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Computational hit-finding is poised to make a major impact 
in early drug discovery1–4, enabled by leaps in computa-
tional power, increased accessibility to diverse chemical 
space, improved physics-based methods and the emerg-
ing potential of newer machine learning and artificial 

intelligence approaches. However, despite the promise, 
no algorithm can currently select, design or rank potent 
drug-like small-molecule protein binders consistently.

Significant advances in the development of com-
putational methods can be gained through blinded 
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Abstract | One aspirational goal of computational chemistry is to predict potent and drug-like 
binders for any protein, such that only those that bind are synthesized. In this Roadmap, we 
describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE),  
a public benchmarking project to compare and improve small-molecule hit-finding algorithms 
through cycles of prediction and experimental testing. Participants will predict small-molecule 
binders for new and biologically relevant protein targets representing different prediction 
scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all 
predicted binders as well as all experimental screening data, including the chemical structures  
of experimentally tested compounds, will be made publicly available and not subject to any 
intellectual property restrictions. The ability of a range of computational approaches to find  
novel binders will be evaluated, compared and openly published. CACHE will launch three  
new benchmarking exercises every year. The outcomes will be better prediction methods, new 
small-molecule binders for target proteins of importance for fundamental biology or drug 
discovery and a major technological step towards achieving the goal of Target 2035, a global 
initiative to identify pharmacological probes for all human proteins.
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benchmarking exercises, as evidenced by commu-
nity progress in developing computational methods 
to predict protein structure from primary sequence. 
In 1993, when the Critical Assessment of protein 
Structure Prediction (CASP) exercise5 was launched, 
humans were often better at predicting protein struc-
tures than computational methods. Now, machine 
learning algorithms can predict the structures of many 
(but not all) globular proteins as accurately as can be 
determined experimentally6,7, and progress is being 
made rapidly to predict the structures of protein  
complexes8,9.

In computational chemistry, organizing bench-
marking exercises similar to CASP have occurred10–18, 
but none are currently operational. In addition, besides 
the TDT and DREAM benchmarking initiatives13,14,18 
that included a prospective arm to its prediction chal-
lenge, there has been no concerted effort to provide 
experimental testing of predictions, which is in large 
part because of the associated costs. There is no oppor-
tunity to fund the synthesis and quality control of pre-
dicted compounds and to test their binding rigorously 
in one laboratory under standardized conditions that 
facilitate head-to-head comparison of predictions. One 
confounding issue has been that commercial sensitivi-
ties complicate small-molecule-binding benchmarking. 
A large fraction of the experimental data suitable for 
benchmarking in silico binding predictions are gener-
ated within the pharma industry and kept confidential, 
rather than being released for general use. In addition, 
significant advances in computational chemistry tech-
nologies are taking place within companies, and mas-
sive private investment is flowing into new companies 
for the development of artificial intelligence methods. 
These companies are also likely reluctant to share their 
methods in any detail or see them put to the test publicly.

It is now possible to conceptualize a benchmarking 
exercise that can overcome some of these limitations. 
From a financial perspective, the creation of ultra-large 
libraries of chemicals that can be described in silico 
and procured on demand2,19 significantly reduces the 
cost associated with accessing chemical matter to test 
predictions. The availability of massive amounts of 
computational resources facilitates data sharing and 
democratizes the ability to make predictions20.

From an organizational view, there is now com-
munity acceptance that public and private sectors can 
collaborate precompetitively in areas that were once 
considered commercially sensitive. The ‘open-access, 
open-source, open-data’ paradigm is accepted as an 
accelerator of biomedical science21,22. Critically, this 
paradigm has provided immense scientific value by 
normalizing the placement of chemical matter, includ-
ing advanced molecules such as chemical probes, in 
the public domain without complex and rate-limiting 
intellectual property agreements21.

Based on this new landscape, we are creating a  
public–private partnership called Critical Assessment of 
Computational Hit-finding Experiments (CACHE) to 
benchmark computational approaches for the identifi-
cation of a small molecule that binds a targeted protein 
with high enough affinity and suitable physiochemical 
properties to qualify as a credible starting point for a 
drug discovery project. Modelled after CASP, CACHE 
will organize hit-finding challenges against selected bio-
logically relevant targets and participants will use various 
computational methods to predict hits. However, unlike 
CASP, which was able to piggyback experiments being 
done in the structural biology community, CACHE will 
have an experimental arm testing predictions prospec-
tively. Each challenge will typically include two testing 
iterations to enable refinement and forward application 
of successful predictive models. Upon completion of 
a hit-finding challenge, all data generated by CACHE, 
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Hit-finding
Identification of a small 
molecule that binds a target 
protein and that has high 
enough affinity and suitable 
physiochemical properties  
to qualify as a credible  
starting point for a drug 
discovery project.

