
Cache-efficient Dynamic Programming Algorithms for
Multicores

∗

Rezaul Alam Chowdhury
The University of Texas at Austin

Department of Computer Sciences
Austin, TX 78712

shaikat@cs.utexas.edu

Vijaya Ramachandran
The University of Texas at Austin

Department of Computer Sciences
Austin, TX 78712

vlr@cs.utexas.edu

ABSTRACT

We present cache-efficient chip multiprocessor (CMP) algo-
rithms with good speed-up for some widely used dynamic
programming algorithms. We consider three types of caching
systems for CMPs: D-CMP with a private cache for each
core, S-CMP with a single cache shared by all cores, and
Multicore, which has private L1 caches and a shared L2

cache. We derive results for three classes of problems: lo-
cal dependency dynamic programming (LDDP), Gaussian
Elimination Paradigm (GEP), and parenthesis problem.

For each class of problems, we develop a generic CMP
algorithm with an associated tiling sequence. We then tai-
lor this tiling sequence to each caching model and provide
a parallel schedule that results in a cache-efficient parallel
execution up to the critical path length of the underlying
dynamic programming algorithm.

We present experimental results on an 8-core Opteron for
two sequence alignment problems that are important exam-
ples of LDDP. Our experimental results show good speed-
ups for simple versions of our algorithms.

Categories and Subject Descriptors

B.2.1 [Arithmetic and Logic Structures]: Design Styles—
Parallel ; B.3.2 [Memory Structures]: Design Styles—
Cache memories; F.3.3 [Studies of Program Constructs]:
Program and recursion schemes

General Terms

Algorithms, Theory, Performance, Experimentation

Keywords

cache-efficiency, shared cache, distributed cache, multicore,
parallelism

1. INTRODUCTION
Chip multiprocessors (CMP) are rapidly becoming the

dominant parallel computing platform. A key feature that

∗This work was supported in part by NSF Grant CCF-
0514876 and NSF CISE Research Infrastructure Grant EIA-
0303609.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

sets CMPs apart from earlier parallel machines is the orga-
nization and cost measure for memory accesses. In a CMP,
memory is organized in a hierarchy of caches, and two new
features come with this:

• The cost of a memory access is determined by whether
the accessed data item is a cache hit or a cache miss.
This is in contrast to using the routing cost, or latency
and gap parameters, to measure communication cost
as in, e.g., [28, 16, 11].

• A cache has a small finite size, hence a data item
brought into cache and needed at a later time may not
reside there at that later time if it has been evicted
to make space for other data items. This is a feature
that has not been captured in any of the traditional
parallel models and algorithms.

In this paper we consider some important dynamic pro-
gramming (DP) applications, and we develop good CMP
implementations under three types of caching models for
CMP (private, shared, and multicore). We elaborate on
these three caching models in Section 1.1. For all three
CMP models, we develop parallelizations of dynamic pro-
gramming algorithms that match the best sequential caching
complexity while achieving the maximum speed-up available
in the algorithm. We obtain results for the following classes
of problems:

1. LDDP (Local Dependency DP) problems, where each
update to an entry in the DP table is determined by
contents of neighboring cells. The simplest example
of this class is the well-known LCS (longest common
subsequence) problem. Some widely-used string prob-
lems in bioinformatics including PA (pairwise sequence
alignment with affine gap cost) and Median (3-way
sequence alignment with affine gap) are examples of
LDDP. We present experimental results for PA and
Median that show simplified versions of our algorithms
to run several times faster than currently used software
for these problems even when using the default Linux
scheduler for our parallel code.

2. GEP (Gaussian Elimination Paradigm), which solves
another wide class of problems including all-pairs short-
est paths in weighted graphs (Floyd-Warshall DP), LU
decomposition and Gaussian elimination without piv-
oting, and matrix multiplication. Here we improve

the p-processor cache-efficient parallelism from Θ(n3

p
+

n log2 n) in the earlier CMP algorithms in [8, 1] to

207

main memory

block
transfer
(size = B)

private cache
(size = M)

CPU

block
transfer
(size = B)

private cache
(size = M)

CPU

block
transfer
(size = B)

private cache
(size = M)

CPU

11 22 pp

(a)

main memory

shared cache
(size = M)

CPU

block
transfer
(size = B)

CPU CPU

11 22 pp

(b)

block
transfer

(size = B
1
)

private cache
(size = C

1
)

CPU

block
transfer

(size = B
1
)

private cache
(size = C

1
)

CPU

block
transfer

(size = B
1
)

private cache
(size = C

1
)

CPU

11 22 pp

main memory

shared cache
(size = C

2
)

block
transfer

(size = B
2
)

(c)

Figure 1: Caching models for CMP: (a) D-CMP, (b) S-CMP, and (c) Multicore.

Θ
“

n3

p
+ n

”

1 on an n×n input, which is the best pos-

sible when staying within the GEP framework.

3. Parenthesis problem, which includes RNA secondary
structure prediction, optimal matrix chain multiplica-
tion, construction of optimal binary search trees, and
optimal polynomial triangulation.

4. RNA-SP (RNA secondary structure prediction with sim-
ple pseudo-knots). Combining our results for 3 dimen-
sional LDDP and GEP it is straightforward to obtain
results for RNA secondary structure prediction with
simple pseudo-knots, using the sequential RNA-SP al-
gorithm in [6]. We do not elaborate on this further.

Given a parallel algorithm, let T∞(n) denote the number
of parallel steps in the algorithm as a function of the input
size n. This is normally referred to as the critical path length
of the computation, and represents its intrinsic parallelism.
We use the term cache-efficient parallelism or cache-efficient
critical path length I∞(n) to denote the number of parallel
steps in a parallel algorithm that also matches the sequential
work and I/O bound.

For all of the problems mentioned above we present CMP
algorithms with I∞(n) = Θ(n) on all three models described
in Section 1.1. Since the sequential running time is Θ(n2)
for LCS and PA, is Θ(n3) for Median, GEP and Parenthe-
sis, and Θ(n4) for RNA-SP, we obtain a good amount of
parallelism with I∞(n) = Θ(n). In fact, the defining DP al-
gorithm for each of the problems, which is the one we use to
derive our cache-efficient implementation, has critical path
length Θ(n), hence we achieve the maximum parallelism pos-
sible while remaining as cache-efficient as the sequential case.

If we look purely for parallelism, there are NC algorithms
known for all of these problems, and there are also work-
optimal parallel algorithms that beat our parallel bound I∞
(see, e.g., [15] and references therein for LDDP and Paren-
thesis problem). However, none of these results incorporate
cache-efficiency in the parallel context, which is crucial for
CMPs.
1In other words, we improve the critical pathlength of the
computation from Θ

`

n log2 n
´

to Θ(n).

1.1 Caching models for CMP
We consider the following three models for CMPs. In all

three models, data is transferred from one memory/caching
level to another in a block of a given size.

