
Cache Coherence for GPU Architectures

Inderpreet Singh1 Arrvindh Shriraman2 Wilson W. L. Fung 1

Mike O’Connor3 Tor M. Aamodt1,4
1University of British Columbia 2Simon Fraser University

3Advanced Micro Devices, Inc. (AMD) 4Stanford University
isingh@ece.ubc.ca, ashriram@cs.sfu.ca, wwlfung@ece.ubc.ca

mike.oconnor@amd.com, aamodt@ece.ubc.ca

Abstract

While scalable coherence has been extensively stud-

ied in the context of general purpose chip multiprocessors

(CMPs), GPU architectures present a new set of challenges.

Introducing conventional directory protocols adds unneces-

sary coherence traffic overhead to existing GPU applica-

tions. Moreover, these protocols increase the verification

complexity of the GPU memory system. Recent research,

Library Cache Coherence (LCC) [34, 54], explored the use

of time-based approaches in CMP coherence protocols.

This paper describes a time-based coherence framework

for GPUs, called Temporal Coherence (TC), that exploits

globally synchronized counters in single-chip systems to de-

velop a streamlined GPU coherence protocol. Synchronized

counters enable all coherence transitions, such as invali-

dation of cache blocks, to happen synchronously, eliminat-

ing all coherence traffic and protocol races. We present an

implementation of TC, called TC-Weak, which eliminates

LCC’s trade-off between stalling stores and increasing L1

miss rates to improve performance and reduce interconnect

traffic.

By providing coherent L1 caches, TC-Weak improves

the performance of GPU applications with inter-workgroup

communication by 85% over disabling the non-coherent L1

caches in the baseline GPU. We also find that write-through

protocols outperform a writeback protocol on a GPU as the

latter suffers from increased traffic due to unnecessary re-

fills of write-once data.

1 Introduction

Graphics processor units (GPUs) have become ubiq-

uitous in high-throughput, general purpose computing.

C-based programming interfaces like OpenCL [29] and

NVIDIA CUDA [46] ease GPU programming by abstract-

ing away the SIMD hardware and providing the illusion

of independent scalar threads executing in parallel. Tra-

0.5

1.0

1.5

Intra-workgroup
communication

In
te

r
c

o
n

n
e

c
t

tr
a

ff
ic

NO-COH MESI

GPU-VI GPU-VIni

2.27

0.0

0.5

1.0

1.5

2.0

Inter-workgroup
communication

P
e

r
fo

r
m

a
n

c
e

NO-L1

IDEAL-COH

(a) (b)

Figure 1. (a) Performance improvement with

ideal coherence. (b) Traffic overheads of con-

ventional coherence.

ditionally limited to regular parallelism, recent studies

[21, 41] have shown that even highly irregular algorithms

can attain significant speedups on a GPU. Furthermore, the

inclusion of a multi-level cache hierarchy in recent GPUs

[6, 44] frees the programmer from the burden of software

managed caches and further increases the GPU’s attractive-

ness as a platform for accelerating applications with irregu-

lar memory access patterns [22, 40].

GPUs lack cache coherence and require disabling of pri-

vate caches if an application requires memory operations to

be visible across all cores [6, 44, 45]. General-purpose chip

multiprocessors (CMPs) regularly employ hardware cache

coherence [17, 30, 32, 50] to enforce strict memory con-

sistency models. These consistency models form the basis

of memory models for high-level languages [10, 35] and

provide the synchronization primitives employed by multi-

threaded CPU applications. Coherence greatly simplifies

supporting well-defined consistency and memory models

for high-level languages on GPUs. It also helps enable a

unified address space in heterogeneous architectures with

single-chip CPU-GPU integration [11, 26]. This paper fo-

cuses on coherence in the realm of GPU cores; we leave

CPU-GPU cache coherence as future work.

Disabling L1 caches trivially provides coherence at the

cost of application performance. Figure 1(a) shows the

potential improvement in performance for a set of GPU

applications (described in Section 7) that contain inter-

workgroup communication and require coherent L1 caches

for correctness. Compared to disabling L1 caches (NO-L1),

an ideally coherent GPU (IDEAL-COH), where coherence

traffic does not incur any latency or traffic costs, improves

performance of these applications by 88% on average.

GPUs present three main challenges for coherence. Fig-

ure 1(b) depicts the first of these challenges by comparing

the interconnect traffic of the baseline non-coherent GPU

system (NO-COH) to three GPU systems with cache coher-

ence protocols: writeback MESI, inclusive write-through

GPU-VI and non-inclusive write-through GPU-VIni (de-

scribed in Section 4). These protocols introduce unnec-

essary coherence traffic overheads for GPU applications

containing data that does not require coherence.

Second, on a GPU, CPU-like worst case sizing [18]

would require an impractical amount of storage for track-

ing thousands of in-flight coherence requests. Third, exist-

ing coherence protocols introduce complexity in the form

of transient states and additional message classes. They

require additional virtual networks [58] on GPU intercon-

nects to ensure forward progress, and as a result increase

power consumption. The challenge of tracking a large num-

ber of sharers [28, 64] is not a problem for current GPUs as

they contain only tens of cores.

In this paper, we propose using a time-based coherence

framework for minimizing the overheads of GPU coherence

without introducing significant design complexity. Tradi-

tional coherence protocols rely on explicit messages to in-

form others when an address needs to be invalidated. We

describe a time-based coherence framework, called Tempo-

ral Coherence (TC), which uses synchronized counters to

self-invalidate cache blocks and maintain coherence invari-

ants without explicit messages. Existing hardware imple-

ments counters synchronized across components [23, Sec-

tion 17.12.1] to provide efficient timer services. Leverag-

ing these counters allows TC to eliminate coherence traffic,

lower area overheads, and reduce protocol complexity for

GPU coherence. TC requires prediction of cache block life-

times for self-invalidation.

Shim et al. [34, 54] recently proposed a time-based hard-

ware coherence protocol, Library Cache Coherence (LCC),

that implements sequential consistency on CMPs by stalling

writes to cache blocks until they have been self-invalidated

by all sharers. We describe one implementation of the TC

framework, called TC-Strong, that is similar to LCC. Sec-

tion 8.3 shows that TC-Strong performs poorly on a GPU.

Our second implementation of the TC framework, called

TC-Weak, uses a novel timestamp-based memory fence

mechanism to eliminate stalling of writes. TC-Weak uses

timestamps to drive all consistency operations. It imple-

B

L1 @ C2

L1 @ C3

A

B

C1

time

L1 @ C2

WA WB

time

WA WBF

L1 @ C3

C1

A

(a) TC-Strong / LCC [34, 54] (b) TC-Weak

Figure 2. TC operation. WA=Write to address
A. F=Fence. ×=Self-invalidation2of a cache

block.

ments Release Consistency [19], enabling full support of

C++ and Java memory models [58] on GPUs.

Figure 2 shows the high-level operation of TC-Strong

and TC-Weak. Two cores, C2 and C3, have addressesA and

B cached in their private L1, respectively. In TC-Strong,

C1’s write to A stalls completion until C2 self-invalidates

its locally cached copy of A. Similarly, C1’s write to B

stalls completion until C3 self-invalidates its copy of B. In

TC-Weak, C1’s writes to A and B do not stall waiting for

other copies to be self-invalidated. Instead, the fence opera-

tion ensures that all previously written addresses have been

self-invalidated in other local caches. This ensures that all

previous writes from this core will be globally visible after

the fence completes.

The contributions of this paper are:

• It discusses the challenges of introducing existing co-

herence protocols to GPUs. We introduce two opti-

mizations to a VI protocol [30] to make it more suit-

able for GPUs.

• It provides detailed complexity and performance eval-

uations of inclusive and non-inclusive directory proto-

cols on a GPU.

• It describes Temporal Coherence, a GPU coherence

framework for exploiting synchronous counters in

single-chip systems to eliminate coherence traffic and

protocol races.

• It proposes the TC-Weak coherence protocol which

employs timestamp based memory fences to imple-

ment Release Consistency [19] on a GPU.

• It proposes a simple lifetime predictor for TC-Weak

that performs well across a range of GPU applications.

Our experiments show that TC-Weak with a simple life-

time predictor improves performance of a set of GPU appli-

cations with inter-workgroup communication by 85% over

the baseline non-coherent GPU. On average, it performs as

well as the VI protocols and 23% faster than MESI across

all our benchmarks. Furthermore, for a set of GPU applica-

tions with intra-workgroup communication, it reduces the

traffic overheads of MESI, GPU-VI and GPU-VIni by 56%,

23% and 22%, while reducing interconnect energy usage by

2Time-based self-invalidation does not require explicit events; the

block will be invalid for the next access.