Chemical probes
Chemical compounds used as 
tools to study the biological 
function of proteins.
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including all screening data and chemical structures, 
will be publicly available without intellectual property 
restrictions.

The genesis of the CACHE concept
Prompted by recent developments and interest in com-
putational methods, including deep learning, as well 
as the challenges in identifying the best performing 
methods, ~80 scientists from industry, academia and 
funding agencies met virtually in November 2020 to con-
sider potential areas of drug discovery that might bene-
fit from coordinated benchmarking. Of the many areas 
that were identified, the group prioritized hit-finding 
as particularly suitable and practical, and an excellent 
area to begin. To advance the idea, a set of ~30 repre-
sentatives developed a draft concept for CACHE in four 
working groups, which focused on: target selection and 
prioritization; virtual library construction; measuring 
outcomes; and governance. These groups’ ideas for the 
CACHE project are presented in this Roadmap.

The CACHE concept
CACHE will present and organize a variety of hit-finding 
challenges to the community. As a part of this, and as 
described in detail below, CACHE will identify suita-
ble protein targets, curate the virtual chemical libraries, 
define success parameters for generated predictions 
and solicit predictions for hit compounds. For evalu-
ation, CACHE will purchase or otherwise procure the 
compounds that are predicted to bind, experimentally 
measure their binding to their intended target, calculate 
other key properties of the active compounds and share 

the outcomes openly with the scientific community 
(Fig. 1). We envision that CACHE, like CASP, will organ-
ize multiple rounds of challenges, providing ongoing 
opportunities for computational scientists, molecular 
modellers, algorithm developers etc. to improve and 
test their methods.

CACHE challenges and target selection
CACHE will organize hit-finding challenges that repre-
sent the common scenarios encountered in hit-finding 
(Fig. 2b). The CACHE target selection committee will 
select targets appropriate for each of these five scenar-
ios. They will define the acceptance criteria for targets in 
each scenario and use bioinformatics tools to compile a 
longlist of targets that meet these criteria. Subsequently, 
they will create a mechanism or mechanisms for the 
community, including the funders of CACHE, to prior-
itize from this list of potential targets those that will be 
included in the benchmarking challenges.

Only targets having two orthogonal, cost-effective 
direct binding assays that can provide rapid, validated, 
high-quality experimental feedback will be considered. 
From this list, CACHE and its funders will use a pri-
oritization scheme that maximizes both the structural 
diversity of the target proteins and the opportunity to 
discover new biological insights. The aim is for CACHE 
to benefit both the computational as well as the pharma-
ceutical communities. We anticipate that a funder (such 
as a disease-focused charity) might consider CACHE as 
an attractive funding opportunity through the mobiliza-
tion of a wide global network of computational chem-
ists to focus on their priority target(s) (Fig. 2a). We also 

CACHE challenge workflow

1. Hit-finding challenges

PDB

4. All compound structures,
assay data placed in the public
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2. Virtual libraries

3. Participants predict and CACHE tests
compounds – two cycles per challenge round
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compounds
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to refine model

Duration: 18 months
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Fig. 1 | CACHE challenge workflow. 1. Hit-finding challenges: Critical Assessment of Computational Hit-finding 
Experiments (CACHE) presents a variety of hit-finding challenges to the community, including assessment criteria.  
2. Virtual libraries: CACHE will establish and host two virtual libraries: a make-on-demand library (REAL, ZINC20) and  
a library comprising compounds synthetically accessible by chemists in academia or industry (bespoke chemistry).  
3. Participants predict chemical matter and CACHE experimentally tests compounds: each participant will have the 
opportunity to make two cycles of predictions per round. CACHE will procure and assay the predicted compounds.  
At this stage, structures of compounds will be made available to all participants, but screening data will be provided only 
to the specific participant and competition management, in order to serve as a starting point for an additional cycle of 
predictions. 4. Compounds and data placed in the public domain: once the second cycle is complete, the data package, 
including all structures and screening data, as well as an assessment of each compound, will be made available to all, 
without restriction. PDB, Protein Data Bank; SAR, structure–activity relationship.
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imagine that, in lieu of providing direct financial sup-
port, funders, foundations or companies might also offer 
in-kind support for CACHE, for example, by offering 
to evaluate all predictions for a given target or provide 
access to computational resources, assay reagents and/or 
laboratory equipment. Over a 5-year period, we aspire to 
provide CACHE with the resources to pursue 15 targets,  
representing each of the five hit-finding scenarios to 
enable it to fulfil its goals.

