(f − 1) + 1
(4)

π(e′, f) =

{

0 if κ(f) = κ(f + 1) − 1

1 if κ(f) 6= κ(f + 1) − 1
(5)

We take the application in Section 1.1 as an example
to model execution scaling in CSDF. We assume the bind-
ing and static-order schedule as defined by mapping op-
tion (b) in Fig. 2. Furthermore, we assume an execution
scaling factor m = 3 and an actor switching overhead cost
C. Fig. 4 shows the CSDF model in which the schedules
S3

p1 = (v3
1 , v3

3) and S3
p2 = (v3

2 , v3
4) are modelled. The

number of phases of the new actors v′
1 through v′

4 equal
lcm(1, 3) = 3. The execution times of actor v′

1 through
v′
4 are 〈T + C, T, T 〉. The FIFO buffers f1 through f3 are

modelled with the forward and backward edges between the
actors. The numbers beside the black dots indicate the num-
ber of initial tokens that model the FIFO buffer capacities.
The input and output rates on these edges e′b ∈ E′

b equal
〈1, 1, 1〉. On the remaining edges e′s ∈ E′

s, which repre-
sent the scheduling dependencies, the input rates γ(e′s) are
〈1, 0, 0〉 and the output rates π(e′s) are 〈0, 0, 1〉. The two
initial tokens on the input edges e′s ∈ E′

s from actor v′
1 and

v′
2 make sure that these actors start executing in the sched-

ules S3
p1 and S3

p2.

vADC vCD vSD vDAC

〈a〉〈1〉 〈1〉〈b〉 〈c〉

〈c〉=〈1920〉〈a〉=〈76875〉 〈b〉=〈027, 10, 022, 10, 023, 10〉

〈1〉

〈1〉 〈a〉 〈b〉 〈1〉 〈1〉〈c〉

Figure 5. CSDF model of the digital radio receiver

5. Experiments
In this section we apply the cache miss reduction tech-

nique to our Digital Radio Mondiale [14] receiver. We mea-
sure the impact of execution scaling on the number of cache
misses for different cache sizes and for different values of
execution scaling factor m. Finally, we compute, by means
of our CSDF model, the maximum value m that still meets
our end-to-end latency and memory constraints.

The CSDF graph that represents our receiver is de-
picted in Fig. 5. The graph consists of four actors that
model an Analog-to-Digital Converter (vADC), Channel De-
coder (vCD), Source Decoder (vSD), and Digital-to-Analog
Converter (vDAC). The analog-to-digital and digital-to-
analog converters are implemented as separate tiles in our
multiprocessor system. The actors vCD and vSD are executed
on a TM2270 which belongs to the TriMedia family [11].
We refer to this processor as the Digital Signal Proces-
sor (DSP). An external memory is applied because the code
size plus the private data of vCD and vSD are considered too
expensive to store in an on-chip memory. During our mea-
surements, the static-order schedule on the DSP processor is
Sm

DSP = (vm
CD , vm

CD , vm
CD , vm

SD , vm
CD , vm

CD , vm
SD ). We used the pream-

ble PDSP = (v28
CD ) before executing schedule Sm

DSP, in such a
way that there are ten initial tokens on the edge (vCD, vSD)
and actor vSD is able to execute. The number of cache misses
presented in this paper are measured in a SystemC [17] sim-
ulation environment that is cycle accurate.

For different instruction and data cache sizes, we mea-
sure the number of cache misses for an execution scaling
factor m = 1 and m = 100, as shown in Fig. 6. The number
of cache misses are measured during hundred executions of
the schedule S1

DSP and one execution of the schedule S100
DSP .

The cache misses in Fig. 6 follow the same pattern as the
cache misses in Fig. 3. The impact of execution scaling on
the number of cache misses is the largest for an instruction
and data cache size of 128KByte and 512KByte, respec-
tively. For these cache sizes, the numbers of cache misses
are reduced by a factor 22.7 and 8.5 for the instruction and
data cache, respectively. For smaller cache sizes the pro-
gram code and private data of the individual actors does not
fit in the cache, hence execution scaling has a small or no
impact on the number of cache misses. When the instruc-
tion and data cache sizes grow, both actors vCD and vSD fit in
the cache, therefore, the impact of execution scaling on the
number of cache misses reduces again.