40%, 12% and 12%. Compared to TC-Strong, TC-Weak

performs 28% faster with 26% lower interconnect traffic

across all applications.

The remainder of the paper is organized as follows. Sec-

tion 2 discusses related work, Section 3 reviews GPU ar-

chitectures and cache coherence, Section 4 describes the di-

rectory protocols, and Section 5 describes the challenges

of GPU coherence. Section 6 details the implementations

of TC-Strong and TC-Weak, Sections 7 and 8 present our

methodology and results, and Section 9 concludes.

2 Related Work
The use of timestamps has been explored in software

coherence [42, 63]. Nandy et al. [43] first considered

timestamps for hardware coherence. Library Cache Co-

herence (LCC) [34, 54] is a time-based hardware coher-

ence proposal that stores timestamps in a directory structure

and delays stores to unexpired blocks to enforce sequen-

tial consistency on CMPs. The TC-Strong implementation

of the TC framework is similar to LCC as both enforce

write atomicity by stalling writes at the shared last level

cache. Unlike LCC, TC-Strong supports multiple outstand-

ing writes from a core and implements a relaxed consis-

tencymodel. TC-Strong includes optimizations to eliminate

stalls due to private writes and L2 evictions. Despite these

changes, we find that the stalling of writes in TC-Strong

causes poor performance on a GPU. We propose TC-Weak

and a novel time-based memory fence mechanism to elim-

inate all write-stalling, improve performance, and reduce

interconnect traffic compared to TC-Strong. We also show

that unlike for CPU applications [34, 54], the fixed times-

tamp prediction proposed by LCC is not suited for GPU

applications. We propose a simple yet effective lifetime

predictor that can accommodate a range of GPU applica-

tions. Lastly, we present a full description of our proposed

protocol, including state transition tables that describe the

implementation in detail.

Self invalidation of blocks in a private cache has also

been previously explored in the context of cache coherence.

Dynamic Self-Invalidation (DSI) [33] reduces critical path

latency due to invalidation by speculatively self-invalidating

blocks in private caches before the next exclusive request

for the block is received. In the sequentially consistent im-

plementation, DSI requires explicit messages to the direc-

tory at self-invalidation and would not alleviate the traffic

problem on a GPU. In its relaxed consistency implemen-

tation, DSI can reduce traffic through the use of tear-off

blocks, which are self-invalidated at synchronization points.

Recently, Ros et al. [48] proposed extending tear-off blocks

to all cache blocks to eliminate coherence directories en-

tirely, reducing implementation complexity and traffic for

CPU coherence. Their protocol requires self-invalidation

of all shared data at synchronization points. Synchroniza-

tion events, however, are much more frequent on a GPU.

L2$

Bank

Atomic

Unit

Mem. Controller

Shared

Mem

Coalesc.

MSHRs

L1 Data $

Interconnect

SIMT

Core

SIMT

Core

SIMT

Core

L1 Mem

Mem.

Partition

Mem.

Partition

L1 Mem L1 Mem

GDDRGDDR

Figure 3. Baseline non-coherent GPU Archi-

tecture.

Thousands of scalar threads share a single L1 cache and

would cause frequent self-invalidations. Their protocol also

requires blocking and buffering atomic operations at the last

level cache. GPUs support thousands of concurrent atomic

operations; buffering these would be very expensive.

Denovo [16] simplifies the coherence directory but uses

a restrictive programming model that requires user anno-

tated code. TC-Weak does not change the GPU program-

ming model. Recent coherence proposals [28, 51, 64] sim-

plify tracking sharer state for 1000s of cores. GPUs have

tens of cores; exact sharer representation is not an issue.

3 Background

This section describes the memory system and cache hi-

erarchy of the baseline non-coherent GPU architecture, sim-

ilar to NVIDIA’s Fermi [44], that we evaluate in this paper.

Cache coherence is also briefly discussed.

3.1 Baseline GPU Architecture

Figure 3 shows the organization of our baseline non-

coherent GPU architecture. An OpenCL [29] or CUDA [46]

application begins execution on a CPU and launches com-

pute kernels onto a GPU. Each kernel launches a hierarchy

of threads (an NDRange of work groups of wavefronts of

work items/scalar threads) onto a GPU. Each workgroup

is assigned to a heavily multi-threaded GPU core. Scalar

threads are managed as a SIMD execution group consist-

ing of 32 threads called a warp (NVIDIA terminology) or

wavefront (AMD terminology).

GPU Memory System. A GPU kernel commonly

accesses the local, thread-private and global memory

spaces. Software managed local memory is used for intra-

workgroup communication. Thread-private memory is pri-

vate to each thread while the global memory is shared across

all threads on a GPU. Both thread-private and global mem-

ory are stored in off-chip GDDR DRAM and cached in the

multi-level cache hierarchy, however only global memory

requires coherence. The off-chip DRAM memory is di-

vided among a number of memory partitions that connect to

the GPU cores through an interconnection network. Mem-

ory accesses to the same cache block from different threads

within a wavefront are merged into a single wide access by

the Coalescing Unit. A memory instruction generates one

memory access for every unique cache line accessed by the

wavefront. All requests are handled in FIFO order by the

in-order memory stage of a GPU core. Writes to the same

word by multiple scalar threads in a single wavefront do

not have a defined behaviour [46]; only one write will suc-

ceed. In this paper, from the memory consistency model’s

perspective, a GPU wavefront is similar to a CPU thread.

GPU Cache Hierarchy. The GPU cache hierarchy con-

sists of per-core private L1 data caches and a shared L2

cache. Each memory partition houses a single bank of

the L2 cache. The L1 caches are not coherent. They fol-

low a write-evict [46] (write-purge [24]), write no-allocate

caching policy. The L2 caches are writeback with write-

allocate. Memory accesses generated by the coalescing unit

in each GPU core are passed, one per cycle, to the per-core

MSHR table. The MSHR table combines read accesses

to the same cache line from different wavefronts to en-

sure only a single read access per-cache line per-GPU core

is outstanding. Writes are not combined and, since they

write-through, any number of write requests to the same

cache line from a GPU core may be outstanding. Point-

to-point ordering in the interconnection network, L2 cache

controllers and off-chip DRAM channels ensures that multi-

ple outstanding writes from the same wavefront to the same

address complete in program order. All cache controllers

service one memory request per cycle in order. Misses at the

L2 are handled by allocating an MSHR entry and removing

the request from the request queue to prevent stalling.

Atomic Operation. Read-modify-write atomic opera-

tions are performed at each memory partition by an Atomic

Operation Unit. In our model, the Atomic Operation Unit

can perform a read-modify-write operation on a line resi-

dent in the L2 cache in a single cycle.

3.2 Consistency and Coherence

A cache coherence protocol performs the following three

duties [3]. It propagates newly written values to all privately

cached copies. It informs the writing thread or processor

when a write has been completed and is visible to all threads

and processors. Lastly, a coherence protocol may ensure

write atomicity [3], i.e., a value from a write is logically

seen by all threads at once. Write atomicity is commonly

enforced in write-invalidate coherence protocols by requir-

ing that all other copies of a cache block are invalidated be-

fore a write is completed. Memory consistency models may

[4, 19, 57, 59] or may not [2, 19, 53] require write atomicity.

4 Directory Protocols

This section describes the MESI and GPU-VI directory

protocols that we compare against in this paper. All of

MESI, GPU-VI and GPU-VIni require a coherence direc-

tory to track the L1 sharers. MESI and GPU-VI enforce

inclusion through invalidation (recall) of all L1 copies of

a cache line upon L2 evictions. Inclusion allows the sharer

list to be stored with the L2 tags. GPU-VIni is non-inclusive

and requires separate on-chip storage for a directory.

4.1 MESI

MESI is a four-state coherence protocol with writeback

L1 and L2 caches. It contains optimizations to eliminate

the point-to-point ordering requirement of the non-coherent

GPU interconnect and cache controllers. Instead, MESI re-

lies on five physical or virtual networks to support five dif-

ferent message classes to prevent protocol deadlocks. MESI

implements complex cache controllers capable of select-

ing serviceable requests from a pool of pending requests.

The write-allocate policy at L1 requires that write data be

buffered until proper coherence permission has been ob-

tained. This requires the addition of area and complexity

to buffer stores in each GPU core.

4.2 GPU-VI

GPU-VI is a two-state coherence protocol inspired by

the write-through protocol in Niagara [30]. GPU-VI im-

plements write-through, no write-allocate L1 caches. It re-

quires that any write completing at the L2 invalidate all L1

copies. A write to a shared cache line cannot complete until

the L2 controller has sent invalidation requests and received

acknowledgments from all sharers.

