
 Open access  Proceedings Article  DOI:10.1145/224081.224093

Cache design trade-offs for power and performance optimization: a case study
— Source link 

Ching-Long Su, Alvin M. Despain

Institutions: University of Southern California

Published on: 23 Apr 1995 - International Symposium on Open Collaboration

Topics: Energy consumption, Cache and Power optimization

Related papers:

 The filter cache: an energy efficient memory structure

 Analytical energy dissipation models for low-power caches

 Reducing power in superscalar processor caches using subbanking, multiple line buffers and bit-line segmentation

 Wattch: a framework for architectural-level power analysis and optimizations

 Way-predicting set-associative cache for high performance and low energy consumption

Share this paper:    

View more about this paper here: https://typeset.io/papers/cache-design-trade-offs-for-power-and-performance-
1eitlwsgnf

https://typeset.io/
https://www.doi.org/10.1145/224081.224093
https://typeset.io/papers/cache-design-trade-offs-for-power-and-performance-1eitlwsgnf
https://typeset.io/authors/ching-long-su-395adtakf9
https://typeset.io/authors/alvin-m-despain-1rrohg6bdq
https://typeset.io/institutions/university-of-southern-california-255p3f56
https://typeset.io/conferences/international-symposium-on-open-collaboration-2hvsrgnm
https://typeset.io/topics/energy-consumption-wr0706bl
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/power-optimization-2ybkul91
https://typeset.io/papers/the-filter-cache-an-energy-efficient-memory-structure-8xugyg2myo
https://typeset.io/papers/analytical-energy-dissipation-models-for-low-power-caches-3jgkb6brql
https://typeset.io/papers/reducing-power-in-superscalar-processor-caches-using-9xbob1l3pd
https://typeset.io/papers/wattch-a-framework-for-architectural-level-power-analysis-ws42dlst0z
https://typeset.io/papers/way-predicting-set-associative-cache-for-high-performance-9uzc5113vi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/cache-design-trade-offs-for-power-and-performance-1eitlwsgnf
https://twitter.com/intent/tweet?text=Cache%20design%20trade-offs%20for%20power%20and%20performance%20optimization:%20a%20case%20study&url=https://typeset.io/papers/cache-design-trade-offs-for-power-and-performance-1eitlwsgnf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/cache-design-trade-offs-for-power-and-performance-1eitlwsgnf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/cache-design-trade-offs-for-power-and-performance-1eitlwsgnf
https://typeset.io/papers/cache-design-trade-offs-for-power-and-performance-1eitlwsgnf


Abstract

Caches consume a significant amount of energy in
modern microprocessors. To design an energy-efficient
microprocessor, it is important to optimize cache energy
consumption. This paper examines performance and
power trade-offs in cache designs and the effectiveness of
energy reduction for several novel cache design tech-
niques targeted for low power.

1 Introduction
Portable computing applications have shifted from

conventional low performance products such as wrist-
watches and calculators to high throughput and computa-
tion intensive products such as notebook computers and
cellular phones. The new portable computing applications
require high speed, yet low energy consumption because
for such products longer battery life translates to extended
use and better marketability. This paper presents a case
study of performance and power trade-offs in designing
on-chip caches for the microprocessors used in portable
computing applications.

Previous cache studies have mainly focused on
improving performance. Studies of cache access times and
miss rates for various cache parameters (e.g. cache size,
block size, and degree of set associativity) of the single
level caches can be found in [5,8]. Similar studies focusing
on multi-level cache organizations can be found in [6,7].

The study of power consumption in caches is fairly
now. Studies of instruction set design and its impact of
cache performance and power consumption can be found
in [1,3]. Studies of low power cache designs can also be
found in [2,11].

This paper consists of five sections. Section 2
briefly describes the cache performance and energy mod-
els used in this study. Section 3 presents several experi-
mental cache organizations which are designed for either
improving performance or saving energy. Section 4 shows
the experimental results of this study. Finally, concluding
remarks are offered in Section 5.

2 Analytical Models for On-chip Caches

A conventional cache can be divided into three dif-

Cache Design Trade-offs for Power and Performance Optimization:

Ching-Long Su and Alvin M. Despain

ferent components: address decoding path, cell arrays,
and I/O path. The address decoding path includes address
buses and address decoding logic. The cell arrays include
read/write circuitry, tag arrays, and the data arrays. The I/
O path includes I/O pads and buses to connect the
address and data buses.