Participation guidance and support
Virtual compound libraries availability. To enable 
rapid and cost-effective testing of predictions, CACHE 
will establish a well-defined and robust core make- 
on-demand virtual library comprising compounds that 
are readily accessible from commercial vendors, at rea-
sonable cost. A combination of Enamine REAL (now 
providing 21 billion make-on-demand compounds) and 
ZINC20 (ref.19) (containing over 750 million purchasable 
compounds) might comprise the core of this library.

CACHE will annotate compounds in the library 
with predicted physical properties, such as cLogP, 
polar surface area and the fraction of sp3 carbon atoms 
(Fsp3), among others, which will be assessed in the chal-
lenge’s success criteria. Ideally, these annotated prop-
erties should enable participants to select individual 
subsets and/or apply relevant filtering as they see best fit 
for their challenge, while ensuring any such pre-filtering 
or subset restrictions can be accounted for in any sub-
sequent evaluation and comparison of approaches. 
CACHE will also create subsets within the initial library, 
as this classification may be required to account for the 
needs of specific CACHE participants. For example, a 
1% diversity set or a 10% diversity set might be preferred 
when examining computationally intensive approaches, 
and so on. The libraries will evolve, such that more 

compounds will be added as they become commercially 
available or accessible, and additional library subsets will 
be created as a function of their performance.

To accommodate de novo design methods, which 
are not selecting compounds from commercial ven-
dors but designing new molecules, CACHE will test 
custom-synthesized compounds if the compounds can 
be procured by participants within 3 months of the com-
pletion of the in silico selection step. In later challenges, 
CACHE may also incrementally explore mechanisms 
to provide participants access to a virtual library con-
taining new chemistry, where synthetic chemists within 
academia or industry would be offered the opportu-
nity to contribute to a virtual library that covers new 
chemical space. In this initiative, chemists would add 
compounds that they would be willing to synthesize on 
demand in a timely manner, using emerging synthetic 
chemistry protocols and their own resources.

At regular and defined intervals over the course of the 
CACHE benchmarking exercises, the CACHE virtual 
libraries committee will evaluate the impact of library 
choice, composition and nature (diversity, size) on both 
virtual screening capabilities and on general screening 
success, and recommend changes accordingly.

Evaluating predictions experimentally. At the core of the 
CACHE initiative will be an experimental hub that will 
provide rapid, high-quality testing of the predicted hits. 
Predicted compounds will be submitted to the experi-
mental hub, which will procure the compounds and 
evaluate them using a binding assay selected to be most 
appropriate for the protein target. Each compound will 
be assayed at a single concentration in duplicate, and each 
positive will be retested in dose–response mode, as well 
as in an orthogonal biophysical assay, which is critical for 
the robustness of the experimental results. Feedback will 

Meets
technical requirements

Target selection, prioritization

A range of hit-finding scenarios Expected outcome

CACHE Biological
insight

Structure
enabled

SMOL(s) bound, with some SAR SMOL(s) with novel chemistry

SMOL(s) that provide clear
vectors for optimization

SMOL(s) bound but no SAR
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Fig. 2 | Target selection consideration and classes of CACHE challenges. a | Targets will be selected from a longlist of 
proteins that represent a range of scenarios of varying technical difficulty, are experimentally enabled (for example, there 
must be a robust binding assay) and, where possible, represent opportunities to make new biological or medical discoveries. 
Funders can prioritize targets within each challenge. b | The five potential hit-finding scenarios that address key technical 
questions in computational chemistry. CACHE, Critical Assessment of Computational Hit-finding Experiments; SAR, 
structure–activity relationship; SMOL, small molecule.

cLogP
Calculated partition coefficient 
of a chemical compound 
between water and 1-octanol.

Polar surface area
Surface sum over all polar 
atoms (namely, oxygen, 
nitrogen, phosphor and polar 
hydrogen) in a chemical 
compound.