GPU-VI adds two optimizations to a conventional VI

protocol [60]. First, it writes data directly to the L1 cache on

a write hit before receiving an acknowledgement, eliminat-

ing the area and complexity overheads of buffering stores.

Second, it treats loads to L1 blocks with pending writes as

misses. This reduces stalling at the cache controller while

maintaining write atomicity. GPU-VI requires 4 physical or

virtual networks to guarantee deadlock-free execution.

4.3 GPU-VIni

The non-inclusive GPU-VIni decouples the directory

storage in GPU-VI from the L2 cache to allow independent

scaling of the directory size. It adds additional complex-

ity to manage the states introduced by a separate directory

structure. The same cache controller in GPU-VIni manages

the directory and the L2 cache. Eviction from the L2 cache

does not generate recall requests, however eviction from the

directory requires recall. GPU-VIni implements an 8-way

associative directory with twice the number of entries as the

number of total private cache blocks (R=2 as in the frame-

work proposed by Martin et al. [39]). Section 8.5 presents

data for GPU-VIni with larger directory sizes.

5 Challenges of GPU Coherence

This section describes the main challenges of introduc-

ing conventional coherence protocols to GPUs.

Table 1. Number of protocol states.

State Type
Non-
Coh.

GPU-
VI

GPU-
VIni

MESI
TC-

Weak

L1 Cache Stable 2 2 2 4 2

Transient Cache 2 2 2 2 2

Transient Coherent 0 1 1 4 1

Total L1 States 4 5 5 10 5

L2 Cache Stable 2 3 5 4 4

Transient Cache 2 2 2 3 2

Transient Coherent 0 3 8 9 1

Total L2 States 4 8 15 16 7

5.1 Coherence Traffic

Traditional coherence protocols introduce unnecessary

traffic overheads to existing GPU applications that are de-

signed for non-coherent GPU architectures. These over-

heads consist of recall traffic due to directory evictions,

false sharing invalidation traffic, and invalidation traffic due

to inter-kernel communication. Recall traffic becomes espe-

cially problematic for inclusive protocols on GPUs because

the shared GPU L2 cache size matches the aggregate private

L1 cache size [6, 44]. An inclusive cache hierarchy is an

attractive [7] choice for low-complexity coherence imple-

mentations. Moreover, large directories required to reduce

recall traffic [39] in non-inclusive protocols take valuable

space from the GPU L2 cache.

An effective way to reduce coherence traffic is to selec-

tively disable coherence for data regions that do not require

it. Kelm et al. [27] proposed a hybrid coherence protocol to

disable hardware coherence for regions of data. It requires

additional hardware support and code modifications to al-

low data to migrate between coherence domains. Section

6.3 explains how TC-Weak uses timestamps to enforce co-

herence at cache line granularity without requiring any code

modifications to identify coherent and non-coherent data.

5.2 Storage Requirements

With only tens of threads per core, CPU coherence

implementations can dedicate enough on-chip storage re-

sources to buffer the worst case number of coherence re-

quests [18]. GPUs, however, execute tens of thousands

of scalar threads in parallel. In a CPU-like coherence im-

plementation [18] with enough storage to handle the worst

case number of memory accesses (one memory request per

thread), a directory protocol would require an impracti-

cal on-chip buffer as large as 28% of the total GPU L2

cache for tracking coherence requests. Reducing the worst-

case storage overhead requires throttling the network via

back-pressure flow-control mechanisms when the end-point

queues fill up [37]. TC-Weak eliminates coherence mes-

sages and the storage cost of buffering them.

5.3 Protocol Complexity

Table 1 lists the number of states in the protocols we

evaluate. We term stable states as states conventionally as-

sociated with a coherence protocol, for example, Modified,

Exclusive, Shared and Invalid for the MESI protocol. Tran-

sient states are intermediate states occurring between stable

states. Specifically, transient cache states are states associ-

ated with regular cache operations, such as maintaining the

state of a cache block while a read miss is serviced. Tran-

sient cache states are present in a coherence protocol as well

as the non-coherent architecture. Transient coherent states

are additional states needed by the coherence protocol. An

example is a state indicating that the given block is wait-

ing for invalidation acknowledgments. Coherence protocol

verification is a significant challenge that grows with the

number of states [16], a problem referred to as state space

explosion [47]. As shown in Table 1, MESI, GPU-VIni and

GPU-VI add 13, 9 and 4 transient coherent states over the

baseline non-coherent caches, increasing verification com-

plexity. TC-Weak requires only a single transient state in

the L1 and L2. Message based coherence protocols re-

quire additional virtual networks [58] or deadlock detection

mechanisms [31] to ensure forward progress. As shown in

Table 4, MESI requires 3 additional, and GPU-VI and GPU-

VIni require 2 additional virtual networks over the baseline

GPU. The additional virtual networks prevent deadlocks

when circular resource dependencies, introduced by coher-

ence messages, arise. Since TC-Weak eliminates coherence

messages, additional virtual networks are not necessary.

6 Temporal Coherence

This section presents Temporal Coherence (TC), a times-

tamp based cache coherence framework designed to address

the needs of high-throughput GPU architectures. Like LCC,

TC uses time-based self-invalidation to eliminate coherence

traffic. Unlike LCC, which implements sequential consis-

tency for CMPs, TC provides a relaxed memory model [58]

for GPU applications. TC requires fewer modifications to

GPU hardware and enables greater memory level paral-

lelism. Section 6.1 describes time-based coherence. Sec-

tion 6.2 describes TC-Strong and compares it to LCC. Sec-

tion 6.3 describes TC-Weak, a novel TC protocol that uses

time to drive both coherence and consistency operations.

6.1 Time and Coherence

In essence, the task of an invalidation-based coherence

protocol is to communicate among a set of nodes the be-

ginnings and ends of a memory location’s epochs [58].

Time-based coherence uses the insight that single chip sys-

tems can implement synchronized counters [23, Section

17.12.1] to enable low cost transfer of coherence informa-

tion. Specifically, if the lifetime of a memory address’ cur-

rent epoch can be predicted and shared among all read-

ers when the location is read, then these counters allow

the readers to self-invalidate synchronously, eliminating the

need for end-of-epoch invalidation messages.

Figure 4 compares the handling of invalidations between

the GPU-VI directory protocol and TC. The figure depicts a

tim
e

C1 L2 C2

R , T = 15

D, T =1 5

D , T = 20

R, T =2 0

5

10

15

20

W

W Ac k

25

C1 Dir C2

R

D

D

R

W

In v

I nv
Ac

k

GPU-VI Coherence Temporal Coherence

W
Ac

k

re
a
d
-o

n
ly

 e
p
o
c
h

re
a
d
-o

n
ly

 e
p
o
c
h

load

load

store

load,
predict

T=15
load
predict

T=20

store

self-

invalidate

self-

invalidate

1
2

3

4

5

6

7

1’

2’
3’

4’
5’

6’

7’

8’

(a) (b)

Figure 4. Coherence invalidation mecha-

nisms. Messages: R=read, D=data, W=write,
Inv=invalidation

read by processors C1 and C2, followed by a store from C1,

all to the same memory location. Figure 4(a) shows the se-

quence of events that occur for the write-through GPU-VI

directory protocol. C1 issues a load request to the direc-

tory (1), and receives data. C2 issues a load request (2)

and receives the data as well. C1 then issues a store re-

quest (3). The directory, which stores an exact list of shar-

ers, sees that C2 needs to be invalidated before the write

can complete and sends an invalidation request to C2 (4).

C2 receives the invalidation request, invalidates the block

in its private cache, and sends an acknowledgment back

(5). The directory receives the invalidation acknowledg-

ment from C2 (6), completes C1’s store request, and sends

C1 an acknowledgment (7).

Figure 4(b) shows how TC handles the invalidation for

this example. When C1 issues a load request to the L2, it

predicts that the read-only epoch for this address will end

at time T=15 (1’). The L2 receives C1’s load request and

epoch lifetime prediction, records it, and replies with the

data and timestamp of T=15 (2’). The timestamp indicates

to C1 that it must self-invalidate this address in its private

cache by T=15. When C2 issues a load request, it predicts

the epoch to end at time T=20 (3’). The L2 receives C2’s

request, checks the timestamp stored for this address and

extends it to T=20 to accommodate C2’s request, and replies

with the data and a timestamp of T=20 (4’). At time T=15

(5’), C1’s private cache self-invalidates the local copy of

the address. At time T=20 (6’), C2 self-invalidates its local

copy. When C1 issues a store request to the L2 (7’), the

L2 finds the global timestamp (T=20) to be less than the

current time (T=25) indicating that no L1’s contain a valid

copy of this address. The L2 completes the write instantly

and sends an acknowledgment to C1 (8’).

