
Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Cache Capacity Aware Thread Scheduling 

for Irregular Memory Access on Many-Core 

GPGPUs 

 Hsien-Kai Kuo, Ta-Kan Yen, Bo-Cheng Charles Lai and Jing-Yang Jou 

 

Department of Electronics Engineering 

 National Chiao Tung University, Taiwan 

Email : hkkuo[at]ee.eda.nctu.edu.tw  

 

ASP-DAC 2013   

 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Outline 

 Introduction 

 GPGPU Background 

 Motivational Examples 

 Cache Capacity Aware Thread Scheduling 

 Experimental Results 

 Conclusions 

2 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Introduction – GPGPU 

 General Purpose Graphic Processing Unit 

An accelerator for  general computing 

Numerous computing cores (> 512 cores/chip) 

 Throughput-oriented 

 Techniques to alleviate memory bottleneck 

Memory Coalescing 

On-chip Shared Cache 

3 
Source: Nvidia, http://http://www.nvidia.com  



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Introduction – Alleviate Memory 

Bottleneck 

 Memory Coalescing 

Combine several narrow accesses into a single wide one 

Effective and widely used in regular applications 

Fast Fourier Transform (FFT) and Matrix Multiplications 

 On-chip Shared Cache 

Shared among several computing cores 

Automatically exploit data reuse  

 
 However, in Irregular Applications 

 Lack of coordinated memory access (Non-Coalescing) 

Numerous threads with limited cache capacity (Cache 

Contention) 
4 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Introduction – Cache Contention 

5 

 Cache Contention 

Happen when the cache capacity is insufficient for all the 

concurrent threads 

Example : 

Shared Cache Shared Cache 

Contention free Cache contention 

… … 

Thread   Per-thread working set  



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Introduction – Previous Studies 

 Previous studies 

Deng, et al. (ICCAD’09) 

Scratch-pad memory to enhance coalescing 

 Zhang, et al. (ASPLOS’11) 

Data and computation reordering to improve coalescing 

Kuo, et al. (ASPDAC’12) 

Thread clustering to enhance coalescing and mitigate cache 

contention 

 Without considering the Cache Capacity 

Cannot fully resolve the Cache Contention issue 

 

6 

Y. Deng, et al., "Taming Irregular EDA Applications on GPUs," in ICCAD, 2009 

E. Z. Zhang, et al., "On-the-Fly Elimination of Dynamic Irregularities for GPU Computing," in ASPLOS, 2011 

H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Introduction – Contributions 

 This paper 

 Formulate a general thread scheduling problem on 

GPGPUs 

Cache Capacity Aware Thread Scheduling Problem  

Carry out a comprehensive analysis on the variants of the 

problem 

 Nvidia’s Fermi architecture is modeled as a special variant 

Propose thread scheduling algorithms for different variants 

An average of 44.7% cache misses reduction 

An average of 28.5% runtime enhancement 

 

7 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

 Nvidia’s CUDA Programming Model 

Cooperative Thread Array (CTA) 

A collection of threads 

Kernel 

A collection of CTAs 

 

GPGPU Background – Programming 

Model 

int main(){ 
        /∗ serial code∗/ 
        ⋯ 
        kernel_A<<<192, 256>>>(arg0, arg1, ⋯) 
        ⋯ 
        /∗ serial code∗/ 
        ⋯ 
        kernel_B<<<256, 192>>>(arg0, arg1, ⋯) 
        ⋯ 
} 

Kernel_A 

CTA0 

Source: Nvidia, http://http://www.nvidia.com  

8 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

 This paper 

Consider re-configuring 

the number of concurrent 

CTAs 

Need synchronizations 

GPGPU Background – GPGPU 

Architecture 

 Nvidia’s Fermi GPGPU Architecture 

Streaming Multiprocessor (SM) 

Unified L2 Cache 

GigaThread Scheduler 

Fixed number of  

concurrent CTAs 

Unified L2 Cache 

SM 

GigaThread Scheduler 

SM SM 

… 

… 

Source: Nvidia, http://http://www.nvidia.com  

9 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Motivational Examples – Example 1 

 Assume that 

A collection of CTAs = {A, B, C, D, E, F, G, H, I, J, K, L} 

Working set sizes = {1, 8, 3, 1, 2, 2, 1, 7, 4, 4, 2, 5} 

Cache capacity = 10 

Maximum number of concurrent CTA = 4 

 

 

10 

 Example 1 

Example 1 : Cache Capacity Agnostic Scheduling 

Scheduling 

Steps 

Concurrent 

CTAs 
Cache Contention Evaluation 

Step1 A, B, C, D 1 + 8 + 3 + 1 = 13 > 10 (Contention) 

Step2  E, F, G, H 2 + 2 + 1 + 7 = 12 > 10 (Contention) 