1. D-CMP. Here the CMP is viewed as a p-processor
machine, where each processor has its own private cache
of size M [14, 8] (i.e., distributed caches). There is
also a global shared memory that is arbitrarily large.
The performance of a parallel algorithm is measured
in terms of the number of parallel steps executed and
the total number of block transfers of size B across all
caches, assuming the caches are ‘ideal’ [13].

2. S-CMP. This is similar to D-CMP, except that there
is a single cache of size M ≥ p · B shared by all p
processors [2, 8], where B is the block size. There con-
tinues to be a global shared-memory that is arbitrarily
large, and performance is measured as in D-CMP.

3. Multicore. This models the trend in current CMPs:
distributed L1 caches (i.e., private to each core), each
of size C1, and a single shared L2 cache of size C2 ≥
p · C1 [1]. There continues to be an arbitrarily large
global shared memory. The cache complexity is speci-
fied by two parameters: the number of block transfers,
each of size B2, into L2, and the total number of block
transfers, each of size B1, across all L1 caches. One
can consider a more general hierarchy of caches that
are successively shared by larger groups of processors,
and our results generalize to this model as well. We
do not elaborate further on this.

We do not consider cache coherence protocols [17] since
the updates that are performed in parallel in the algorithms
we present are always on disjoint sets of data, and hence co-
herence is never invoked. We specify parallelism by parallel
for loops and forking and joining through recursive calls.
Our results continue to hold if we replace the ideal cache
assumption by LRU.

208

Problem I/O Previous I∞ Our I∞
Tiling Parameters of Our Algorithms

Sequential D-CMP S-CMP Multicore

LCS & PA O
“

n2

MB

”

n2 (seq.) O (n)
t[d] = 2,

∀d
t[0] = p,

t[d] = 2, d > 0

t[d] = 2, d < r,
r = log(n/p),

t[r] = p

t[r] = p,
r = log(n/C2),
t[d] = 2, d �= r

Median
Parenthesis

GEP
O

“

n3

B
√

M

”

n3 (seq.)
∗

O
`

n log2 n
´

[8, 1]

O (n)
t[d] = 2,

∀d
t[0] =

√
p,

t[d] = 2, d > 0

t[d] = 2, d < r,
r = log(n/

√
p),

t[r] =
√

p

t[r] =
√

p,
r = log(n/

√
C2),

t[d] = 2, d �= r

RNA-SP O
“

n4

B
√

M

”

n4 (seq.) O (n) − − − −
Table 1: Table of our results. Here the ‘I/O’ column lists the sequential cache-oblivious bound, and the I∞ columns list

the the number of parallel steps in a work-optimal parallel algorithm whose cache complexity matches the sequential

bound. The tiling parameters are explained in the section for each problem. RNA-SP uses 3D-LDDP (similar to

Median) and GEP as subroutines, and derives its tiling parameters from both. All results assume that the input is

too large to fit into the available cache space, and some of them (i.e., Median, Parenthesis, GEP and RNA-SP) also

assume that the cache is tall (i.e., M = Ω
`

B2
´

). ∗ For the Parenthesis problem a cache-efficient parallel algorithm for

the IBM Cyclops64 processor is given in [25].

1.2 On-line Schedules
We view the computation as a dynamic DAG that unfolds

as the computation proceeds. Each node in the DAG repre-
sents a sequence of instructions being executed, and an edge
from node u to node v indicates that computation at v uses
a value computed at u. At any point in time, a node can
be scheduled on a processor provided its predecessors in the
DAG have been evaluated.

A sequential computation will compute in program order,
which automatically satisfies the DAG constraints, and this
is a depth-first topological sort of the DAG, called a 1DF
schedule. In the parallel context, we need a method to de-
cide how the computation is distributed among the available
processors as it unfolds. In work-stealing [4], the unfolding
DAG is distributed across the processors, and an idle pro-
cessor ‘steals’ some work from a random neighbor [4, 14].
Work-stealing has good performance for certain classes of
algorithms under D-CMP. A PDF schedule assigns to an
available processor, the node earliest in the 1DF schedule
that is ready to be executed [3, 2], and it often has good per-
formance under S-CMP. The recently proposed controlled-
PDF scheduler [1] is a refined version of PDF that gives good
cache performance for many divide and conquer algorithms
under the Multicore caching model.

1.3 Overview of Our Technique
For each of the three classes of problems we consider, we

introduce a tiling sequence t[d], d ≥ 0, and our CMP algo-
rithm is a parallel recursive algorithm that uses tiling param-
eter t[d] at level d of the recursion. For each type of CMP
(D-CMP, S-CMP, or Multicore) we specify the tiling param-
eters and then give a parallel schedule that ensures good
performance with respect to both parallelism and cache-
efficiency. The known cache-oblivious sequential algorithms
for the problems (given in [7] for LCS and GEP, in [6] for
LDDP, and in [5] for Parenthesis) can be viewed as special
cases of our multicore algorithms, where the tiling parameter
t[d] is the same constant for all d (and where no parallelism
is specified). Table 1 lists our results together with the tiling
parameters used. Details are in the following sections.

2. LCS AND LDDP
Local Dependence DP (LDDP) includes a very large group

of problems solvable by dynamic programming. The key fea-

ture of this class is that it applies to some constant number
of dimensions k ≥ 2, and it updates each position in a k-
dimensional table by considering the previously computed
values immediately adjacent to the current position, and
using exactly one of those values to compute the value at
the current position. Several LDDP problems are of prac-
tical importance, and we present experimental results in
Section 5 for two such problems, pairwise sequence align-
ment and 3-way sequence alignment (or median), both with
affine gaps. Here, for simplicity, we illustrate the LDDP
method with arguably the simplest problem in the class,
the two-dimensional LCS (or longest common subsequence)
problem (see, e.g., [10]). Our results generalize to general
k-dimensional LDDP (see [6] for a definition and sequential
cache-oblivious algorithm for this problem.)

Given two sequences X = x1x2 · · ·xn and Y = y1y2 · · · yn,
(for simplicity, we assume equal-length sequences here), an
LCS of X and Y is a sequence of maximum length that
is a subsequence of both X and Y . If we define c[i, j],
0 ≤ i, j ≤ n, to be the length of an LCS of x1x2 · · ·xi

and y1y2 · · · yj then c[n, n] is the LCS length of X and Y ,
and the c[i, j]’s can be computed by dynamic programming
using the following recurrence relation (see, e.g., [10]):

c[i, j] =

8

<

:

0 if i = 0 or j = 0,
c[i − 1, j − 1] + 1 if i, j > 0 ∧ xi = yj ,
max { c[i, j − 1], c[i − 1, j] } if i, j > 0 ∧ xi �= yj .

(2.1)

We denote by parent(i, j), an adjacent cell whose c-value
determines c[i, j].

Typically, two types of outputs are expected when evalu-
ating this recurrence: (i) the value of c[n, n], and (ii) the
traceback path starting from c[n, n]. The traceback path
from any cell c[i, j] is the path following the chain of parent
cells through c that ends at some c[i′, j′] with i′ = 0∨j′ = 0.

