
Cache-Conscious Structure Definition

Trishul M. Chilimbi Bob Davidson
Computer Sciences Department Microsoft Corporation
University of Wisconsin-Madison One Microsoft Way

1210 W. Dayton Street Redmond, WA 98052
Madison, WI 53706 bobd@microsoft.com

James R. Larus
Microsoft Research
One Microsoft Way

Redmond, WA 98052
larus@microsoft.com

chilimbi@cs.wisc.edu

ABSTRACT
A program’s cache performance can be improved by changing the
organization and layout of its data-even complex, pointer-based
data structures. Previous techniques improved the cache perfor-
mance of these structures by arranging distinct instances to increase
reference locality. These techniques produced significant perfor-
mance improvements, but worked best for small structures that
could be packed into a cache block.

This paper extends that work by concentrating on the internal orga-
nization of fields in a data structure. It describes two techniques-
structure splitting and field reordering--that improve the cache
behavior of structures larger than a cache block. For structures com-
parable in size to a cache block, structure splitting can increase the
number of hot fields that can be placed in a cache block. In five
Java programs, structure splitting reduced cache miss rates 1 O-27%
and improved performance 648% beyond the benefits of previ-
ously described cache-conscious reorganization techniques.

For large structures, which span many cache blocks, reordering
fields, to place those with high temporal affinity in the same cache
block can also improve cache utilization. This paper describes
bbcache, a tool that recommends C structure field reorderings.
Preliminary measurements indicate that reordering fields in 5 active
structures improves the performance of Microsoft SQL Server 7.0
2-3%.

Keywords
cache-conscious definition, structure splitting, class splitting, field
reorganization

1. INTRODUCTION
An effective way to mitigate the continually increasing processor-
memory performance gap is to allocate data structures in a manner
that increases a program’s reference locality and improves its cache
performance [1, 5, 61. Cache-conscious data layout, which clusters
temporally related objects into the same cache block or into non-
conflicting blocks, has been shown to produce significant perfor-
mance gains.

This paper continues the study of data placement optimizations
along the orthogonal direction of reordering the internal layout of a
structure or class’s fields. The paper describes two cache-conscious
definition technique-truchrre splitting and field reordering-
that can improve the cache behavior of programs. In other words,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies beer this notice and the full citation on the first page.

To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGPLAN ‘99 (PLDI) 5/99 Atlanta, GA, USA

Q 1999 ACM l-58113-083-X/99/0004...55.00

previous techniques focused on the external arrangement of struc-
ture instances, while this paper focuses on their internal organiza-
tion. In particular, previous techniques (with the exception of
techniques for reducing cache conflicts) worked best for structures
smaller than half of a cache block. The techniques in this paper
apply to larger structures as well.

Figure 1 indicates different opportunities for improving cache per-
formance. Caches have fmite capacity (CC main memory capacity)
and transfer data in units called cache blocks that encompass multi-
ple words. Caches also have finite associativity, and this restricts
where a block can be placed in the cache. Placing contemporane-
ously accessed structure elements in the same cache block improves
cache block utilization and provides an implicit prefetch. Moreover,
it makes more efficient use of cache space by reducing a structure’s
cache block footprint. Finally, mapping concurrently accessed
structure elements (which will not all fit in a single cache block) to
non-conflicting cache blocks reduces cache misses. The techniques
in this paper directly improve a structure’s cache block utilization
and reduce its cache block working set. In addition, since decreas-
ing a structure’s cache footprint also reduces the number of blocks
that potentially conflict, the techniques may indirectly reduce con-
flict misses.

Figure 2 illustrates the relationship of cache-conscious definition
technique to the size of structure instances. Instances significantly
smaller than a cache block (case 1), are unlikely to benefit from
additional manipulation at definition time. Previous technique+-
such as Chilimbi and Lams cache-conscious object co-location,
which uses a copying garbage collector to place objects referenced
together near each other in memory [S+are effective.

If the structure instance size is comparable to the size of a cache
block (case 2), splitting structure elements into a hot and cold por-
tion can produce hot structure pieces smaller than a cache block,
which permits application of cache-conscious reorganization tech-
niques to these portions. As this paper will show, many Java objects
belong to this category. In addition, since Java is a type-safe lan-
guage, class splitting can be automated. The first step in this pro-
cess is to profile a Java program to determine member access
frequency. These counts identify class member fields as hot (fre-
quently accessed) or cold (rarely accessed). A compiler extracts
cold fields from the class and places them in a new object, which is
referenced indirectly from the original object. Accesses to cold
fields require an extra indirection to the new class, while hot field
accesses remain unchanged. At run time, Chilimbi and Larus’
cache-conscious garbage collector co-locates the modified object
instances. For five medium-sized Java benchmarks, class splitting
combined with Chilimbi and Lams cache-conscious object co-
location reduced L2 cache miss rates by 29-43%, with class split-
ting accounting for 2642% of this reduction, and improved perfor-
mance by 18-28%, with class splitting contributing 22-66% of this
improvement.

Finally, when structure elements span multiple cache blocks (case

13

Cache block size

Cache canacitv

Cache associativity

Cache block
utilization

e

Cache block
working set

b

Figure 1. Improving cache performance.

