
Cache Efficient Bidiagonalization Using BLAS
2.5 Operators

Howell, G. W. and Demmel, J. W. and Fulton,
C. T. and Hammarling, S. and Marmol, K.

2006

MIMS EPrint: 2006.56

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Cache Efficient Bidiagonalization Using BLAS 2.5

Operators∗

G. W. Howell

North Carolina State University

Raleigh, North Carolina 27695

J. W. Demmel

University of California, Berkeley

Berkeley, California 94720

C. T. Fulton

Florida Institute of Technology

Melbourne, Florida 32901

S. Hammarling

Numerical Algorithms Group

Oxford, United Kingdom

K. Marmol

Harris Corporation

Melbourne, Florida 32901

March 23, 2006

∗This research was supported by National Science Foundation Grant EIA-0103642.

Abstract

On cache based computer architectures using current standard al-
gorithms, Householder bidiagonalization requires a significant portion
of the execution time for computing matrix singular values and vectors.
In this paper we reorganize the sequence of operations for Householder
bidiagonalization of a general m × n matrix, so that two (GEMV)
vector-matrix multiplications can be done with one pass of the unre-
duced trailing part of the matrix through cache. Two new BLAS 2.5
operations approximately cut in half the transfer of data from main
memory to cache. We give detailed algorithm descriptions and com-
pare timings with the current LAPACK bidiagonalization algorithm.

1 Introduction

A primary constraint on execution speed is the “von Neumann” bottleneck
in delivering data to the CPU. Most current computer architectures store
data hierarchically. Data in a small number (from a few dozen to several
hundred) registers can be used for computations in the current or next clock
cycle. Data in several levels of cache memory is available in at most a
few clock cycles. Accessing data in main memory requires several dozen
or hundred clock cycles [13, 15, 12]. Matrices larger than a few hundred
square are typically too large to fit in cache memory and must be stored in
main storage (RAM). For example, a comparatively large 8 Mbyte L3 cache
would be filled by a double precision 1K by 1K matrix. Reads and writes
of a number to RAM (even reads and writes organized so that the data
bus is working at full bandwidth) are typically much slower than floating
point operations. For example, a 533 MHz 128 bit bus can deliver 1.06
Billion double precision numbers per second from RAM. If the bus feeds
two processors which can perform 12 billion flops/sec, then about 12 flops
per number fetched are needed to achieve peak computational speed.

The von Neumann bottleneck motivates the algorithmic rearrangements
of this paper. Since bidiagonalization algorithms are constrained by data
transfer, reducing data transfer decreases computation time. Most of the
algorithms given here have been implemented for inclusion in the LAPACK
library, which is designed to efficiently perform dense matrix computations
on cache based architectures.

The LAPACK library [1] uses the Basic Linear Algebra Subprograms
(BLAS).1 For matrices too large to fit in cache memory, LAPACK routines

1LAPACK and reference BLAS routines can be downloaded from Netlib. The reference
BLAS libraries give correct results but do not run very fast. Vendor tuned BLAS libraries

2

using tuned BLAS usually execute much faster than the older LINPACK
or EISPACK routines. For LU and QR decomposition, almost all com-
putations are BLAS-3 matrix matrix multiplications (GEMMs), for which
many floating point operations can be performed for each number trans-
ferred from RAM to cache. When tuned BLAS are used, LAPACK LU and
QR decompositions run at nearly the peak theoretical computational speed.

BLAS-2 matrix vector multiplications are more constrained by data bus
bandwidth. For a matrix too large for cache, only one add and multiply is
performed for each element fetched from cache. For LAPACK operations
such as reducing a symmetric matrix to similar tridiagonal form, reducing a
general square matrix to similar Hessenberg form, or reducing a rectangular
matrix by Householder transformations to bidiagonal form, only about half
the operations are BLAS-3, with almost all the rest in BLAS-2 matrix vector
multiplications. For matrices too large to fit in cache, these algorithms run
at rates well below theoretical peak.

K. Stanley [24] showed that BLAS 2.5 operators which combine two or
more BLAS-2 operations, e.g., a matrix vector and transposed matrix vector
multiply performed simultaneously, can halve data transfer in tridiagonaliza-
tion of symmetric matrices. Here we use BLAS 2.5 operators to halve data
transfer in Householder bidiagonalization of a rectangular matrix, compared
to the current LAPACK implementation.2

The two BLAS 2.5 routines we use are GEMVER, which performs the
operations:

Â← A + u1v
T
1 + u2v

T
2

x← βÂT y + z

w ← αÂx

and GEMVT, which performs the operations:

x← βAT y + z

give much faster runs. The ATLAS project allows the user to create their own tuned
BLAS, see: (http://math-atlas.sourceforge.net/).

2Householder bidiagonalization of an m×n matrix, m > n requires 4n2m−4/3n3 flops.
Since determining the singular values requires only an additional O(n2) operations, savings
in bidiagonalization time are also savings in determination of singular values. Formerly,
determination of singular vectors was more time consuming than bidiagonalization. In
the current version of LAPACK, singular vectors are determined in time comparable to
bidiagonalization. Dhillon and Parlett’s work [14, 22, 10] further speeds the process of
determining singular vectors, so that bidiagonalization is the predominant computation
in singular value decomposition.

3

Algorithm GEBRD Algorithm I Algorithm III
BLAS-2 BLAS-2 and 3 BLAS 2.5 BLAS 2.5 and 3

READS 4 2 + 2/k 1 1 + 2/k
WRITES 2 2/k 1 2/k

Table 1: Floating Point Reads and Writes of the Trailing Matrix in One
Column-Row Elimination

w ← αAx

Specifications for these two routines are part of the new BLAS standard
[7, 8].

This paper details variants of the classic Golub and Kahan Householder
bidiagonalization algorithm [16, 17]. Section 2 describes the reduction in
terms of Level 2 BLAS. Section 3 shows how the two BLAS 2.5 routines
lessen data transfer. Section 4 describes Algorithm I bidiagonalization us-
ing the Level 2.5 routine GEMVER, which works well in terms of reads,
but not so well in terms of writes. Section 5 presents Algorithm II, which
reduces the leading k rows and columns of a matrix to bidiagonal form,
using the Level 2.5 routine GEMVT. Section 6 uses Algorithm II in order
to develop Algorithm III, half BLAS-2.5 and half BLAS-3. Section 7 gives
some timing results and discusses tuning Algorithm III for cache size; Sec-
tion 8 reports some results of running our new version of routine GEBRD
through the testing routines provided in the LAPACK distribution and dis-
cusses the algorithm variants for the complex case and the case of more
columns than rows. Finally, Section 9 summarizes our work and compares
it to the bidiagonalization proposed by B. Grösser and B. Lang.

Table 1 summarizes the results of the paper by comparing the required
data transfer for several Householder bidiagonalization algorithms in terms
of the frequency of reads from main memory to cache, and writes from
cache to main memory. The table assumes that a trailing part of a matrix
is too large too fit in cache memory. Different arrangements of Householder
bidiagonalization have markedly different levels of data transfer.

2 Algorithm BLAS-2 – Classical Reduction to Bidi-

agonal Form

In this section, we express Householder bidiagonalization as a BLAS-2 level
algorithm alternating matrix vector multiplies with rank-one updates. The

4

BLAS-2 algorithm corresponds to the Householder bidiagonalization first
introduced by Golub and Kahan [16]3 in 1965. The BLAS-2 algorithm is
simple to implement, but for matrices too large to fit in cache has more data
transfer than necessary.

Let A be an m × n matrix with m ≥ n. First select a left Householder
vector u(1) of length m such that

Â1 =
(

I − τq1u
(1)u(1)T

)

A =











x x . . . x
0 x . . . x
...

...
...

0 x . . . x











(2.1)

has zeros below the diagonal in the first column, and then a right House-
holder vector v(1) of length n such that

(

I − τq1u
(1)u(1)T

)

A
(

I − τp1v
(1)v(1)T

)

=











x x 0 . . . 0
0 x x . . . x
...

...
...

0 x . . . x











(2.2)

has zeros to the right of the superdiagonal element of the first row. Here
we assume the LAPACK GEBRD normalization u(1)(1) = 1 and (since v(1)

has a leading zero in the first component) v(1)(2) = 1. This is the first
column-row elimination. The second step is to zero the second column and
row. After i−1 steps the leading (i−1)×(i−1) matrix Bi−1 of A is bidiagonal,
with structure illustrated by:

A(i) =



























col i

Bi−1
0

x

0

x

0
... Ai

x



























3The Golub and Kahan version of course pre-dates the BLAS and LAPACK House-
holder operator LARFG, but using these ideas allows the introduction of notation used
throughout.

5

=









































col i

d1 e1 0
d2 e2

d3 e3

. . .
. . .

0 di−1

0

ei−1

0

0

x
...
...
x

Ai









































(2.3)

where Ai = A(i)(i:m,i+1:n).4

In the case when m > n, there are n columns to eliminate and n− 2
rows. The final bidiagonal matrix satisifies

B = QT AP (2.4)

where

QT =
n

∏

i=1

Hi, P =
n−2
∏

i=1

Gi (2.5)

and
Hi = I − τqi

u(i)u(i)T

, Gi = I − τpi
v(i)v(i)T

. (2.6)

Here the left Householder vectors u(i) of length m have i−1 leading zeros,
and the right Householder vectors v(i) of length n have i leading zeros, that
is,

u(i) =











0
...
0
ui











and v(i) =











0
...
0
vi











, (2.7)

where the normalization for ui and vi is ui(1) = 1, vi(1) = 1. The ith step of
the BLAS-2 reduction is accomplished by two LARFG calls to generate the
left and right Householder vectors, plus four BLAS-2 operations. Introduc-
ing some notation useful in the rest of the paper, the ith column elimination
(Im−i+1 − τqi

uiu
T
i) A(i:m,i+1:n) is5

4We use MATLAB style notation for which A(i:m,i+1:n) denotes the submatrix of A
consisting of rows i to m and columns i+1 to n. In this and subsequent algorithms we
make the simplifying assumption m ≥ n, where m is the number of rows and n the number
of columns of A.