GPU SIMT Core

GWCT L1 Cache

L1 Cache Line

L2 Cache Line

Valid
Bit

Local
Timestamp Tag Data

State
Global

Timestamp
Tag DataDirty

#
W
a
r p
s

L2
$
 B
a
n
k

Mem. Partition

Time

Time

(a) (b)

Figure 5. Hardware extensions for TC-Weak.

(a) GPU cores and memory partitions with

synchronized counters. A GWCT table added
to each GPU core. (b) L1 and L2 cache lines

with timestamp field.

Compared to GPU-VI, TC does not use invalidation mes-

sages. Globally synchronized counters allow the L2 to

make coherence decisions locally and without indirection.

This example shows how a TC framework can achieve our

desired goals for GPU coherence; all coherence traffic has

been eliminated and, since there are no invalidation mes-

sages, the transient states recording the state of outstanding

invalidation requests are no longer necessary. Lifetime pre-

diction is important in time-based coherence as it affects

cache utilization and application performance. Section 6.4

describes our simple predictor for TC-Weak that adjusts the

requested lifetime based on application behaviour.

6.2 TC-Strong Coherence

TC-Strong implements release consistency with write

atomicity [19]. It uses write-through L1’s and a writeback

L2. TC-Strong requires synchronized timestamp counters

at the GPU cores and L2 controllers shown in Figure 5(a)

to provide the components with the current system time. A

small timestamp field is added to each cache line in the L1

and L2 caches, as shown in Figure 5(b). The local times-

tamp value in the L1 cache line indicates the time until the

particular cache line is valid. An L1 cache line with a local

timestamp less than the current system time is invalid. The

global timestamp value in the L2 indicates a time by when

all L1 caches will have self-invalidated this cache line.

6.2.1 TC-Strong Operation

Every load request checks both the tag and the local times-

tamp of the L1 line. It treats a valid tag match but an expired

local timestamp as a miss; self-invalidating an L1 block

does not require explicit events. A load miss at the L1 gen-

erates a request to the L2 with a lifetime prediction. The L2

controller updates the global timestamp to the maximum of

the current global timestamp and the requested local times-

tamp to accommodate the amount of time requested. The

L2 responds to the L1 with the data and the global times-

tamp. The L1 updates its data and local timestamp with

values in the response message before completing the load.

A store request writes through to the L2 where its comple-

tion is delayed until the global timestamp has expired.

Core C1 Core C2

S1: data = NEW L1: r1 = flag

F1: FENCE B1: if (r1 6= SET) goto L1

S2: flag = SET L2: r2 = data

(a)

tim
e

C1 L2 C2

W

G
W

C T =

3 0

10

20

30

40

50

TC-Weak

S1
flag data

OLD | 30
F1

W

S2

G W
C T =

6 0

NULL | 60

60

C1 L2 C2

W

W
A c k

S1
flag data

OLD | 30
F1

W

S2

W
A c k

NULL | 60

TC-Strong

Write stalling at L2 (TC-Strong)

Fence waiting for pending requests (both)

Fence waiting for GWCT (TC-Weak)

C2's private cache

blocks state

(value | timestamp)

C2's private cache

blocks state

(value | timestamp)

C1's requests C1's requests

self-

invalidate

self-

invalidate

self-

invalidate

self-

invalidate

1
2

3

45

6

7

8

1’

2’
3’

4’

5’6’

7’

(b) (c)

Figure 6. TC coherence. (a) Code snippet
from [58]. (b) Sequence of events for C1 (left)

that occur due to code in (a) and state of C2’s

blocks (right) for TC-Strong. (c) Sequence of
events with TC-Weak.

Figure 6(b) illustrates how TC-Strong maintains coher-

ence. The code snippet shown in Figure 6(a) is an exam-

ple from Sorin et al. [58] and represents a common pro-

gramming idiom used to implement non-blocking queues

in pipeline parallel applications [20]. Figure 6(b) shows the

memory requests generated by core C1 on the left, and the

state of the two memory locations, flag and data, in C2’s

L1 on the right. Initially, C2 has flag and data cached

with local timestamps of 60 and 30, respectively. For sim-

plicity, we assume that C2’s operations are delayed.

C1 executes instruction S1 and generates a write request

to L2 for data (1), and subsequently issues the memory

fence instruction F1 (2). F1 defers scheduling the wave-

front because the wavefront has an outstanding store re-

quest. When S1’s store request reaches the L2 (3), the L2

stalls it because data’s global timestamp will not expire

until time T=30. At T=30, C2 self-invalidates data (4),

and the L2 processes S1’s store (5). The fence instruction

completes when C1 receives the acknowledgment for S1’s

request (6). The same sequence of events occurs for the

store to flag by S2. The L2 stalls S2’s write request (7)

until flag self-invalidates in C2 (8).

L2 Eviction Optimization. Evictions at the write-

through L1s do not generate messages to the L2. Only

expired global timestamps can be evicted from the L2 to

maintain inclusion. TC-Strong uses L2 MSHR entries to

store unexpired timestamps.

PrivateWrite Optimization. TC-Strong implements an

optimization to eliminate write-stalling for private data. It

differentiates the single valid L2 state into two stable states,

P and S. The P state indicates private data while the S state

indicates shared data. An L2 line read only once exists in P.

Writes to L2 lines in P are private writes if they are from the

core that originally performed the read. In TC-Strong, store

requests carry the local timestamp at the L1, if it exists, to

the L2. This timestamp is matched to the global timestamp

at the L2 to check that the core that originally performed the

read is performing a private write.

6.2.2 TC-Strong and LCC comparison

Both LCC and TC-Strong use time-based self-invalidation

and require synchronized counters and timestamps in L1

and L2. Both protocols stall writes at the last level cache

to unexpired timestamps.

TC-Strong requires minimal hardware modifications to

the baseline non-coherent GPU architecture. It supports

multiple outstanding write requests per GPU wavefront. In

contrast, LCC assumes only one outstanding write request

per core. By relaxing the memory model and utilizing

the point-to-point ordering guarantee of the baseline GPU

memory system, TC-Strong provides much greater mem-

ory level parallelism for the thousands of concurrent scalar

threads per GPU core.

LCC stalls evictions of unexpired L2 blocks. TC-Strong

removes this stalling by allocating an L2 MSHR entry to

store the unexpired timestamp. This reduces expensive

stalling of the in-order GPU L2 cache controllers. LCC

also penalizes private read-write data by stalling writes to

private data until the global timestamp expires. The pri-

vate write optimization in TC-Strong detects and eliminates

these stalls.

6.3 TC-Weak Coherence

This section describes TC-Weak. TC-Weak relaxes the

write atomicity of TC-Strong. As we show in Section 8.3,

doing so improves performance by 28% and lowers inter-

connect traffic by 26% compared to TC-Strong.

TC-Strong and LCC enforce coherence across all data by

stalling writes. TC-Weak uses the insight that GPU appli-

cations may contain large amounts of data which does not

require coherence and is unnecessarily penalized by write-

stalling. By relaxing write-atomicity, TC-Weak eliminates

write-stalling and shifts any potential stalling to explicit

Table 2. Complete TC-Weak Protocol (Left: L1 FSM, Right: L2 FSM). Shaded regions indicate addi-
tions to non-coherent protocol.

Processor Request L1 Action From L2
State Load Store Atomic Eviction Expire Data Write Ack

I GETS GETX ATOMIC × × × ×
→ I V → I I → I I

V hit UPGR ATOMIC evict → I × ×
→ V M → I I → I

V M hit UPGR ATOMIC stall → I I write done write done
(upgrade) → I I update GWCT (global?)

(pending 0?) update GWCT
→ V (pending 0?)

→ V

I V × GETX ATOMIC stall × read done ×
(Rd-miss) → I I → I I → V

I I GETS GETX ATOMIC stall × (read?) write done
(Wr-miss) read done (global?)

(write/atomic?) update GWCT
write/atomic done (pending 0?)
update GWCT → I
(pending 0?)