The on-chip cache cycle time is calculated based
on an analytical model presented in [6,14] (which was
based on the access time model of Wada et al in [13]).
This time model, based on 0.8 µm CMOS technology,
gives both cache cycle time (i.e. the minimum time
required between the start of two accesses) and cache
access time (i.e. the minimum time between the start and
end of a single access) in terms of cache size, block size,
and associativity. The features of this time model is that it
uses SPICE parameters to predict the delays due to the
address decoder, word-line driver, pre-charged bit lines,
sense amplifiers, data bus driver, and data output drivers.
The average time for an off-chip cache access is calcu-
lated by the average off-chip access and transfer times
which is rounded to the next higher multiple of on-chip
cycle time.

The on-chip cache energy consumption is based
on an abstract model which considers only those cache
components that dominate overall cache power consump-
tion. In the address decoding path, the capacitance of the
decoding logic is usually less than that of the address bus.
Energy consumption of the address buses dominate the
total energy consumption of the address decoding path.
In the cell arrays, the read/write circuitry usually does not
consume much power. Most energy consumed in the cell
arrays is due to both tag and data arrays. The tag and data
arrays in conventional cache designs can be implemented
in dynamic or static logic. In a dynamic circuit design,
word/bit lines are usually pre-charged before they are
accessed. The energy consumed by the pre-charged cache
word/bit lines usually dominates the overall energy con-
sumption in the cell arrays. In a static circuit design, there
are no pre-charges on the word/bit lines. The energy con-
sumption of the tag and data arrays directly depends on
the bit switch activities of the bit lines. In the I/O path,
most energy is consumed during bit switches of the I/O
pads.

The abstract cache energy model is presented
below. The total energy consumption of a cache Ecache is

University of Southern California
Advanced Computer Architecture Laboratory

{csu, despain} @usc.edu

A Case Study



divided into three components: the energy consumption of
the address decoding path Edecoding_path, the cell arrays
Ecell_array, and the I/O path EI/O_path. Edecoding_path is esti-
mated by multiplying the average number of bit switches
on the address bus Addr_bus_sb with some scaling factor
α. The Ecell_array for a cache design in dynamic logic is
estimated by the multiplication of the number of memory
cells per word line Word_line_size and the number of
memory cells per bit line Bit_line_size with some scaling
factor β; The Ecell_array for a cache design in static logic is
estimated by the multiplication of the number of memory
cells per word line Word_line_size, the number of memory
cells per bit line Bit_line_size, and the bit switching rate of
the bit lines Bit_line_sb with the scaling factor β. The EI/

O_path is estimated by multiplying the average number of
bit switches on address pads Addr_pad_bs and data pads
Data_pad_bs with some scaling factor χ. The scaling fac-
tors α, β, and χ is set to be 0.001, 2, and 20, based on one
VLSI implementation in 0.8µm CMOS technology.

3 Experimental Cache Organizations

3.1 Conventional Designs

Conventional cache designs include direct-mapped
and set associative. A set associative cache usually has a
better hit rate than a direct-mapped cache of the same size,
although the access time for the set associative cache is
usually higher than the direct-mapped cache. The number
of bit line switches in the set associative cache is usually
more than that in the direct-mapped cache, but the energy
consumption of each bit line in a set associative cache is
usually less than that in a direct-mapped cache of the same
size.

3.2 Cache Designs for Low Power

This paper investigates three different cache design
approaches to achieve low power: vertical cache partition-
ing, horizontal cache partitioning, and Gray code address-
ing

Vertical Cache Partitioning

The basic idea of vertical cache partitioning is to

Ecache = Edecoding_path + Ecell_array + EI/O_path

Edecoding_path = α * Addr_bus_bs

(Static Logic)

Ecell_array = β * Word_line_size * Bit_line_size * Bit_line_sb

Eaddress_path = χ * (Addr_pad_bs + Data_pad_bs)

Addr_bus_bsr

Word_line_size

Bit_line_size

Bit_line_sb

Addr_pad_bs

Number of bit switches on address buses per instruction

Number of memory cells in a word line

Number of memory cells in a bit line

Number of switching bit lines per instruction

Number of bit switches on address pads per instruction

Number of bit switches on data pads per instruction

α,β,χ

(Dynamic Logic)

Ecell_array = β * Word_line_size * Bit_line_size

Data_pad_bs

Constants depending on the VLSI implementation.

optimize the capacitance of each cache access by increase
on-chip cache hierarchy (e.g. two-level caches). Access-
ing a smaller cache has a lower power consumption since
a smaller cache has a lower load capacitance.