5At the right we list the corresponding BLAS operation.

6

1. yT
i ← uT

i A(i:m, i+1:n) BLAS-2 GEMV
followed by the rank-one update,

2. A(i:m,i+1:n) ← A(i:m,i+1:n)−τqi
uiy

T
i , BLAS-2 GER

and the ith row elimination A(i+1:m,i+1:n)(In−i − τpi
viv

T
i) is

3. wi ← A(i+1:m,i+1:n)vi BLAS-2 GEMV
followed by the rank-one update

4. A(i+1:m,i+1:n)← A(i+1:m, i+1:n)−τpi
wiv

T
i . BLAS-2 GER

Following from (2.3), the result of the ith column and ith row elimination
is

A(i+1) = (I − τqi
u(i)u(i)T

)A(i)(I − τpi
v(i)v(i)T

)

=























col i
0

Bi 0
e(i)

x

0
... Ai+1

x























(2.8)

where Ai+1 = A(i+1:m,i+2:n). In terms of the left Householder vector ui

of length m− i+1 and the right Householder vector vi of length n− i from
(2.7),

H ′

i = (I − τqi
uiu

T
i), G′

i = (I − τpi
viv

T
i).

In terms of these m− i+1×m− i+1 and n−i×n−i Householder matrices
the formula (2.8) updating the trailing, unreduced part of the A-matrix is

H ′

iAiG
′

i = (I − τqi
uiu

T
i)A(i : m, i+1:n)(I − τpi

viv
T
i) (2.9)

=











ei 0 . . . 0
x
... Ai+1

x











(2.10)

Pseudo Code for Algorithm BLAS-2

For i = 1 : n− 1,

7

1. Construct ui of length m− i+1 to zero
elements A(i+1:m,i) LARFG

2. yT
i ← uT

i A(i:m,i+1:n) BLAS-2 GEMV
3. A(i:m,i+1:n)← A(i:m,i:n)− τqi

uiy
T
i BLAS-2 GER

If (i < n− 1)
4. Construct vi of length n− i to zero

elements A(i,i+2:n) LARFG
5. wi ← A(i+1:m,i+1:n) vi BLAS-2 GEMV
6. A(i+1:m,i+1:n)← A(i+1:m,i+1:n)− τpi

wi v
T
i BLAS-2 GER

Endif
End for
If (m > n),

Choose un of length m−n+1 to eliminate
A(n+1:m,n) LARFG

End if

The routine GEBD2 in the LAPACK library [1] (used to “clean-up”,
i.e., bidiagonalize the last rows and columns of a matrix for which the leading
rows and columns have been done by a blocked algorithm) is an implemen-
tation of the BLAS-2 algorithm.

Suppose that the BLAS-2 algorithm is used for A too large to fit in
cache and consider the data transfer entailed. For each GEMV, A must
be read from main memory to cache. For each GER, A must be read
from main memory and then written back from cache to main memory.
Thus for one column-row elimination, the BLAS-2 algorithm requires four
reads of Ai to RAM from cache and two writes of Ai from cache to RAM.
The next section introduces some new BLAS operators that can be used to
reduce data transfer in bidiagonalization. Since they combine several BLAS
2 operations, we refer to them as BLAS 2.5.

3 BLAS 2.5 Operators GEMVER and

GEMVT

The BLAS 2.5 operator GEMVT performs two matrix-vector multiplica-
tions. Given an m× n rectangular matrix A, an m-vector u, an n-vector z
and scalars α, β, GEMVT performs the operations

1. x← βAT u + z (3.1)

2. w ← αAx (3.2)

8

The inputs are A, u, z, α, β and the outputs are x and w. When A is
larger than the effective cache size, implementing GEMVT by two calls to
GEMV requires two reads of A from RAM to cache.

Suppose that A is partitioned so that column blocks fit in cache. Then
each element of A need only be read to cache once. Explicitly, partition the
m× n matrix A into column blocks

A = [A1|A2| . . . |Ab] (3.3)

where each Ai has k columns of the A-matrix. Similarly, the n vector z is
partitioned into b segments, each having k components,

z =







z1
...
zb






. (3.4)

For simplicity, suppose kb = n, that is, the block size k evenly divides
n; otherwise the last block Ab, (last zb-vector) has less than k columns
(components). GEMVT can be implemented by:

GEMVT Pseudo Code

w ← 0
For i = 1 : b,

xT
i ← βuT Ai + zT

i GEMV
w ← w + αAixi GEMV

End for

For the computation Aixi, Ai is already in cache, so elements of A are read
only once and not written.

The BLAS 2.5 operator GEMVER performs two matrix-vector multi-
plications and a rank-2 update (or two rank-1 updates). Given an m × n
rectangular matrix A, m-vectors u0, w0, u, n-vectors v0, z0, z and scalars
α, β, GEMVER performs the operations

1. Â← A + u0z
T
0 + w0v

T
0 2 BLAS-2 GERs (3.5)

2. x← βÂT u + z BLAS-2 GEMV (3.6)

3. w ← αÂx. BLAS-2 GEMV (3.7)

The inputs are A, u, z, u0, z0, w0, v0, α, β. Â, x, and w are output.

9

When A is too large to fit in cache, GEMVER by (3.5 - 3.7) requires
one read of A from RAM to cache and one write of A from cache to RAM
for each of the two GER calls, and one read of Â from RAM to cache for
each of the two GEMV calls, a total data transfer of four reads of A from
RAM to cache and two writes of A from cache to RAM. For A too large for
cache (and small enough that a column block can stay in cache), reuse of
in-cache data improves by the same blocking as in GEMVT. Let A and Â
be partitioned into column blocks as in (3.3) and let the z be partitioned
into b segments as in (3.4), and for simplicity suppose kb = n. Similarly,
let the vectors zT

0 and vT
0 of length n be partitioned into b segments, each

having k components,

zT
0 =







zT
01
...

zT
0b






and vT

0 =







vT
01
...

vT
0b






(3.8)

GEMVER can be implemented as:

GEMVER Pseudo Code

w ← 0
For i = 1 : b,

Âi ← Ai + u0z
T
0i GER

Âi ← Âi + w0v
T
0i GER

xT
i ← βuT Âi + zT

i GEMV

w ← w + αÂixi GEMV
End for

For appropriately sized blocks Ai, the “cache-efficient” version of GEMVER
reads the A matrix from RAM to cache once and writes it back to RAM
once.

4 Algorithm I - Efficient Reduction

Without Blocking

Let A be an m × n matrix with m ≥ n. Let d(i), 1 ≤ i ≤ n, and e(i),
1 ≤ i ≤ n− 1, be the diagonal and superdiagonal elements i obtained from

10

bidiagonalization. Recalling (2.1) and (2.2):

Â1 = (I − τq1u
(1)u(1)T

)A =











d(1) x . . . x
0 x . . . x
...
0 x . . . x











(4.1)

and

H1AG1 = (I − τq1u
(1)u(1)T

)A(I − τp1v
(1)v(1)T

) (4.2)

=











d(1) e(1) 0 . . . 0
0 x x . . . x
...

...
...

0 x x











. (4.3)

helps with understanding the notation in the following.
Algorithm I, developed in this section, reorders the sequence of opera-

tions in Algorithm BLAS-2 of Section 2 so that the ith column-row elimina-
tion is a single call to GEMVER instead of two matrix vector multiplications
(GEMVs) and two rank-one updates (GERs). Packaging the GEMV and
GER calls into one GEMVER call reduces the traffic on the data bus from
four reads and two writes per column-row elimination to one read and one
write. The rearrangement takes some work. As a first (incorrect) algorithm
consider the following:

First Cut Algorithm BLAS-2.5

For i = 1,
1. Construct u1 of length m to zero A(2:m,1) LARFG
2. Construct v1 of length n−1 to zero A(1,3:n) LARFG
3. yT

1 ← uT
1 A(1:m,2:n) BLAS-2.5

w1 ← A(2:m,2:n) v1 GEMVT
End For
For i = 2 : n−2,

4. Build ui of length m− i +1 to zero A(i+1:m,i) LARFG
5. Construct vi of length n− i to zero A(i,i+2:n) LARFG
6. A(i:m,i:n)← A(i:m,i:n)

−τqi−1ui−1 yT
i−1 − τpi−1wi−1 vT

i−1

yT
i ← uT

i A(i:m,i+1:n) BLAS-2.5

11

wi ← A(i+1:m,i+1:n)vi GEMVER
End For
For i = n−1,

7. Build ui of length m− i+ 1 to zero A(i+1:m,i) LARFG
8. A(n-1:m,n) ← A(n-1:m,n) BLAS-2.5

−τqn−2un−2y
T
n−2 − τpn−2wn−2v

T
n−2 ‘ GEMVER

A(n-1:m,n)← (I − τqn−1un−1u
T
n−1)A(n-1:m,n).

End For
9. If (m > n),

Construct un to zero A(n+1:m,n) LARFG
End If

The main loop over i = 2 :n−2 does the same steps as Algorithm BLAS-
2, but in a different order. Steps 1 and 4 (of Algorithm BLAS-2) generating
the left and right Householder vectors are done first, then the updates to
the trailing part of the A matrix, steps 3 and 6 (of Algorithm BLAS-2) are
performed, and finally the two matrix-vector multiplications (Steps 2 and
5) are performed.