3), reordering structure fields to place those with high temporal tures. To explore the benefits of field reordering, this paper
affinity in the same cache block can also improve cache block utili- describes bbcache, a tool that recommends C structure field
ration. Typically, fields in large structures are grouped conceptu- reorderings. bbcache correlates static information about the
ally, which may not correspond to their temporal access pattern. source location of structure field accesses with dynamic informa-
Unfortunately, the best order for a programmer may cause struc- tion about the temporal ordering of accesses and their execution
ture references to interact poorly with a program’s data access pat- frequency. This data is used to construct a field afftnity graph for
tern and result in unnecessary cache misses. Compilers for many each structure. These graphs are then processed to produce field
languages are constrained to follow the programmer-supplied field order recommendations. Preliminary measurements indicate that
order and so cannot correct this problem. Given the ever-increas- reordering fields in 5 active structures improves the performance
ing cache miss penalties, manually reordering structure fields, to of Microsoft SQL Server 7.0, a large, highly tuned commercial
place those with high temporal afftnity in the same cache block, is application, by 2-3% on the TPC C benchmark [131.
a relatively simple and effective way to improve program perfor-
mance.

The rest of the paper is organized as follows. Section 2 describes
structure splitting. Section 3 discusses field reordering for C and

Legacy applications were designed when machines lacked multiple
levels of cache and memory access times were more uniform. In
particular, commercial C applications often manipulate large struc-

describes bbcache. Section 4 presents our experimental results.
Finally, Section 5 briefly discusses related work.

cache block

Case 1: Structure size cc cache block size
Sl q No action

I)
Sl q

Case 2: Structure size P cache block size
s2 fll i-2 1 q f4

Structure hot cold
splitting

I,

S2’ f31

Case 3: Structure size >> cache block size

S3 fll f2 1 fq f4 f5 I f6 If71 f8lfp
Field reorganization

+

S3’ t-3 1 f9 1 f5 1 fll f6 f8 1 f7l f4 1 f2
I

Figure 2. Cache-conscious structure definition.

14

Program

cassowarv

Table 1: Java benchmark programs.

Lines of Code’ Description

3.400 Constraint solver

espresso ! 13,800 1 Martin Odersky’s drop-in replacement for javac

javac

javadoc

pizza

25,400 Sun’s Java source to bytecode compiler

28,471 Sun’s documentation generator for Java source

27,500 Pizza to Java bytecode compiler

a. Plus, a 13,700 line standard library (JDK 1.03).

2. STRUCTURE SPLITTING
Chilimbi and Lams [5] proposed using a generational garbage col-
lector to lay out objects dynamically, so those with temporal afftn-
ity are placed near each other and are likely to reside in the same
cache block. They demonstrated that the vast majority of live
objects in Cecil [2,3] (an object-oriented language bearing similar-
ities to Java) were smaller than half a cache block (C 32 bytes).
This characteristic permitted low overhead, real-time data profiling
of Cecil programs. They also described a new copying algorithm
that utilized this profile information to produce a cache-conscious
object layout.

Our experiments (Section 2.1) found that Java objects are also
small, but they are on average approximately 8 bytes larger that
Cecil objects. Directly applying Chilimbi and Lams’ cache-con-
scious co-location scheme to Java programs yields smaller perfor-
mance improvements (lO-20%, Section 4.1.2) than those reported
for Cecil (14-37% [5]). This difference is attributable to the larger
Java objects reducing the number of contemporaneously accessed
object instances that could be packed into a cache block.

One way to reduce the effective size of Java objects is to split Java
classes into a hot (frequently accessed) and a cold (rarely accessed)
portion, based on profiled field access frequencies. Splitting
classes allows more hot object instances to be packed into a cache
block and kept in the cache at the same time. Structure splitting is a
well known optimization, that is often applied manually to

Verified Java
bytecode

i

L -
Vortex

Java native code
w split classes

Figure 3. Class splitting overview.

improve performance. However, to the best of our knowledge, this
is the first completely automatic implementation of the technique.

Figure 3 illustrates the class splitting process. First, a Java pro-
gram, in the form of verified bytecodes, is statically analyzed and
instrumented using BIT [lo] (the standard library was not instru-
mented). The static analyses produces a variety of class informa-
tion, including class and field names, field types, and field sizes.
Next, the instrumented Java program is executed and profiled. The
profile measures class instantiation counts and instance variable
(non-static class fields) access statistics on a per class basis. An
algorithm uses the static and dynamic data to determine which
classes should be split. Finally, these splitting decisions are com-
municated to the Vortex compiler [4], which compiles Java byte-
code to native code. The compiler splits the specified classes and
transforms the program to account for the change. The class split-
ting algorithm and program transformations are described in more
detail in subsequent sections.

Applying Chilimbi and Lams cache-conscious object co-location
scheme to the Java programs with split classes results in perfor-
mance improvements of 18-28%, with 22-66% of this improve-
ment attributable to class splitting (see Section 4.1.2).

2.1 Average Java Object Size
We ran some experiments to investigate whether Java follows the
same size distribution as Cecil objects. Our system uses the Vortex
compiler developed at the University of Washington [4]. Vortex is
a language-independent optimizing compiler for object-oriented
languages, with front ends for Cecil, C++, Java, and Modula-3.
Table 1 describes the Java benchmark programs used in the experi-
ments. The programs were compiled at the highest optimization
level (02), which applies techniques such as class analysis, split-
ting, class hierarchy analysis, class prediction, closure delaying,
and inlining, in addition to traditional optimizations [4]. The exper-
iments were run on a single processor of a Sun Ultraserver E5000,
which contained 12 167Mhz UltraSPARC processors and 2GB of
memory running Solaris 2.5.1.