We use block buffering as an example of this
approach. A basic structure of a block buffered cache [1]
is presented in Figure 1. The block buffer itself is, in
effect, another cache which is closer to the processor than
conventional on-chip caches. The processor checks if
there is a block hit (i.e. the current access data is located
at the same block of the latest access data). If it is a hit,
the data is directly read from the block buffer and the
cache is not operated. The cache is operated only if there
is a block miss.

A block buffered cache saves power by optimizing
capacitance of each cache access. The effectiveness of
block buffering strongly depends on the spatial locality of
applications and the block sizes. The higher the spatial
locality of the access patterns (e.g. an instruction
sequence), the larger the amount of energy which can be
saved by block buffering. The block size is also very
important in block buffering. Excluding the impact to the
cache hit rate of the cache block size, a small block may
result in limiting the amount of energy saved by the block
buffered cache and a large block may result in increasing
unnecessary energy consumption by the unused data in
the block.

Horizontal Cache Partitioning

The basic idea of the horizontal cache partitioning
approach is to partition the cache data memory into sev-
eral segments. Each segment can be powered individu-
ally. Cache sub-banking, proposed in [11], is one
horizontal cache partition technique which partitions the
data array of a cache into several banks (called cache sub-
banks). Each cache sub-bank can be accessed (powered
up) individually. Only the cache sub-bank where the
requested data is located consumes power in each cache
access. A basic structure for cache sub-banking is pre-
sented in Figure 2.

Cache sub-banking saves power by eliminating
unnecessary accesses. The amount of power saving
depends on the number of cache sub-banks. More cache
sub-banks save more power. One advantage of cache sub-
banking over block buffering is that the effective cache
hit time of a sub-bank cache can be as fast as a conven-
tional performance-driven cache since the sub-bank
selection logic is usually very simple and can be easily

Data MemoryTag Memory

b

i

t+i

Hit/Miss
Valid and Match?

MAR

Address Bus

BlockIndexTag

b-to-1mux

Block BufferTag Buffer

MDR

Figure 1: Block Buffering



hidden in the cache index decoding logic. With the advan-
tage of maintaining the cache performance, cache sub-
banking could be very attractive to computer architects in
designing energy-efficient high-performance microproces-
sors.

Gray Code Addressing

Memory addressing used in a traditional processor
design is usually in a 2’s complement representation. The
bit switching of the address buses when accessing sequen-
tial memory space is not optimal. Since there is a signifi-
cant amount of energy consumed on the address buses and
sequential memory address access are often seen in an
application with high spatial locality, it is important to
optimize bit switching activities of the address buses for
low power caches.

Gray code addressing has been proposed to mini-
mize the number of bit switches of the address buses when
a consecutive memory space is accessed. A Gray code
sequence is a set of numbers in which consecutive num-
bers have only one bit different [10]. Figure3 shows a
comparison of bit switching when 2’s complement binary
or Gray code is implemented. In the case of a sequence of
numbers from 0 to 16, there are 31 bit switches when the
numbers are coded in binary representation. There are
only 16 bit switches when these numbers are coded in a
Gray code representation.

Data

Tag Memory

b

i

t

Hit/Miss

Valid and Match?

MAR

Address Bus

BlockIndexTag

b-to-1 mux

MDR

Memory

Figure 2: Cache sub-banking

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000

00000
00001
00011
00010
00110
00111
00101
00100
01100
01101
01111
01110
01010
01011
01001
01000
11000

bits
changed 31 16

2’s complement Gray(a)

Figure 3:The bit switches of 2’s Complement codes

vs. Gray codes

4 Evaluation Results

This section evaluates performance and power
consumption of the experimental cache structures on the
VLSI-SLAM microprocessor [9]. First, we select a set of
cache organizations for each experimental cache struc-
ture. These cache organizations differ by using different
cache parameters in which the cache size ranges from 512
to 32 K bytes, the block size ranges from 8 to 32 bytes,
and the degree of set associativity ranges from 1 to 4.
These cache models are represented as follows,

We assume separated instruction and data on-chip
caches. The address and data pins are shared for both
instruction and data caches.