But if you look closely, there is a problem with the re-ordering of oper-
ations: for i = 1 the first right Householder vector v1 isn’t yet known (since
the rank-1 update producing the first row in the form to be eliminated has
not yet been performed). Similarly, for i = 2 :n−2 the ith right Householder
vector vi in step 5 is not yet known since the update (I − τqi

uiu
T
i)Ai has

not been performed. Fortunately we can delay the computation of the right
Householder vector; instead of using the unavailable v1 and vi vectors we
use substitutes in the GEMVT and GEMVER calls, recovering the actual
v1, Av1, vi, and Avi vectors in a clean-up step. Details follow.

First Column-Row Update:

Start with i = 1. Assume u(1) = u1 is normalized with u1(1) = 1 and

v(1) =

(

0
v1

)

is normalized with v1(1) = 1 in (4.1) and (4.2). Assume these

are already the actual left and right Householder vectors, so that H1AG1

in (4.2) is identical to (2.2). In terms of the trailing parts of the A matrix
defined in (2.3), (2.8), the first update formula (4.2) takes the form

H ′

1A1G
′

1 = (I − τq1u1u
T
1)A(1:m,2:n)(I − τp1v1v

T
1) (4.4)

=











e(1) 0 . . . 0

x
... A2

x











. (4.5)

12

This is equation (2.10) with i = 1, where u1 is of length m and, v1 is of
length n−1. Simple algebra gives (4.4) in the form of two rank-1 updates
as

H ′

1A1G
′

1 = A1 − u1z
T
1 − w1v

T
1 (4.6)

where

x1 = τq1A
T
1 u1 (4.7)

w1 = τp1A1v1 (4.8)

zT
1 = xT

1 − τp1(x
T
1 v1)v

T
1 (4.9)

To pack the matrix vector multiplications (4.7) and (4.8) into a single
call to GEMVT, we would need the Householder vector v1 to be either an
input to the call, or produced during the call. Fortunately, after the first
rank-one update, A(1,2:n) is, save for the first element, a scalar multiple of
the Householder vector v1. So we can use it as a “pre-Householder” vector
ṽ1 (produced a block at a time inside GEMVT) in computing a “pre-w1”
vector w̃1 in (4.8) and then can recover v1 and w1 from ṽ1 and w̃1 .

Explicitly, define the pre-Householder vector ṽ1 by

ṽ1 := 1st row {(I − τq1u
(1)u(1)T

)A(1:m,2:n)} (4.10)

= A(1,2:n)− τq1u
T
1 A(1:m,2:n),

where the elements of the A-matrix are the original matrix elements. The
vector ṽ1 is the first row of Â1 (to be to be eliminated by the first right
Householder matrix6 G1 = I − τp1v1v

T
1). Analogously to (4.8) take the

pre-w1 vector as
w̃1(1:m) := A(1:m,2:n) ṽ1(1:n-1), (4.11)

again using the original matrix elements of the A matrix. To recover v1 and
w1, compute v1 from the LAPACK Householder routine LARFG as7

v1(1:n-1) :=
ṽ1 − se1

ṽ1(1)− s
(4.12)

where

s :=

{

−‖ṽ1‖, if ṽ1(1) ≥ 0
+‖ṽ1‖, if ṽ1(1) < 0 .

(4.13)

6As described in pseudo-code in Section 3, the GEMVT operator multiplies each block
of ṽ1 to perform (4.11) with a column block Aj of A still in cache; if we computed all of
ṽ1 to have the actual Householder vector v1, then we would read all the rest of A, flushing
the current column block Aj .

7The LAPACK routine LARFG computes the Householder vector by algorithm 5.1.1.
in the second edition of Golub and Van Loan [18].

13

We recover A v1 from A ṽ1 by using linearity:

A(1:m,2:n) v1

=
(

1
ṽ1(1)−s

)

A(1:m,2:n) ṽ1 −
(

s
ṽ1(1)−s

)

A(1:m,2:n) e1

=
(

1
ṽ1(1)−s

)

{w̃1(1:m)− sA(1:m,2)} . (4.14)

Formulas (4.11) and (4.14) make use of the original matrix elements in
columns 2 to n. The missing quantity for the rank-2 update in (4.6) is
τp1 , the scalar factor for the first right Householder vector, needed for w1

and zT
1 in (4.8)-(4.9). τp1 is returned by LARFG but can also be computed

as

τp1 :=
s− ṽ1(1)

s
. (4.15)

Now that we see how to recover v1 and Av1, return to the GEMVT
call which outputs ṽ1 and w̃1. After calling LARG to get u1 and τq1 , the
matrix-vector multiplications in (4.10) and (4.11) can be made by a single
call to GEMVT:

ṽT
1 (1:n-1)← −τq1A

T (1:m,2:n)u1 + AT (1,2:n) (4.16)

w̃1(1 : m)← A(1:m,2:n) ṽT
1 , (4.17)

where the A matrix in both cases consists of the original matrix elements in
columns 2 to n. Then we use the GEMVT outputs ṽ1 and w̃1 to get τp1 ,
v1 and w1 from equations (4.15), (4.12), and (4.14), (4.7) respectively. The
vector x1 = τq1A

T u1 in (4.9) is available from the output (4.16) of GEMVT
as

x1 = τq1A
T (1:m,2:n)u1 = −ṽT

1 + AT (1,2:n) , (4.18)

The vector zT
1 is obtained from x1 in (4.9). Now the four vectors u1, z1, w1

and v1 are known. The rank-2 update (4.6) could now be made. However,
to avoid a superfluous read of A from RAM, we defer the update to be part
of a GEMVER call in the i = 2 step.

Algorithm I: Pseudo Code for i = 1

1st Column-Row Update
1. Build an m-vector u1, to zero A(2:m,1) LARFG

and compute scalars τq1 and d(1) such that
d(1) e1 = (Im − τq1u1u

T
1)A(1:m,1) .

Then store

14

A(1,1)← d(1) and A(2:m,1)← u1(2:m) .
2. (i) Using Eqns (4.16) and (4.17), compute BLAS-2.5

ṽT
1 (1:n-1)← −τq1A

T (1:m,2:n)u1 + AT (1,2:n) GEMVT
w̃1 ← A(1:m,2:n) ṽT

1

(ii) x1 ← −ṽT
1 + AT (1,2:n) Eqn (4.18)) AXPY

3. Compute v1 of length n−1 to zero A(1,3:n) LARFG
and the scalars τp1 and superdiagonal e(1).

A(1,3:n)← v1(2:n-1), A(1,2)← e(1) .
4. t← ṽ1(1)− s where AXPY

s←

{

−‖ṽ1‖, if ṽ1(1) ≥ 0
+‖ṽ1‖ if ṽ1(1) < 0

and compute (Eqns (4.7) and (4.14)), AXPY, SCAL

w1 ← τp1

(

w̃1−sA(1:m,2)
t

)

.

5. z1 ← x1 + τp1(x
T
1 v1) v1 (Eqn (4.8)). DOT, AXPY

6. Store w1 and z1 for the first rank-2 update (Eqn (4.6)):
w0 ← w1, z0 ← z1

In the next section, we will use the notation u0 = u1, v0 = v1. Actually,
u1 and v1 are stored in the first column and row of A, respectively.
ith Column-Row Update, 2 ≤ i ≤ n− 2:

To proceed with the second (and, in general, the ith) column-row update,
use the rank-2 update analogous to the i = 1 case of (4.6) to compute the
updated matrix in columns i to n and rows i to m . For i = 2, compute
u2, τq2 , d(2), ṽ2, w̃2, x2, v2, τp2 , e(2), w2, z2 in that order. Instead of using
GEMVT in Step 2, make use of GEMVER so that the trailing part of the
matrix A2 (4.4) is updated from the first column-row elimination.

Explicitly, suppose the updated matrix A(i) in (2.3) is available so that
we could compute

Â(i+1) := (I − τqi
u(i)u(i)T

)A(i) (4.19)

15

and as in (2.8)

A(i+1) = HiA
(i)Gi = (I − τqi

u(i)u(i)T

)A(i)(I − τpi
v(i)v(i)T

)

=



















col i
Bi 0

e(i)

x

0
... Ai+1

x



















. (4.20)

As for i = 1, express (4.20) by generating the four vectors u(i), z(i),
w(i), and v(i), so that the the column-row update in (4.20) becomes the two
rank-1 updates

HiA
(i)Gi = A(i) − u(i)z(i)T

− w(i)v(i)T

. (4.21)

In terms of the trailing part of the A matrix, Ai = A(i:m,i+1:n) and Ai+1 =
A(i+1:m,i+2:n) equations (4.19) and (4.20) are

Âi+1 := (I − τqi
uiu

T
i)Ai (4.22)

and
H ′

iAiG
′

i = (I − τqi
uiu

T
i)Ai(I − τpi

viv
T
i)

=











e(i) 0 · · · 0

x
... Ai+1

x











(4.23)

Equation (4.23) corresponds to equation (2.10). The vectors ui, vi are de-
fined as in (2.7) with the normalization ui(1) = vi(1) = 1.

Rewrite (4.23) as two rank-1 updates

H ′

iAiG
′

i = Ai − uiz
T
i − wiv

T
i (4.24)

where

xi = τqi
AT

i ui (4.25)

wi = τpi
Aivi (4.26)

zT
i = xT

i − τpi
(xT

i vi)v
T
i (4.27)

16

As for i = 1, defer the update in (4.22). Compute vectors ui, zi, wi, vi so
that the update for both ith column and ith row in (4.23), (4.24) can be
done at once.8 Then the i− 1st column-row update and the two matrix-
vector multiplications associated with the ith column-row update are made
by a single call to GEMVER.