→ I

L1⇒L2 msgs: GETS (read). GETX (write). ATOMIC. UPGR (upgrade).
L2⇒L1 msgs: ACK (write done). ACK-G (ACK with GWCT). DATA (data response).
DATA-G (DATA with GWCT).
L2⇒MEMmsgs: FETCH (fetch data from memory). WB (writeback data to memory).
L2 Events @ L1: Data (valid data). Write Ack (write complete from L2).
L1 Conditionals: read/write/atomic? (response to GETS/GETX/ATOMIC?). global? (re-
sponse includes GWCT?). pending 0? (all pending requests satisfied?).
L2 Conditionals: TS==? (requester’s timestamp matches pre-incremented L2 times-
tamp?). dirty? (L2 data modified?). multiple? (multiple read requests merged?).
L2 Timestamp Actions: extend TS (extend L2 timestamp according to request). TS++
(increment L2 timestamp).

L1 Request L2 Action From Mem
State GETS GETX UPGR ATOMIC Evict Expire Mem Data

I FETCH FETCH FETCH FETCH × × ×
→ I S → I M → I M → I M

P extend TS TS++ TS++ TS++ (dirty?) → E ×
(Private) DATA ACK-G (TS==?) DATA-G WB

→ S ACK → M I
– else –
DATA-G

S extend TS TS++ TS++ TS++ (dirty?) → E ×
(Shared) DATA ACK-G (TS==?) DATA-G WB

→ P ACK-G → M I
– else –
DATA-G
→ P

E extend TS TS++ TS++ TS++ (dirty?) × ×
(Expired) DATA ACK ACK DATA-G WB

→ P → I

I S merge stall stall stall stall × DATA
(Rd (multiple?)
miss) → S

– else –
→ P

I M stall stall stall stall stall × (write?)
(Wr ACK
miss) (atomic?)

DATA-G
→ E

M I FETCH FETCH FETCH FETCH × → I ×
(Evicted) → I S → I M → I M → I M

memory fence operations. This provides two main bene-

fits. First, it eliminates expensive stalling at the shared L2

cache controllers, which affects all cores and wavefronts,

and shifts it to scheduling of individual wavefronts at mem-

ory fences. A wavefront descheduled due to a memory

fence does not affect the performance of other wavefronts.

Second, it enforces coherence only when required and spec-

ified by the program through memory fences. It implements

the RCpc [19] consistency model; a detailed discussion on

this is available elsewhere [56].

In TC-Weak, writes to unexpired global timestamps at

the L2 do not stall. The write response returns with the

global timestamp of the L2 cache line at the time of the

write. The returned global timestamp is the guaranteed time

by which the write will become visible to all cores in the

system. This is because by this time all cores will have

invalidated their privately cached stale copies. TC-Weak

tracks the global timestamps returned by writes, called

Global Write Completion Times (GWCT), for each wave-

front. A memory fence operation uses this information to

deschedule the wavefront sufficiently long enough to guar-

antee that all previous writes from the wavefront have be-

come globally visible.

As illustrated in Figure 5(a), TC-Weak adds a small

GWCT table to each GPU core. The GWCT table contains

48 entries, one for each wavefront in a GPU core. Each en-

try holds a timestamp value which corresponds to the max-

imum of all GWCT’s observed for that wavefront.

6.3.1 TC-Weak Operation

Amemory fence in TC-Weak deschedules a wavefront until

all pending write requests from the wavefront have returned

acknowledgments, and until the wavefront’s timestamp in

the GWCT table has expired. The latter ensures that all

previous writes have become visible to the system by fence

completion.

Figure 6(c) illustrates how coherence is maintained in

TC-Weak by showing the execution of C1’s memory in-

structions from Figure 6(a). C1 executes S1 and sends a

store request to the L2 for data (1’). Subsequently, C1 is-

sues a memory fence operation (2’) that defers scheduling

of the wavefront because S1 has an outstanding memory re-

quest. The L2 receives the store request (3’) and returns

the current global timestamp stored in the L2 for data. In

this case, the value returned is 30 and corresponds to C2’s

initially cached copy. The L2 does not stall the write and

sends back an acknowledgment with the GWCT, which up-

dates the C1’s GWCT entry for this wavefront. After C1

receives the acknowledgment (4’), no memory requests are

outstanding. The scheduling of the wavefront is now de-

ferred because the GWCT entry of this wavefront contain-

ing a timestamp of 30 has not yet expired. As data self-

invalidates in C2’s cache (5’), the wavefront’s GWCT ex-

pires and the fence is allowed to complete (6’). The next

store instruction, S2, sends a store request (6’) to the L2

for flag. The L2 returns a GWCT time of 60 (7’), corre-

sponding to the copy cached by C2.

Comparing Figure 6(c) to 6(b) shows that TC-Weak per-

forms better than TC-Strong because it only stalls at explicit

memory fence operations. This ensures that writes to data

that does not require coherence has minimal impact.

Table 2 presents TC-Weak’s complete L1 and L2 state

machines in the format used by Martin [36]. Each table en-

try lists the actions carried out and the final cache line state

for a given transition (top) and an initial cache line state

(left). The 4 stable L2 states, I, P, S and E, correspond to

invalid lines, lines with one reader, lines with multiple read-

ers, and lines with expired global timestamps, respectively.

The I S and I M L2 transient cache states track misses at

the L2 for read and write requests. The M I transient co-

herent state tracks evicted L2 blocks with unexpired global

timestamps. Note the lack of transient states and stalling

at the L2 for writes to valid (P, S and E) lines. At the L1,

the stable I state indicates invalid lines or lines with expired

local timestamps, and the stable V state indicates valid lo-

cal timestamps. The I V and I I transient cache states are

used to track read and write misses, while the V M transient

coherent state tracks write requests to valid lines.

Private Write Optimization. To ensure that memory

fences are not stalled by writes to private data, TC-Weak

uses a private write optimization similar to the one em-

ployed by TC-Strong and described in Section 6.2.1. Write

requests to L2 lines in the P state where the L1 local

timestamp matches the L2 global timestamp indicate private

writes and do not return a GWCT. Since TC-Weak does not

stall writes at the L2, an L2 line in P may correspond to

multiple unexpired but stale L1 lines. Writes in TC-Weak

always modify the global timestamp by incrementing it by

one. This ensures that a write request from another L1 cache

with stale data carries a local timestamp that mismatches

with the global timestamp at the L2, and that the write re-

sponse replies with the updated data.

6.4 Lifetime Prediction

Predicted lifetimes should not be too short that L1 blocks

are self-invalidated too early, and not too long that storing

evicted timestamps wastes L2 cache resources and poten-

tially introduces resource stalls. In Section 8.4 we show that

a single lifetime value for all accesses performs well. More-

over, this value is application dependent. Based on this in-

sight, we propose a simple lifetime predictor that maintains

a single lifetime prediction value at each L2 cache bank, and

adjusts it based on application behaviour. A load obtains its

lifetime prediction at the L2 bank.

The predictor updates the predicted lifetime based on

events local to the L2 bank. First, the local prediction is

decreased by tevict cycles if an L2 block with an unexpired

timestamp is evicted. This reduces the number of times-

tamps that need to be stored past an L2 eviction. Second,

the local prediction is increased by thit cycles if a load re-

quest misses at the L1 due to an expired L1 block. This

helps reduce L1 misses due to early self-invalidation. The

lifetime is also increased by thit cycles if the L2 receives a

load request to a valid block with an expired global times-

tamp. This ensures that the prediction is increased even if

L1 blocks are quickly evicted. Third, the lifetime is de-

creased by twrite cycles if a store operation writes to an

unexpired block at the L2. This helps reduce the amount of

time that fence operations wait for the GWCT to expire, i.e.,

for writes to become globally visible. This third mechanism

is disabled for applications not using fences as it would un-

necessarily increase the L1 miss rate. Table 4 lists the con-

stant values used in our evaluation; we found these to yield

the best performance across all applications.

6.5 Timestamp Rollover

L1 blocks in the valid state but with expired times-

tamps may become unexpired when the global time coun-

ters rollover. This could be handled by simply flash inval-

idating the valid bits in the L1 cache [52]. More sophisti-

cated approaches are possible, but beyond the scope of this

work. None of the benchmarks we evaluate execute long

enough to trigger an L1 flush with 32-bit timestamps.

7 Methodology

We model a cache coherent GPU architecture by extend-

ing GPGPU-Sim version 3.1.2 [8] with the Ruby mem-

ory system model from GEMS [38]. The baseline non-

coherent memory system and all coherence protocols are

implemented in SLICC. The MESI cache coherence proto-

col is acquired from gem5 [9]. Our GPGPU-Sim extended

with Ruby is configured to model a generic NVIDIA Fermi

GPU [44]. We use Orion 2.0 [25] to estimate the intercon-

nect power consumption.