For an instruction and data cache size equal to 128KByte
and 512KByte, respectively, we measured the impact of the
execution scaling factor m on the number of cache misses.
From this measurement we conclude that the number of in-
struction and data cache misses reduce when increasing the
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Figure 6. Instruction (I$) and data (D$) cache misses

scaling factor m. On a log-log plot (which is not shown due
to a lack of space), the measured points form a straight line
as expected. In the first iteration we observe cache misses,
but subsequent m − 1 iterations we generally do not.

Finally, we compute the maximum value m that still
meets our end-to-end latency and memory constraints. The
throughput of our receiver is determined by the analog-
to-digital and digital-to-analog converters, which have a
sample rate of 48KHz. The end-to-end latency should
not exceed one second. The memory usage is not criti-
cal because the FIFO buffers can be stored in the exter-
nal memory, which is in the order of mega bytes. The
end-to-end latency is defined as the difference between fin-
ishing the first execution of vDAC and starting the first ex-
ecution of vADC. An estimate on the execution time of
actor vCD is 〈289627, 14071, 289622, 14071, 289623, 14071〉
microseconds and the actor switching cost CCD is 631 mi-
croseconds. An estimate on the execution time of actor vSD

is 〈2202〉 microseconds and the actor switching cost CSD is
595 microseconds. These estimates are based on the DSP
processor with a clock frequency of 300MHz, an instruction
cache of 128KByte, an data cache of 512KByte, and assum-
ing cache miss penalties of 100 and 150 DSP clock cycles
for, respectively, an instruction and data cache miss. The ex-
ecution times of actor vADC and vDAC are equal to 1/48KHz. For
different execution scaling factors m, we derived a CSDF
model via the algorithm described in Section 4.2. From
this model we first computed the FIFO buffer capacities and
consecutively the end-to-end latency via dataflow analysis.
The end-to-end latency and the sum of the individual FIFO
buffer capacities are shown in Table 1. The presented la-
tencies include the latency of the preamble PDSP, which is
0.444s. From Table 1, we conclude that execution scal-
ing factor m = 11 still meets the end-to-end latency and
memory constraints. The impact of execution scaling factor
m = 11 on the number of instruction and data cache misses
is 6.4 and 3.4, respectively. The impact on the total number
of cache misses (instruction plus data) is a factor 4.2.

For the experiments in this paper, we adapted the size of
the instruction and data cache to show the impact of execu-
tion scaling on the number of cache misses. In general, if
cache sizes are fixed, we can change the actor granularity
and allow execution scaling to optimise for cache misses.

Capacity Latency Capacity Latency
m [KByte] [s] m [KByte] [s]
1 40 0.507 7 146 0.772
2 54 0.542 8 165 0.818
3 72 0.588 9 184 0.864
4 94 0.645 10 202 0.910
5 108 0.680 11 226 0.968
6 127 0.726 12 241 1.003

Table 1. Total FIFO buffers capacity and end-to-end la-
tency for different scaling factors m

6. Conclusion
We proposed a novel cache aware mapping technique

that reduces the number of instruction and data cache misses
for streaming applications in a multiprocessor system. It is
shown that executing actors multiple times in a loop, is ef-
fective if the individual actors fit in the instruction and data
cache, and the set of actors executed on a processor do not
fit simultaneously. We have introduced a CSDF model for
an application mapped onto a multiprocessor and a specific
execution scaling factor. With this model we derived the
maximum number of successive actor executions, by mak-
ing use of traditional dataflow analysis techniques. For our
industrial case study, which is a Digital Radio Mondiale re-
ceiver, we reduced the number of cache misses by a factor
4.2. The reduction of the number of cache misses and the re-
duction of contention at the external memory, will improve
the overall system performance.
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