4.1 Evaluation Environment

The benchmark programs used in this study are
described in Table 1. These benchmark programs are
selected from the Aquarius benchmark suite [4]. Applica-
tions of these benchmark programs include list manipula-
tion, data base queries, theorem provers, and computer
language parsers. The benchmark programs are compiled
through the Aquarius Prolog compiler front-end [12]and
an optimizing compiler backend for VLSI-SLAM.An
instruction-level simulator of VLSI-SLAM is used to
monitor bit switching activities of cache behaviors when
benchmark programs are running.

4.2 Miss Rates

Figure 4 shows the miss rates of direct-mapped
and set-associative instruction and data caches. It is not
surprising that the miss rates of both instruction and data
caches are decreased when the cache size is increased. A
large instruction cache can certainly help the hit rate.
However, a large data cache may not help the hit rate that
much. For example, the miss rates of <dm,2>, <dm,4>,
and <dm,8> are 6.55%, 4.28%, and 3.42%, even though
the cache size is 32K bytes.

Increasing block size significantly improves the
instruction cache hit rates. A direct-mapped cache with a

<dm,2> a direct-mapped cache with block size 2 words

<dm,4> a direct-mapped cache with block size 4 words

<dm,8> a direct-mapped cache with block size 8 words

<2lru,2> a 2-way set associative cache with block size 2 words

<2lru,4> a 2-way set associative cache with block size 4 words

<2lru,8> a 2-way set associative cache with block size 8 words

<4lru,2> a 4-way set associative cache with block size 2 words

<4lru,4> a 4-way set associative cache with block size 4 word

<4lru,8> a 4-way set associative cache with block size 8 words

Table 1: Benchmark programs

Benchmark Instructions

browse

boyer

nand

27,494,723

18,883,712

Description

An a Boyer-Moore theorem prover.

reducer

1,064,197

1,695,417

Build and query a database

A circuit generator

List manipulation



large block size performs better than a set associative
cache of the same size. For example, the average hit rate of
the 16K-byte instruction cache <dm,8> is 98.92% which is
better than hit rates 96.30%, 97.64%, 98.20% and 98.55%
of the <2lru,2>,<4lru,2>, <2lru,4>, and <4lru,4> data
caches of the same size respectively. The impact to the hit
rate of a data cache while increasing the block size is not
as obvious as in the instruction cache.

Increasing the degree of set associativity signifi-
cantly improves the data cache hit rates. A set associative
cache with a large degree of set associativity performs bet-
ter than a direct-mapped cache of the same size (even with
a large block size). For example, the average hit rate of the
16K-byte data cache <2lru,2> is 97.53% which is better
than hit rates 93.25%, 95.58%, and 96.46% of the <dm,2>,
<dm,4>, and <4lru,8> data caches of the same size respec-
tively. The impact to the hit rates of an instruction cache
while increasing the degree of associativity is not as obvi-
ously as in the data cache.

4.3 Cache Access Time

Table 2 shows the cache access time is derived from
the cache timing model presented in [14] based on 0.8 µm
CMOS technology. In general, it takes significantly less
time to access direct-mapped caches than set associative
caches. For example, the cache access times of a 1K-byte
direct-mapped and 2-way set associative caches with line
size 16 bytes are 4.79 and 7.15 ns respectively. Accessing
the 2-way set associative cache is about 50% slower than
the direct-mapped cache.

512 1k 2k 4k 8k 16k 32k

10

20

30

512 1k 2k 4k 8k 16k 32k

5

10

15

Figure 4: Miss rates

Miss
Rate (%)

Miss
Rate (%)

<dm,8>
<2lru,8>
<4lru,8>

<dm,2>
<2lru,2>
<4lru,2>

<dm,4>
<2lru,4>
<4lru,4>

cache
size

cache
size

Instruction

Cache

Data

Cache

<dm,2>

<2lru,2>

<4lru,2>

<dm,4>

<2lru,4>

<4lru,4>

<dm,8>

<2lru,8>

<4lru,8>

 4.85

6.92

 7.31

 4.65

 7.06

N/A

 4.56

N/A

N/A

 5.10

 7.11

 7.41

4.79

 7.15

 7.61

 4.60

 7.46

 N/A

 5.47

 7.37

 7.64

 5.03

 7.36

 7.73

 4.73

 7.57

 8.19

 6.09

 7.83

 7.94

 5.45

 7.66

 8.00

 5.02

 7.81

 8.35

  6.76

  8.49

  8.62

  6.07

  8.20

  8.34

  5.40

  8.16

  8.66

 7.55

 9.35

 9.28

 6.83

 8.81

 9.14

 6.07

 8.84

 9.14

   8.61

 10.27

 10.24

   7.51

   9.73

   9.82

   6.77

   9.43

   9.99

512 1K 2K 4K 8K 16K 32K

Table 2: Cache Access Time (ns)  (in 0.8 µm CMOS)