Table 2 shows the results of our first set of experiments, which
tested the hypothesis that most heap allocated Java objects are on
average smaller than a cache block (for reasons having to do with
garbage collection, objects greater than or equal to 256 bytes are
considered large and managed differently).

However, small objects often die fast. Since the cache-conscious
layout technique described in the Chilimbi-Larus paper is only
effective for longer-lived objects, which survive scavenges, we are
more interested in live object statistics. Table 3 shows the results of
the next experiment, which measured the number of small objects
live after each scavenge, averaged over the entire program execu-
tion. Once again, the results support the hypothesis that most Java
objects are small, and the average live object size is smaller than a
cache block (64 bytes). However comparing the average live small

15

object size for Java programs (23-32 bytes) with that for Cecil pro-
grams (15-24 bytes ES]), it appears that Java objects are approxi-
mately 8 bytes larger (possibly due to larger object headers). This
larger size reduces the effectiveness of packing objects in the same
cache block.

2.2 Class Information
BIT is used to gather static class information, including class
name, number of non-static fields, and the names, access types,
and descriptors for all non-static fields. Non-static fields are
tracked since these constitute the instance variables of a class and
are allocated on the heap. In addition, BIT instruments the program
to generate field access frequencies on a per-class basis. An instru-
mented program runs an order of magnitude slower than its origi-
nal.

2.3 Hot/Cold Class Splitting Algorithm
Class splitting involves several trade-offs. Its primary advantage is
the ability to pack more (hot) class instances in a cache block. Its
disadvantages include the cost of an additional reference from the
hot to cold portion, code bloat, more objects in memory, and an
extra indirection for cold field accesses. This section describes a
class splitting algorithm that considers these issues while selecting
classes to split.

The problem of splitting classes into a hot and cold portion based
on field access counts has a precise solution only if the program is
rerun on the same input data set. However, we are interested in
splitting classes so the resulting program performs well for a wide
range of inputs. An optimal solution to this problem is unnecessary
since field access frequencies for different program inputs are
unpredictable. Instead, the class splitting algorithm uses several
heuristics. While none of these heuristics may be optimal, mea-
surements in Section 4.1 demonstrate that they work well in prac-
tice. In addition, they worked better than several alternatives that
were examined. In the ensuing discussion, the term “field” refers to
class instance variables (i.e., non-static class variables).

Figure 4 contains the splitting algorithm. The splitting algorithm

Table 2: Most heap allocated Java objects are small.

allocated small

only considers classes whose total field accesses exceed a specified
threshold. This check avoids splitting classes in the absence of suf-
ficient representative access dam. While alternative criteria
undoubtedly exist, the following formula worked well for deter-
mining this threshold. Let LS represent the total number of pro-
gram field accesses, C the total number of classes with at least a
single field access, Ft the number of fields in class i, and Ai the
total number of accesses to fields in class i, then the splitting algo-
rithm only considers classes where:

At > LS I (IOO*C)

These classes are called the ‘live’ classes. In addition, the splitting
algorithm only considers classes that are larger than eight bytes
and contain more than two fields. Splitting smaller classes is
unlikely to produce any benefits, given the space penalty incurred
by the reference from the hot to the cold portion.

Next, the algorithm labels fields in the selected ‘live’ classes as hot
or cold. An aggressive approach that produces a smaller hot parti-
tion, and permits more cache-block co-location, also increases the
cost of accessing cold fields. These competing effects must be bal-
anced. Initially, the splitting algorithm takes an aggressive
approach and marks any field not accessed more than At / (2 * Fi,
times as cold. If the cold portion of class i is sufficiently large to
merit splitting (at least 8 bytes to offset the space required for the
cold object reference), the following condition is used to counter-
balance overaggressive splitting:

(tnax(kot(class$) - 2 * Zcold(classJ) I max(kot(classi)) Z= 0.5

where the hot and cold functions return the access counts of a
class’ hot and cold fields, respectively. This condition can be infor-
mally justified as follows. Consider instances of two different
classes, o1 and 02, that are both comparable in size to a cache block
and that have a high temporal affinity. Let instance 01 have n fields
that are accessed al, .., a,, times, and 02 have m fields that are
accessed bl, b, times. It is reasonable to expect the following
access costs (# of cache misses) for the class instances 01 and 02:

16

max(a,, ar) < cost(oJ < Z(a,, aJ

ma@,, b,,J < cost(o3 c C(bl, .,. b,,J

Now if the hot portion of 01 is co-located with the hot portion of o2
and these fit in a cache block, then:

cost(oJ + cost(o2) P (max(hot(classS, hot(class9) + E) + 2 *

(Ecold(c1a.w~) + Zcold(class3)

since cold fields are accessed through a level of indirection. This
will definitely be beneficial if the sum of the (best case) costs of
accessing original versions of the instances is greater than the
access cost after the instances have been split and hot portions co-
located:

max(al, a,,) + max(bl, b,,J >

((max(hot(classl), hot(classJ) + E) + 2*(ccold(classt) +

Zcold(c1a.w j)

he.:

min(max(hot(class& max(hot(c1as.s j)) >

2 * (ccold(classJ + cCold(class~) + E

Since apriori we do not know which class instances will be co-
located, the best we can do is to ensure that:

TD(classJ = max(hot(classJ) - 2 * Zcold(classi, >> 0

This quantity is termed the ‘temperature differential’ for the class.
For classes that do not meet this criteria, a more conservative for-
mula is used that labels fields that are accessed less than Ai / (5*Fi)

as cold. If this does not produce a sufficiently large cold portion (>
8 bytes), the class is not split.