Step3 I, J, K, L 4 + 4 + 2 + 5 = 15 > 10 (Contention) 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

 Example 2 

 Too restrictive to schedule more concurrent CTAs 

 

 

 

Motivational Examples – Example 2 

11 

Example 2 : Cache Capacity Aware Scheduling with 

Fixed Number of Concurrent CTAs 

Scheduling 

Steps 

Concurrent 

CTAs 
Cache Contention Evaluation 

Step1 B, E 8 + 2 = 10 ≤ 10 (Contention free) 

Step2  C, H 3 + 7 = 10 ≤ 10 (Contention free) 

Step3 L, J 5 + 4 = 9 ≤ 10 (Contention free) 

Step4 F, I 2 + 2 = 6 ≤ 10 (Contention free) 

Step5 A, K 1 + 2 = 3 ≤ 10 (Contention free) 

Step6 D, G 1 + 1 = 2 ≤ 10 (Contention free) 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

 Example 3 

Should also consider the synchronization cost 

Motivational Examples – Example 3 

12 

Example 3 : Cache Capacity Aware Scheduling with 

Reconfigurable Number of Concurrent CTAs 

Scheduling 

Steps 

Concurrent 

CTAs 
Cache Contention Evaluation 

Step1 B, E 8 + 2 = 10 ≤ 10 (Contention free) 

Step2  C, H 3 + 7 = 10 ≤  10 (Contention free) 

Synchronize and re-configure the number of concurrent CTAs 

Step3 L, K, F, J 5 + 2 + 2 + 1 = 10 ≤ 10 (Contention free) 

Step4 J, I, D, G 4 + 4 + 1 + 1 = 10 ≤ 10 (Contention free) 

Synchronize and re-configure the number of concurrent CTAs 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Cache Capacity Aware Thread Scheduling 

– Problem Formulation (1/4) 

 

 

 

 

 

 Input 

 𝒄𝒏 : a collection of CTAs 

𝒄𝒏 = 𝑐1, 𝑐2⋯ , 𝑐𝑛  

𝒘 𝒄𝒊  : working set size of the CTA 𝑐𝑖  

 𝒔𝒎 : a schedule of CTAs (a series of scheduling step) 

𝒔𝒎 = 𝑠1, 𝑠2⋯ , 𝑠𝑚  

Each scheduling step 𝑠𝑖  is a subset of 𝑐𝑛 

𝒄𝒐𝒏𝒄 𝒔𝒊  : concurrency of the scheduling step 𝑠𝑖  

Number of CTAs belongs to 𝑠𝑖  

 Output 

13 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  : overall cost of the schedule 𝑠𝑚 

𝒎 : total number of scheduling steps 

𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  : total synchronization cost 

 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎 = 𝒄𝒑𝒔 ×  𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏
𝑚−1
𝑖=0  

𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏  : necessity of synchronization 

 𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏 =  
 0, 𝑐𝑜𝑛𝑐 𝑠𝑖 = 𝑐𝑜𝑛𝑐 𝑠𝑖+1
  1, 𝑐𝑜𝑛𝑐 𝑠𝑖 ≠ 𝑐𝑜𝑛𝑐 𝑠𝑖+1

 

𝒄𝒑𝒔 : cost per synchronization 

 𝒄𝒑𝒔 ∈ ℝ, 0 < 𝑐𝑝𝑠 ≤ 1 

Cache Capacity Aware Thread Scheduling 

– Problem Formulation (2/4) 

 Constraint (Cache Capacity) 

14 

 Cost Function 

 ∀𝑠𝑖:  𝑤 𝑐𝑗𝑐𝑗∈𝑠𝑖 ≤ 𝑪𝒂𝒑_𝒖𝒏𝒊𝒇𝒊𝒆𝒅_𝑳𝟐 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Cache Capacity Aware Thread Scheduling 

– Problem Formulation (3/4) 

 

 

 

 

 

 Problem Definition  

 
Cache Capacity Aware Thread Scheduling 

Problem : Given a collection of CTAs 𝒄𝒏 with working 

set size 𝒘 𝒄𝒊 , the problem is to find a schedule 𝒔𝒎  

where the overall cost is minimized subject to cache 

capacity constraint: 

 

 

 

 

 

minimize       𝒎 +  𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  

subject to      ∀𝑠𝑖: 𝑤 𝑐𝑗
𝑐𝑗∈𝑠𝑖

≤ 𝑪𝒂𝒑_𝒖𝒏𝒊𝒇𝒊𝒆𝒅_𝑳𝟐 

                         ∀𝑠𝑖 ≠ 𝑠𝑗: 𝑠𝑖 ∩ 𝑠𝑗 = ∅ 
                         𝑠1 ∪ 𝑠2⋯𝑠𝑚 = 𝑐

𝑛 

15 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Cache Capacity Aware Thread Scheduling 

