Cache-Efficient Aggregation:
Hashing /s Sorting

Ingo Mdller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, Franz Farber
SIGMOD, June 3, 2015

(| |
E&T.V DRESDEN e M Rl

Textbook Algorithms for Aggregation

‘B M
- P --- HAsHAGe | oo
Hash Aggregatlpn | 6] SomA G
Insert every row into hash map with % — OPTAGG .
grouping attributes as key " :
Aggregate to existing intermediate result 2 12
5 |
: 8 N
Sort-Aggregation % R —
Sort input by grouping attributes g | J/
Aggregate consecutive rows in a single 2 e "
pass
0
Traditional approach 2 2 2 28 28 & & 2 2
Number of groups (K)
Optimizer selects physical operator based M — cache size B — block size
on cardinality estimation - error prone. N = input size K = output size

Our goal: Hashing and Sorting in a single operator.

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

Mixing Hashing and Sorting (1/3): Idea

Key observation: Hashing is the same as Sorting by hash value.

General idea:

design an aggregation operator like a Divide’n’Conquer sort algorithm on the
hash values of the grouping attributes.

Common technique:
combine different sort routines into one algorithm.

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

Mixing Hashing and Sorting (2/3): Example Execution

input: (0100,b,3) (0010,a,7) (1110,c,2) (0100,b,4) (1100,e,3) (0100,b,6)

(hash, group, value)

(0100,b,2) (1001,d,6) (0100,b,5)

1st level of recursion

hashtable 1: | (0010,a,7) | (0100,b,7) (1110,c,2)

Hashing

hash table 2:

(0100,b,6) (1100.e,3)

Partitioning partitions: | (0100,b,2) (0100,b,5) ||| (1001,d,6)

2nd |avel of recursion

——_____hashtable (part): | _____hashtable(part) = ____
(0010, | (0100, (1001, (1100,[(1110,
a,7) | b,20) d,6) e3) | ¢2)

|
|
result: |
|

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

Mixing Hashing and Sorting (3/3): Recap

Our approach: aggregation algorithm designed like a sort algorithm on hash values
with built-in aggregation.
Subroutine “Hashing”:

Inserts into a series of hash tables (like insertion sort)
Each of cache size - efficient (sort of)
Does the actual aggregation

Subroutine “Partitioning”:

Appends to hash partitions (like radix sort)
Only sequential access > efficient
Does no aggregation

Next question: when to use which routine?

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

Adaptation Mechanism (1/2)

cache 256-cache cache 256-cache cache 256-cache
o I I T T] I I I T I I i I
g 200 [| —e— Pass 2 (hashing) 200 | —4— Pass 1 (hashing) 200 —4— Pass 2 (hashing)
= —o— Pass 1 (hashing) —a— Pass 0 (partitioning) I —4— Pass 1 (partitioning)
T 150 —»— Pass 0 (hashing) 150 I} 150 —=— Pass 0 (partitioning)
|_
. 100| 100 100 |- [-
E
T 50 50 50
%]] = st MR RN
=m 0 | \ 0 L\l J 0 \ \
20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228
Target output size (K) Target output size (K) Target output size (K)
(a) HASHINGONLY (b) PARTITIONALWAYS (2 passes) (c) PARTITIONALWAY S (3 passes)

“HashingOnly”: in cache for small output size, slow recursive processing otherwise

“PartitionAlways™:
Much faster partitioning (97% of speed of memcpy thanks to “Radix-Partitioning”)

No (early) aggregation - induced useless work for small output

Goal: use Hashing iff working set fits into cache.

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

Adaptation Mechanism (2/2)

cache 256-cache
Adaptive algorithm: 200 jf| == FABHINBUNLY
D | —a— PARTITIONALWAY S (2 passes) \
l O —4— PARTITIONALWAY S (3 passes)
use . > 150 ||| == —=— ADAPTIVE
partitioning R produce 1 5
for some "| hash table -
time I
A i =g 100]
5
reduced E 50
data by fac- L
tor > o .
0 A
20 24 28 21 2 21 6 220 224 228
Target output size (K)

Partitioning recurses when necessary
Hashing ends recursion when possible efficiently

Our mechanism finds the right strategy adaptively.

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

Evaluation: Comparison with Prior Work

\

State of the art: 200| | —— HYBRID[1] [
Implementations of : D ——-PART.+AGGR.[2] | '}
— Cieslewicz and Ross [1] & Yeetal.[2] ©O -~ INDEPENDENT [1] .'
1 | th . ‘-Z- 150 | | x- PLAT [2] ,
-pas§ algorithms: = ATOMIC [1] :
— Hybrid - = ADAPTIVE
— Atomic I
2-pass algorithms: o 100 '
— Partition and Aggregate % N
— Independent & 50 Fa
— PLAT T .
Result: of |
_ 20 24 28 212 216 220 224 228
“Adaptive” faster for K > 220 .
Target output size (K)
Up to factor 3.7 SpeedUp 2 Xeon E7-8870 CPUs (each 10 cores), N = 232, uniform distribution.

Recursive processing is crucial for large outputs.

[1] J. Cieslewicz, K.A. Ross. Adaptive Aggregation on Chip Multiprocessors. In PVLDB, 2007. [2] Y. Ye, K.A. Ross, N. Vesdapunt. Scalable Aggregation on Multicore Processors. In DaMoN, 2011.

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

Summary and Outlook w I,E?\',*E"R'éﬁ'-*ﬁ AT

D R ES D E N Karlsruhe Institute of Technology

Observation: Hashing is Sorting by hash value.
We can combine them in a single algorithm to combine their advantages.

Adaptation mechanism provides robust, optimal performance up to factor 3.7
faster than prior work.

What else to expect in the paper:

How to parallelize? How to integrate with JiT and column-wise processing?
How to tune hashing and sorting to modern hardware?

How to determine thresholds?

Why does it also work well in presence of skew?

Thank you

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