Chemical space
Ensemble of all possible 
chemical compounds adhering 
to a given set of principles and 
boundary conditions, for 
drug-like small molecules 
estimated to be 1060 
compounds.

Experimental hub
Platform where predicted 
compounds are tested 
experimentally.
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be given first to the participant(s), and participants who 
made successful predictions will have the opportunity to 
improve on them by submitting a new set of predictions.

Each CACHE challenge round will take ~18 months, 
with two cycles of predictions per round in order to give 
participants the opportunity to incorporate learnings 
from the first round into their next designs. The timing 
and sequence of the proposed challenge round is shown 
in Fig. 3. Challenges will be staggered in order to avoid 
overwhelming the experimental hub. As part of each 
challenge, participants will be asked to make predictions 
from a small library constituting the combined list of 
predicted compounds contributed to the first cycle by all 
participants. Experimental testing of these compounds 
and then comparing with predictions will facilitate 
inter-algorithm benchmarking.

CACHE benchmarking
Benchmarking computational hit-finding methods 
poses a challenge, because no single measure, or even 
combination of measures, can be used to unambiguously 
quantify the success of virtual screens, let alone deter-
mine which binder among many is the best. The affin-
ity of compounds that are active in a primary screen, 
typically in a surface plasmon resonance assay, will be 
evaluated with an orthogonal biophysical method. 
Although binding affinity to the desired protein will 
be the main benchmarking criterion, selectivity against 
specific off-targets will be tested if called for in the 
challenge. The solubility and colloidal aggregation23 
of hit molecules will be determined experimentally by 
dynamic light scattering. Insoluble and aggregating com-
pounds will be flagged because precipitation and aggre-
gation are confounders in nearly all binding assays. 
Common pan-assay interference (PAINS) compounds24, pre-
dicted, for instance, by a strong indication of promiscu-
ity with Badapple25, will also be flagged. Method-specific 
patterns of binding or inhibition that could be associated 

with nonspecific interaction or aggregation will also 
be monitored. These include high Hill slopes of IC50 
determination plots, linear fitting of surface plasmon 
resonance data and unreasonable stabilization of 
proteins measured by differential scanning fluorimetry. 
Experimental hits will also be subjected to rigorous ana-
lytical quality control to confirm the purity of the sam-
ples. CACHE will seek to solve the crystal structure of 
validated hits in complex with their target when robust 
crystallization protocols are available.

Before each challenge, CACHE will publish the cor-
responding success criteria (activity, selectivity, aqueous 
solubility, lipophilicity, novelty etc.) and how these will 
be combined into an overall multi-objective score26,27, 
similar to the oralPhysChemScore (oPCS)28. Binding 
affinity, aqueous solubility and logD will be measured. 
Calculated properties include: corrected molecular weight; 
polar surface area29; number of rotatable bonds; Fsp3 
(ref.30); and novelty. This novelty parameter will be 
defined as the Tanimoto distance relative to most simi-
lar structures binding that target, as calculated from 
RDKit http://www.rdkit.org. These novelty thresh-
olds were chosen based on previous work with 
circular fingerprints18,31. CACHE will provide the work-
flows and scripts that were used to calculate the differ-
ent descriptors. In one possible scheme (Table 1), active 
compounds will not be ranked per se but, rather, will 
be classified into three buckets (green, yellow and red) 
by summing up the traffic light values for each prop-
erty. The scoring scheme used to assess a compound’s 
physical and molecular properties will be similar across 
the challenges, but the values for potency and selectivity 
may change, depending on the challenge. For example, 
compounds with weaker affinity might be acceptable for 
targets that are more difficult to identify hits against and 
have no reported precedent, but higher affinities might 
be the aim if the challenge is to identify novel chemo-
types for precedented targets. As stated above, to facil-
itate comparison among the methods, all predictions 
from all participants for a given target will be combined 
into a single small virtual library, and all participants will 
also be asked to rank these compounds.

Top-scoring molecules (Table 1) will be further ana-
lysed by a panel of experienced medicinal chemists in 
order to provide additional annotation to the molecules, 
including opinion on the suitability of the hits to serve 
as a starting point for potential drug discovery pro-
grammes. This includes human experience on reactiv-
ity, synthesizability, chemical stability, potential toxicity, 
off-target activity etc. Their reflections will not influence 
the score but, rather, will help contextualize the output 
and provide insight for refinement of the scoring process 
for future challenge iterations.