4.4 Performance and Energy for Traditional Caches

Figure 5 shows the average cache latencies among
all experimental cache organizations. We assume each off-
chip cache has a 100% hit ratio and the access time is 80
ns. Direct-mapped instruction caches have better (shorter)
cache latency than set associative instruction caches. Set
associative data caches have better (shorter) cache latency
than direct-mapped data caches. Increasing cache line size
helps to improve cache latencies.Figure 6 shows the aver-
age energy consumption of various cache organizations in
dynamic logic.

In the case of instruction caches in dynamic logic,
direct-mapped caches consume less energy than set-asso-
ciative caches when the cache line sizes are 8 and 32
bytes. However, direct-mapped caches consume more
energy than set-associative caches when the cache line
size is 16 bytes. An instruction cache with a 4K-byte
cache size seems to consume the least energy among all
experimental instruction caches.

In the case of data caches in dynamic logic, direct-
mapped caches, in general, consumes less energy than set-
associative caches. One exception is that two-way set

Figure 5: Average cache latency (ns)
512 1k 2k 4k 8k 16k 32k

cache
size

10

20

30

Cache
Latency

5121k 2k 4k 8k 16k 32k

10

20

Cache

30

Latency (ns)

0

Instruction

Cache

Data

Cache

cache
size

<dm,8>
<2lru,8>
<4lru,8>

<dm,2>
<2lru,2>
<4lru,2>

<dm,4>
<2lru,4>
<4lru,4>

Figure 6: Cache energy consumption (in dynamic logic)

512 1k 2k 4k 8k 16k 32k

100

200

300

0

512 1k 2k 4k 8k 16k 32k

30

60

90

0

Energy
Index

<dm,8>
<2lru,8>
<4lru,8>

<dm,2>
<2lru,2>
<4lru,2>

<dm,4>
<2lru,4>
<4lru,4>

Energy
Index

Instruction

Cache

Data

Cache

cache
size

cache
size



associative caches with cache sizes ranging from 4K to
16K bytes and a cache line size of 32 bytes consume less
energy than direct-mapped cache with the same cache and
line sizes. Similar to the instruction caches, small caches
tend to consume less energy than large caches. Data caches
with sizes 2K or 4K bytes consume the least energy among
all experimental instruction caches. Figure 7 shows the
average energy consumption of various cache organiza-
tions in static logic.

In the case of instruction caches in static logic, set-
associative caches consumes less energy than direct-
mapped caches. Increasing set associativities can signifi-
cantly improve energy consumption. However, increasing
cache line sizes tends to consume more energy. An instruc-
tion cache with cache sizes 8K or 16K seems to consume
the least energy among all experimental instruction caches.

In the case of data caches in static logic, set-associa-
tive caches consumes less energy than direct-mapped
caches. Unlike instruction caches in dynamic logic,
increasing set associativity does not improve energy con-
sumption. For example, a two-way set associative cache
consumes less energy than a four-way set associative cache
with the same cache and line size. In general, increasing
cache line sizes tends to consume less energy, although
there exists some exceptions. A data cache with cache
sizes ranging from 2K to 16K seems to consume the least
energy among all experimental instruction caches.

4.5 The Impact of Cache Partitioning

Block hit rates of instruction caches are high when
the block size is large. For example, the block hit rates are
42.80%, 64.35%, 74.19%, and 77.89% when the block size
is 2,4,8, and 16 words (4 bytes per word). Except in the
case of being able to put a loop in the same block, the limit
of block hit rates is the average length of consecutive
instruction accesses in the benchmark suite. Comparing the
instruction caches, the block hit rates of data caches are
relatively low. The block hit rates of the data caches are
only 3.15%, 19.86%, 33.57%, and 39.20% when the block
size is 2,4,8, and 16 words. In general, data cache miss
rates are much higher than instruction cache miss rates

5121k 2k 4k 8k 16k 32k

100

200

300

0

512 1k 2k 4k 8k 16k 32k

30

60

90

0

<dm,8>
<2lru,8>
<4lru,8>

<dm,2>
<2lru,2>
<4lru,2>

<dm,4>
<2lru,4>
<4lru,4>

Figure 7: Cache energy consumption (in static logic)

Instruction

Cache

Data

Cache

Energy
Index

Energy
Index

cache
size

cache
size

when the cache size is very small.