– Problem Formulation (4/4) 

 

 

 

 

 

 NP-hardness  

  Lemma 1 : The Cache Capacity Aware Thread 

Scheduling Problem is NP-hard 

Proof : The NP-hard problem, Bin Packing Problem 

can be reduced to this problem 

 P ≠ NP 

No optimal algorithm in polynomial time 

Acceptable quality in polynomial time 

Approximation algorithms 

16 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Cache Capacity Aware Thread Scheduling 

– Fixed Concurrency (1/2) 

 

 

 

 

 

 Fixed Concurrency Constraint  

  ∀𝑠𝑖 ≠ 𝑠𝑗: 𝑐𝑜𝑛𝑐 𝑠𝑖 = 𝑐𝑜𝑛𝑠 𝑠𝑗  

Imply no synchronization cost 

Reduced to k-Cardinality Bin Packing Problem 

Given : a set of items 𝑎1, 𝑎2, ⋯ , 𝑎𝑛, each with sizes 

𝑠 𝑎𝑖  and the bin capacity 𝑐𝑎𝑝 

Result : a division of the items into to a minimum 

number of bins 

Constraints : each bin contains at most 𝑘 items and 

its aggregated size cannot exceed the capacity 𝑐𝑎𝑝 

 k-Cardinality Bin Packing Problem 

17 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Algorithm 1 : Thread Scheduling for Fixed Concurrency 

1    𝑘 ← maximum possible concurrency 
2    sort 𝑐𝑛 in decending order by working set size 
3    𝐫𝐞𝐩𝐞𝐚𝐭 
4            𝑐𝑎𝑝 ← 𝑤 𝑐1 + 𝑤 𝑐2 +⋯+𝑤 𝑐𝑘  

5            𝑘 ← 𝑘 − 1 
6    𝐮𝐧𝐭𝐢𝐥 𝑐𝑎𝑝 ≤ 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2 
7    𝑐𝑎𝑝 ← 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2 
8    𝑠𝑚 ← K− CARDINALITY−BIN−PACKING(𝑐𝑛, 𝑐𝑎𝑝, 𝑘) 
9    𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑚 

Cache Capacity Aware Thread Scheduling 

– Fixed Concurrency (2/2) 

 k-Cardinality Bin Packing Algorithms 

 Largest Memory First (LMF) and Iterated Worst-Case 

Decreasing (IWFD) 

Constant approximation ratio 

18 

M. R. Garey, et al., "Worst-Case Analysis of Memory Allocation Algorithms," in ACM Symp. Theory of Computing, 1972 

K. L. Krause, et al., "Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems," J. ACM, vol. 22, pp. 522-550, 1975 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Cache Capacity Aware Thread Scheduling 

– Variable Concurrency (1/2) 

 

 

 

 

 

 Cost Function: 𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  

 Trade-off between the number of scheduling steps (𝒎) 

and synchronization cost (𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎 ) 

 

 

 Lemma 2 : For any schedule 𝒔𝒎, the overall cost, 

𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  is lesser or equal to 2𝒎 –  1 

 Interesting Findings 

 Lemma 3 : For any schedule 𝒔𝒎, the synchronization 

cost is minimum if the scheduling steps are sorted by 

the concurrency (𝒄𝒐𝒏𝒄(𝒔𝒊)) 

19 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Algorithm 2 : Thread Scheduling for Variable Concurrency 

1    𝑘 ← maximum possible concurrency 
2    𝑐𝑎𝑝 ← 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2 
3    𝐫𝐞𝐩𝐞𝐚𝐭 
4            𝑠𝑚 ← K− CARD INALITY−BIN−PACK ING(𝑐𝑛, 𝑐𝑎𝑝, 𝑘) 
5            𝐬𝐨𝐫𝐭 𝒔𝒎 𝒃𝒚 𝒄𝒐𝒏𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒚 𝒕𝒐 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒔𝒚𝒏𝒄𝒉𝒓𝒐𝒏𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕 
6            𝑜𝑙𝑑_𝑐𝑜𝑠𝑡 ← 𝑚 + 𝑠𝑦𝑛𝑐_𝑐𝑜𝑠𝑡 𝑠𝑚  
7            𝑘 ← 𝑘 − 1 
8            𝑠𝑚

′
← K− CARD INAL ITY−BIN−PACK ING (𝑐𝑛, 𝑐𝑎𝑝, 𝑘) 

9            sort 𝑠𝑚
′
 𝑏𝑦 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

10         𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 ← 𝑚 + 𝑠𝑦𝑛𝑐_𝑐𝑜𝑠𝑡 𝑠𝑚
′

 

11  𝐮𝐧𝐭𝐢𝐥 𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 ≥ 𝑜𝑙𝑑_𝑐𝑜𝑠𝑡 
12  𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑚 