CACHE output sharing
CACHE will generate three main outputs for the com-
munity: screening data, chemical structures and algo-
rithm performance (Box 1). CACHE’s mandate is to 
ensure that the screening data and the chemical struc-
tures are available to the community without intel-
lectual property or other restrictions on use, and in a 
digitally readable format according to FAIR principles32.  

Box 1 | CACHE output

List of methods and strategies
•	Anonymized list of participants, along with a description of their approach.

Predicted structures from each participant
•	Experimentally determined and calculated properties for all predicted compounds 

(Table 1), for each of the two cycles.

Performance of algorithms on a common set of compounds
•	Create a virtual library that comprises predictions made by all participants in cycle 1, 

and each participant will rank the compounds in that library using their algorithm.

Set of top structures
•	Top-ranked structures, including structure–activity relationship if available.

Crystal structures
•	Coordinates of all complexes of targets and predicted binders.

Synthetic routes for top-ranked set of structures
•	Aim to provide synthetic routes with a summary of experimental methods  

and primary data (yields, purities etc.).

Assay data (screening)
•	Primary screening data for all predictions and orthogonal confirmation data for  

active molecules.

Quality control data for compounds NMR, high-performance
•	Liquid chromatography, mass spectrometry, solubility.

Surface plasmon resonance
Label-free method that can be 
used to measure the binding of 
a small molecule to a protein 
immobilized on a chip.

Dynamic light scattering
Method that can be used to 
measure the solubility or 
aggregation of molecules in 
solution.

Pan-assay interference 
(PAINS) compounds
Chemical compounds often 
giving false positive results in 
high-throughput screens as 
they interact nonspecifically 
with numerous biological 
molecules.

Differential scanning 
fluorimetry
Experimental method to 
measure protein unfolding  
by monitory changes in 
fluorescence as a function  
of temperature.

oralPhysChemScore
(oPCS). Combined score  
based on certain molecular 
properties, roughly estimating 
the suitability of a compound 
as the lead structure for an 
orally administered drug.

Corrected molecular weight
Surrogate parameter for 
molecular volume, correcting 
the molecular weight of 
molecules containing  
halogen atoms.
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These data will also include the composition of the vir-
tual libraries screened, all predicted small molecules 
(including negative data), all experimental screening 
results and all screening methods.

CACHE will mandate that participants disclose their 
computational approaches in sufficient detail to enable 
an expert in the area to understand the methodology 
and algorithms. These methodology descriptions will 
be double-blind peer reviewed by other participants  
to ensure they contain sufficient information according to  
the standards of the field. In the interest of encouraging 
participation from all sectors, participants will not be 
required to provide access to their code and can remain 
anonymous. However, CACHE will encourage partici-
pants to share their software code and, as stated below, 
intends to provide a range of financial incentives for 
those participants who release their code, algorithms 
and workflows under permissive open-source license 
terms and, ideally, who also submit their fully auto-
mated workflows. In addition, participants must agree 
that the identity of those who submit top-performing 
methods (as determined by prespecified criteria agreed 
to by CACHE and the participants) will automatically be 
de-anonymized when the screening data and compound 
structures are publicly released. Participants who agree 
to share workflows, code and methodology must do so 
in a FAIR manner32.

Participants will be encouraged to seek peer-reviewed 
open-access publication of the results of their submis-
sions and detailed analyses of their performance, and to 
work together to share learnings and identify differenti-
ators of performance. CACHE will organize a workshop 
following each challenge and coordinate the open-access 
publication of overview papers for each challenge, per-
haps with dedicated special issues of relevant journals to 
provide a wider forum for participants.

CACHE organization and management
CACHE will be structured as an independent, not-for-profit  
entity or fiscally governed by a not-for-profit organ-
ization with aligned goals, such as the Structural 
Genomics Consortium (SGC) or the Open Group. 

CACHE or its parent organization will receive funding 
as described below and subcontract other organiza-
tions (academic, government or industry) to carry out 
CACHE activities, all under terms that mandate open 
data sharing. CACHE will create a secretariat to han-
dle administration, fundraising, project management  
and logistics.

CACHE will be funded in part by members, who will 
have the opportunity to influence the strategic directions 
of CACHE through appointments to a governing board 
(Fig. 4). The governing board will be responsible for mak-
ing operational decisions, including target selection, par-
ticipation rules and use of funds. An external scientific 
advisory board will be appointed by the governing board 
to provide outside advice on scientific questions such 
as the strategy for target selection and the metrics for 
success.