Cache sub-banking reduces the energy consumed
for each cache access by partitioning a cache into several
banks. Each cache bank can be accessed individually.
Since the tag memory is still consuming energy for each
cache access, the amount of energy savings by a sub-bank
cache not only depends on the number of cache banks in a
cache, but also the cache size. The larger the cache, the
smaller the amount of energy consumed in the tag mem-
ory. Like block buffering, cache sub-banking saves more
energy when the block size is large. For example, the
energy savings of cache sub-banking are 46.10%,
62.89%, 79.82%, and 89.45% in a 32K cache. Unlike
block buffering in which its energy savings is limited to
access pattern behavior, the energy savings of cache sub-
banking is not limited. The larger the block size, the more
energy savings.

In conclusion, the block buffering technique is
good for instruction caches with reasonably large block
size. Especially when the block size is large enough to
contain the whole loop, the instruction cache is only
accessed once during executing the loop. Cache sub-
banking is good for both instruction and data caches. The
energy savings by using both techniques can be more than
90% when the block size is more than 16 words.

4.6 The Impact of Gray Code Addressing

This section presents the normalized average bit
switching rates of the address and data buses using tradi-
tional 2’s complement addressing and Gray code address-
ing. On average, using Gray code address reduces 33%
and 12% of the bit switches in the instruction and data
address buses respectively. It is not surprising that the
Gray code addressing has a significant energy reduction
on the instruction cache since the sequential locality of
instructions is generally quite high. The more sequential
locality, the bigger the energy savings by using Gray code
addressing.

4.7 Energy Reduction for Low Power Caches

This section presents a case study of the overall
cache energy savings when both Gray code addressing
and cache sub-banking approaches are applied. We use
the cache energy model discussed in Section 2. to esti-
mate the overall energy consumption of caches.

Table 3 shows the percentages of total energy con-
sumption (including both instruction and data caches)
when using Gray code addressing and cache sub-banking.
Both caches in static (S column) and dynamic (D column)
logic are presented. In general, these two techniques can
save significant energy when they are applied on both
caches in static and dynamic logic. The amount of energy
saving for caches using dynamic logic is slightly higher
than that in static logic.The amount of energy saving is
increasing when one of the following situation occurs: (1)
the degree of superpipelining is increased, (2) the cache
line size is increased, and (3) the cache size is increased.
For example, when we apply Gray code addressing and
cache sub-banking on a 32K-byte four-way set associa-



tive cache with 32-byte cache lines, the overall cache
energy consumption is only 23.11% of the total cache
energy consumption when the cache without implementing
both techniques.

5 Conclusion

The goal of this research is to investigate the perfor-
mance and energy trade-offs in designing caches. The
cache access time is calculated based on an analytical
model that 0.8 µm CMOS technology is assumed. The
energy consumption is calculated based on an abstract
model where weighted bit switching rates of cache compo-
nents are considered.

The experimental results suggest that direct-mapped
instruction caches have better (shorter) cache latency than
set associative instruction caches; set associative data
caches have better (shorter) cache latency than direct-
mapped data caches. The experimental results also suggest
that direct-mapped caches (for both instruction and data)
consume less energy than set associative caches when the
caches are implemented in dynamic logic. On the other
hand, set associative caches (for both instruction and data)
consume less energy than direct-mapped caches when the
caches are implemented in static logic. Caches with sizes
ranging from 4K to 16K bytes tend to consume the least
energy of all other cache organizations.

This paper also investigated the amount of energy
reduction by using several novel techniques: Gray code
addressing and cache sub-banking. Simulation results show
that 33% and 12% of the bit switches on the instruction and
data address buses can be reduced by using Gray code
addressing. When both Gray code addressing and cache
sub-banking are applied on a 32K-byte four-way set asso-
ciative cache with 32-byte cache lines, the overall cache
energy consumption is only 23.11% of the total cache
energy consumption when the cache without applying the
techniques.

Acknowledgments

We like to thank the anonymous referees for their
constructive comments. We also thank Steve Crago and
Kevin Obenland for their reviewing early drafts. The work
was supported by ARPA under grant No. J-FBI-91-194.