The interconnection network is modelled using the de-

tailed fixed-pipeline network model in Garnet [5]. Two

crossbars, one per direction, connect the GPU cores to the

memory partitions. Each crossbar can transfer one 32-byte

flit per interconnect cycle to/from each memory partition

for a peak bandwidth of ∼175GB/s per direction. GPU

cores connect to the interconnection network through pri-

vate ports. The baseline non-coherent and all coherence

protocols use the detailed GDDR5 DRAM model from

GPGPU-Sim. Minimum L2 latency of 340 cycles and min-

imum DRAM latency of 460 cycles (in core cycles) is mod-

elled to match the latencies observed on Fermi GPU hard-

ware via microbenchmarks released by Wong et al. [62].

Table 4 lists other major configuration parameters.

We used two sets of benchmarks for evaluation: one set

contains inter-workgroup communication and requires co-

herent caches for correctness, and the other only contains

intra-workgroup communication. While coherence can be

disabled for the latter set, we kept coherence enabled and

used this set as a proxy for future workloads which contain

Table 3. Benchmarks
Inter-workgroup communication Intra-workgroup communication

Name Abbr. Name Abbr.

Barnes Hut [13] BH HotSpot [15] HSP

CudaCuts [61] CC K-means [15] KMN

Cloth Physics [12] CL 3D Laplace Solver [8] LPS

Dynamic Load Balancing [14] DLB Needleman [15] NDL

Stencil (Wave Propagation) STN Gaussian Filter [1] RG

Versatile Place and Route VPR Anisotropic Diffusion [15] SR

Table 4. Simulation Configuration
GPGPU-Sim Core Model

GPU Cores 16

Core Config 48 Wavefronts/core, 32 threads/wavefront, 1.4Ghz
Pipeline width:32, #Reg: 32768 Scheduling: Loose
Round Robin. Shared Mem.: 48KB

Ruby Memory Model

L1 Private Data$ 32KB, 4way. 128B line, 4-way assoc. 128 MSHRs

L2 Shared Bank 128KB, 8-way, 128B line, 128 MSHRs. Minimum La-
tency: 340 cycles, 700 MHz

Mem. Partitions 8

Interconnect 1 Crossbar/Direction. Flit: 32bytes Clock: 700 MHz.
BW: 32 (Bytes/Cycle). (175GB/s/Direction)

Virtual Channels 8-flit buffer per VC.

Virtual Networks Non-coherent: 2. TC-Strong and TC-Weak: 2. MESI:
5. GPU-VI and GPU-VIni: 4.

GDDR Clock 1400 MHz

Memory Channel BW 8 (Bytes/Cycle) (175GB/s peak). Minimum Latency:
460 cycles

DRAM Queue Capacity 32. Out-of-Order (FR-FCFS)

GDDR5 Memory Timing tCL=12 tRP =12 tRC=40 tRAS=28 tCCD=2
tWL=4 tRCD=12 tRRD=6 tCDLR=5 tWR=12
tCCDL=3 tRTPL=2

TC-Weak Parameters

Timestamp Size 32 bits

Predictor Constants tevict=8 cycles. thit=4 cycle. twrite=8 cycles.

both data needing coherence and data not needing it. The

following benchmarks fall into the former set:

Barnes Hut (BH) implements the Barnes Hut n-body al-

gorithm in CUDA [13]. We report data for the tree-building

kernel which iteratively builds an octree of 30000 bodies.

CudaCuts (CC) implements the maxflow/mincut algo-

rithm for image segmentation in CUDA [61]. We optimized

CC by utilizing a coherent memory space to combine the

push, pull and relabel operations into a single kernel, im-

proving performance by 30% as a result.

Cloth Physics (CL) is a cloth physics simulation based

on “RopaDemo” [12]. We focus on the Distance Solver

kernel which adjusts cloth particle locations using a set of

constraints to model a spring-mass system.

Dynamic Load Balancing (DLB) implements task-

stealing in CUDA [14]. It uses non-blocking task queues

to load balance the partitioning of an octree. We report data

for an input graph size of 100000 nodes.

Stencil (STN) uses stencil computation to implement a

finite difference solver for 3D wave propagation useful in

seismic imaging. Each workgroup processes a subset of the

stencil nodes. Each node in the stencil communicates with

24 adjacent neighbours. A coherent memory space ensures

that updates to neighbours in a different subset are visible.

STN uses fast barriers [55] to synchronize workgroups be-

tween computational time steps.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
S
P

K
M
N

L
P
S

N
D
L

R
G

S
R

H
M

S
p
e
e
d
u
p

NO-COH MESI GPU-VI GPU-VIni TCW

B
H

C
C

C
L

D
L
B

S
T
N

V
P
R

H
M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

NO-L1
3.8

(a) Inter-workgroup comm. (b) Intra-workgroup comm.

Figure 7. Performance of coherent and non-
coherent GPU memory systems. HM = har-

monic mean.

Versatile Place and Route (VPR) is a placement tool

for FPGAs. We ported the simulated annealing based place-

ment algorithm from VTR 1.0 [49] to CUDA. We simulate

one iteration in the annealing schedule for the bgm circuit.

VPR on GPU hardware with disabled L1 caches performs

4x faster over the serial CPU version.

The set of benchmarks with intra-workgroup communi-

cation is chosen from the Rodinia benchmark suite [15],

benchmarks used by Bakhoda et al. [8] and the CUDA

SDK [1]. These benchmarks were selected to highlight a

variety of behaviours; we did not exclude any benchmarks

where TC-Weak performed worse than other protocols. All

benchmarks we evaluate are listed in Table 3.

8 Results
This section compares the performance of the coherence

protocols on a GPU. Section 8.3 compares TC-Weak to TC-

Strong. TCW implements TC-Weak with the lifetime pre-

dictor described in Section 6.4.

8.1 Performance and Interconnect Traffic

Figure 7(a) compares the performance of coherence pro-

tocols against a baseline GPU with L1 caches disabled

(NO-L1) for applications with inter-workgroup communi-

cation. Figure 7(b) compares them against the non-coherent

baseline protocol with L1 caches enabled (NO-COH) for

applications with intra-workgroup communication. TCW

achieves a harmonic mean 85% performance improve-

ment over the baseline GPU for applications with inter-

workgroup communication. While all protocols achieve

similar average performance for applications with inter-

workgroup communication, MESI performs significantly

worse compared to the write-through protocols on appli-

cations without such communication. This is a result of

MESI’s L1 writeback write-allocate policy which favours

write locality but introduces unnecessary traffic for write-

once access patterns common in GPU applications. The

potentially larger effective cache capacity in non-inclusive

GPU-VIni adds no performance benefit over the inclusive

GPU-VI. In DLB, each workgroup fetches and inserts tasks

0.0

0.5

1.0

1.5

2.0

N
O

-C
O

H
M

E
S

I
G

P
U

-V
I

G
P

U
-V

in
i

T
C

W

N
O

-C
O

H
M

E
S

I
G

P
U

-V
I

G
P

U
-V

in
i

T
C

W

N
O

-C
O

H
M

E
S

I
G

P
U

-V
I

G
P

U
-V

in
i

T
C

W

N
O

-C
O

H
M

E
S

I
G

P
U

-V
I

G
P

U
-V

in
i

T
C

W

N
O

-C
O

H
M

E
S

I
G

P
U

-V
I

G
P

U
-V

in
i

T
C

W

N
O

-C
O

H
M

E
S

I
G

P
U

-V
I

G
P

U
-V

in
i

T
C

W

N
O

-C
O

H
M

E
S

I
G

P
U

-V
I

G
P

U
-V

in
i

T
C

W

HSP KMN LPS NDL RG SR AVG

In
te

rc
o

n
n

e
c

t
T

ra
ff

ic

RCL INV REQ ATO ST LD

RCL=0.25

REQ=0.55

RCL=0.15

REQ=0.63

RCL=0.09

REQ=0.55

RCL=0.16

REQ=0.63 2.27

N
O

-L
1

M
E

S
I

G
P

U
-V

I
G

P
U

-V
in

i
T

C
W

N
O

-L
1

M
E

S
I

G
P

U
-V

I
G

P
U

-V
in

i
T

C
W

N
O

-L
1

M
E

S
I

G
P

U
-V

I
G

P
U

-V
in

i
T

C
W

N
O

-L
1

M
E

S
I

G
P

U
-V

I
G

P
U

-V
in

i
T

C
W

N
O

-L
1

M
E

S
I

G
P

U
-V

I
G

P
U

-V
in

i
T

C
W

N
O

-L
1

M
E

S
I

G
P

U
-V

I
G

P
U

-V
in

i
T

C
W

N
O

-L
1

M
E

S
I

G
P

U
-V

I
G

P
U

-V
in

i
T

C
W

BH CC CL DLB STN VPR AVG

0.0

0.5

1.0

1.5

2.0

INV=0.03

RCL=0.03

REQ=0.68

(a) Inter-workgroup communication (b) Intra-workgroup communication

Figure 8. Breakdown of interconnect traffic for coherent and non-coherent GPU memory systems.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
O