Explicitly, as in (4.23), the matrix Ai = A(i:m,i+1:n) (to be updated) is
the trailing part of the A-matrix after the updates from the first i−1 left
and right Householder vectors have been performed. In order to package the
updates to Ai from the i−1 left and right Householder vectors together with
the two matrix-vector multiplications in (4.26) and (4.25) in a single call to
GEMVER, defer the update which produces Ai from Ai−1 using ui−1, zi−1,
wi−1, vi−1 until after the ith left Householder vector is computed. Following
the same order of computation as in the i = 1 case, do the i−1st update only
for the ith column of A (1st column of Ai). Then make a call to LARFG
to compute the ith left Householder vector ui, its scalar factor τqi

, and d(i).
Define the ith right pre-Householder vector ṽi by

ṽi := 1st row {(I − τqi
uiu

T
i)A(i:m,i+1:n)}

= A(i,i+1:n)− τqi
uT

i A(i:m,i+1:n), (4.28)

where the elements of the A matrix are the elements of Ai which have been
updated through the i−1st left and right Householder matrices H ′

i−1 and

G′

i−1. Thus ṽi is the first row of Âi+1 in (4.22) which is to be eliminated by
the ith right Householder matrix G′

i = I = τpi
viv

T
i . As in the GEMVER

pseudo-code ṽi is obtained a block at a time and immediately used to incre-
ment the partial sum of the pre-wi vector defined by

w̃i(1:m-i+1) := A(i:m,i+1:n)ṽi(1:n-i) (4.29)

where the elements of the A matrix are the elements of the Ai matrix.
Having computed ṽi and w̃i from a GEMVER call, the right Householder

vector vi can be obtained from a call to LARFG and is related to ṽi by

vi(1:n-1) :=
ṽi − se1

ṽi(1)− s
(4.30)

where

s :=

{

−‖ṽi‖, if ṽi(1) ≥ 0
+‖ṽi‖, if ṽi(1) < 0.

(4.31)

8Defer (4.24) till step i+1 so that the trailing part of A is accessed only once on step i.

17

The scalar factor τpi

τpi
:=

s− ṽi(1)

s
. (4.32)

is computed by a call to LARFG. To recover Avi from w̃i := Aṽi, use
linearity:

A(i:m,i+1:n)vi =

(

1

ṽi(1)− s

)

A(i:m,i+1:n)ṽi

−

(

s

ṽi(1)− s

)

A(i:m,i+1:n)e1

=
w̃i(1:m-i+1)− sA(i:m,i+1)

ṽi(1)− s)
. (4.33)

Summary: The i−1st column-row update to produce Ai can be deferred
until we are ready to perform the two matrix-vector multiplications in (4.28)
and (4.29) to compute ṽi and w̃i. Accordingly, we can generate the ith left
Householder vector ui and its scalar factor τqi

before the i−1st column-row
update, and then package the two matrix-vector multiplications in (4.28)
and (4.29) along with the i−1st column-row updates for Ai in a single call
to GEMVER:

A(i:m,i+1:n)← A(i:m,i+1:n) − ui−1(2:m-i+2) zT
i−1(2:n-i+1)

−wi−1(2:m-i+2) vT
i−1(2:n-i+1) (4.34)

ṽT
i (1:n-i)← −τqi

AT (i:m,i+1:n)ui + AT (i,i+1:n) (4.35)

w̃i(1:m-i+1)← A(i:m,i+1:n) ṽT
i . (4.36)

Following the GEMVER call, recover vi, τpi
, and wi from the outputs ṽi

and w̃i using equations (4.30), (4.32), and (4.33) respectively. The quantity
xi = τqi

AT ui in (4.25) is available from the output (4.35) of GEMVER as

xi = τqi
AT (i:m,i+1:n)ui = −ṽT

i + AT (i,i+1:n). (4.37)

The vector zT
i is then computed using xi in (4.27). Now the four vectors

ui, zi, wi, and vi have been computed. As before, instead of immediately
performing the rank-2 update in (4.23) and (4.24), delay the update until
the GEMVER call generating ṽi+1 and w̃i+1.

Algorithm I: Pseudo Code for i = 2 : n−2

18

For i = 2 : n−2,
1 (i) Update the ith column of A with the vectors u0,z0,

w0,v0 (Eqn (4.24) with i−1 in place of i:)
A(i:m,i)← A(i:m,i)− u0(1:m-i+1) z0(1)

−w0(1:m-i+1) v0(1) 2 AXPYs
(ii) Get the current ith row of A with the vectors

u0, z0, w0, v0 (Eqn (4.24) for i−1)
Does not overwrite A, but is needed as

an input to GEMVER)
zinput ← A(i,i+1:n)− u0(2)z0(1:n-i)

−w0(2)v0(1:n-i). 2 AXPYs
(iii) Compute ui of length m− i+1 to zero

A(i+1:m,i). Also compute scalars τqi
and d(i). LARFG

A(i+1:m,i)← ui(2:m-i+1), A(i,i)← d(i).

2. (i) GEMVER call (Eqns (4.34)-(4.36))
A(i:m,i+1:n) ← A(i:m,i+1:n)

−u0(2:m-i+2) zT
0 (2:n-1+1)

−w0(2:m-i+2) vT
0 (2:n-1+1)

ṽi ← zinput − τqi
(uT

i A(i:m,i+1:n)) BLAS-2.5
w̃i ← A(i:m,i+1:n) ṽT

i , GEMVER
(ii) xi ← −ṽT

i + z (Eqn (4.37)). AXPY

3 Compute vi of length n− i to zero ṽi(2:n-i),
Also compute the scalars τpi

and e(i). LARFG
A(i,i+2:m)← vi(2:n-i), e(i)← A(i,i+1)

4 Put t← ṽi(1)− s where

s :=

{

−‖ṽi‖, if ṽi(1) ≥ 0
+‖ṽi‖, if ṽi(1) < 0

and compute (Eqns (4.33) and (4.26)),

wi ← τpi

(

w̃i−sA(i:m,i+1)
t

)

. AXPY

5 zi ← xi − τpi
(xT

i vi)vi (Eqn (4.27)) DOT, AXPY
6 Store wi and zi for the ith rank-2 update

(Eqn (4.24)): w0 ← wi, z0 ← zi

ui, vi are already stored in the ith column and row
of A respectively. For convenience of notation consider

u0 ← u1, v0 ← vi).
End For.

19

When i = n− 1, we only need to compute the left Householder vector
and multiply the A matrix on the left by the corresponding Householder
matrix. There is no right Householder vector, so the GEMVER call and
Steps 2-6 are not needed. After the i = n− 2 steps are completed, the
four vectors u0, z0, w0, v0 contain un−2, zn−2, wn−2, vn−2, so we need only
use them to update the trailing (m−n+2)× 2 matrix, A(n-1:m,n-1:n), call
LARFG to compute the n−1st left Householder vector, and then apply the
left Householder matrix to update the last column of A.

Algorithm I: Pseudo Code for i = n−1

1 (i) Update the n−1st and n th columns of A with
un−2, zn−2, wn−2 and vn−2

(Eqn (4.24) with n−2 in place of i):
A(n-1:m,n-1)← A(n-1:m,n-1)

−u0(1:m-n+2)z0(1)
−w0(1:m-n+2)v0(1), 2 AXPYs

A(n-1:m,n) = A(n-1:m,n)− u0(1:m-n+2)z0(2)
−w0(1:m-n+2)v0(2). 2 AXPYs

(ii) Compute un−1 of length m−n+2 to
zero A(n:m,n-1) and compute the LARFG
scalars τqn−1 , and d(n-1).

2 A(n-1:m,n) ← (I − τqn−1un−1u
T
n−1)A(n-1:m,n),

e(n-1) ← A(n-1,n), A(n,n)← d(1),
and A(n:m,n-1)← un−1.

If m> n, we need one last left Householder vector to zero out the entries
A(n+1:m,n).

Algorithm I: Pseudo Code for i = n

If m = n,
Set d(n)← A(n,n) and τqn ← 0,

Else
If m > n

Compute un of length m−n+1 to zero
A(n+1:m,n); compute τqn and d(n). LARFG
A(n+1:m,n)← un(2:m-n+1), A(n,n)← d(n)

Endif (m > n)
Endif (m = n)

20

As in Algorithm BLAS-2 of Section 2, the trailing part of the A-matrix
is updated after each paired column-row elimination. The next algorithm
does not update rows and columns until they are due to be eliminated.

5 Algorithm II - A-Matrix Never Updated

As the first operation (4.34) of a GEMVER call, Algorithm I updates the
trailing part of the matrix on each column-row elimination. Matrix updates
on each column-row elimination have several drawbacks. Writes of the ma-
trix from cache to RAM are slow, typically somewhat slower than reads
from RAM to cache. Moreover, updates may not preserve structure, such
as sparsity, of the original matrix.

Algorithm II defers matrix updates. The trailing matrix is accessed
(read) only to perform matrix-vector multiplications. The set of update
vectors is incremented as the elimination proceeds. BLAS-2 matrix-vector
multiplies update the ith column and row from the original matrix on the
step before they are eliminated.