 Algorithm Design 

 Lemma 2 → Minimize the number of steps (𝒎)  

 Lemma 3 → Minimize sync. cost (𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕(𝒔𝒎)) 

Cache Capacity Aware Thread Scheduling 

– Variable Concurrency (2/2) 

Lemma 2 

Lemma 3 

It
e
ra

ti
v
e

 R
e
fi
n
e
m

e
n
t 

20 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Experimental Results – Experiment 

Setup (1/2) 

 

 

 

 

 

Fermi’s Architectural Configurations in GPGPU-Sim 

Number of SMs 15 

SM configuration 

32-wide pipeline, 32 threads/warp, 1536 threads/SM, 32768 

registers/SM, 

number of CTAs/SM (dynamic reconfigurable, default 8) 

L2 cache unified 768KB, 8-way, 64 byte/block 

DRAM 
6 GDDR5 channels, 2 chips/channel, 16 banks, 16 entries/chip, 

FR-FCFS policy 

Interconnection network single stage butterfly, 32-byte flit size 

 GPGPU-Sim (ISPASS’09) Simulation Setup 

 Thread clustering for CTA generation 

Kuo, et al. (ASPDAC’12) 

 Ocelot for working set size analysis 

Ocelot (PACT’10) 

 

 21 

A. Bakhoda, et al., "Analyzing CUDA Workloads Using a Detailed GPU Simulator," in ISPASS, 2009 

H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012 

G. F. Diamos, et al., "Ocelot: A Dynamic Optimization Framework for Bulk-Synchronous Applications in Heterogeneous Systems," in PACT, 2010 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Experimental Results – Experiment 

Setup (2/2) 

 

 

 

 

 

Irregular Massive Parallel Applications 

Applications Fields Descriptions Sources 
Data set 

sizes 

bfs Electronic 

Design 

Automation 

(EDA) 

breadth first search 

Kuo, et al. 

2.6 MB 

sta static timing analysis 3.0 MB 

gsim gate level logic simulation 3.5 MB 

nbf Molecular 

Dynamics 

(MD) 

kernel abstracted from the GROMOS 

code 

Cosmic 

6.3MB 

moldyn 
force calculation in the CHARMM 

program 
10.2MB 

irreg Computational 

Fluid 

Dynamics 

(CFD) 

kernel of Partial Differential Equation 

solver 
6.3MB 

euler finite-difference approximations on mesh 
Chaos 

8.5MB 

unstructured fluid dynamics with unstructured mesh 10.2MB 

 Application Domains 

22 

H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012 

H. Han, et al., "Exploiting Locality for Irregular Scientific Codes," IEEE Trans. Parallel and Distributed Systems, vol. 17, pp. 606-618, 2006 

R. Das, et al., "Communication Optimizations for Irregular Scientific Computations on Distributed Memory Architectures," J. Parallel Distrib. Comput., vol. 22, 

pp. 462-478, 1994. 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Experimental Results – Cache Misses 

Reduction 

 

 

 

 

 

 sche_agnostic, sche_fixed and sche_variable 

 cps : low (50 cycles), medium (100 cycles) and high 

(200 cycles) 

23 
W.-C. Feng , et al., "To GPU Synchronize or not GPU Synchronize?," in ISCAS, 2010 

0%

20%

40%

60%

80%

100%

120%

bfs sta gsim nbf moldyn irreg euler unstr.

EDA MD CFD

N
o

rm
a

li
z
e

d
 C

a
c

h
e

 M
is

s
  

sche_agnostic sche_fixed sche_variable_low
sche_variable_medium sche_variable_high

44.7% 

90.4% 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Experimental Results – Execution Time 

Improvement 

 

 

 

 

 

 sche_fixed 

 Too restrictive to schedule more concurrent CTAs 

(moldyn and unstructured) 

 

24 

0%

20%

40%

60%

80%

100%

120%

bfs sta gsim nbf moldyn irreg euler unstr.

EDA MD CFD

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 C

y
c

le
s

 

sche_agnostic sche_fixed sche_variable_low
sche_variable_medium sche_variable_high

28.5% 

62.5% 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

Conclusions 

 

 

 

 

 

 This paper  

 Formulate a general thread scheduling problem, 

Cache Capacity Aware Thread Scheduling Problem 

 

Not only prove the NP-hardness, but also propose 

two thread scheduling algorithms 

 

Achieve an average of  

44.7% cache misses reduction 

28.5% runtime enhancement 

Up to 62.5% for applications with more threads and 

higher complexity 

25 



Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs 

 

 

 

 

 

26 

THANK YOU  

FOR YOUR ATTENTION 
WE WELCOME YOUR QUESTIONS, COMMENTS AND SUGGESTIONS 

Hsien-Kai Kuo 

hkkuo[at]ee.eda.nctu.edu.tw  