-L
1

M
E

S
I

G
P

U
-V

I

G
P

U
-V

in
i

T
C

W

N
O

-C
O

H

M
E

S
I

G
P

U
-V

I

G
P

U
-V

in
i

T
C

W

Inter-
workgroup

Intra-
workgroup

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

Link (Dynamic) Router (Dynamic) Link (Static) Router (Static)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
O

-L
1

M
E

S
I

G
P

U
-V

I

G
P

U
-V

in
i

T
C

W

N
O

-C
O

H

M
E

S
I

G
P

U
-V

I

G
P

U
-V

in
i

T
C

W

Inter-
workgroup

Intra-
workgroup

N
o

rm
a
li

z
e
d

 P
o

w
e
r

Figure 9. Breakdown of interconnect power

and energy.

into a shared queue. As a result, the task-fetching and task-

inserting invalidation latencies lie on the critical path for a

large number of threads. TCW eliminates this critical path

invalidation latency in DLB and performs up to 2x faster

than the invalidation-based protocols.

Figures 8(a) and 8(b) show the breakdown of intercon-

nect traffic between different coherence protocols. LD, ST,

and ATO are the data traffic from load, store, and atomic

requests. MESI performs atomic operations at the L1 cache

and this traffic is included in ST. REQ refers to control traf-

fic for all protocols. INV and RCL are invalidation and re-

call traffic, respectively.

MESI’s write-allocate policy at the L1 significantly in-

creases store traffic due to unnecessary refills of write-once

data. On average, MESI increases interconnect traffic over

the baseline non-coherent GPU by 75% across all applica-

tions. The write-through GPU-VI and GPU-VIni introduce

unnecessary invalidation and recall traffic, averaging to a

traffic overhead of 31% and 30% for applications without

inter-workgroup communication. TCW removes all invali-

dations and recalls and as a result reduces interconnect traf-

fic by 56% over MESI, 23% over GPU-VI and 23% over

GPU-VIni for this set of applications.

8.2 Power

Figure 9 shows the breakdown of interconnect power and

energy usage. TCW lowers the interconnect power usage by

0.0

0.2

0.4

0.6

0.8

1.0

1.2

All applications

In
te

rc
o

n
n

e
c

t
T

ra
ff

ic

TCS TCW-FIXED TCW

0.6

0.8

1.0

1.2

1.4

All applications

S
p

e
e

d
u

p

(a) (b)

Figure 10. (a) Harmonic mean speedup. (b)

Normalized average interconnect traffic.

21%, 10% and 8%, and interconnect energy usage by 36%,

13% and 8% over MESI, GPU-VI and GPU-VIni, respec-

tively. The reductions are both in dynamic power, due to

lower interconnect traffic, and static power, due to fewer

virtual channel buffers in TCW.

8.3 TC-Weak vs. TC-Strong

Figures 10(a) and 10(b) compare the harmonic mean

performance and average interconnect traffic, respectively,

across all applications for TC-Strong and TC-Weak. TCS

implements TC-Strong with the FIXED-DELTA prediction

scheme proposed in LCC [34, 54], which selects a single

fixed lifetime that works best across all applications. TCS

uses a fixed lifetime prediction of 800 core cycles, which

was found to yield the best harmonic mean performance

over other lifetime values. TCW-FIXED uses TC-Weak and

a fixed lifetime of 3200 core cycles, which was found to be

best performing over other values. TCW implements TC-

Weak with the proposed predictor, as before.

TCW-FIXED has the same predictor as TCS but out-

performs it by 15% while reducing traffic by 13%. TCW

achieves a 28% improvement in performance over TCS and

reduces interconnect traffic by 26%. TC-Strong has a trade-

off between additional write stalls with higher lifetimes and

additional L1 misses with lower lifetimes. TC-Weak avoids

this trade-off by not stalling writes. This permits longer

lifetimes and fewer L1 misses, improving performance and

reducing traffic over TC-Strong.

0.0

1.0

2.0

3.0

4.0

5.0

B
H

C
C

C
L

D
L
B

S
T
N

V
P
R

S
p

e
e

d
u

p
 v

s
.

N
O

-L
1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
S
P

K
M
N

L
P
S

N
D
L

R
G

S
R

S
p

e
e

d
u

p
 v

s
.

N
O

-C
O

H

0

1k

3k

12k

50k

(a) Inter-workgroup comm. (b) Intra-workgroup comm.

Figure 11. Speedup with different fixed life-
times for TCW-FIXED. ↓ indicates average

lifetime observed on TCW.

8.4 TC-Weak Performance Profile

Figure 11 presents the performance of TC-Weak with

various fixed lifetime prediction values for the entire du-

ration of the application. The downward arrows in Figure

11 indicate the average lifetime predictions in TCW. An in-

crease in performance with increasing lifetimes results from

an improved L1 hit rate. A decrease in performance with

larger lifetimes is a result of stalling fences and L2 resource

stalls induced by storage of evicted but unexpired times-

tamps. Note that in DLB, TCW-FIXED with a lifetime of 0

is 3x faster than NO-L1 because use of L1 MSHRs in TCW-

FIXED reduces load requests by 50% by merging redundant

requests across wavefronts. The performance profile yields

two main observations. First, each application prefers a dif-

ferent fixed lifetime. For example, NDL’s streaming access

pattern benefits from a short lifetime, or an effectively dis-

abled L1. Conversely, HSP prefers a large lifetime to fully

utilize the L1 cache. Second, the arrows indicating TCW’s

average lifetime lie close to the peak performance lifetimes

for each application. Hence, our simple predictor can effec-

tively locate the best fixed lifetime for each benchmark for

these applications.

8.5 Directory Size Scaling

Figures 12(a) and 12(b) compare the performance and

traffic of TCW to GPU-VIni with directories ranging from

8-way associative and 2x the number of entries as total L1

blocks (VIni-2x-8w) to 32-ways and 16x the number of L1

blocks (VIni-16x-32w). In Figure 12(a), directory size and

associativity have no impact on performance of GPU ap-

plications. In Figure 12(b), while high associativity and

large directory sizes reduce the coherence traffic overheads

in intra-workgroup communication, they cannot eliminate

them. Figure 12(c) shows the breakdown in RG’s traffic for

these directory configurations. As the directory size is in-

creased from 2x to 16x, the reduction in recall traffic is off-

set by the increase in invalidation traffic due to inter-kernel

communication. Hence, while larger directories may reduce

recall traffic, the coherence traffic cost of true communica-

tion cannot be eliminated. TCW is able to eliminate both

sources of coherence traffic overheads by using synchro-

nized time to facilitate communication.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Inter-
workgroup

Intra-
workgroup

In
te

rc
o

n
n

e
c
t

T
ra

ff
ic

VIni-2x-8w VIni-4x-8w VIni-4x-16w

VIni-16x-32w TCW

0.0

0.2

0.4

0.6

0.8

1.0

1.2

All
applications

P
e
rf

o
rm

a
n

c
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
O

-C
O

H

V
In

i-
2
x

-8
w

V
In

i-
4
x

-8
w

V
In

i-
4
x

-1
6
w

V
In

i-
1
6

x
-3

2
w

T
C

W

RG

In
te

rc
o

n
n

e
c
t

T
ra

ff
ic

(a) (b) (c)

Figure 12. Performance (a) and traffic (b) with
different GPU-VIni directory sizes. (c) Traffic

breakdown for RG benchmark (same labels

as Figure 8).

9 Conclusion

This paper presents and addresses the set of challenges

introduced by GPU cache coherence. We find that con-

ventional coherence implementations are not well suited for

GPUs. The management of transient state for thousands of

in-flight memory accesses adds hardware and complexity

overhead. Coherence adds unnecessary traffic overheads to

existing GPU applications. Accelerating applications with

both coherent and non-coherent data requires that the latter

introduce minimal coherence overheads.

We present Temporal Coherence, a timestamp based

coherence framework that reduces overheads of GPU co-

herence. We propose an implementation of this frame-

work, TC-Weak, which uses novel timestamp based mem-

ory fences to reduce these overheads.

Our evaluation shows that TC-Weak with a simple life-

time predictor reduces the traffic of MESI, GPU-VI and

GPU-VIni directory coherence protocols by 56%, 23% and

22% across a set of applications without coherent data.