CACHE plans to launch challenges for each of the 
five hit-finding scenarios shown in Fig. 2, each challenge 
occurring at least once over 2 years (Fig. 3). There will 
be periodic public open calls for participation. For the 
first rounds, letters of intent will be solicited to better 
understand the needs and goals of potential partic-
ipants. All potential participants would be asked to 
submit brief applications detailing their qualifications 
to participate and general intended approach. For inclu-
sivity, the initiative should strive to accept every rea-
sonable application, paying attention to use resources  
efficiently.

For each challenge, CACHE will contribute a chal-
lenge lead, who will be responsible for the coordina-
tion of experiments and logistics. The challenge lead 
will ensure that best practices are used in challenge 
design, execution and assessment, and codified in 
iteratively revised documents. For instance, these doc-
uments could be similar to the living reviews found 
in the Living Journal of Computational Molecular 
Science or made as contributions to the NCATS Assay 
Guidance Manual. Challenge leads, in consultation 
with the governing board, will determine the details of 
specific challenges and what compound properties — 
experimental or computed — beyond affinity for the 

Hit-finding challenge 1
Protein target 1

Protein target 2

Protein target 3

Review LOIs In vitro
screening

In vitro
screening

Share screening *data
with participants

Predictions
Second round

predictions
Compound

logistics
Compound

logistics Assessment; ¥data release

1 82–3 4–5 11–12 13–14 15–186–7 9–10

Duration: 24 months

*Participants are anonymized
¥Participants with top-performing methods are de-anonymized  

Fig. 3 | The timelines of challenge activities. After reviewing the letters of intent (LOIs), each complete challenge round 
will take ~18 months, with the various stages outlined.

Tanimoto distance
Statistic used for gauging the 
similarity and diversity of 
sample compound sets.

Circular fingerprints
Fingerprints representing 
molecular structures by  
means of circular atom 
neighbourhoods.
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target will be incorporated into the overall performance  
scores.

Challenge leads will also be responsible for deter-
mining and executing or delegating the execution of 
appropriate baseline methods to be run centrally to 
avoid duplication for participants running many similar 
baselines. These methods would likely include random 
local search, simple similarity matching or vanilla dock-
ing methods, where applicable. Challenge leads will have 
the support of the scientific advisory board in making 
all of these decisions.

CACHE funding strategy
CACHE intends that its activities, including governance, 
management, logistics and data sharing, will be sup-
ported by a pool of government, industry and charitable 
funders. Ideally, CACHE funding would also be used to 
provide subsidies for participants from resource-poor 

environments, providing an overall more inclusive 
approach.

The funding of the challenges themselves will be 
shared among interested funders and participants. 
Funders, such as a disease foundation, could support 
challenges of particular interest to them. As CACHE 
matures, participants will be expected to pay a partici-
pation fee reflective of a portion of per-compound costs 
(including synthesis/procurement and assays). To facil-
itate this, CACHE will develop a transparent cost struc-
ture for each challenge. In the interest of encouraging 
transparency, CACHE aspires to be able to subsidize the 
cost of participation for participants who agree to share 
their methods, code or methodologies.

By centralizing the experimentation, CACHE will 
not only provide standardized data but will also pro-
vide logistical and cost savings over carrying out the 
activities in individual labs. Within CACHE, we esti-
mate that the costs of rigorous experimental testing for  
100 compounds is approximately US $25,000; this 
includes purchasing of the compounds, quality control, 
protein purification, equipment time, primary biophys-
ical assays and hit confirmation using orthogonal assays. 
CACHE will procure the compounds on behalf of all 
participants to facilitate logistics as well as to provide the 
opportunity to negotiate bulk pricing.

In the first two competitions, CACHE aims to 
secure sufficient seed funding to purchase and evalu-
ate ~100 compounds for every qualified participant, 
but, in subsequent rounds, these costs will be trans-
ferred to participants. If participants wish to test more 
than 100 compounds, or if the number of participants 
exceeds the initial available funding, participants may 
also be required to fund some portion of per-compound  
costs.

CACHE will also be well positioned to collaborate 
with other successful community initiatives in order to 
increase the impact of CACHE. For example, if CACHE 
includes a viral target among the challenges, then the 
CACHE predictions might input into community 
antiviral development initiatives, such as the COVID 
Moonshot initiative20. Predicted compounds that pose 
synthetic challenges can be turned into additional com-
munity challenges, such as Merck’s Compound Synthesis 
Challenge, to design and predict the most efficient syn-
thetic pathway for a given small molecule. Confirmed 
hits could also be used as starting points to develop new 
chemical probes.