Using equation 2.1 LCS can be solved by a simple O
`

n2
´

time dynamic programming algorithm, whose DAG has lin-
ear critical path length (T∞(n) = Θ(n)). Several refinement
of this algorithm that optimize for space and cache-efficiency
are known (e.g., [18, 7]), and the sequential algorithm in
[7] that gives an O (n)-space cache-oblivious algorithm with
O

`

n2/(MB)
´

cache misses has the best performance across
both space and cache-efficiency.

209

YY

XX

cc

stored valuesstored values

n

τ

n

τ

n

τ

n

τ

n

τ

n

τ

n

τ

n

τ

11

22

22

33

33

33

44

44

44

44

55

55

55

66

66

77

(a)

YY

XX

cc

stored valuesstored values

tracebacktraceback pathpath

QQ

QQ1111 QQ1212

QQ2121
QQ2222

11

22

33

44

(b)

Figure 2: The recursive tiled LCS algorithm: (a) Tiled-Boundary-LCS: Given τ = t[recursion depth],
the LCS table is decomposed into τ 2 sub-squares of equal size. In step r ∈ [1, 2τ−1], output boundaries
of all sub-squares labelled with r are computed recursively in parallel. Outputs of step r act as inputs
for step r + 1. For each cell u on an output boundary we also compute the position on the input
boundary at which the traceback path from u will enter. (b) Tiled-LCS: It first computes the output
boundaries of Q11, Q12, Q21 and Q22 by calling Tiled-Boundary-LCS in sequence. Now given a location
labelled 1 on the output boundary of the current table, it determines in O (1) time the locations at
which the traceback path through location 1 intersects the input boundaries of all (at most three)
quadrants (e.g., locations 2, 3 and 4 in the figure). Then it recursively calls itself in parallel on all
quadrants hit by the traceback path, and extracts the path fragments from each of them.

Our tiled LCS algorithm is illustrated in Figure 1.3. The
algorithm has two parts, both of which are recursive. Figure
1.3(a) illustrates Tiled-Boundary-LCS, which computes
the LCS costs for cells corresponding to the output bound-
ary of the LCS table, i.e., the rightmost column and the
bottom row, and additionally, for each such cell u, the cell
on the input boundary at which the traceback path from u
will enter. The algorithm is supplied the subsequences X ′

and Y ′ for the current recursive call, together with a posi-
tive integer τ , which is the tiling parameter for the current
recursive call. Figure 1.3(a) is shown with X ′ = X and
Y ′ = Y and with τ = 4. The algorithm proceeds by di-
viding X and Y into τ equal pieces, thereby tiling the cost
table with τ 2 sub-tables. These sub-tables are computed
recursively in 2τ − 1 parallel steps, where the rth parallel
step performs the computation for each sub-table along the
rth forward diagonal. In the figure all sub-tables computed
in step r, for 1 ≤ r ≤ 7 are labelled with r. The specifica-
tion of the algorithm includes the tiling sequence t[d], d ≥ 0,
which is a sequence of integers, and at recursion level d the
algorithm uses tiling parameter t[d]. These parameters will
be optimized for the three different caching models we con-
sider. Additionally, we obtain the sequential algorithm in
[7] by using t[d] = 2 for all d. As in that sequential algo-
rithm, the space requirement of our tiled algorithm is linear
in the size of the input (even though a quadratic number of
intermediate values are computed).

Figure 1.3(b) illustrates Tiled-LCS, which computes the
trace-back path from a given cell on the output bound-
ary. Tiled-LCS is again a recursive algorithm, and it also
calls Tiled-Boundary-LCS. It takes the same inputs as

Tiled-Boundary-LCS, together with one additional input
u, which a cell on the output boundary of the current table.
In figure 1.3(b), u is the bottom-right position in the table,
and is indicated by 1. The algorithm proceeds by calling
Tiled-Boundary-LCS on the four sub-tables Q11, Q12, Q21

and Q22, which are derived from the current table consid-
ering two equal-sized halves of the two input strings. This
computation generates for each output boundary cell x in
each of these three sub-tables, the entry point on the input
boundary of the sub-table of the traceback path from x. Af-
ter this computation, the algorithm determines the cells 2,
3, and 4 shown in Figure 1.3(b), as we describe below.

Cell 2 in the figure is the position on the input boundary
of Q22 where the traceback path from cell 1 meets. This cell
could be on the output boundary of either Q12 or Q21, and
the figure has chosen this to be Q12 (as a result, the trace-
back path from cell 1 does not pass through Q21). Cell 3 is
the cell on the input boundary of Q12 where the traceback
path from cell 2 meets; this cell will be either on the output
boundary of Q11 or on the input boundary of the overall
table (in which case there is no cell 4). The figure has il-
lustrated the case when cell 3 is on the output boundary of
Q11, and in this case, cell 4 is the cell on the input bound-
ary of Q11 where the traceback path from 3 meets. This
cell is guaranteed to be in the input boundary of the overall
table. Since the earlier computation of Tiled-Boundary-

LCS has computed the corresponding traceback cell on the
input boundary for each cell on the output boundary, cells
2, 3, and 4 can be determined by at most 3 look-up steps
given cell 1, and hence this computation takes constant time
and work.

210

Once the cells 2, 3 and (if needed) 4 of the traceback
path are known, Tiled-LCS recursively calls itself on the
(at most three) subproblems that contain a portion of the
traceback path, using the tiling parameter for next level of
recursion.

The base case of the recursion occurs when the parent of
cell 1 lies on the input boundary of the current table. Each
parent cell is computed in such a base case call.

Correctness of this method is straightforward by induction
on the input size. A succinct pseudocode for this algorithm
is available in [9].

2.1 Performance Analysis
For performance, we tailor the tiling sequence to the CMP

models as well as the sequential case as follows.

(1) Sequential algorithm in [7]. If we use t[d] = 2 for
all d ≥ 0, a 1-processor implementation of this multicore
algorithm is exactly the sequential cache-oblivious algorithm

in [7] and hence its I/O complexity is O
“

n2

MB

”

, where M

and B are the cache and block sizes respectively.

(2) p-processor D-CMP. Since this model has a private
cache for each core, we use a tiling sequence that gives the
largest amount of locality to each processor, so that the
private caches can be used most effectively. For this we use
t[0] = p and t[d] = 2 for d ≥ 1. Note that this results in a
cache-oblivious D-CMP algorithm.

The parallel schedule consists of assigning the ith column
of sub-tables (see figure 1.3) to the ith processor at the top
level recursion (d = 0). Further levels of recursion are exe-
cuted entirely on the processor that was assigned the sub-
problem at level 0. On an input of size n and with p proces-
sors, the parallel running time for Tiled-Boundary-LCS

is TB(n, p) = O
“

(n
p
)2 · (2p − 1) + n

”

= O
`

n2/p + n
´

since

there are 2p − 1 parallel steps, each executing the sequen-
tial algorithm on an input of size n/p. There are p2 sub-
problems of size n/p, each executing the sequential cache-
oblivious algorithm, hence the number of cache misses is

O
““

(n/p)2

MB
+ n/p

B
+ 1

”

· p2
”

= O
“

n2

MB

”

under the natural

assumptions that n ≥ pM (i.e., the input does not fit within
the caches), and block-size B ≤ n/p (which will hold since
B ≤ M).