2.4 Program Transformation
We modified the Vortex compiler to split classes selected by the
splitting algorithm and to perform the associated program transfor-
mations. Hot fields and their accesses remain unchanged. Cold
fields are collected and placed in a new cold counterpart of the
split class, which inherits from the primordial Object class and has
no methods beyond a constructor. An additional field, which is a

‘lass A {
protected long al;
public int a2;
static int a3;
public float a4;
private int a5;
A0 i

. . .
a4 = ..;

I
II

. . .

lass B extends A I
public long bl;
private short b2;
public long b3;
BO i

b3 = al + 7;
. . .

I
. . .

split-classes 0
1

for each class I
mark-no-split;
if ((active) && (suitable-size) 1 {

markflds-aggresive;
if(suff-cold-fields)

if (nrmlized-temp-diff > 0.51
mark-split;

else{
re-mark-flds-conservative;
if(suff-cold-fields)

mark-split;
J

I

Figure 4. Class splitting algorithm.

reference to the new cold class, is added to the original class,
which now contains the hot fields. Cold fields are labelled with the
pub1 ic access modifier. This is needed to permit access to pr i -
vate and protected cold fields through the cold class refer-
ence field in the original (hot) class.

Finally, the compiler modifies the code to account for split classes.
These transformations include replacing accesses to cold fields
with an extra level of indirection through the cold class reference
field in the hot class. In addition, hot class constructors must first
create a new cold class instance and assign it to the cold class ref-
erence field. Figure 5 illustrates these transformations for a simple
example.

2.5 Discussion
Some programs transfer structures back and forth to persistent stor-
age or external devices. These structures cannot be transparently
changed without losing backward compatibility. However, when
new optimizations offer significant performance advantages, the
cost of such compatibility may become high, and explicit input and
output conversion necessary. Translation, of course, is routine in
languages, such as Java, in which structure layout is left to the

lass A {
public int a2;
static int a3;
public c1d-A cld_A_ref;
A0 I

cluref = new cld-AO;
. . .
cldAref.a4 = ..;

I

class cld A t
public-long al;
public float a4;
public int a5;
cld-AOI...I

I

. . .

lass B extends A I
public long b3;
public cld-B cldJ3~ref;
BO {

cld_B_ref = new clLB0;
b3 = cld_A_ref.al + 7;

class cld-B I
public long bl;
public short b2;
cld-B(){...I

I

. . .

Figure 5. Program transformation.

17

Program

rankings, evaluation

Figure 6. bbcache overview.

The splitting technique in this paper produces a single split version
of each selected class. A more aggressive approach would create
multiple variants of a class, and have each direct subclass inherit
from the version that is split according to the access statistics of the
inherited fields in that subclass. To simplify our initial implemen-
tation, we choose not to explore this option, especially since its
benefits are unclear. However, future work will investigate more
aggressive class splitting.

Since this paper focuses on improving data cache performance,
class splitting only considers member fields and not methods.
Method splitting could improve instruction cache performance. In
addition, it offers additional opportunities for overlapping execu-
tion of mobile code with transfer [9].

3. FIELD REORDERING
Commercial applications often manipulate large structures with
many tields. Typically, fields in these structures are grouped logi-
cally, which may not correspond to their temporal access pattern.
The resulting structure layout may interact poorly with a program’s
data access pattern and cause unnecessary cache misses. This sec-
tion describes a tool-bbcachdat produces structure field
reordering recommendations. bbcache’s recommendations
attempt to increase cache block utilization, and reduce cache pres-
sure, by grouping fields with high temporal afftnity in a cache
block.

For languages, such as C, that permit almost unrestricted use of
pointers, reordering structure fields can affect program correct-
ness-though this is ofien a consequence of poor programming
practice. Moreover, C structures can be constrained by external
factors, such as file or protocol formats. For these reasons,
bbcache’s recommendations must be examined by a programmer
before they can be applied to C programs.

3.1 bbcache
Figure 6 illustrates the process of using bbcache. A program is
first profiled to create a record of its memory accesses. The trace
file contains temporal information and execution frequency for
structure field accesses. bbcache combines the dynamic data

1 AST toolkit

with static analysis of the program source to produce the structure
tield order recommendations.

The algorithm used to recommend structure field orders can be
divided into three steps. First, construct a database containing both
static (source file, line, etc.) and dynamic (access count, etc.) infor-
mation about structure field accesses. Next, process this database
to construct field affinity graphs for each structure. Finally, pro-
duce the structure field order recommendations from these affinity
graphs.

bbcache also contains an evaluation facility that produces a cost
metric, which represents a structure’s cache block working set, and
a locality metric, which represents a structure’s cache block utiliza-
tion. These metrics help compare the recommended field order
against the original layout. They, together with a ranking of active
structures based on their temporal activity and access frequency,
can be used to identify structures most likely to benefit from field
reordering.