First, we give some notation. Let ui, zi, wi, and vi be the vectors for the
rank-2 update of (4.24) in Algorithm I:

H ′

iAiG
′

i = Aiuiz
T
i − wiv

T
i

=











e(i) 0 . . . 0

x
... Ai+1

x











. (5.1)

Here ui is the left Householder vector of length m− i+1 with ui(1) = 1
and vi is the right Householder vector of length n− i with vi(1)= 1, which
arise from the two LARFG calls in Steps 1 and 3 of Algorithm I, and zi,
wi are the vectors of length n−i and m− i+1 defined by (4.27) and (4.26),
respectively, in Algorithm I. The corresponding full length vectors are

u(i) =











0
...
0
ui











and w(i) =











0
...
0
wi











with i−1 initial zeros, (5.2)

21

both of length m, and

z(i) =











0
...
0
zi











and v(i) =











0
...
0
vi











with i initial zeros, (5.3)

both of length n.
Suppose the first i−1 of the above vectors have been computed. If Aorig

denotes the original matrix, the matrix A(i) of (2.3) (updated by the first
i−1 left and right Householder matrices) is

A(i)(1:m,1:n) =

i−1
∏

j=1

[I − τqj
u(j) u(j)T

] Aorig(1:m,1:n)

i−1
∏

j=1

[I − τpj
v(j) v(j)T

]

= Aorig(1:m,1:n)−

i−1
∑

j=1

u(j)z(j)T

−

i−1
∑

j=1

w(j)v(j)T

= Aorig(1:m,1:n)− (u(1), u(2), . . . , u(i−1))







z(1)T

...

z(i−1)T







− (w(1), w(2), . . . , w(i−1))







v(1)T

...

v(i−1)T






. (5.4)

The last representation follows from repeated application of the rank-2 up-
date formula (4.21). Take the full length vectors u(j), w(j), z(j) and v(j) as
in (5.2)-(5.3). Define the matrices

Umat = [u(1), u(2), . . . , u(n)], Wmat = [w(1), w(2), . . . , w(n)]

(m× n) (lower trapezoidal) (5.5)

and

Zmat =













z(1)T

z(2)T

...

z(n−2)T













, Vmat =













v(1)T

v(2)T

...

v(n−2)T













(n−2× n)

(strictly upper trapezoidal)

22

The first i−1 rank-2 updates can be written as

A(i)(1:m,1:n) = Aorig(1:m,1:n) −Umat(1:m,1:i-1)Zmat(1:i-1,1:n) (5.6)

−Wmat(1:m,1:i-1)Vmat(1:i-1,1:n).

Similarly, any portion A(i)(k:p,1:q), of the m×n matrix A(i) (updated by
i−1 rank-2 updates) may be expressed as

A(i)(k:p,1:q) = Aorig(k:p,1:q) −Umat(k:p,1:i-1)Zmat(1:i-1,1:q) (5.7)

−Wmat(k:l,1:i-1)Vmat(1:i-1,l:q).

In particular, Ai = A(i)(i:m,i+1:n) is

Ai = A(i)(i:m,i+1:n)

= Aorig(i:m,i+1:n) −Umat(i:m,1:i-1)Zmat(1:i-1,i+1:n)

−Wmat(i:m,1:i-1)Vmat(1:i-1,i+1:n) (5.8)

Algorithm II consists of the same basic steps as Algorithm I. The main
difference is that rows and columns are not updated until just before they
are eliminated. Thus the two matrix-vector multiplications accomplished by
calls to GEMVT (i = 1) and GEMVER (i = 2 to n− 2) are done using
elements of the original A-matrix.9 Whenever the updated ith column or
row is required, or whenever any submatrix of the A(i)(1:m,1:n) matrix is
required, formulas of the type (5.7), (5.8) are substituted for the updated
quantities and the ensuing calculations performed using the original elements
of the A-matrix, along with the necessary correction terms which arise from
the vectors

uj , zj , wj , vj , j = 1 . . . i− 1

stored (as in (5.2-5.5)) in the arrays Umat, Zmat, Wmat and Vmat.
In Algorithm II, the original matrix A is overwritten only if we choose to

overwrite eliminated rows and columns by the Householder vectors used to
eliminate them. Matrix vector multiplications are performed with Aorig and
with the arrays Umat, Zmat, Wmat and Vmat. In the sparse case, eliminating
updates of Aorig eliminates matrix fill and allows matrix vector multiplica-
tions to be made with the original sparse matrix.10.

9Because the trailing part of the matrix is not updated, GEMVT calls are used in
place of GEMVER calls.

10In the dense case, the Umat and Vmat arrays are unnecessary since there is enough
room below the diagonal of A to store the ui vectors and enough room to the right of the
superdiagonal of A to store the vi vectors.

23

To see how bidiagonalization can proceed without updating the trailing
part of the A-matrix, observe that when i = 1, Steps 1-5 are exactly the same
as in Algorithm I. In Step 6, the w1 and z1 vectors are stored in the first
column and row of Wmat and Zmat instead of in w0 and z0. If the original
matrix is not sparse, the vectors ui, vi can be stored in the ith column and
row of A.

GEMVT when the trailing part of the matrix is not updated:

The GEMVER update of the trailing part of the A-matrix (first part of Step
2) is not done. The other portion of Step 2 is a GEMVT set of two matrix
multiplications. Step 2 still performs the GEMVT operations, complicated
by the need to also perform matrix vector multiplications by the update
vectors.

Reconsider the discussion of the vectors ṽi and w̃i used in the GEMVT
computation. By substituting the matrix A(i)(i:m,i+1:n) from (5.8) for the
updated A(i:m,i+1:n) in equation (4.28), the two matrix-vector multiplica-
tions in (4.35) and (4.36) can be performed using the matrix Aorig(i+1:m,
i+1:n) in a call to GEMVT. More explicitly, assume that in Algorithm I
we have updated the ith column and the ith row of the A-matrix using all
the left and right Householder vectors up through i−1, and that the trailing
part, A(i+1:m,i+1:n), has been updated by the first i− 1 rank-2 updates.
Starting from equation (4.28),

ṽi(1:n-i) = A(i)(i,i+1:n)− τqi
uT

i A(i)(i:m,i+1:n)

= A(i)(i,i+1:n)− τqi
ui(1)A(i)(i,i+1:n)

−τqi
uT

i (2:m-i+1)A(i)(i+1:m,i+1:n)

= (1− τqi
)A(i)(i,i+1:n)

−τqi
uT

i (2:m-i+1)[Aorig(i+1:m,i+1:n)−Bi](5.9)

where, using (5.7) with k = l = i +1, p = m, and q = n,

Bi := Umat(i+1:m,1:i-1)Zmat(1:i-1,i+1:n)

+ Wmat(i+1:m,1:i-1)Vmat(1:i-1,i+1:n). (5.10)

Bi is not explicitly computed11. Instead, compute

uT
i Bi = (uT

i Umat(i+1:m,1:i-1))Zmat(1:i-1,i+1:n)

+ (uT
i Wmat(i+1:m,1:i-1))Vmat(1:i-1,i+1:n). (5.11)

11Computing Bi would require extra storage and increase the number of floating point
operations.

24

Similarly, for w̃i, we have, starting with equation (4.29),

w̃i(1:m-i+1) = A(i)(i:m,i+1:n)ṽT
i

= [A(i)(i,i+1:n)ṽT
i , A(i+1:m,i+1:n)ṽT

i]

= [A(i)(i,i+1:n)ṽT
i , Aorig(i+1:m,i+1:n)ṽT

i −Biṽ
T
i] (5.12)

where the Bi matrix is the same as in (5.10) and Biṽ
T
i is performed analo-

gously to (5.11). Using

zinput(1:n-i) := (1− τqi
)A(i)(i,i+1:n) + τqi

uT
i (2:m-i+1)Bi (5.13)

in the GEMVT call, GEMVT does the following two matrix-vector multi-
plications.

ṽT
i (1:n-i) := −τqi

uT
i (2:m-i+1)Aorig(i+1:m,i+1:n) + zT

input (5.14)

w̃i(2:m-i+1) := Aorig(i+1:m,i+1:n) ṽT
i . (5.15)

From (5.12), complete the computation of w̃i (as in (5.11) do not actually
form Bi) by the update

w̃i(2:m-i+1) = w̃i(2:m-i+1)−Biṽ
T
i . (5.16)

Adjoin the first component by computing the dot product

w̃i(1) = A(i)(i,i+1:n)ṽT
i . (5.17)

From the first equation in (5.9), xi (equation (4.25)) is computable as

xi(1:n-i) = −ṽT
i (1:n-i) + A(i)T

(i,i+1:n) (5.18)

where A(i)(i,i+1:n) is the updated ith row of A. This is the same as equation
(4.37) obtained for Algorithm I.

Performing the deferred updates:

Having deferred updates of the trailing part of the matrix, the ith step still
requires updated rows and columns to compute the corresponding House-
holder vectors. The original ith row is updated just before the call to
GEMVT by using all the left and right Householder vectors up to i− 1
(equation (5.7) with k = p = i, l = i+1, and q = n)

A(i,i+1:n)← Aorig(i,i+1:n) + Umat(i,1:i-1)Zmat(1:i-1,i+1:n)

−Wmat(i,1:i-1)Vmat(1:i-1,i+1:n). (5.19)

25

Also, obtaining wi from w̃i requires an updated ith column. Specifically,
the ith column is required on column row elimination i−1 . Since the formula
(4.33) needed for recovering wi from w̃i requires the updated i+1st column
of A and since the only element of this column which has been updated is
A(i,i+1) (done in Step 2(i) in the pseudo-code below) we must first update
A(i+1:m,i+1) using equation (5.7) with k = i+1, p = m, and l = i+1,

A(i)(i+1:m,i+1)← Aorig(i+1:m,i+1)− Umat(i+1:m,1:i-1)Zmat(1:i-1,i+1)

− Wmat(i+1:m,1:i-1)Vmat(1:i-1,i+1). (5.20)

On the ith column row elimination, the ith column requires the same AXPYs
performed in Algorithm I, now phrased in terms of the update arrays.