For Tiled-LCS, we schedule the (up to) 3 recursive sub-
problems with p/3 processors each, hence the parallel run-
ning time T (n, p) is given by T (n, p) = O

`

n2/p + n
´

+

T (n/2, p/3), which remains O
`

n2/p + n
´

. By a similar anal-
ysis the cache complexity also remains the same as for Tiled-

Boundary-LCS. Hence we obtain I∞(n) = Θ(n).

(3) p-processor S-CMP. Here all processors share a sin-
gle cache, hence we choose a tiling schedule that causes the
processors to work on parallel tasks that are close to one
another in the sequential order. For this, we use t[d] = 2 for
d < log(n/p) and t[log2(n/p)] = p. This is again a cache-
oblivious strategy.

The parallel schedule consists of a Brent-type processor
allocation (see, e.g., [19]) at recursion level log n/p. At this
level of recursion the input has two substrings of length p
and hence we are applying parallelism at the finest level
of granularity. Since the shared cache can be expected to
have size M ≥ p this computation will have the same cache-

complexity as the sequential case. There are Θ
“

n2

p2

”

sub-

problems executed, each with parallel time Θ (p), hence the
parallel running time is O

`

p · (n2/p2) + n
´

and hence re-

mains O
`

n2/p + n
´

. The analysis of Tiled-LCS is similar
to that for D-CMP, and again we have cache-efficient paral-
lelism I∞ to be Θ(n).

(4) Multicore. Here we need to adapt to the the private L1

caches of size C1 and the shared L2 cache of size C2. Hence
we use a strategy that combines our approach for S-CMP
and D-CMP. Let r = log n

C2
. We use t[r] = p and t[d] = 2

for all d �= r.
As in D-CMP, at recursion level r we assign the ith col-

umn of sub-tables to the ith processor, 1 ≤ i ≤ p. There are
n2

C2

2

subproblems, each with two input strings of length C2.

Each such subproblem is solved similar to the D-CMP case,

hence the parallel time is O
“

n2

C2

2

· (2p − 1) · (C2/p)2 + n
”

=

O
`

n2/p + n
´

. The C2 cache complexity is clearly the se-

quential complexity O
`

n2/(C2B)
´

since all parallelism is
exposed at a problem size when the entire input fits into
the L2 cache. Since each subproblem whose input size is C2

is solved with private caches using the same method as in

D-CMP, the L1 cache complexity is O
“

n2

2

C2

2

· C2

2

C1B

”

, which is

O
`

n2/(C1B)
´

. Hence this give a Multicore LCS algorithm
with cache-efficient parallelism I∞(n) = Θ(n).

3. GEP (GAUSSIAN ELIMINATION

PARADIGM) PROBLEMS
Let c[1 . . . n, 1 . . . n] be an n×n matrix with entries chosen

from an arbitrary set S , and let f : S×S×S×S → S be an
arbitrary function. By GEP (or the Gaussian Elimination
Paradigm) introduced by the authors in [7], we refer to the
computation in Figure 3. Here the algorithm G modifies
c by applying a given set of updates of the form c[i, j] ←
f(c[i, j], c[i, k], c[k, j], c[k, k]), where i, j, k ∈ [1, n]. We use
the notation 〈i, j, k〉 (1 ≤ i, j, k ≤ n) denotes an update of
the form c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]), and we let
ΣG denote the set of such updates that the algorithm needs
to perform.

As noted in [7] many practical problems can be solved
using the GEP construct, including all-pairs shortest paths,
LU decomposition and Gaussian elimination without pivot-
ing, and matrix multiplication.

An O
“

n3

B
√

M

”

I/O cache-oblivious sequential algorithm

for solving some important special cases of GEP including
all problems mentioned above was presented by the authors
in [7]. Later in [8], this implementation was named I-GEP,
extended to C-GEP which solves all instances of GEP within
the same performance bounds, and was also parallelized to

run in O
“

n3

p
+ n log2 n

”

time on p processors with sched-

ulers to match its sequential cache complexity on D-CMP
and S-CMP. Recently in [1] we presented a scheduler to run
I-GEP and C-GEP on multicores within the same perfor-
mance bounds. In this section we improve the parallel algo-

rithm presented in [8] to run in O
“

n3

p
+ n

”

parallel time on

D-CMP, S-CMP and multicores while matching its sequen-
tial cache complexity. In other words, the new algorithm
achieves I∞(n) = T∞(n) = Θ (n).

211

G(c, n, f, ΣG)

(Input c[1 . . . n, 1 . . . n] is an n×n matrix, f(·, ·, ·, ·) is an arbitrary problem-specific function, and ΣG is a problem-specific set
of triplets such that c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]) is executed in line 4 if 〈i, j, k〉 ∈ ΣG.)

1. for k ← 1 to n do
2. for i ← 1 to n do
3. for j ← 1 to n do
4. if 〈i, j, k〉 ∈ ΣG then c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 3: GEP: Triply nested for loops typifying code fragment with structural similarity to the
computation in Gaussian elimination without pivoting.

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
22

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
22

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
22

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
22

DD
22

DD
22

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
AA

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
BB
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

DD
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

DD
11

DD
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
BB
11

DD
11

DD
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
CC
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
44

DD
44

DD
33

DD
33

DD
33

DD
33

DD
33

DD
44

DD
44

DD
33

DD
33

DD
33

DD
33

DD
33

3311 22 44 55 66 77 88

33

44

55

66

77

88

22

11

(a)

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
BB
11

DD
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

DD
11

DD
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
BB
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
33

DD
33

DD
33

DD
33

DD
33

DD
33

DD
33

DD
33

DD
33

DD
33

33

44

55

66

77

88

22

11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
BB
11

DD
11

DD
11

DD
11

DD
11

DD
11

DD
33

DD
33

DD
11

DD
11

DD
11

DD
11

DD
11

DD
33

DD
33

DD
11

DD
11

DD
11

DD
11

DD
11

DD
33

DD
33

(b)

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

DD
22

DD
22

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

DD
11

DD
11

DD
11

DD
11

DD
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
CC
11

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

CC
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

3311 22 44 55 66 77 88

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
CC
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

DD
22

DD
22

DD
11

DD
11

DD
11

DD
11

DD
11

(c)

Figure 4: Execution of superstep k = 3 of I-GEP functions A (Figure 4(a)), B1 (Figure 4(b)) and
C1 (Figure 4(c)). Each cell contains the name of the function used to update the entries in the
corresponding submatrix. Submatrices corresponding to dotted cells (if any) are updated first. In
the next step all submatrices corresponding to cells with grids are updated in parallel. In the last
step submatrices corresponding to white cells are updated simultaneously. Pseudocode for these
functions can be found in [9].