References
[1] J. Bunda, W.C. Athas, and D. Fussell, “Evaluating Power

Implication of CMOS Microprocessor Design Decisions,”
In Proc. of the 1994 International Workshop on Low Power
Design, April 1994.

[2] B. Burgress, et al., “The PowerPCTM603 Microprocessor:
A High Performance, Low Power, Superscalar RISC pro-
cessor,” In Proc. of IEEE COMPCON, February 1994.

[3] S.B. Furber, et al.,”AMULET1: A Microppipelined ARM,”
In Proc. of IEEE COMPCON, February 1994.

[4] R. Haygood, “A Prolog Benchmark Suite for Aquarius,”
Technical Report, Computer Science Department, Univer-
sity of California, UCB/CSD 89/509, 1989.

[5] M.D. Hill, “A case for Direct-mapped Caches,” Computer,
Vol. 21, No. 12, 1988.

[6] N.P. Jouppi, S.J.E Wilton,. “Trade-offs in Two-Level On-
Chip Caching,” In Proc. of the 21st Annual International
Symposium on Computer Architecture, April 1994.

[7] S. Przybylski, M. Horowitz, and J. Hennessy, “Characteris-
tics of Performance-Optimal Multi-level Cache Hierar-
chies,” In Proc. of the 16th Annual International
Symposium on Computer Architecture, May 1989.

[8] A.J. Smith, “A Comparative Study of Set Associative
Memory Mapping Algorithms and Their Use for Cache
and Memory,” In IEEE Transactions on Software Engi-
neering, Vol. 4, No. 2, March 1978.

[9] C.L. Su and Alvin M. Despain, “Branch With Masked
Squashing In Superpipelined Processors,” in Proc. of the
21th Annual International Symposium on Computer Archi-
tecture, April, 1994.

[10] C.L. Su, C.Y. Tsui, and A.M. Despain, “Saving Power in
the Control Path of Embedded Processors,” IEEE Design
& Test of Computers, Vol. 11, No. 4, pp. 24-31, Dec. 1994.

[11] C.L. Su and Alvin M. Despain, “Cache Designs for Energy
Efficiency,” in Proc. of the 28th Hawaii International Con-
ference on System Science, January 1995.

[12] P. Van Roy and A. M. Despain, “High-Performance Logic
Programming with the Aquarius Prolog Compiler,” IEEE
Computer, January 1992.

[13] T. Wada, S. Rajan, S.A. Przybylski, “An Analytical Access
Time Model for On-Chip Cache Memories,” IEEE Journal
of Solid-State Circuits, Vol. 27, No. 8, Aug., 1992.

[14] S. Wilton, N. Jouppi, “An Enhanced Access and Cycle
Time Model for On-Chip Caches,” Research Report 93/5,
Digital, June, 1994.

512 1K 2K 4K 8K 16K 32K

D S D S D S D S D S D S D S

<dm,2>

<2lru,2>

<4lru,2>

<dm,4>

<2lru,4>

<4lru,4>

<dm,8>

<2lru,8>

<4lru,8>

82.18

81.35

81.52

82.41

81.58

81.53

84.50

83.24

82.76

82.43

81.48

81.42

83.10

82.12

81.78

85.30

83.98

83.29

81.85

79.52

79.19

81.42

79.41

77.76

83.66

81.02

78.15

82.52

79.84

78.96

83.15

80.84

78.46

85.69

83.02

79.75

81.90

78.06

76.83

80.04

75.77

72.62

82.71

77.32

71.35

84.40

78.84

76.28

85.97

79.62

74.27

89.48

82.93

75.50

78.44

74.35

73.80

71.76

66.04

62.95

72.76

65.22

57.49

84.04

76.16

73.13

85.27

75.14

65.90

89.59

80.49

66.72

74.61

70.19

69.85

60.17

54.61

51.57

56.14

48.59

42.53

84.09

72.80

69.80

82.56

67.32

56.08

86.82

73.02

55.58

68.65

67.51

66.69

47.48

45.82

43.48

36.87

32.26

29.93

76.11

70.58

66.99

68.58

58.34

47.17

72.42

55.70

41.05

65.43

65.09

64.65

40.85

40.20

39.56

26.70

24.55

23.11

69.27

66.79

64.93

53.67

47.11

42.16

52.96

38.49

28.71

Table 3: Percentages of energy consumption (when both Gray code addressing and cache sub-banking are
applied) against the total energy consumption when both techniques are not applied.