A(i:m,i)← A(i:m,i)− Umat(i:m,i-1)Zmat(i-1,i)−Wmat(i:m,i-1)Vmat(i-1,i).

Algorithm II: Pseudo Code

For i = 3 : n−3,
1. (i) Complete the update of the ith column of A

A(i:m,i)← A(i:m,i)− Umat(i:m,i-1)Zmat(i-1,i)
−Wmat(i:m,i-1)Vmat(i-1,i). 2 AXPYs

(ii) Compute ui of length m− i+1 to zero A(i+1:m,i),
and compute the scalars τqi

and d(i). LARFG
A(i+1:m,i)← ui(2:m-i+1), A(i,i)← d(i).

(iii) Update the original ith row of A using all the left and
right Householder vectors up to i−1 (Eqn. (5.19))

A(i,i+1:n)← Aorig(i,i+1:n)
−Umat(i,1:i-1)Zmat(1:i-1,i+1:n)
−Wmat(i,1:i-1)Vmat(1:i-1,i+1:n). 2 GEMVs

2. (i) This step corresponds to a GEMVT using the updated
matrix. Generate ṽi and w̃i.

(A) Use the updated ith row of A from 2(i), the ith left
Householder vector ui, the scalar τqi

from 1(ii),
and the vectors uj , zj , wj , vj stored for
j = 1, 2, . . . , i−1 in Umat, Zmat, Wmat, and Vmat :
to compute as in (5.11),

zinput ← (1− τqi
)A(i,i+1:n) 4 GEMVs

+ τqi
[uT

i (2:m-i+1)Umat(i+1:m,1:i-1)] Zmat(1:i-1,i+1:n)
+ τqi

[uT
i (2:m-i+1)Wmat(i+1:m,1:i-1)] Vmat(1:i-1,i+1:n).

(B) Compute (Eqns (5.14), (5.15)),

26

ṽi(1:n-i)← zinput(1:n-i)− τqi
uT

i Aorig(i:m,i+1:n)
and BLAS 2.5

w̃i(2:m-i+1)← Aorig(i+1:m,i+1:n) ṽT
i . GEMVT

The vector ṽi now contains the same entries
as in 2(ii) of Algorithm I.

(C) Complete the computation of w̃i(1:m-i+1) (Eqns
(5.16) and (5.17)).

w̃i(2:m-i+1)← w̃i(2:m-i+1) 4 GEMVs
− τqi

Umat(i+1:m,1:i-1) [Zmat(1:i-1,i+1:n) ṽT
i]

− τqi
Wmat(i+1:m,1:i-1) [Vmat(1:i-1,i+1:n) ṽT

i].
w̃i now contains the same entries

as in Step 2(ii) of Algorithm I.

(ii) xi ← −ṽT
i + A(i)T

(i,i+1:n) (Eqn.(5.18)) AXPY

3. Construct vi of length n− i to zero ṽi(2:n-i) LARFG
and compute the scalars τpi

and e(i).
A(i,i+2:n) ← vi(2:n-i), A(i,i+1)← e(i).

4. (i) Recovering wi from w̃i requires the updated
i+1st column of A (Eqn. (5.20))

A(i)(i+1:m,i+1)← Aorig(i+1:m,i+1) 2 GEMVs
− Umat(i+1:m,1:i-1)Zmat(1:i-1,i+1)
−Wmat(i+1:m,1:i-1)Vmat(1:i-1,i+1).

(ii) t← ṽi(1)− s where

s←

{

−‖ṽi‖, if ṽi(1) ≥ 0
+‖ṽi‖, if ṽi(1) < 0

and compute (Eqns (4.33) and (4.26)),

wi ← τpi

(

w̃i−sA(i)(i:m,i+1)
t

)

. AXPY

(iii) After A(i)(i,i+1) is used to compute wi,
A(i,i+1)← e(i).

e(i) was computed in Step 3. Now the ith row
has been overwritten from i+1 to n.

5. zi ← xi − τpi
(xT

i vi) vi (Eqn (4.27)). DOT, AXPY

6. Wmat(i:m,i)← wi , Zmat(i,i:n)← zi

(If A was originally in dense storage no separate storage
is needed for ui and vi in the virtual arrays Umat and

27

Vmat . They were loaded into the ith column and
ith row of the A matrix in Steps 1(ii) and Step 3.)

End For

This completes the pseudo-code for Algorithm II.12 The processing of the
(n − 1)th and nth columns are similar to Algorithm I (on the eliminating
the (n− 1)th column, the update Eqn (5.20) must be performed.

Since Algorithm II does not change any row or column of A until the
step on which they are eliminated, the only access of the trailing (perhaps
sparse) matrix is for matrix vector multiplications. Thus Algorithm II gives
a stable alternative to sparse Lanczos bidiagonalization. As such, it is useful
for obtaining the first entries of a bidiagonal matrix, e.g. for a least squares
algorithm such as LSQR [21] or for approximating a few singular values as
in SVDPACK [2, 3, 4]. Obtaining the first k diagonal and k superdiagonal
bidiagonal entries requires 6(m+n)k2−8k3 flops GEMV flops. For a sparse
matrix with nz nonzero entries, 4nzk GEMVT flops are needed. If the
matrix is dense, then 4nmk−2(m+n)k+4k3/3 GEMVT flops are required.

For complete bidiagonalization of a dense matrix, Algorithm II is im-
practical. For m > n, the total number of flops becomes 8mn2 − 8/3n3,
double that of Algorithms BLAS-2 and I. The stored update matrices Umat,
Vmat, Wmat, and Zmat require (even if A is overwritten by Umat and Vmat)
twice the storage of the original matrix A. As the algorithm proceeds, the
matrices Umat, Vmat, Wmat, and Zmat no longer fit in cache, so these GEMV
operations are “out-of-cache”, performing only two flops for each read of a
double precision number from RAM.

The following section applies Algorithm II as a border update in blocking
bidiagonalization. Updates of the trailing matrix are BLAS-3. Algorithm II
accesses of Umat, Vmat, Wmat, and Zmat are “in-cache”.

6 Algorithm III - Block Updates

Algorithm III is a block partitioned algorithm modeled after the LAPACK
algorithm GEBRD of Dongarra, Hammarling, and Sorensen [11]. As with
GEBRD, writes of the trailing part of the matrix occur only after a border of
rows and columns have been bidiagonalized. Algorithm III calls Algorithm II
to reduce the borders. Comparing Algorithm I and Algorithm III, Algorithm

12In block diagonalization (Algorithm III in the next section) , k steps of Algorithm
II are performed in a bordering algorithm. On the last step (kth) step, Steps 4 to 6 are
unnecessary.

28

III writes the trailing part of A only one time for each border block (k
rows and columns), so is typically faster than Algorithm I, which writes the
trailing part of the matrix once for each column-row elimination. (Algorithm
I is useful for the last unblocked step).

If blocks are of size Nb, then GEBRD or Algorithm III requires O(mnNb)
flops additional to the flops required by Algorithm I, where the additional
flops are mainly (in-cache) GEMV flops. For either GEBRD or Algorithm
III, 2mn2− 2/3n3 flops are BLAS-3 GEMMs. For GEBRD 2mn2− 2/3n3

flops are “out-of-cache” BLAS-2 GEMVs where for Algorithm III these
2mn2 − 2/3n3 flops are BLAS-2.5 GEMVTs. Calling a GEMVT as op-
posed to two GEMVs requires a read of the trailing part of the matrix once
per column-row elimination as opposed to twice. Thus Algorithm III re-
quires only about half as many reads of A compared to GEBRD. Summing
up, Algorithm III has roughly half the number of reads of the LAPACK
bidiagonalization GEBRD and about the same number of writes.

Algorithm III consists of applying Algorithm II on each of kmax blocks of
the A matrix, each block having Nb columns of A. Here kmax is the greatest
integer less than or equal to n/Nb, where Nb is the block size. The last block
consists of the last (n − Nb kmax) columns of A. The first kmax blocks are
processed by successive calls to Algorithm II and the last block is processed
by a single call to Algorithm I. On step I, let mnow = m − Nb(I − 1),
nnow = n−Nb(I − 1). Algorithm III generates an (mnow ×Nb matrix Wmat

of Nb vectors w(i) and an Nb × nnow matrix Zmat of Nb vectors z(i). The
corresponding Nb vectors ui are stored below the diagonal in the reduced
part of A, and the corresponding Nb vectors vi are stored to the right of the
superdiagonal in the reduced part of A (so whenever the virtual arrays Umat

and Vmat are referenced, the appropriate storage locations of A must be
accessed.) As each L-shaped block of Nb rows and Nb columns is processed,
the trailing, unreduced part of the A matrix is updated all at once using
equation (5.7) with k = I Nb+1, p = m, l = I Nb+1, q = n where I denotes the
Ith block of Nb rows and Nb columns. The block updates are accomplished
by two calls to the BLAS-3 matrix-matrix multiplication routine GEMM.

Note: Since the w(i) and z(i) vectors for the Ith block are needed only
to update the trailing, unreduced part of the A matrix, the Wmat and
Zmat arrays can be zeroed out after the Ith block update, and reloaded
with the w(i) and z(i) vectors for the I + 1st block. Hence, the main
additional storage requirement for Algorithm III in addition to the
m × n A matrix is an w ×Nb array for Wmat and a Nb × n array for
Zmat.