3.1 Improved CMP Algorithm
We present an improved parallel implementation of I-GEP

which is an extension of the parallel implementation we pre-
sented in [8]. We modify each I-GEP function (A, Bi, Ci,
Dj , where i ∈ [1, 2] and j ∈ [1, 4]) introduced in [8] so that
one can control the way the input matrices are subdivided
at each level of recursion by specifying a vector t of tiling
parameters. At recursion depth d ≥ 0, an n × n input ma-
trix is subdivided into r× r submatrices of size n

r
× n

r
each,

where r = t[d]. We show that by appropriately setting the
tiling parameters we can reduce the parallel time complexity

of the algorithm from O
“

n3

p
+ n log2 n

”

[8] to O
“

n3

p
+ n

”

for p processors. Pseudocode for each of these functions is
given in the companion technical report [9].

Each function accepts a (recursion) depth parameter d ≥
0, and four (not necessarily distinct) equal size square sub-
matrices X, U , V and W of the input matrix c. We assume
that W has a diagonal aligned to the (1, 1) to (n, n) diago-
nal of c, and for each c[i, j] ∈ X and c[k, k] ∈ W , the entries
c[i, k] and c[k, j] can be found in U and V , respectively. Each
function updates the entries in X using appropriate entries
from U , V and W . The functions differ in the amount of
overlap X, U and V have among them. Function A as-
sumes that all three matrices completely overlap, while Dl

(l ∈ [1, 4]) expects completely non-overlapping matrices. In
the intermediate cases, function Bl assumes that only X and
V overlap, while Cl assumes overlap only between X and U ,
where l ∈ [1, 2]. Intuitively, the less the overlap among the
input matrices the more flexibility the function has in order-
ing its recursive calls, and thus leading to better parallelism.

The initial call is to function A with d = 0 and X = U =

V = W = c. If X is a 1 × 1 matrix, then X is updated
directly by setting X ← f(X, U, V, W). Otherwise each
matrix is subdivided into r × r submatrices of size n

r
× n

r
each, where r = t[d] = t[0]. The submatrix of X at the i-th
position from the top and the j-th position from the left is
denoted by Xi,j . Then the function executes r supersteps.
Superstep k ∈ [1, r] of function A consists of 3 steps (see Fig-
ure 4(a)). In step 1, submatrix Xk,k is updated recursively
by function A. In step 2, the remaining submatrices Xi,k

and Xk,j (i �= k, j �= k) are updated in parallel using the
entries in Xk,k by appropriate calls to functions B1, B2, C1

and C2 (see Figure 4(a) for details). In step 3, the remain-
ing submatrices of X are updated in parallel using entries
computed in step 2 by calling appropriate Dl (l ∈ [1, 4])
functions (see Figure 4(a)). Superstep k ∈ [1, r] of functions
Bl and Cl (l ∈ [1, 2]) consists of 2 steps. In case of function
Bl (Cl), step 1 updates all Xi,k (Xk,j , resp.) by parallel calls
to Bl (Cl, resp.). In step 2, the remaining submatrices of X
are updated by parallel calls to appropriate Dl (l ∈ [1, 4])
functions (e.g., see Figures 4(b) and 4(c)). Each superstep
of function Dl (l ∈ [1, 4]) has only one step which updates
all submatrices of X in parallel by calling Dl recursively.

We now analyze the performance of the algorithm under
different configurations below.

(1) Sequential. We use t[d] = 2 for all d ≥ 0, and execute
the entire algorithm on a single processor. We have already
analyzed this case in [7, 8], and found the cache complexity

of the algorithm to be O
“

n3/(B
√

M) + n3/M + n2/B + 1
”

which reduces to O
“

n3/(B
√

M)
”

provided the cache is tall

(i.e., M = Ω
`

B2
´

) and the input matrix is too large to fit

212

into the cache (i.e., n2 > M). It is straight-forward to see
that the algorithm runs in O

`

n3
´

time.

(2) D-CMP. We set t[d] =
√

p for d = 0, and t[d] = 2
for d > 0. Hence at level 0 of recursion, function A will
execute

√
p supersteps, and in each superstep it will make

a total of p parallel recursive functions calls with subma-
trices of size (n/

√
p) × (n/

√
p) each. Each such function

will be executed sequentially in O
“

`

n/
√

p
´3

”

time on a sin-

gle processor. Thus the parallel running time of the algo-

rithm is
√

p · O
“

`

n/
√

p
´3

”

= O
`

n3/p
´

. Now let QA(n),

QBC(n) and QD(n) denote the cache complexity of func-
tions A, B1/B2/C1/C2 and D1/D2/D3/D4, respectively,
on an input of size n. Assuming that a submatrix of size
(n/

√
p) × (n/

√
p) is too large to fit into the cache, and

that the cache is tall, the total number of cache misses is√
p ·QA(n/2) +

√
p · (2√p− 1) ·QBC(n/2) +

√
p · (p− 2

√
p) ·

QD(n/2) = O
“

n3/(B
√

M) + n3/M +
√

p · n2/B + p
√

p
”

=

O
“

n3/(B
√

M)
”

.

(3) S-CMP. We set t[d] =
√

p if d ≥ log2
n√
p
, and t[d] = 2

otherwise. We do not make any parallel function calls until
we reach a level d ≥ log2

n√
p
. Hence, we can use the same

recurrence relations as in the sequential case and get the
same cache complexity provided p ≤ M . Now TA(n), TBC(n)
and TD(n) denote the parallel running times of functions A,
B1/B2/C1/C2 and D1/D2/D3/D4, respectively on an input
of size n. Then TA(n) = TBC(n) = TD(n) = O

`√
p

´

if
n ≤ √

p. Otherwise,

TD(n) = 8 · TD (n/2) + O (1)

TBC(n) = 4 · TBC (n/2) + 4 · TD (n/2) + O (1)

TA(n) = 2 · TA (n/2) + 4 · TBC (n/2) + 2 · TD (n/2) + O (1)

Solving the recurrences and assuming that p ≤ n2, we obtain
TA(n) = TBC(n) = TD(n) = O

`

n3/p
´

.

(4) Multicore. We set t[d] =
√

p if d = log2 (n/
√

C2), and
t[d] = 2 otherwise. All parallel calls are made only at level
d = log2 (n/

√
C2). Observe that whenever we reach a sub-

problem of input size n1 =
p

C2/p, it is executed entirely

on a single processor, and there are (n/n1)
3 such subprob-

lems. Hence, the number of L1 cache-misses is (n/n1)
3 ·

O
`

n1
3/(B1

√
C1) + n1

3/C1 + n1
2/B1 + 1

´

, which reduces to

O
`

n3/(B1

√
C1)

´

under the assumption that C2 > p ·C1 (>

p·B1), and that the L1 cache is tall (i.e., C1 = Ω
`

B1
2
´

). The
number of L2 cache-misses can be computed using the same
recurrence relations as in the sequential case and in S-CMP,

and thus the L2 cache complexity is O
“

n3/(B2

p

C2)
”

pro-

vided the L2 cache is tall (i.e., C2 = Ω
`

B2
2
´

), and the

input matrix is too large to fit into that cache (i.e., n2 >
C2). The parallel running time can be computed using the
same recurrence relations as in S-CMP, but with a differ-
ent base condition. We use TA(n) = TBC(n) = TD(n) =

O
„

√
p ·

“

p

C2/p
”3

«

for n ≤
√

C2. Assuming n2 > C2, we

obtain TA(n) = TBC(n) = TD(n) = O
`

n3/p
´

.