3.1.1 Constructing the Structure Access Database
The ASTtoolkit [7], a tool for querying and manipulating a pro-
gram’s abstract syntax tree, is used to analyze the source program.
It produces a file containing information on each structure field
access, including the source file and line at which the access
occurs, whether the access is a ‘read’, ‘write’, or ‘read-write’, the
field name, the structure instance, and the structure (type) name. A
structure instance is a <function name, structure (type) name> pair,
where the function name corresponds to the function in which the
instance is allocated. With pointer aliasing, computing structure
instances statically in this manner is an approximation. The follow-
ing example helps illustrate the problem. Consider consecutive
accesses to fields a and b in two different structure instances
(though indistinguishable with our approximation). This could lead
to incorrectly placing fields a and b next to each other. However,
this did not appear to be a serious problem for our purposes, since
most instances showed similar access characteristics (Le., consecu-
tive accesses to the same field in different (indistinguishable)
instances, rather than different fields). bbcache reads this tile
and builds a structure access database, which it represents as a hash
table on structure names (Figure 7). Each hash table entry repre-

18

L L
- 7

struct A struct B

L -
inst Al inst A2

L L - -
field a field b field c

L L - -
access al access a2 access a3

Figure 7. Structure access database.

sents a structure type and points to a list of structure instances.
Every structure instance points to a list of fields that were accessed
through that instance, and each field in turn points to a list of
access sites which record the source location from which the
access took place. bbcache uses program debug information to
associate temporal information and execution frequency, from the
program trace, with each field access site.

3.1.2 Processing the Structure Database
The structure database contains information about field accesses
for many instances of the same structure type. For each structure
instance, bbcache constructs a field afftnity graph, which is a
weighted graph whose nodes represent fields and edges connect
fields that are accessed together according to the temporal trace
information. Fields accessed within 100 milliseconds of each other
in the trace were considered to be accessed contemporaneously.
While we experimented with several intervals ranging from 50-
1000 ms, most structures did not appear to be very sensitive to the
exact interval used to define contemporaneous access, and the
results reported in Section 4.2 correspond to a 1OOms interval.
Edge weights are proportional to the frequency of contemporane-
ous access. All instance afftnity graphs of each structure type are
then combined to produce a single afftnity graph for each structure
(Figure 8).

3. I. 3 Producing Structure Field Orders
Since structure alignment with respect to cache block boundaries
can only be determined at run time (unless the malloc pointer is
suitably manipulated), our approach is to be satisfied with increas-
ing inherent locality by placing fields with high temporal afftnity
near each other-so they are likely to reside in the same cache
block-rather than try to pack fields exactly into cache blocks. If
alignment (natural boundary) constraints would force a gap in the
layout that alternative high temporal affinity fields are unable to
occupy, we attempt to fill these with structure fields that were not
accessed in the profiling scenario.

We introduce the notion of configuration locality to explain
bbcache’s algorithm. Configuration locality attempts to capture a
layout’s inherent locality. The first step is to compute a layout
affinity for each field, which is the sum of its weighted affinities
with neighboring fields in the layout up to a predetined horizon
(presumably equivalent to the cache block size) on either side. If
fieldA is surrounded by fieldsfi, . ..& .in the layout, then its layout
afftnity is:

Field layout ajCaitycf-3 = wtfi, fi)*afffl,fJ + ,.,
+ WtCf, f$ *c&K f-$

The weights correspond to the distance between the fields-the
number of bytes separating the start of the fields-and are a mea-

for each structure type
I

for each instance of this type
I

combine field access information for multiple
occurrences of the same field:

// Build a field affinity graph for this instance
for each pair of instance fields
I

compute field affinity edge weight;
I

1

//Combine instance field affinity graphs to create a structure
// field affinity graph
for each pair of structure fields
I

find all structure instances for which this pair of fields
has an affinity edge and compute a weighted affinity;

1
1

Figure 8. Processing the structure access database.

19

Structure field affinity graph

Structure layout
I IXI

I I I s Iklel a I
I

Cache block size (b)
b

b-4 b-6
A(configuration-locality) = affinity(x, a) x 7 + affinity(x, e) x 7

- + affinity(x, k) x
b-8 b-12
7 + affinity(x, s) x b

Figure 9. Producing field orders from the structure field affinity graph.

sure of the probability that the fields will end up in the same cache
block. The weighting factor used is:

wtcf;i f$ = ((cache-block-size - dist(& fJ) / cache-blockdize)

A structure’s configuration locality is the sum of its field layout
affinities. Figure 9 illustrates the process of computing the increase
in configuration locality from adding field x to an existing layout.

bbcache uses a greedy algorithm to produce structure field order
recommendations from a structure field afftnity graph. It starts by
adding the pair of fields, connected by the maximum affinity edge
in the structure field affinity graph, to the layout. Then at each step,
a single field is appended to the existing layout. The field selected
is the one that increases contiguration locality by the largest
amount at that point in the computation. This process is repeated
until all structure field are laid out.

3. I .4 Evaluating Structure Field Orders
While the best way to evaluate a structure field ordering is to mea-
sure its impact on performance, this entails a tedious cycle of edit-
ing, recompiling, and rerunning the application. A quality metric
for structure field orderings can help compare a recommended lay-
out against the original layout and help evaluate alternative lay-
outs, without rerunning the application. This is especially useful
when field layout constraints prevent directly following the field
ordering recommendations.

bbcache provides two metrics to evaluate structure field orders,
as well as a query facility to compare alternative layouts. The first
is a metric of the average number of structure cache blocks active
during an application’s execution (i.e., a measure of a structure’s
cache block working set or cache pressure). This metric is com-
puted by combining temporal information for field accesses with a
structure’s field order to determine active cache blocks. A pro-
gram’s execution is divided into temporal intervals of 1 OOms each.
This metric assumes that structures start on cache block bound-
aries, and uses the field order (and field sizes) to assign fields to
cache blocks. If any of the fields in a cache block are accessed dur-
ing an execution interval, that block is considered to be active in
that interval. Let n represent the total number of program execution
intervals, and bl, b, the number of active structure cache blocks
in each of these intervals.Then a structure’s cache block pressure

is:

Cache block pressure = Z(bl, . . ., b,) I n

The second metric is a locality metric that measures a structure’s
average cache block utilization. Let Aj represent the fraction of
cache blockj accessed (determined by accessed field sizes relative
to the cache block size) in program execution interval i, then:

Cache block utilization = Z(fII,&,J I Z(b,, . . .,b,)

4. EXPERIMENTAL EVALUATION
This section contains experimental evaluation of class splitting and
field reordering.

4.1 Class Splitting
This section describes our experimental methodology and presents
experiments that measure the effectiveness of the splitting algo-
rithm and its impact on the performance of Java programs.

4. I. I Experimental Methodology
As described earlier, we used the University of Washington Vortex
compiler infrastructure with aggressive optimization (02). Table 1
describes the benchmarks. The compiled programs ran on a single
processor of a Sun Ultraserver ESOOO, which contained 12 167Mhz
UltraSPARC processors and 2GB of memory running Solaris
2.5.1. The large amount of system memory ensures that locality
benefits are due to improved cache performance, not reduced pag-
ing activity. This processor has’two levels of data cache. The level
1 cache is 16 KB direct-mapped with 16 byte cache blocks. The
level 2 cache is a unified (instruction and data) 1 MB direct-
mapped cache with 64 byte cache blocks. The system has a 64
entry iTLB and a 64 entry dTLB, both of which are fully associa-
tive. A level 1 data cache hit requires one processor cycle. A level
1 cache miss, followed by a level 2 cache hit, costs 6 additional
cycles. A level 2 cache miss typically results in an additional 64
cycle delay.

4. I .2 Experimental Results
The first set of experiments were designed to investigate the poten-
tial for class splitting in the Java benchmarks, study the behavior of

20

Table 4: Class splitting potential.

Table 5: Split class characteristics

our splitting algorithm, and examine the sensitivity of splitting
decisions to program inputs.

Table 4 shows that the five Java benchmarks for two different sets
of inputs have a significant number of classes (1746% of all
accessed classes), that are candidates for splitting (i.e., live and
sufficiently large). Even more promising, 26-100% of these candi-
date classes have field access profiles that justify splitting the
class. The cold fields include variables that handle error condi-
tions, store limit values, and reference auxiliary objects that are not
on the critical data structure traversal path. The splitting algorithm
is fairly insensitive to the input data used for profiling field
accesses. For all benchmarks, regardless of input data set, 73-
100% of the classes selected for splitting were identical (the sec-
ond number enclosed in brackets indicates the number of common
classes split with different inputs), with the same fields labeled hot
or cold barring a few exceptions. Closer examination of the classes
split with one input set and not the other revealed these to be
classes with the smallest normalized temperature differentials
(though greater than 0.5).

Table 5 analyses the characteristics of the split classes in more
detail. Accesses to fields in split classes account for 4564% of the
total number of program field accesses. The average dynamic split
class sizes were computed by weighting each split class with the
number of its split instances. The splitting algorithm reduces
dynamic class sizes by 17-23% (cassowary shows a 68% reduc-
tion), and with the exception of javadoc, permits two or more hot

instances to fit in a cache block. The normalized temperature dif-
ferentials are high (77-99%), indicating significant disparity
between hot and cold field accesses. Finally, the additional space
costs for the reference from the hot to cold portion are modest-n
the order of 13-74KB.

Next, the UltraSPARC’s [121 hardware counters were used to mea-
sure the effect of our cache-conscious object layouts on cache miss
rates. Each experiment was repeated five times and the average
value reported (in all cases the variation between the smallest and
largest values was less than 3%). With the exception of cassowary,
the test input data set differed from the input data used to generate
field access statistics for class splitting. First, we measured the
impact of Chilimbi and Lams cache-conscious object co-location
scheme on the original versions of the five Java benchmarks. Next,
we measured its impact on the hot/cold split classes versions of the
benchmark. The results are shown in Table 6 (we do not report Ll
miss rates since Ll cache blocks are only 16 bytes and miss rates
were marginally affected, if at all). CL represents direct applica-
tion of Chilimbi and Larus’ cache-conscious object co-location
scheme, and CL + CS represents this scheme combined with hot/
cold class splitting. The results indicate that Chilimbi and Larus’
cache-conscious object co-location scheme reduces L2 miss rates
by 16-29% and our hot/cold class splitting increases the effective-
ness of this scheme, reducing L2 miss rates by an turther 1 O-27%

Finally, we measured the impact of our techniques on execution
time. The results shown in Table 7 indicate that hot/cold class split-

21

Table 6: Impact of hot/cold object partitioning on L2 miss rate.

Program

cassowarv

L2 cache miss L2 cache miss
rate (base) rate (CL)

8.6% 6.1%

L2 cache miss
rate (CL + CS)

5.2%

% reduction in
Lt miss rate

0)

29.1%

% reduction in
L2 miss rate
(CL + CS)

39.5%

espresso

javac

javadoc

oizza

9.8% 8.2% 5.6% 16.3% 42.9%

9.6% 7.7% 6.7% 19.8% 30.2%

6.5% 5.3% 4.6% 18.5% 29.2%

9.0% 7.5% 5.4% 16.7% 40.0%

Table 7: Impact of hot/cold object partitioning on execution time.