29

Algorithm III: Pseudo Code

1. Given m, n and matrix A and a block size Nb < n,
kmax ← [n/Nb].

For I = 1 : kmax,
2. For i = 1,

Perform the Steps 1-6 of Algorithm I
Wmat((I-1)Nb+1:m,1)← w1, Zmat((1,(I-1)Nb+1:n)← z1

End For
3. For i = 2 : Nb,

Perform steps 1-6 of Algorithm II
Wmat((I-1)Nb+i:m,i)← wi, Zmat((i,(I-1)Nb+i:n)← zi

End For
4. Update the trailing unreduced INb +1 :m rows

and INb +1 :n columns of A using the block
update formula (5.7) with j = INb +1 and l = INb +1:

A(INb + 1 :m, INb +1 :n)←
Aorig(INb +1 :m, INb + 1 :n) 2 BLAS-3
−Umat(INb + 1 :m, 1 : Nb)Zmat(1 : Nb, INb + 1 :n) GEMMs
−Wmat(INb +1 :m, 1 : Nb)Vmat(1 : Nb, INb + 1 :n).
where

Umat(INb + 1 :m, 1 : Nb) := A(INb + 1 :m, 1 : Nb)
Vmat(1 : Nb, INb + 1 :n) := A(1 : Nb, INb + 1 :n).

Then Wmat ← 0, Zmat ← 0
End For
5. [A] For i = kmaxNb +1 : n−2,

Perform Steps 1-6 of Algorithm I.
End For

[B] For i = n−1 : n,
As in Algorithm I, perform the last two column updates of A.

End For

Algorithms I, II, and III were developed in Matlab and converted to Fortran
77 for inclusion in a future release of the LAPACK library. The Algorithm
III pseudo code corresponds to the new routine GEBRD2. GEBRD2 has
the same calling sequence as the current LAPACK routine GEBRD and is
interchangeable with GEBRD in all LAPACK routines which call GEBRD.
Algorithm II corresponds to the new routine LABR2 which accomplishes
the same border reduction as LAPACK routine LABRD. The Algorithm I
pseudo code corresponds to the new routine GEBD3 which accomplishes

30

the same unblocked bidiagonalization as LAPACK routine GEBD2 (which
implements the Algorithm BLAS-2 of Section 2). There are differences be-
tween the new routine GEBD3 and the current routine DGEBD2, and also
between the new routine LABR2 and the old routine LABRD. .

7 Timing Data for Algorithm III and Some Notes

on Algorithm Tuning

We have compiled and run DGEBRD2 on a variety of platforms, including
SGI Irix, Compaq Alphas under Tru64, IBM Power5s under AIX, and Sun
Solaris on UltraSparcs, and with several BLAS packages (used for DGEMM
calls and for BLAS 2 calls from DGEMVT and DGEMVER). In almost all
cases, DGEBRD2 executed significantly more quickly than did LAPACK
using DGEBRD.

For Pentium III processors with 256K cache running Redhat 7.3, speedups
were comparable to those reported here, but mainly disappeared when the
operating system was changed to RHEL 3.1. We hypothesize that RHEL
3.1 uses the 256K cache to cache the operating system and program stack,
so that little data caching can occur. The least speedup (only 4% to 5%)
of the other processors was on the Power 5, which has a high bandwidth to
RAM relative to CPU speed so that GEMV matrix vector multiplications
run fairly fast even if data is out of cache.

We report here our most recent results running under Linux on 2.8 GHz
Xeons and 2.0 GHz Opterons at North Carolina State University. The Xeon
processor has a cache size of 512 Kb and the Opteron has 2 Mb of cache.
For the Xeons, the Atlas-tuned BLAS [25] (compiled with the gnu gcc) was
linked to Intel ifc compiled versions of DGEBRD2 and the results compared
to ifc compiled versions of DGEBRD2 linked to the same BLAS library.
The DGEMVT and DGEMVER operators were implemented on top of the
BLAS-2 DGEMV and DGER operators as described in Section 3. For the
Opterons, we obtained our fastest DGEBRD2 results with ifc compiled code
linked to the Intel provided library. The DGEBRD2 (Algorithm III) code
is compiled with the same ifc flags and links to the same BLAS library.

Recall that GEMVT, uses column blocking, making two GEMV calls
on each column block, (as in the GEMVT Pseudo Code in Section 3). Each
call to GEMVT determines the number of columns in a column block by a
call to ILAENV13. Tuning to a given processor is by fixing two parameters

13ILAENV is the LAPACK environment routine that returns information such as the
block size Nb.

31

in ILAENV.
The first parameter is an upper bound C1 on the number of double

precision numbers for a column block of a matrix. An initial guess for
the number of columns in a block is k = C1/m where m is the number
of rows in the call to GEMVT. The integer k is then truncated to be a
multiple of C2 where C2 has been chosen by numerical experiment to give
good performance in calls to GEMV for a given BLAS library. Generally,
one expects to have to choose C2 so that the underlying GEMV calls do
not have to make clean-up steps, i.e., C2 should be an even multiple of the
GEMV loop unrolling parameters.

As an additional refinement, if the initial guess C2/2 ≤ k = C1/m < C2,
then take the number of columns as C2/2 (allowing smaller column block
sizes when the number of rows m is large.) If k < C2/2, then take the
block size as n, the number of columns in the call to GEMVT. Thus if
m > 2C1C2, no column blocking is used.

Fortran lines encapsulating this discussion for a Xeon with a 512Kbyte
= 64K double precision number cache are

C1 = 40000

C2 = 12

NBMIN = C2

NX = M/C1

NB = MIN(NBMIN*(NX/NBMIN),160)

IF (NX.LT.NBMIN .AND.NX.GE.NBMIN/2) THEN

NB = NBMIN/2

ELSEIF (NX.LT.NBMIN/2) THEN

NB = N

ENDIF

Generally, algorithm performance is not very sensitive to the choice of C1,
but does fall off rapidly if C1 is chosen large enough that column blocks do
not fit in cache. If C1 is chosen too small, then matrices with number of
rows m > C1C2/2 do not use column blocking even though a usable column
block might fit in cache. C2 can be found either by timing GEMVT for a
fixed m and various block sizes, or by knowing the loop-unrolling parameters
in the underlying BLAS. Generally, for each given architecture and choice
of BLAS library, each flavor of arithmetic (complex, double complex, single
precision, and double precision) will need its own choice of C1 and C2.

Tables 2 to 4 compare LAPACK timings to the current code. As de-
tailed above, a primary difference between the LAPACK code and that im-

32

plemented here is that LAPACK uses two calls to GEMV which this code
accomplishes in one call to GEMVT.

Timing comparisons of DGEBRD2 with LAPACK routine DGEBRD on
the Xeon processor for square matrices ranging in size from 400 to 2000 are
given in Table 3. All times are CPU times in seconds. The blocksize C1 was
40000 double precision numbers (320KBytes) compared to an L2 cache size
of 512Kbyes. C2 = NBMIN is taken as 12.

Matrix LAPACK NEW RATIO
Size DGEBRD DGEBRD2 DGEBRD2

Time Time DGEBRD

400 0.21 0.17 0.81

600 0.70 0.56 0.80

800 1.57 1.19 0.76

1000 3.05 2.36 0.77

1200 4.91 3.80 0.77

1400 8.01 6.10 0.76

1600 11.52 9.52 0.83

1800 16.54 12.92 0.78

2000 23.06 17.45 0.76

Table 2: Times for Bidiagonalization on 2.8 GHz Xeon

For the same runs done in the above table, the megaflop rates for both
DGEBRD2 and DGEBRD were computed. Since both algorithms have a
total flop count on the order of 8

3 N3 for square matrices, the megaflop rate
was computed by

Mflops =
8
3N3

106 ∗ CpuSeconds
(7.1)

33

Matrix LAPACK NEW RATIO
Size DGEBRD DGEBRD2 DGEBRD2

MFLOPS TIME MFLOPS TIME DGEBRD

200 711 .03 1391 .02 .67

400 1067 .16 1422 .12 0.75

600 1067 .54 1340 .43 0.72

800 1128 1.21 1339 1.02 0.80

1000 1175 2.27 1361 1.96 0.84

1200 1209 3.81 1392 3.31 0.87

1400 1242 5.89 1396 5.24 0.87

1600 1279 8.54 1435 7.61 0.89

1800 1288 12.1 1438 10.8 0.89

2000 1312 16.3 1439 14.9 0.91

2200 1326 21.4 1445 19.6 0.92

2400 1338 27.6 1452 25.4 0.92

2600 1391 33.7 1468 25.4 0.95

2800 1351 43.2 1463 40.0 0.93

3000 1364 52.8 1490 48.3 0.92

Table 4: Megaflop Rates and Times for Bidiagonalization on 2.0 GHz
Opteron

Matrix LAPACK NEW RATIO
Size DGEBRD DGEBRD2 DGEBRD2

MFLOPS MFLOPS DGEBRD

400 812 1004 0.81

600 822 1029 0.80

800 870 1147 0.76

1000 874 1140 0.77

1200 938 1213 0.77

1400 914 1200 0.76

1600 948 1147 0.83

1800 940 1204 0.78

2000 925 1222 0.76

Table 3: Megaflop Rates for Bidiagonalization on a 2.8 GHz Xeon

Table 4 summarizes runs on on an Opteron 2 GHz processor with 2

34

Mbytes of cache memory. For these runs, GEMVT took the number of
columns in a block as a multiple of C2 = 12. GEMVT column blocks
were taken to have C1 = 120K double precision numbers, i.e., 960KBytes,
compared to an L2 cache size of 2Mbytes. The LAPACK routine and BLAS
are taken from the Intel supplied libraries. Similar results are obtained with
the AMD supplied libraries.