Observe that for all three models we obtain I∞(n) = Θ(n).
For D-CMP and S-CMP models, our algorithm is cache-
oblvious.

4. THE PARENTHESIS PROBLEM
We consider the parenthesis problem [15] which is defined

by the following recurrence relation:

c[i, j] =

8

<

:

xj if 0 ≤ i = j − 1 < n,

mini<k<j

(c[i, k] + c[k, j])
+w(i, k, j)

ff

if 0 ≤ i < j − 1 < n;

(4.2)
where xj ’s are assumed to be given for j ∈ [1, n]. We also
assume that w(·, ·, ·) is a function that can be computed in-
core without incurring any cache misses.

The class of problems defined by the recurrence relation
above includes RNA secondary structure prediction, optimal
matrix chain multiplication, construction of optimal binary
search trees, and optimal polygon triangulation. A variant
of this recurrence which does not include the w(i, k, j) term
and is defined as the simple dynamic program, was consid-

ered in [5], where an O
“

n3/(B
√

M)
”

I/O sequential cache-

oblivious algorithm based on Valiant’s context-free language
recognition algorithm [27] was given for solving the recur-
rence. A parallel algorithm for solving the parenthesis prob-

lem which runs in O
“

n
3

4 log n
”

time and performs optimal

O
`

n3
´

work was given in [15], but the algorithm is not
cache-efficient. A cache-efficient multicore algorithm for the
IBM Cyclops64 processor was given in [25].

As in [5], instead of recurrence 4.2 we will use the follow-
ing slightly augmented version of 4.2 which will consider-
ably simplify the recursive subdivision process in our cache-
oblivious algorithm.

c[i, j] =

8

>

>

<

>

>

:

∞ if 0 ≤ i = j ≤ n,
xj if 0 ≤ i = j − 1 < n,

mini≤k≤j

(c[i, k] + c[k, j])
+w(i, k, j)

ff

if 0 ≤ i < j − 1 < n;

(4.3)
where w(i, k, j) is defined to be ∞ when k = i or k = j. It
is straight-forward to see that recurrences 4.2 and 4.3 are
equivalent, i.e., they compute the same values for any given
c[i, j], 0 ≤ i < j − 1 < n.

4.1 CMP Algorithm
We assume that the input to the algorithm is an n × n

matrix c that has all c[i, j] with 0 ≤ i ≤ j ≤ i + 1 ≤ n
initialized as in recurrence 4.3, and the remaining entries
(i.e., all c[i, j] with 0 ≤ i < j − 1 < n) initialized to ∞.
The algorithm works by recursively subdividing the input
matrix, and assumes the existence of a global vector t of
tiling parameters which for each level of recursion specifies
how the input matrix is subdivided. Pseudocode for the
algorithm is given in the companion technical report [9].
Here we give an informal description of the algorithm.

The algorithm (i.e., function E in [9]) splits the input
matrix X (which is initially set to c) into r × r submatrices
of size n

r
× n

r
each, where r = t[d] and d (≥ 0) is the level

(i.e., depth) of recursion. The submatrix of X at the i-th
position from the top and the j-th position from the left
is denoted by Xi,j . The k-th diagonal of X includes the
submatrices Xi,i+k, where k ∈ [0, n−1] and i ∈ [1, n−k] (see
Figure 5). Observe that the submatrices on diagonal 0 of
X are smaller instances of the original parenthesis problem
defined by X and all of them are independent, and hence are
solved recursively by n

r
parallel calls to E. The algorithm

213

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x1

1

2

2

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x

1

1

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x1

1

2

2

3

3

(c)

Figure 5: Execution of superstep k = 6 of function E for solving the parenthesis problem. Figure 5(a)
marks the submatrices used in steps 1 and 2 to update a submatrix x on diagonal k′ ∈ [k + 1, 2k − 3].
Figure 5(b) shows that if x is on diagonal 2k − 2 then it is updated only in step 1, and as shown
in Figure 5(c) any submatrix on diagonal k is updated in all three steps (submatrices used in step
r ∈ [1, 3] are labelled with r).

then executes r − 1 supersteps, and maintains the following
invariant.

Invariant 4.1. At the start of superstep k ∈ [1, r − 1],

(i) all entries of c in the submatrices on diagonals 0 to
k − 1 of X have their values finalized, and

(ii) all remaining cells c[i, j] are updated with (c[i, l] + c[l, j])+
w(i, l, j), where both c[i, l] and c[l, j] belong to the sub-
matrices on diagonals 0 to k − 2 of X.

Superstep k (1 ≤ k < r) consists of up to 3 parallel steps.
The first two steps are executed only for k > 1. In step 1
each submatrix Xi,j on diagonals k to min {2k − 2, r − 1} is
updated using data from the submatrix Xi,r+k−i on diago-
nal k − 1 that lies to the left of Xi,j , and the correspond-
ing submatrix Xi−k+1,j below Xi,j . All such Xi,j ’s are up-
dated in parallel using another recursive function H (see the
technical report [9] for pseudocode) which is implemented
in exactly the same way as the I-GEP function D3. Simi-
larly, step 2 updates each submatrix Xi,j on diagonals k to
min {2k − 3, r − 1} using data from the submatrix Xr+k−j,j

on diagonal k−1 that lies below Xi,j , and the corresponding
submatrix Xi,j−k+1 to the left of Xi,j . All such updates are
also performed in parallel by calling H. Observe that in step
1, for Xi,j ’s on diagonal 2k−2 both input submatrices lie on
diagonal k − 1. Hence, submatrices on diagonal 2k − 2 need
not be updated in step 2. In step 3 each submatrix Xi,j on
diagonal k is updated using the two submatrices on diago-
nal 0 that lie to the left of Xi,j and below it, i.e., Xi,r−i+1

and Xr−j+1,j , respectively. All these updates are performed
in parallel by calling function F. The implementation of this
function is similar to that of function E (see the technical re-
port [9] for pseudocode). Since invariant 4.1 was true before
the start of superstep k, it is easy to see that after step 3 of
this superstep all entries of c inside submatrices on diagonal
k will have their values finalized.

Now we analyze the performance of the algorithm under
different machine configurations.