Against TC-Strong, a TC protocol based on LCC, TC-Weak

performs 28% faster with 26% lower interconnect traffic.

It also provides a 85% speedup over disabling the non-

coherent L1’s for a set of applications that require coherent

caches. A TC-Weak-enhanced GPU provides programmers

with a well understood memory consistency model and sim-

plifies the development of irregular GPU applications.

Acknowledgments

We thank Mark Hill, Hadi Jooybar, Timothy Rogers and

the anonymous reviewers for their invaluable comments.

This work was partly supported by funding from Natural

Sciences and Engineering Research Council of Canada and

Advanced Micro Devices, Inc.

References

[1] NVIDIA CUDA SDK code samples.
http://developer.nvidia.com/cuda-downloads.

[2] The PowerPC architecture: a specification for a new family

of RISC processors. Morgan Kaufmann Publishers, 1994.
[3] S. V. Adve and K. Gharachorloo. Shared Memory Consis-

tency Models: A Tutorial. Computer, 29(12), 1996.

[4] S. V. Adve and M. D. Hill. Weak ordering a new definition.
In ISCA, 1990.

[5] N. Agarwal et al. GARNET: A detailed on-chip network
model inside a full-system simulator. In ISPASS, 2009.

[6] AMD. AMD Accelerated Parallel Processing OpenCL Pro-

gramming Guide, May 2012.
[7] J.-L. Baer and W.-H. Wang. On the inclusion properties for

multi-level cache hierarchies. In ISCA, 1988.
[8] A. Bakhoda et al. Analyzing CUDA Workloads Using a

Detailed GPU Simulator. In ISPASS, 2009.
[9] N. Binkert et al. The gem5 simulator. SIGARCH Comput.

Archit. News, 39(2), 2011.
[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ con-

currency memory model. In PLDI, 2008.
[11] N. Brookwood. AMD Fusion Family of APUs: Enabling a

Superior, Immersive PC Experience, 2010.
[12] A. Brownsword. Cloth in OpenCL. GDC, 2009.
[13] M. Burtscher and K. Pingali. An Efficient CUDA Imple-

mentation of the Tree-based Barnes Hut n-Body Algorithm.
Chapter 6 in GPU Computing Gems Emerald Edition, 2011.

[14] D. Cederman and P. Tsigas. On dynamic load balancing on
graphics processors. In EUROGRAPHICS, 2008.

[15] S. Che et al. Rodinia: A Benchmark Suite for Heteroge-
neous Computing. In IISWC, 2009.

[16] B. Choi et al. DeNovo: Rethinking the Memory Hierarchy
for Disciplined Parallelism. In PACT, 2011.

[17] P. Conway and B. Hughes. The AMD Opteron Northbridge
Architecture. IEEE Micro, 27(2), 2007.

[18] J. Feehrer et al. Coherency Hub Design for Multisocket Sun
Servers with CoolThreads Technology. IEEE Micro, 2009.

[19] K. Gharachorloo et al. Memory consistency and event or-
dering in scalable shared-memory multiprocessors. In ISCA,
1990.

[20] J. Giacomoni, T. Moseley, and M. Vachharajani. FastFor-
ward for efficient pipeline parallelism: a cache-optimized
concurrent lock-free queue. In PPoPP, 2008.

[21] T. H. Hetherington et al. Characterizing and Evaluating a
Key-Value Store Application on Heterogeneous CPU-GPU
Systems. In ISPASS, 2012.

[22] S. Hong et al. Accelerating CUDA graph algorithms at max-
imum warp. In PPoPP, 2011.

[23] Intel. Intel 64 and IA-32 Architectures Software Developers
Manual, May 2012.

[24] N. P. Jouppi. Cache write policies and performance. In
ISCA, 1993.

[25] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: a
fast and accurate NoC power and area model for early-stage
design space exploration. In DATE, 2009.

[26] S. Keckler et al. GPUs and the Future of Parallel Computing.
IEEE Micro, 31, 2011.

[27] J. Kelm et al. Cohesion: a hybrid memory model for accel-
erators. In ISCA, 2010.

[28] J. Kelm et al. WAYPOINT: scaling coherence to thousand-
core architectures. In PACT, 2010.

[29] Khronos Group. OpenCL. http://www.khronos.org/opencl/.
[30] P. Kongetira et al. Niagara: A 32-Way Multithreaded Sparc

Processor. IEEE Micro, 25(2), 2005.
[31] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA

Highly Scalable Server. In ISCA, 1997.
[32] H. Q. Le et al. IBM POWER6 microarchitecture. IBM J.

Res. Dev., 51(6), 2007.
[33] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation:

reducing coherence overhead in shared-memory multipro-
cessors. In ISCA, 1995.

[34] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas. Memory
coherence in the age of multicores. In ICCD, 2011.

[35] J. Manson et al. The Java Memory Model. In POPL, 2005.
[36] M. Martin. Token Coherence. PhD thesis, University of

Wisconsin-Madison, 2003.
[37] M. Martin et al. Timestamp snooping: an approach for ex-

tending SMPs. In ASPLOS. 2000.
[38] M. Martin et al. Multifacet’s general execution-driven mul-

tiprocessor simulator (GEMS) toolset. SIGARCH Comput.

Archit. News, 33(4), 2005.
[39] M. Martin et al. Why on-chip cache coherence is here to

stay. Commun. ACM, 55(7), 2012.
[40] M. Mendez-Lojo et al. A GPU implementation of inclusion-

based points-to analysis. In PPoPP, 2012.
[41] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu

graph traversal. In PPoPP, 2012.
[42] S. L. Min and J. L. Baer. Design and Analysis of a Scal-

able Cache Coherence Scheme Based on Clocks and Times-
tamps. IEEE Trans. Parallel Distrib. Syst., 3(1), 1992.

[43] S. K. Nandy and R. Narayan. An Incessantly Coherent
Cache Scheme for Shared Memory Multithreaded Systems.
In IWPP, 1994.

[44] NVIDIA. NVIDIA’s Next Generation CUDA Compute Ar-

chitecture: Fermi, 2009.
[45] NVIDIA. NVIDIA’s Next Generation CUDA Compute Ar-

chitecture: Kepler GK110, 2012.
[46] NVIDIA Corp. CUDA C Programming Guide v4.2, 2012.
[47] F. Pong and M. Dubois. Verification techniques for cache

coherence protocols. ACM Comput. Surv., 29(1), 1997.
[48] A. Ros and S. Kaxiras. Complexity-effective multicore co-

herence. In PACT, 2012.
[49] J. Rose et al. The VTR Project: Architecture and CAD for

FPGAs from Verilog to Routing. In FPGA, 2012.
[50] S. Rusu et al. A 45 nm 8-Core Enterprise Xeon Processor.

J. Solid-State Circuits, 45(1), 2010.
[51] D. Sanchez and C. Kozyrakis. SCD: A scalable coherence

directory with flexible sharer set encoding. In HPCA, 2012.
[52] J.-P. Schoellkopf. SRAM memory device with flash clear

and corresponding flash clear method. Patent. US 7333380,
2008.

[53] D. Seal. ARM Architecture Reference Manual. 2000.
[54] K. S. Shim et al. Library Cache Coherence. Csail technical

report mit-csail-tr-2011-027, May 2011.
[55] Shucai Xiao and Wu-chun Feng. Inter-block gpu communi-

cation via fast barrier synchronization. In IPDPS, 2010.
[56] I. Singh et al. Temporal Coherence: Hardware Cache Coher-

ence for GPU Architectures. Technical report, University of
British Columbia, 2013.

[57] R. L. Sites. Alpha architecture reference manual. 1992.
[58] D. J. Sorin et al. A Primer on Memory Consistency and

Cache Coherence. Morgan and Claypool Publishers, 2011.
[59] C. SPARC International, Inc. The SPARC architecture man-

ual (version 9). 1994.
[60] Sun Microsystems. OpenSPARC T2 Core Microarchitecture

Specification, 2007.
[61] V. Vineet and P. Narayanan. CudaCuts: Fast Graph Cuts on

the GPU. In CVPRW, 2008.
[62] H. Wong et al. Demystifying GPU microarchitecture

through microbenchmarking. In ISPASS, 2010.
[63] X. Yuan, R. G. Melhem, and R. Gupta. A Timestamp-based

Selective Invalidation Scheme forMultiprocessor Cache Co-
herence. In ICPP, Vol. 3, 1996.

[64] H. Zhao et al. SPATL: Honey, I Shrunk the Coherence Di-
rectory. In PACT, 2011.