8 Complex and Transposed Cases, Stability and

Robustness

The timing results are for the case of upper bidiagonalization of double
precision matrices with more rows than columns. The case of lower bidiag-
onalization occurs when there are more columns than rows. We can handle
this case is an analogous manner to that described, but with transposed
BLAS-2.5 operations GEMVTT and GEMVERT. These operators use row
blocking as opposed to column blocking. Timings for the algorithm coded in
this fashion are not always better than the corresponding LAPACK codes,
perhaps because the Fortran row blocking reads too many matrix entries in
each column (cache-lines do not typically break evenly on the row blocks).
Alternatively, if adequate storage is available, an inplace matrix transpose
can be performed, in negligible time compared to bidiagonalization time.
Then upper bidiagonalization can be performed, and afterwards another
inplace transpose can recover the lower bidiagonal form (and the same re-
turned entries corresponding to the Householder vectors). For the double
precision case, both versions of the lower bidiagonalization code exist.

For complex bidiagonalization, the algorithm is slightly changed from the
double precision case. Fortran 77 (and Matlab) versions of this code also
exist, with the Matlab code also working for floating point reals. Speedups
are less marked in the complex case, reflecting a quadrupling of computa-
tions, compared to a doubling of data transferred, so that for the complex
algorithm data transfer takes a lesser part of the total algorithm execution
time.

The GEBRD2 code exists as DGEBRD2, ZGEBRD2, SGEBRD2 and
CGEBRD2 (double precision, complex double precision, single precision,
and complex single precision) forms. Similarly, there are four versions of
each of GEMVER, GEMV, GEBD2, and LABRD3.

Testing routines for the Singular Value Decomposition routines in LA-
PACK [6] supply numerous tests of stability and robustness for 16 different
types of test matrices. We inserted our new routine DGEBRD2 into the

35

LAPACK package of routines, and ran the testing routines for LAPACK
routines DGESVD and DGESDD ([6], Sec. 7.8), using the input file svd.in
supplied by the LAPACK distribution which generates a number of m × n
test matrices with m and n ranging from 1 to 50. All tests were passed.

9 Summary and Conclusions

In this paper the sequence of operations for the usual Golub-Kahan House-
holder bidiagonalization [16] of a general m × n matrix is reorganized so
that the two (GEMV) vector-matrix multiplications can be done with one
pass of the unreduced trailing part of the matrix through cache. Left and
right matrix-vector multiplications by respective right and left Householder
vectors are required at each column-row elimination. In order to accomplish
both matrix-vector multiplications in one pass of the matrix through cache,
the reorganized code makes the right multiplication using a pre-Householder
vector which is the row vector to be eliminated. Scaling and a BLAS-1 cor-
rection are used to obtain the matrix vector product for the actual right
Householder vector. The rearrangement of the order of computations gives
rise to three algorithms: Algorithm I does a straightforward rank-2 update
on the trailing part of the matrix at each column row elimination, Algo-
rithm II never performs the rank-2 updates (at the cost of doubling the
operation count if run to completion), and Algorithm III defers the rank-2
updates performing them as two BLAS-3 matrix multiplications (GEMM)
after each block of k columns and rows have been eliminated. The latter, a
blocked version of Algorithm II, represents a version of the new algorithm
which enjoys a blocking similar to LAPACK routine GEBRD [9]. The two
new BLAS 2.5 operations (GEMVER and GEMVT) from the new BLAST
standard [7], which cut in half the data transfer from main memory to cache,
were introduced by the first author.

The above timing data on 2.8 GHz Xeon processors and 2.0 GHz Opteron
processors shows that our new Algorithm III as implemented in our new
subroutine DGEBR3 executes significantly faster than the LAPACK routine
DGEBRD. For square matrices of size 400 to 2000 with increment 200, the
CPU time for subroutine DGEBR3 was 75% to 80% of the time required by
LAPACK routine DGEBRD on the Xeon processors, and ranged from 75%
to 90% on the Opteron processors.

Grösser and Lang [19] and Lang [20] have implemented a parallel re-
duction to bidiagonal form which subdivides the reduction into two stages,
dense to banded, and banded to bidiagonal. The two stage bidiagonalization

36

[19] requires 4mn2−4/3n3 almost all BLAS-3 flops for a reduction too small
band form, then a further slow 8k2n flops for a reduction from bandwidth
k to bidiagonal. For sufficiently large matrices, the Grõsser-Lang algorithm
is likely to be faster than the algorithms described here. When singular
vectors are desired, the Grösser-Lang decomposition requires an extra stage
in reconstructing matrix singular vectors from the singular vectors of bidi-
agonal matrices, so that Algorithm III presented here is likely to require less
time.

The column oriented Algorithm I may be useful for matrices so small
that the entire matrix fits in L2 cache, and a few columns fit in L1 cache,
and is used as a clean-up step. Algorithm II is useful for sparse matrices
for which only the first few entries of the bidiagonal matrix are required.
Algorithm III has been adapted for inclusion in the LAPACK package.

10 Acknowledgments

We wish to thank Ken Stanley for his advice on cache-efficient algorithms.

References

[1] E. Andersen, Z. Bai, C. Bischof, J. Demmel, J. Don-

garra, A. Greenbaum, S. Hammarling, A. McKenney, S.

Ostrouchev, D. Sorensen, LAPACK User’s Guide, 3rd. Ed. 1999
SIAM, Philadelphia.

[2] M. Berry, Large scale singular value computations, Internat. J. Su-
percomputer Appl., 6:13-49, 1992.

[3] M. Berry, T. Do, G. O’Brien, V. Krishna, and S. Varad-

han, SVDPACKC: Version 1.0 User’s Guide, Tech. Report CS-93-194,
University of Tennessee, Knoxville, TN, October, 1993.

[4] M. Berry, S. Dumais, and G. O’Brien, Using Linear Algebra for
Intelligent Information Retrieval, SIAM Review, 37(4):573–595, 1995.

[5] C. H. Bischof and C. F. Van Loan, The WY Representaion of
Products of Householder Matrices, SIAM J. Sci. Stat. Comput, 8:s2-s13,
1987.

[6] S. Blackford and J. Dongarra, Installation Guide for LAPACK,
LAPACK Working Note 41, June, 1999.

37

[7] BLAST 2000-Standard. available at http://www.netlib.org/cgi-
bin/checkout/blast/blast.p1 . Completed on November 1, 2000.

[8] BLAS technical forum, www.netlib.org/utk/papers/blast-
forum.html, 1999.

[9] J. Choi, J. Dongarra, and D. Walker The design of a parallel
dense linear algebra software library: Reduction to Hessenberg, tridiag-
onal, and bidiagonal form. (LAPACK Working Note # 92) Num. Alg.,
10:379–399, 1995.

[10] I.S. Dhillon A New O(n2) Algorithm for the Symmetric Tridiagonal
Eigenvalue/Eigenvector Problem. PhD thesis, University of California,
Berkeley, California, May 1997.

[11] J. Dongarra, S. Hammarling, and D. Sorensen, Block Re-
duction of matrices to condensed forms for eigenvalue computations.J.
Comput. Appl. Math., 27:215–227, 1989.

[12] J. Dongarra, I. Duff, D. Sorensen, and H. van der

Vorst, Numerical Linear Algebra for High-Performance Computers,
1998, SIAM, Philadelphia.

[13] C.C. Douglas, G. Haase, J. Hu, M. Kowarschik, U.

Rüde, and C. Weiss,Portable Memory Heirarchy Techniques for
PDE Solvers: Part I, SIAM News, 33, 5, June 2000.

[14] V. Fernando, B. Parlett, and I. Dhillon, A way to find the
most redundant equation in a tridiagonal system. Berkeley Mathematics
Dept. Preprint, 1995.

[15] S. Goedecker and A. Hoise,Performance Optimization for Nu-
merically Intensive Codes, 2001, SIAM, Philadelphia.

[16] G. Golub and W. Kahan, Calculating the Singular Values and
Pseudo-Inverse of a Matrix, SIAM J. Num. Anal. 2:205–24, 1965.

[17] G. Golub and C. Reinsch, Singular Value Decomposition and Least
Squares Solution Matrix. Numer. Math., 14:403–420, 1970.

[18] G. Golub and C. F. Van Loan, Matrix Computations, 3rd Ed.,
The Johns Hopkins University Press, Baltimore, 1996.

38

[19] B. Grösser and B. Lang, Efficient Parallel Reduction
to Bidiagonal Form, Preprint BUGHW-SC 98/2 (Available from
http://www.math.uni-wuppertal/)

[20] B. Lang, Parallel reduction of banded matrices to bidiagonal form
Parallel Comput., 22 (1996), 1-18.

[21] C. Paige and M. Saunders. An Algorithm for Sparse Linear Equa-
tions and Sparse Least Squares. ACM Trans. on Math. Software, 8(1),
43–71, 1982.

[22] B. Parlett and I. Dhillon, Fernando’s solution to Wilkinson’s prob-
lem: An application of double factorization , Lin. Alg. Appl., 267:247–
279, 1997.

[23] R. Schreiber and C. F. Van Loan, A Storage-Efficient WY Rep-
resentation for Products of Householder Transformations, SIAM Scien-
tific and Statistical Computing, 10:53-57, 1989.

[24] K. Stanley,Execution Time of Symmetric Eigensolvers, Ph.D. dis-
sertation, 1997, CS, University of California, Berkeley.

[25] C. Whaley and J. Dongarra, Automatically Tuned Linear Al-
gebra Software Proceedings of the Ninth SIAM Conference on Parallel
Processing for Scientific Computing, 1999, available on CD-ROM from
SIAM.

39