(1) Sequential. We use t[d] = 2 for all d ≥ 0, and execute
the entire algorithm on a single processor. In this case the
algorithm reduces to the sequential algorithm given in [5].
It is straight-forward to see that the running time of each
of the three functions (i.e., E, F and H) is O

`

n3
´

. Let

the sequential cache-complexity of the three functions on an
input of size n be QE(n), QF (n) and QH(n), respectively.
Then QE(n) = QF (n) = QH(n) = O (n + n/B) for n2 ≤
γM , where γ is a suitable constant. Otherwise,

QH(n) = 8 ·QH (n/2) , QF (n) = 4 ·QF (n/2)+4 ·QH (n/2)

and QE(n) = 2 · QE (n/2) + QF (n/2)

Solving the recurrences we obtain, QE(n) = QF (n) = QH(n)

= O
“

n3/(B
√

M) + n3/M + n2/B + 1
”

which reduces to

O
“

n3/(B
√

M)
”

provided the cache is tall and the input

matrix is too large to fit into the cache.

(2) D-CMP. We use the same tiling parameters as in the
D-CMP case of I-GEP in Section 3.1, and the analyses of
performance bounds are also similar. The parallel running
time of the algorithm turns out to be O

`

n3/p
´

, and the

cache complexity O
“

n3/(B
√

M) + n3/M +
√

p · n2/B + p
√

p
”

,

which reduces to O
“

n3/(B
√

M)
”

provided the input is too

large to fit into the cache (i.e., n2 > p · M) and the cache is
tall (i.e., M = Ω

`

B2
´

).

(3) S-CMP. We use the same tiling parameters as in the S-
CMP case of I-GEP in Section 3.1, and compute the cache
complexity similarly. Let TE(n), TF(n) and TH(n) be the
parallel running times of E, F and H , respectively, on input
size n. Then TE(n) = TF (n) = TH(n) = O

`√
p

´

if n ≤ √
p.

Otherwise,

TH(n) = 8 · TH (n/2) + O (1)

TF (n) = 4 · TF (n/2) + 4 · TH (n/2) + O (1)

TE(n) = 2 · TE (n/2) + TF (n/2) + O (1)

Solving the recurrences and assuming that p ≤ n2, we obtain
TE(n) = TF (n) = TH(n) = O

`

n3/p
´

. The cache complexity
remains the same as in the sequential case.

(4) Multicore. The analysis is exactly the same (using the
same tiling sequence) as in the multicore case of I-GEP in
Section 3, and we get TE(n) = TF (n) = TH(n) = O

`

n3/p
´

.
The cache complexities for both the L1 and L2 caches match
its sequential cache complexity.

214

Speed-up Factors Achieved by Our Multicore Algorithms on AMD Opteron 850 as the Number of Concurrent Threads (p) Vary

p = 2 p = 6p = 1 p = 4 p = 8

(a) Pairwise Alignment

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

8 K 16 K 32 K 64 K 128 K 256 K 512 K 1,024 K

sequence length (n)

s
p
e
e
d
-u
p
 f
a
c
to
r

(n
o
rm
a
li
z
e
d
 w
.r
.t
.
p
 =
 1
)

(b) Median

0.0

1.0

2.0

3.0

4.0

5.0

6.0

128 256 512 1,024

sequence length (n)

s
p
e
e
d
-u
p
 f
a
c
to
r

(n
o
rm
a
li
z
e
d
 w
.r
.t
.
p
 =
 1
)

Figure 6: Performance of algorithms for PA and Median on randomly generated sequences over { A, T, G, C }.

Seq. Lengths Cost FASTA Multicore PA

Pair (×106) (×103) [22] 1 core 2 cores 4 cores 6 cores 8 cores
human
baboon

1.80|1.51 689 21h 43m (5.87) 17h 41m (4.79) 8h 58m (2.43) 5h 26m (1.47) 4h 21m (1.17) 3h 42m (1.00)
human
chimp

1.80|1.32 585 20h 15m (6.34) 14h 28m (4.53) 7h 20m (2.30) 4h 28m (1.40) 3h 32m (1.11) 3h 12m (1.00)
baboon
chimp

1.51|1.32 574 17h 57m (6.22) 13h 0m (4.51) 6h 36m (2.29) 4h 3m (1.40) 3h 16m (1.13) 2h 52m (1.00)
human

rat
1.80|1.50 1, 143 27h 55m (6.15) 21h 47m (4.80) 11h 2m (2.43) 6h 37m (1.46) 5h 11m (1.14) 4h 32m (1.00)

rat
mouse

1.50|1.49 822 18h 39m (5.31) 15h 42m (4.47) 7h 58m (2.27) 4h 55m (1.40) 3h 54m (1.11) 3h 31m (1.00)

Table 2: Performance of pairwise alignment algorithms on 8-core AMD Opteron 850 on CFTR DNA sequences [26].

Parameters used: gap open cost = 2, gap extension cost = 1, mismatch cost = 1. Each number outside parentheses in

columns 4–9 is the time for a single run, and the ratio of that running time to the corresponding running time for

Multicore PA with 8 cores is given within parentheses.

Knudsen ukk.alloc ukk.checkp Multicore Median
No Lengths Cost [20] [23] [23] 1 core 2 cores 4 cores 6 cores 8 cores

1 367|387|388 299 1, 061 (6.93) 396 (2.59) 548 (3.58) 431 (2.82) 274 (1.79) 181 (1.18) 158 (1.03) 153 (1.00)
2 378|388|403 324 1, 136 (7.01) − 707 (4.36) 460 (2.84) 298 (1.84) 190 (1.17) 173 (1.07) 162 (1.00)
3 342|367|389 339 936 (6.37) − 795 (5.41) 388 (2.64) 256 (1.74) 166 (1.13) 152 (1.03) 147 (1.00)
4 342|370|474 432 1, 154 (7.08) − 1, 595 (9.79) 464 (2.85) 281 (1.72) 195 (1.20) 175 (1.07) 163 (1.00)
5 370|388|447 336 − − 768 (4.74) 494 (3.05) 307 (1.90) 204 (1.25) 170 (1.05) 162 (1.00)

Table 3: Performance on an 8-core AMD Opteron 850 of Median algorithms on triples of random sequences from

16S bacterial rDNA sequences from the Pseudanabaena group [12]. Parameters used: gap open cost = 2, gap

extension cost = 1, mismatch cost = 1. A ‘−’ in a column denotes that the corresponding algorithm could not be

run due to high space overhead. Each number outside parentheses in columns 4–11 is the time in seconds for a

single run, and the ratio of that running time to the corresponding running time for Multicore Median with 8 cores

is given within parentheses.

Observe that similar to the results for I-GEP in Section
3, this algorithm acheives I∞(n) = O (n) for all three CMP
models, and is cache-oblivious for D-CMP and S-CMP.

5. EXPERIMENTAL RESULTS
We ran experiments for PA (pairwise global sequence align-

ment with affine gap penalty) and for Median (median of 3
sequences, again with affine gap penalty). Definitions for PA
and Median problems as 2- and 3-dimensional LDDP respec-
tively can be found in [9]. Our sequential cache-oblivious
algorithms and experimental results for them are given in
[6]. We ran our experiments on an 8-core 2.2 GHz AMD
Opteron 850, with cache sizes 64KB and 1 MB (8-way) for
L1 and L2 caches, 32 GB RAM.