Table 1 | Example Critical Assessment of Computational Hit-finding Experiments (CACHE) traffic light 
scoring scheme for one arbitrary target protein

Traffic 
light 
score

Score Binding 
affinitya 
(µM)

Solubility 
in watera 
(mg l−1)

logD 
(pH 7.5)a

MWcorr PSA (Å2) Number of 
rotatable 
bonds

Fsp3 Noveltyb

2 >10 <10 >4 >500 >140 ≥11 <0.2 >0.6

1 1–10 10–50 3–4 400–500 120–140 8–10 0.2–0.3 0.4–0.6

0 <1 ≥50 <3 ≤400 ≤120 ≤7 >0.3 <0.4

Fsp3, fraction of sp3 hybridized carbon atoms, calculated based on Murcko scaffolds. aMeasured experimentally. bTanimoto distance 
relative to most similar structures binding that target, as calculated from RDKit. PSA, polar surface area.

CACHE governance

Target nominating
funders Member funders

Scientific advisory
board

Governing board

Target selection
committee

Define target
selection criteria
for each challenge

Virtual libraries
committee

Evaluate impact
of virtual library
choice

Hit evaluation
committee

Assess experimentally
validated hits

• General direction
• Participation rules
• Use of funds

Secretariat
• Administration
• Fundraising
• Project management
• Logistics

Fig. 4 | CACHE governance. Critical Assessment of Computational Hit-finding 
Experiments (CACHE) will be structured as an independent, not-for-profit entity.  
The CACHE governance will include: a governing board constituted by funders 
(members) and two independent members selected with input from the scientific 
community: an external scientific advisory board and a secretariat who will oversee 
day-to-day operations. The governing board will create three scientific committees: the 
target selection committee will select protein targets (with the final decision impacted 
by the governing board); the virtual libraries committee will define the virtual chemistry 
libraries to be screened; and the hit evaluation committee will create the metrics of 
success and assess performance against the metrics. Funders who do not wish to play  
an active role in governance can nominate targets for consideration by the target 
selection committee.
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CACHE success criteria
CACHE will be a long-term project that will be assessed 
against success metrics of organizational capabilities and 
community engagement in the short term (1–3 years) 
and scientific accomplishments in the longer term 
(year 3 and beyond). Organizational success will be 
achieved by running the entire workflow of target 
selection for several rounds. For example, we expect six 
rounds to run over ~2 years, where a round includes hit 
prediction, chemical synthesis, biochemical/biophysical 
testing of the compounds and analysis/dissemination of 
the results (Fig. 3). Community engagement success will 
be defined as generating a constant flow of targets, hit 
proposals and experimental results from an increasing 
number of community members over time. Scientific 
success can likely be analysed only after 12 rounds 
(year 4), after which all five types of challenges are per-
formed at least two to three times with different targets. 
Scientific success metrics will include providing unbi-
ased comparisons of which computational methods 
deliver suitable hits (chemotypes) as starting points for 
drug discovery and the number and quality of novel 
chemical matter for biologically interesting new targets.

With respect to quantitative metrics, we aspire for 
CACHE to have deposited experimental screening data 
for 12 proteins and 30,000 drug-like molecules selected 
by over 100 participants in the public domain after  

4 years. Over this period, we also expect that computa-
tional methods will predict unprecedented hits for 25% 
of the nominated novel targets. We also expect CACHE 
to provide clearer guidance as to which computational 
approaches are most promising for identifying novel 
small molecules active substances and, thus, signifi-
cantly influence computational hit-finding-method 
development on a global scale.

Summary and next steps
A group of ~50 scientists from the public and private 
sectors intend to launch a benchmarking initiative to 
accelerate the development of computational methods 
to predict small molecules that bind to proteins. The 
initiative will comprise experimental and data hub(s), 
which will support a community of participants in 
their predictions. All data, including chemical struc-
tures, will be made available without restriction on use. 
The initiative intends to attract funding from industry, 
governments and foundations to support the infra-
structure and challenge-specific funding in order to 
give disease-focused funders the opportunity to enable 
a community-wide effort to target proteins of interest 
to them. The intention is to launch the first CACHE 
challenge in early 2022.
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