Program

cassowary

espresso

iavac

Execution time
in sees (base)

34.46

44.94

59.89

Execution time Execution time in % reduction in % reduction in
in sets sets execution time execution time

(CL) (CL + CS) (CL) (CL + CS)

27.67 25.73 19.7 25.3

40.67 32.46 9.5 27.8

53.18 49.14 11.2 17.9

javadoc 44.42 39.26 36.15 11.6 18.6

pizza 28.59 25.78 21.09 9.8 26.2

Table 8: bbcache evaluation metrics for 5 active SQL Server structures.

Structure

ExecCxt

SargMgr

Pss

Xdes

Buf

Cache block utlllxatlon
(original order)

0.607

0.714

0.589

0.615

0.698

Cache block utilization
(recommended order)

0.711

0.992

0.643

0.738

0.730

Cache pressure
(original order)

4.216

1.753

8.611

2.734

2.165

Cache pressure
(recommended order)

3.173

0.876

5.312

1.553

1.670

ting also affects execution time, producing improvements of 6-
18% over and above the lO--20% gains from Chilimbi and Lams’
co-location scheme.

4.2 Structure Field Reordering for C
We used a 4 processor 4OOMHz Pentium II Xeon system with a
1MB L2 cache per processor. The system had 4GB memory with
200 disks, each a 7200 rpm Clarion fiber channel drive. The sys-
tem was running Microsoft SQL Server 7.0 on top of Windows NT
4.0. We ran the TPC-C [131 benchmark on this system. Microsoft
SQL Server was first instrumented to collect a trace of structure
field accesses while running TPC-C. bbcache used this trace to
produce structure field order recommendations

Gut of the almost 2,000 structures defined in the SQL Server
source, bbcache indicated that 163 accounted for over 98% of
structure accesses for the TPC-C workload. In addition, the top 25
of these 163 active structures account for over 85% of structure
accesses. For this reason, we focused on these 25 active structures

SQL Server uses a number of persistent, on-disk structures that
cannot have their fields reordered without affecting compatibility
(Section 2.5). In addition, there are dependencies, such as casting,
between structures that prevent reordering the fields of one, with-
out also reordering the other. Finally, SQL server is a highly tuned
commercial application, and many of the 25 active structures pre-
viously had their fields reordered by hand. We used bbcache to
select 5 structures that had no constraints on reordering and which
showed the largest potential benefits according to the cost and

locality metrics provided (Table 8). We reordered these 5 struc-
tures according to bbcache’s recommendations and ran the TPC-
C benchmark on this modified SQL Server several times. The per-
formance of the modified SQL Server was consistently better by
2-3%.

5. RELATED WORK
Recent research has focused on reorganizing the data layout of
pointer-based codes to improve memory system performance [1,6,
5, 14, 8, 111. Calder et al. [l] apply a compiler-directed approach
that uses profile information to place global data, constants, stack
variables, and heap objects. Their techniques produced significant
improvements for globals and stack data, but only modest gains for
heap objects. Their approach differs from ours in two respects.
First, they adjusted the placement of entire objects, while we reor-
ganized the internal field of objects. Second, we focus on heap
object.

Chilimbi et al. [6] describe two tools-a data reorganizer for tree-
like structures and a cache-conscious heap allocator-for improv-
ing the cache .performance of C programs. The tools require few
source code modifications and produce significant performance
improvements. Both tools reorganize the memory arrangement of
entire objects. This work complements their work, since the com-
bination of the two techniques yields larger benefits than either
alone.

Chilimbi and Lams [5] showed how to use generational garbage
collection to reorganize data structures so that objects with high

22

temporal affinity are placed near each other, so they are likely to
reside in the same cache block. We extend their technique to Java,
and increase its effectiveness by partitioning classes into a hot and
cold portion.

Truong et al. [141 also suggest field reorganization for C structures.
They develop a memory allocation library to support interleaving
identical fields of different instances of a structure that are refer-
enced together and demonstrate significant reductions in cache
miss rates and execution times. Our work complements theirs since
they perform field reorganization manually using profiling data,
whereas we describe a tooI-bbcache+-that automates part of
this process. Moreover, we showed how to fully automate cache-
conscious layout for Java-like languages.

Concurrently, Kistler and Franz [8] describe a technique that uses
temporal profiling data to reorder structure fields. Their work dif-
fers from ours in four ways. First, they use path profiling data to
capture temporal relationships. Second, they optimize their layouts
for cache-line fill buffer forwarding, a hardware feature supported
on the PowerPC, whereas we optimize layouts for inherent locality.
Third, their algorithm divides the afftnity graph into cache-line
sized cliques. A consequence of this technique is that there may be
no affinity between fields placed in consecutive cache lines. With-
out cache-line alignment at allocation time (i.e., by suitably manip-
ulating the mnlloc pointer), the resultant layout may not perform
well. Finally, we provide structure activity rankings and two met-
rics for evaluating structure field orders that permit an informed
selection of suitable candidates for structure field reordering.

Seidl and Zorn [1 l] combine profiling with a variety of different
information sources present at run time to predict an object’s refer-
ence frequency and lifetime. They show that program references to
heap objects are highly predictable and that their prediction tech-
niques are effective. They use these predictions to generate cus-
tomized allocators that decrease a program’s page fault rate. Our
techniques on the other hand aim at reducing a program’s cache
miss rate.