Since we were dealing with only p = 8 cores, we used
a simple CMP algorithm with tiling parameter t[d] = 2
for all d, which is the same tiling sequence used by the
sequential algorithm in [7]. This gives rise to parallelism
T∞(n) = O

`

nlog2 3
´

since it satisfies the recurrence T∞(n) =
3 · T∞(n/2) + O (1), with T∞(1) = O (1). Using techniques

similar to those we have described in section 2 for LCS on
D-CMP, S-CMP and Multicore, it is straightforward to ob-
tain schedules that achieve I∞(n) = O

`

nlog2 3
´

on all three
models. However, since our experiments were actual runs
on an existing 8-core machine and not simulations, we had
no control over the scheduler, so our parallel code was run
with the default Linux thread scheduler.

Our algorithms were implemented in C++ (compiled with
g++ 3.3.4) while some software packages we used for com-
parison were written in C (compiled with gcc 3.3.4). Opti-
mization parameter -O3 was used in all cases.

For PA we compared our code (PA-CO) with FASTA
(fasta2) [22], and for median we compared our code (Median-
CO) with Knudsen [21], and with ukk.alloc and ukk.checkp,
both from Powell et al. [24]. These are all well-known soft-
ware, and FASTA especially is very widely used. None of
the code we used for comparison were designed for paral-
lelism, but in all cases even the 1-core version of our parallel
code ran faster than the all compared code on random triples
from the data set.

215

Experimental Performance. Our experimental results
for random input strings in Figure 6 show that both PA-
CO and Median-CO achieve good speed-up as the number
of processors increases. For example, with 8 processors PA-
CO achieves a speed-up factor of about 5 when n = 1024 K,
and MED-CO achieves speed-up 5.5 when n = 1, 024.

Tables 2 and 3 present a sample of runs on real data, both
on our code and the other software. As seen from the tables,
the 1-core runs of our code are faster than the software we
compare against. The speed-up for these real data samples
as we increase the number of cores is similar to our results
for random input strings in Figure 6.

Acknowledgement. We acknowledge the suggestions of
the SPAA referees to give informal descriptions of our algo-
rithms and remove all pseudocode.

6. REFERENCES

[1] G. Blelloch, R. Chowdhury, P. Gibbons,
V. Ramachandran, S. Chen, and M. Kozuch. Provably
good multicore cache performance for
divide-and-conquer algorithms. In Proc. ACM-SIAM
SODA, pages 501–510, 2008.

[2] G. Blelloch and P. Gibbons. Effectively sharing a
cache among threads. In Proc. ACM SPAA, pages
235–244, 2004.

[3] G. Blelloch, P. Gibbons, and Y. Matias. Provably
efficient scheduling for languages with fine-grained
parallelism. JACM, 46(2):281–321, 1999.

[4] R. Blumofe and C. Leiserson. Scheduling
multithreaded computations by work stealing. JACM,
46(5):720–748, 1999.

[5] C. Cherng and R. Ladner. Cache efficient simple
dynamic programming. In Proc. Intl Conf Analysis of
Algorithms, pages 49–58, 2005.

[6] R. Chowdhury, H. Le, and V. Ramachandran. Efficient
cache-oblivious string algorithms for Bioinformatics.
Technical Report TR-07-03, Dept. of Computer
Sciences, UT-Austin, 2007.

[7] R. Chowdhury and V. Ramachandran.
Cache-oblivious dynamic programming. In Proc.
ACM-SIAM SODA, pages 591–600, 2006.

[8] R. Chowdhury and V. Ramachandran. The
cache-oblivious gaussian elimination paradigm:
Theoretical framework, parallelization and
experimental evaluation. In Proc. ACM SPAA, pages
71–80, 2007.

[9] R. Chowdhury and V. Ramachandran. Cache-efficient
dynamic programming algorithms for multicores.
Technical Report TR-08-16, Dept. of Computer
Sciences, UT-Austin, 2008.

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, second
edition, 2001.

[11] D. Culler, R. Karp, D. Patterson, A. Sahay,
K. Schauser, S. E., R. Subramonian, and T. von
Eicken. Logp: Toward a realistic model of parallel
computation. In Proc. 4th SIGPLAN Symp. Principles
Practices of Parallel Programming, pages 1–12, 1993.

[12] T. DeSantis, I. Dubosarskiy, S. Murray, and
G. Andersen. Comprehensive aligned sequence
construction for automated design of effective probes
(CASCADE-P) using 16S rDNA. Bioinformatics,
19:1461–1468, 2003. url:
http://greengenes.llnl.gov/16S/.

[13] M. Frigo, C. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In
Proc. IEEE FOCS, pages 285–297, 1999.

[14] M. Frigo and V. Strumpen. The cache complexity of
multithreaded cache oblivious algorithms. In Proc
ACM SPAA, pages 271–280, 2006.

[15] Z. Galil and K. Park. Parallel algorithms for dynamic
programming recurrences with more than o (1)
dependency. JPDC, 21:213–222, 1994.

[16] P. Gibbons, Y. Matias, and V. Ramachandran. Can
shared-memory model serve as a bridging model for
parallel computation? In Proc. ACM SPAA, pages
72–83, 1997.

[17] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, third edition, 2002.

[18] D. Hirschberg. A linear space algorithm for computing
maximal common subsequences. CACM,
18(6):341–343, 1975.

[19] R. Karp and V. Ramachandran. Parallel algorithms
for shared memory machines. In Handbook of Theor
Comp Sci, pages 869–941. Elsevier, 1990.

[20] B. Knudsen. Multiple parsimony alignment with
“affalign”. Software package multalign.tar.

[21] B. Knudsen. Optimal multiple parsimony alignment
with affine gap cost using a phylogenetic tree. In Proc.
Workshop Algs in Bioinf., pages 433–446, 2003.

[22] W. Pearson and D. Lipman. Improved tools for
biological sequence comparison. In Proc. Natl Acad.
Sciences, volume 85, pages 2444–2448, 1988.

[23] D. Powell. Software package
align3str_checkp.tar.gz.

[24] D. Powell, L. Allison, and T. Dix. Fast, optimal
alignment of three sequences using linear gap cost.
Journal of Theoretical Biology, 207(3):325–336, 2000.

[25] G. Tan, N. Sun, and G. R. Gao. A parallel dynamic
programming algorithm on a multi-core architecture.
In ACM SPAA, pages 135–144, 2007.

[26] J. Thomas et al. Comparative analyses of
multi-species sequences from targeted genomic
regions. Nature, 424:788–793, 2003.

[27] L. Valiant. General context-free recognition in less
than cubic time. JCSS, 10:308–315, 1975.

[28] L. Valiant. A bridging model for parallel computation.
CACM, 33(8):103–111, 1990.

216