6. CONCLUSIONS
This paper describes two techniques-structure splitting andfield
reordeting--that improve cache performance by changing the
internal organization of fields in a data structure. While previous
techniques, which concentrate on arranging distinct structure
instances, worked best for structures smaller than half a cache
block, the techniques in this paper improve the cache behavior of
larger structures.

Measurements indicate that Java programs have a significant num-
ber of classes with field access profiles that permit a simple, bimo-
dal division into hot (frequently accessed) and cold (rarely
accessed) fields. In addition, these classes account for a significant
fraction of all field accesses. The structure splitting algorithm
described in this paper is effective at dividing these classes into hot
and cold portions. Perhaps more importantly, the splitting deci-
sions are robust, being fairly insensitive to input data used for pro-
filing class field accesses. This structure splitting algorithm
reduced the cache miss rates of five Java programs by l&27%,
and improved their performance by 6-18% beyond the improve-
ment from previously described cache-conscious reorganization
techniques. These promising results encourage further experimen-
tation with a larger variety of benchmarks.

For large structures, which span multiple cache blocks, reordering
fields, to place those with high temporal affinity in the same cache
block also improves cache utilization. This paper describes a tool
that recommends C structure field reorderings. Preliminary mea-

surements indicate that reordering fields in 5 active structures
improves the performance of Microsoft SQL Server 7.0 by 2-3%.
Unfortunately, constraints due to persistent data formats, as well as
code that relied on particular field orders, prevented reordering
several other promising structures.

These results suggest that structure layouts are better left to the
compiler or runtime system, rather than being specified by pro-
grammers. Modem languages, such as Java, provide opportunities
to exploit this flexibility to improve programs’ cache performance.

ACKNOWLEDGEMENTS
The authors would like to thank Ronnie Chaiken, Roger Crew,
Richard Shupak, and Daniel Weise for helpful discussions. Bruce
Kuramoto, and Hoi huu Vo provided assistance with the Microsoft
tracing tool. Sameet Agarwal, Maurice Franklin, Badriddin
Khessib, and Rick Vi& helped with SQL Server. The authors are
indebted to Craig Chambers for writing the Java SPARC assembly
code generator, and providing the Vortex compiler infrastructure.
Dave Grove assisted with Vortex. We are grateful to Han Lee and
Ben Zom for providing us with BIT, the Java bytecode instrumen-
tation tool. Finally, the anonymous referees offered several useful
comments. This research is supported by NSF NY1 Award CCR-
9357779, with support from Sun Microsystems, and NSF Grant
MIP-9625558. The field reordering work was performed while the
first author was an intern at Microsoft Research.

REFERENCES

PI

121

r31

[41

151

161

r71

PI

c91

Brad Calder, Chandra Krintz, Simmi John, and Todd Austin.
“Cache-conscious data placement.” In Proceedings of the
Eight International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIZZ), pages 139-149, Oct. 1998.
Craig Chambers. “Object-oriented multi-methods in Cecil.”
In Proceedings ECOOP ‘92, LNCS 61 S, Springer- Verlag,
pages 33-56, June 1992.
Craig Chambers. “The Cecil language: Specification and
rationale.” University of Washington Seattle, Technical Report
TR-93-03-05, Mar. 1993.
Craig Chambers, Jeffrey Dean, and David Grove. “Whole-
program optimization of object-oriented languages.” Univer-
sity of Washington Seattle, Technical Report 96-06-02, June
1996.
Trishul M. Chilimbi, and James R. Larus. “Using generational
garbage collection to implement cache-conscious data place-
ment.” In Proceedings of the 1998 International Symposium
on Memory Management, Oct. 1998.
Trishul M. Chilimbi, Mark D. Hill, and James R. Lams.
“Cache-conscious structure layout.” In Proceedings of the
ACM SIGPLAN’99 Conference on Programming Language
Design and Implementation, May 1999.
R. F. Crew. “ASTLOG: A language for examining abstract
syntax trees.” In Proceedings of the USENIX Conference on
Domain-Spectfic Languages, Oct. 1997.

T. Kistler, and M. Franz. “Automated record layout for
dynamic data structures.” Department of Information and
Computer Science, University of California at Iwine, Techni-
cal Report 98-22, May 1998.
C. Krintz, B. Calder, H. B. Lee, and B. G Zom “Overlapping
execution with transfer using non-strict execution for mobile
programs.” In Proceedings of the Eight International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VIII), pages 159-169, Oct.

23

1998.

[lo] H. B. Lee, and B. G Zom. “BIT: A Tool for Instrumenting
Java Bytecodes.” In Proceedings of the 1997 USENHSympo-
sium on Internet Technologies and Systems (USITS’97), pages
73-83, Dec. 1997.

[1 l] M. L. Seidl, and B. G Zom. “Segregating heap objects by ref-
erence behavior and lifetime.” In Proceedings of the Eight
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS VIII),
pages 12-23, Oct. 1998.

[121 Sun Microelectronics. UltraSPARC User k Manual, 1996.
[131 Transaction Processing Council. TPCBenchmark C, Standard

Specification, Rev. 3.6.2, Jun. 1997.

[141 Dan N. Tmong, Francois Bodin, and Andre Seznec. “Improv-
ing cache behavior of dynamically allocated data structures.”
In International Conference on Parallel Architectures and
Compilation Techniques, Oct. 1998,

24

